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Abstract—The detection and localization of anomalous behaviors in crowded scenes is considered, and a joint detector of temporal

and spatial anomalies is proposed. The proposed detector is based on a video representation that accounts for both appearance and

dynamics, using a set of mixture of dynamic textures models. These models are used to implement 1) a center-surround discriminant

saliency detector that produces spatial saliency scores, and 2) a model of normal behavior that is learned from training data and

produces temporal saliency scores. Spatial and temporal anomaly maps are then defined at multiple spatial scales, by considering the

scores of these operators at progressively larger regions of support. The multiscale scores act as potentials of a conditional random

field that guarantees global consistency of the anomaly judgments. A data set of densely crowded pedestrian walkways is introduced

and used to evaluate the proposed anomaly detector. Experiments on this and other data sets show that the latter achieves state-of-

the-art anomaly detection results.

Index Terms—Video analysis, surveillance, anomaly detection, crowded scene, dynamic texture, center-surround saliency
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1 INTRODUCTION

SURVEILLANCE video is extremely tedious to monitor when
events that require follow-up have very low probability.

For crowded scenes, this difficulty is compounded by the
complexity of normal crowd behaviors. This has motivated a
surge of interest in anomaly detection in computer vision
[1], [2], [3], [4], [5], [6], [7], [8], [9]. However, this effort is
hampered by general difficulties of the anomaly detection
problem [10]. One fundamental limitation is the lack of a
universal definition of anomaly. For crowds, it is also
infeasible to enumerate the set of anomalies that are possible
in a given surveillance scenario. This is compounded by the
sparseness, rarity, and discontinuity of anomalous events,
which limit the number of examples available to train an
anomaly detection system.

One common solution to these problems is to define
anomalies as events of low probability with respect to a
probabilistic model of normal behavior. This enables a
statistical treatment of anomaly detection, which conforms
with the intuition of anomalies as events that deviate from
the expected [10]. However, it introduces a number of
challenges. First, it makes anomalies dependent on the scale
at which normalcy is defined. A normal behavior at a fine
visual scale may be perceived as highly anomalous when a
larger scale is considered, or vice versa. Hence, normalcy

models must be defined at multiple scales. Second, different
tasks may require different models of normalcy. For instance, a
detector of freeway speed limit violations will rely on
normalcy models based on speed features. On the other
hand, appearance is more important for the detection of
carpool lane violators, i.e., single-passenger vehicles in
carpool lanes. Third, crowded scenes require normalcy
models robust to complex scene dynamics, involving many
independently moving objects that occlude each other in
complex ways, and can have low resolution.

In result, anomaly detection can be extremely challen-
ging. While this has motivated a great diversity of solutions,
it is usually quite difficult to objectively compare different
methods. Typically, these combine different representations
of motion and appearance with different graphical models
of normalcy, which are usually tailored to specific scene
domains. Abnormalities are themselves defined in a some-
what subjective form, sometimes according to what the
algorithms can detect. In some cases, different authors even
define different anomalies on common data sets. Finally,
experimental results can be presented on data sets of very
different characteristics (e.g., traffic intersection versus
subway entrance), frequently proprietary, and with widely
varying levels of crowd density.

In this work, we propose an integrated solution to all
these problems. We start by introducing normalcy models
that jointly account for the appearance and dynamics of complex
crowd scenes. This is done by resorting to a video
representation based on dynamic textures (DTs) [11]. This
representation is then used to design models of normalcy
over both space and time. Temporal normalcy is modeled
with a mixture of DTs [12] (MDT) and enables the detection
of behaviors that deviate from those observed in the past.
Spatial normalcy is measured with a discriminant saliency
detector [13] based on MDTs, enabling the detection of
behaviors that deviate from those of the surrounding
crowd. The integration of spatial and temporal normalcy
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with respect to either appearance or dynamics leads to a
flexible model of normalcy, applicable to the detection of
anomalies of relevance to various surveillance tasks.

To address the scale problem, MDTs are learned at
multiple spatial scales. This is done with an efficient
hierarchical model, where layers of MDTs with successively
larger regions of video support are learned recursively. The
local measures of spatial and temporal abnormality are then
integrated into a globally coherent anomaly map, by
probabilistic inference. This is implemented with a condi-
tional random field (CRF), whose single-node potentials are
classifiers of local measures of spatial and temporal
abnormality, collected over a range of spatial scales. They
are complemented by a novel set of interaction potentials,
which account for spatial and temporal context, and
integrate anomaly information across the visual field.

Finally, to address the difficulties of empirical evaluation
of anomaly detectors on crowded scenes, we introduce a
data set of video from walkways in the campus of University
of California, San Diego (UCSD), depicting crowds of
varying densities. The data set contains 98 video sequences,
and five well-defined abnormal categories. These are not
“synthetic,” or “staged,” but abnormal events that occur
naturally, for example, bicycle riders that cross pedestrian
walkways. Ground truth is provided for abnormal events,
as well as a protocol to evaluate detection performance.

The remainder of the paper is organized as follows:
Section 2 reviews previous work on anomaly detection in
computer vision. The problems of temporal and spatial
anomaly detection in crowded scenes are discussed in
Section 3. This is followed by the mathematical character-
ization of multiscale anomaly maps in Section 4, and the
proposed CRF for integration of spatial and temporal
anomalies across different spatial scales in Section 5. Finally,
an extensive experimental evaluation is discussed in
Section 6 and some conclusions are presented in Section 7.

2 PRIOR WORK

Recent advances in anomaly detection address event
representation and globally consistent statistical inference.
Contributions of the first type define features and models
for the discrimination of normal and anomalous patterns.
Models of normal and abnormal behavior are then learned
from training data, and anomalies detected with a mini-
mum probability of error decision rule. Although there are
some exceptions [5], the distribution of abnormal patterns is
usually assumed uniform, and abnormal events formulated
as events of low probability under the model of normalcy.

One intuitive representation for event modeling is based
on object trajectories. It is comprised of either explicitly or
implicitly segmenting and tracking each object in the scene,
and fitting models to the resulting object tracks [14], [15],
[16], [6], [17], [18]. While capable of identifying abnormal
behaviors of high-level semantics (e.g., unusual long-term
trajectories), these procedures are both difficult and
computationally expensive for crowded or cluttered scenes.
A number of promising alternatives, which avoid proces-
sing individual objects, have been recently proposed. These
include the modeling of motion patterns with histograms of
pixel change [5], histograms of optical flow [19], [8], [20], or
optical flow measures [3], [4], [17], [1]. Among these, [3]

models local optical flow with a mixture of probabilistic
principal component analysis (PCA) models, [4] and [17]
draw inspiration from classical studies of crowd behavior
[21] to characterize flow with interaction features (e.g.,
social force model), and [1] learns the representative flow of
groups by clustering optical flow-based particle trajectories.

These approaches emphasize dynamics, ignoring anoma-
lies of object appearance and, thus, anomalous behavior
without outlying motion. Optical flow, pixel change
histograms, or other classical background subtraction
features are also difficult to extract from crowded scenes,
where the background is by definition dynamic, there are
lots of clutter, and occlusions. More complete representa-
tions account for both appearance and motion. For example,
[2] models temporal sequences of spatiotemporal gradients
to detect anomalies in densely crowded scenes, [22] declares
as abnormal spatiotemporal patches that cannot be recon-
structed from previous frames, and [23] pools appearance
and motion features over spatial neighborhoods, using a
distance to the nearest spatially colocated feature vector
among all training video clips, to quantify abnormality.

Object-based representations, based on location, blob
shape, and motion [7] or optical flow magnitude, gradients,
location, and scale [9], have also been proposed. Other
representations include a bag-of-words over a set of
manually annotated event classes [24]. Various methods
have also been used to produce anomaly scores. While
simple spatial filtering suffices for some applications [19],
crowded scenes require more sophisticated graphical
models and inference. For example, [6] and [1] adopt
Gaussian mixture models (GMM) to represent trajectories of
normal behavior. Cong et al. [8] and Zhao et al. [20] learn a
sparse basis and define unusual events as those that can
only be reconstructed with either large error or the
combination of a large number of basis vectors.

Contributions of the second type address the integration
of local anomaly scores, which can be noisy, into a globally
consistent anomaly map. The authors of [2], [25], and [7]
guarantee temporally consistent inference by modeling
normal temporal sequences with hidden Markov models
(HMMs). While this enforces consistency along the tempor-
al dimension, there have also been efforts to produce
spatially consistent anomaly maps. For example, latent
Dirichlet allocation (LDA) has been applied to force flow
features, in the model of spatial crowd interactions of [4].
On the other hand, [5] and [3] rely on Markov random fields
(MRF) to enforce global spatial consistency. In the realm of
sparse representations, [20] guarantees consistency of
reconstruction coefficients over space and time by inclusion
of smoothness terms in the underlying optimization
problem. Finally, [9] models object relationships, using
Bayesian networks to implement occlusion reasoning.

It should be noted that most of these methods have
not been tested on the densely crowded scenes consid-
ered in this work. It is unclear that many of them could
deal with the complex motion and object interactions
prevalent in such scenes. Furthermore, while most
methods include some mechanism to encourage spatial
and temporal consistency of anomaly judgments (MRF,
LDA, etc.), the underlying decision rule tends to be either
predominantly temporal (e.g., trajectories, GMMs, HMMs,
or sparse representations learned over time) or spatial
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(e.g., interaction models) but is rarely discriminant with
respect to both space and time. This makes it difficult to
infer whether spatial or temporal modeling are critically
important by themselves, or what benefits are gained
from their joint modeling. Furthermore, the role of scale
is rarely considered. These issues motivate the contribu-
tions of the following sections.

3 ANOMALY DETECTION

We start by proposing an anomaly detector that accounts
for scene appearance and dynamics, spatial and temporal
context, and multiple spatial scales.

3.1 Mathematical Formulation

A classical formulation of anomaly detection, which we
adopt in this work, equates anomalies to outliers. A
statistical model pXðxxxxÞ is postulated for the distribution of
a measurement XXXX under normal conditions. Abnormalities
are defined as measurements whose probability is below a
threshold under this model. This is equivalent to a statistical
test of hypotheses:

. H0: xxxx is drawn from pXðxxxxÞ;

. H1: xxxx is drawn from an uninformative distribution
pXðxxxxÞ / 1.

The minimum probability of error rule for this test is to
reject the null hypothesis H0 if pXðxxxxÞ < �, where � is the
normalization constant of the uninformative distribution.
As usual in the literature, we consider the problem of
anomaly detection from localized video measurements xxxx,
where xxxx is a spatiotemporal patch of small dimensions.

3.2 Spatial versus Temporal Anomalies

The normalcy model pXðxxxxÞ can have both a temporal and a
spatial component. Temporal normalcy reflects the intuition
that normal events are recurrent over time, i.e., previous
observations establish a contextual reference for normalcy
judgments. Consider a highway lane where cars move with
a certain orientation and speed. Bicycles or cars heading in
the opposite direction are easily identified as abnormal
because they give rise to observations xxxx substantially
different from those collected in the past. In this sense,
temporal normalcy detection is similar to background
subtraction [26]. A model of normal behavior is learned
over time, and measurements that it cannot explain are
denoted temporal anomalies.

Spatial normalcy reflects the intuition that some events
that would not be abnormal per se are abnormal within a
crowd. Since the crowd places physical or psychological
constraints on individual behavior, behaviors feasible in
isolation can have low probability in a crowd context. For
example, while there is nothing abnormal about an
ambulance that rides at 50 mph in a stretch of highway,
the same observation within a highly congested highway is
abnormal. Note that the only indication of abnormality is
the difference between the crowd and the object at the time of
the observation, not that the ambulance moves at 50 mph.
Since the detection of such abnormalities is mostly based on
spatial context, they are denoted spatial anomalies. Their
detection does not depend on memory. Instead, it is based
on a continuously evolving, instantaneously adaptive,

definition of normalcy. In this sense, the detection of spatial
anomalies can be equated to saliency detection [27].

3.3 Roles of Crowds and Scale

Most available background subtraction and saliency detec-
tion solutions are not applicable to crowded scenes, where
backgrounds can be highly dynamic. In this case, it is not
sufficient to detect variations of image intensity, or even
optical flow, to detect anomalous events. Instead, normalcy
models must rely on sophisticated joint representations of
appearance and dynamics. In fact, even such models can be
ineffective. Since crowds frequently contain distinct sub-
entities, for example, vehicles or groups of people moving
in different directions, anomaly detection requires model-
ing multiple video components of different appearance and
dynamics. A model that has been shown successful in this
context is the mixture of DTs [12]. This is the representation
adopted in this work.

Another challenging aspect of anomaly detection within
crowds is scale. Spatial anomalies are usually detected at
the scale of the smallest scene entities, typically people.
However, a normal event at this scale may be anomalous at
a larger scale, and vice versa. For example, while a child
that rides a bicycle appears normal within a group of
bicycle riding children, the group is itself anomalous in a
crowded pedestrian sidewalk. Local anomaly detectors,
with small regions of interest, cannot detect such anomalies.
To address this, we represent crowded scenes with a
hierarchy of MDTs that cover successively larger regions.
This is done with a computationally efficient hierarchical
model, where MDT layers are estimated recursively.

A similar challenge holds for temporal anomalies. While
their detection is usually based on a small number of video
frames, certain anomalies can only be detected over long
time spans. For example, while it is normal for two
pedestrian trajectories to converge or diverge at any point
in time, a cyclical convergence and divergence is probably
abnormal. Anomaly detection across time scales is, how-
ever, more complex than across spatial scales, due to
constraints of instantaneous detection and implementation
complexity. Since video has to be buffered before anomalies
can be detected, large temporal windows imply long
detection delays and storage of many video frames. Due
to this, we do not consider multiple temporal scales in this
work. A single scale is chosen, using acceptable values of
delay and storage complexity, and used throughout our
experiments. Note that, like their spatial counterparts,
temporal anomaly maps are computed at multiple spatial
scales. Hence, in what follows, the term “scale” refers to the
spatial support of anomaly detection, for both spatial and
temporal anomalies.

4 NORMALCY AND ANOMALY MODELING

In this section, we review the MDT model, discuss the
design of temporal and spatial models of normalcy, and
formulate the computation of anomaly maps.

4.1 Mixture of Dynamic Textures

The MDT models a sequence of � video frames xxxx1:� ¼
½xxxx1; xxxx2; . . . ; xxxx� � as a sample from one of K dynamic
textures [11]:
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pðxxxx1:� Þ ¼
X

K

i¼1

�ipðxxxx1:� jz ¼ iÞ: ð1Þ

The mixture components pðxxxx1:� jz ¼ iÞ are linear dynamic
systems (LDS) defined by

sssstþ1 ¼ Azsssst þ nnnnt; ð2aÞ
xxxxt ¼ Czsssst þmmmmt; ð2bÞ

�

where Z is a multinomial random variable of parameters ����
ð�i � 0;

P

i �i ¼ 1Þ, which indexes the mixture component
from which xxxxt is drawn. sssst is a hidden state variable that
encodes scene dynamics, and xxxxt the vector of pixels in video
frame t. Az; Cz are the transition and observation matrices
of component z, whose initial condition is ssss1 � Nð����z; SzÞ,
and noise processes are defined by nnnnt � Nð0; QzÞ and
mmmmt � Nð0; RzÞ. The model parameters are learned by
maximum-likelihood estimation (MLE) from a collection
of video patches, with the expectation-maximization (EM)
algorithm of [12], which is reviewed in Appendix A.1,
which is available in the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2013.111.

4.2 Temporal Anomaly Detection

Temporal anomaly detection is inspired by the popular
background subtraction method of [26]. This uses a GMM
per image location to model the distribution of image
intensities. Observations of low probability under these
GMMs are declared foreground. For anomaly detection in
crowds, the GMM is replaced by an MDT, and the pixel grid
replaced by one of preset displacement. Grid locations define
the center of video cells, from which video patches are
extracted. The patches extracted from a subregion (group of
cells) are used to learn an MDT, during a training phase, as
illustrated in Fig. 1. After this phase, subregion patches of
low probability under the associated MDT are considered
anomalies. Given patch xxxx1:� , the distribution of the hidden
state sequence ssss�1 under the ith DT component, pSjXðssss1:� jxxxx1:� ;

z ¼ iÞ, is estimated with a Kalman filter and smoother [28],
[29], as discussed in Appendix A.2, available in the online
supplemental material. The value of the temporal anomaly

map at location l is the negative-log probability of the most-
likely state sequence for the patch at l:

T ðlÞ ¼ � log
X

K

i¼1

�ip
�

ssss
fig
1:� ðlÞjz ¼ i

�

" #

; ð3Þ

where ssss
fig
1:� ðlÞ ¼ argmaxssss1:� pðssss1:� jxxxx

�ðlÞ; z ¼ iÞ. We note that
this generalizes the mixture of PCA models of optical flow
[3]. The matrix Cz of (2b) is a PCA basis for patches drawn
from mixture component z, but the PCA decomposition
reports to patch appearance, not optical flow. Patch dynamics
are captured by the hidden state sequence ssss1:� , which is a
trajectory in PCA space. Hence, unlike mixtures of optical
flow, the representation is temporally smooth. The joint
representation of appearance and dynamics makes the
MDT a better representation for crowd video than the
mixture of PCA.

4.3 Spatial Anomaly Detection

Spatial anomaly detection is inspired by previous work in
saliency detection [27], [13]. Saliency is defined in a center-
surround manner. Given a set of features, salient locations
are those of substantial feature contrast with their immedi-
ate surround. Spatial anomalies are then defined as
locations whose saliency is above some threshold. In this
work, we rely on the discriminant saliency criterion of [13].

4.3.1 Discriminant Saliency

Discriminant saliency formulates the saliency problem as a
hypothesis test between two classes: a class of salient stimuli,
and a background class of stimuli that are not salient. Two
windows are defined at each scene location l: a center
windowW1

l , with label CðlÞ ¼ 1, containing the location, and
a surrounding annular window W0

l , with label CðlÞ ¼ 0,
containing background. A set of feature responses X are
computed for each of the windows Wc

l , c 2 f0; 1g and SðlÞ,
the saliency of location l, defined as the extent to which they
discriminate between the two classes. This is quantified by
the mutual information (MI) between feature responses and
class label [13]:

SðlÞ ¼
X

1

c¼0

fpCðlÞðcÞKL½pXjCðlÞðxxxxjcÞkpXðxxxxÞ�g; ð4Þ

where pXjCðlÞðxxxxjcÞ are class-conditional densities and

KLðp qk Þ ¼
R

X pXðxxxxÞ log
pXðxxxxÞ
qXðxxxxÞ

dxxxx the Kullback-Leibler (KL)

divergence between pXðxxxxÞ and qXðxxxxÞ [30].
Locations of maximal saliency are those where the

discrimination between center and surround can be made
with highest confidence, i.e., where (4) is maximal.
The discriminant saliency principle can be applied to many
features [31]. When X consists of optical flow, it generalizes
the force flow model of [4], where saliency is defined as the
difference between the optical flow at l and the average
flow in its neighborhood (see [4, (8)]). This is a simplified
form of discriminant saliency, which replaces the MI of (4)
by a difference to the mean background response.

4.3.2 Center-Surround Saliency with MDTs

Optical flow methods provide a coarse representation of
dynamics and ignore appearance. For background subtrac-
tion, this problem has been addressed with the combination
of DTs and discriminant saliency [32]. While using a more
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Fig. 1. Temporal anomaly detection. An MDT is learned per scene
subregion, at training time. A temporal anomaly map is produced by
measuring the negative log probability of each video patch under the
MDT of the corresponding region.



powerful representation than force flow, this method learns
a single DT from both center and surround windows. This
assumes a homogeneity of appearance and dynamics
within the two windows that do not hold for crowds,
where foregrounds and backgrounds can be quite diverse.

In this work, we adopt the MDT as the probability
distribution pXjCðlÞðxxxx1:� jcÞ from which spatiotemporal
patches xxxx�1 are drawn. We note that under assumptions of
Gaussian initial conditions and noise, patches xxxx1:� drawn
from a DT have a Gaussian probability distribution [33],

xxxx1:� � Nð����;�Þ; ð5Þ

whose parameters follow from those of the LDS (2). When
the class-conditional distributions of the center and sur-
round classes, c 2 f0; 1g, at location l are mixtures of
Kc DTs, it follows that

pXjCðlÞðxxxx1:� jcÞ ¼
X

Kc

i¼1

�c
iN
�

xxxx1:� ; ����
c
i ;�

c
i

�

¼
X

Kc

i¼1

�c
ip

i
XjCðlÞðxxxx1:� jcÞ;

ð6Þ

for c 2 f0; 1g. The marginal distribution is then

pXðxxxx1:� Þ ¼
X

1

c¼0

½pCðlÞðcÞpXjCðlÞðxxxx1:� jcÞ�

¼
X

1

c¼0

�

pCðlÞðcÞ
X

Kc

i¼1

�c
iN
�

xxxx1:� ; ����
c
i ;�

c
i

�

�

¼
X

K0þK1

i¼1

!iNðxxxx1:� ; ����i;�iÞ

¼
X

K0þK1

i¼1

!ip
i
X
ðxxxx1:� Þ;

ð7Þ

and the saliency measure of (4) requires the KL divergence

between (6) and (7). This is problematic because there is no
closed form solution for the KL divergence between two

MDTs. However, because the MDT components are
Gaussian, it is possible to rely on popular approximations

to the KL divergence between Gaussian mixtures. We adopt
the variational approximation of [34]:

KLðpXjCkpXÞ

�
X

i

�Ci log

PKC
j �Cj exp

�

�KL
�

pi
XjC

�

�p
j
XjC

��

PK0þK1

j !j exp
�

�KL
�

pi
XjC

�

�p
j
X

��

( )

:
ð8Þ

Each term of (8) contains a KL divergence between DTs,

which can be computed in closed form [35]. For example,
for the terms in the denominator

KL
�

pi
XjC

�

�p
j
X

�

¼
1

2
log
j�jj
�

��Ci
�

�

þ Tr
�

��1j �Ci
�

þ
�

�����Ci � ����j
�

�

2

�j
�m�

" #

;
ð9Þ

where m is the number of pixels per frame, and
kzzzzk� ¼ zzzzT��1zzzz. Numerator terms are computed similarly.

All computations can be performed recursively [35].

4.3.3 Spatial Anomaly Map

The spatial anomaly map is a map of the saliency SðlÞ at
locations l. Given a location, this requires 1) learning MDTs
from center and surround windows, and 2) computing a
weighted average of these mixtures to obtain (7). Since
learning MDTs per location is computationally prohibitive,
we resort to the following approximation. A dense collec-
tion of overlapping spatiotemporal patches is first extracted
from VðtÞ, a 3D video volume temporally centered at the
current frame. A single MDT with Kg mixture components,
denoted f����gi ;�

g
ig

Kg

i¼1, is learned from this patch collection.
Each patch is then assigned to the mixture component of
largest posterior probability. This segments the volume into
superpixels, as shown in Fig. 2.

At location l, the MDTs of (6) and (7) are derived from
the global mixture model. The DT components are assumed
equal to those of the latter and only the mixing proportions
are recomputed, using the ratio of pixels assigned to each
component in the respective windows:

pXjCðlÞðxxxx1:� jcÞ ¼
X

Kg

i¼1

P

l2Wc
l
Mil

P

l2Wc
l
1
N
�

xxxx1:� ; ����
g
i ;�

g
i

�

; ð10Þ

for c 2 f0; 1g. Mil ¼ 1 if l is assigned to mixture
component i and 0 otherwise. The prior probabilities for
center and surround, pCðcÞ, are proportional to the ratio of
volumes of center and surround windows. SðlÞ is
computed with (4), using (8) and (9). Note that the KL
divergence terms in (8) only require the computation of
Kg

2

� �

KL divergences between the Kg mixture components,
and these are computed only once per frame because all
mixture components are shared (i.e., the terms
exp ð�KLðp qk ÞÞ in (8) are fixed per frame). This procedure
is repeated for every frame in the test video, as illustrated
in Fig. 2.

4.4 Multiscale Anomaly Maps

To account for anomalies at multiple spatial scales, we rely
on a hierarchical mixture of dynamic textures (H-MDT).
This is a model with various MDT layers, learned from
regions of different spatial support. At the finest scale, a
video sequence is divided into nL subregions (e.g., 5� 8
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Fig. 2. Spatial anomaly detection using center-surround saliency with
MDT models.



subregions). nL MDT models fMMMMig
nL

i¼1 are then learned from

patches extracted from each of the subregions. At the

coarsest scale, the whole visual field is represented with a

global MDT. This results in a hierarchy of MDT models

ffMMMM1
i g

n1

i¼1; . . . ;MMMM
L
1 g, where MMMMs

j , the jth model at scale s, is

learned from subregion Rs
j . The hierarchy of support

windows ffR1
i g

n1

i¼1; . . . ;R
Lg resembles the spatial pyramid

structure of [36]. H-MDT models can be learned efficiently

with the hierarchical expectation-maximization (H-EM)

algorithm of [37]. Rather than collecting patches anew from

larger regions, it estimates the models at a given layer

directly from the parameters of the MDT models at the layer

of immediately higher resolution.
For anomaly detection, each model is applied to the

corresponding window. This produces L anomaly maps,
fT 1; . . . ; T Lg, as illustrated in Fig. 3. A hierarchy of spatial
anomaly maps, fS1; . . . ;SLg is also computed. For all s, the
computation of Ss relies on a global mixture model MMMM.
The mixing proportions of (10) are computed using
surround windows of size identical to fRs

ig and center
windows of constant size, as summarized in Algorithm 1
(see Appendix B for all algorithms, available in the online
supplemental material.

5 GLOBALLY CONSISTENT ANOMALY MAPS

In this section, we introduce a layer of statistical inference to

fuse anomaly information across time, space, and scale in a

globally consistent manner.

5.1 Discriminative Model

The anomaly maps of the previous section span space, time,

and spatial scale. Being derived from local measurements,

they can be noisy. A principled framework is required to

1) integrate anomaly scores from the individual maps,

2) eliminate noise, and 3) guarantee spatiotemporal con-

sistency of anomaly judgments throughout the visual field.

For this, we rely on a conditional random field [38] inspired

by the discriminative random field (DRF) of [39]. An

anomaly label yi 2 f�1; 1g is defined at each location i in a

set S of observation sites. Given a video clip xxxx, the

conditional likelihood of observing a configuration of
anomaly labels yyyy ¼ fyiji 2 Sg is

P ðyyyyjxxxxÞ ¼
1

Z
exp

(

X

i2S

Aðyi; xxxxÞ

þ
X

i2S

"

1

jN ij

X

j2N i

Iðyi; yj; xxxx; i; jÞ

#)

;

ð11Þ

where Z is a partition function and N i the neighborhood of
site i. The single-site and interaction potentials of (11),

Aðyi; xxxxÞ ¼ log�
�

yiwwww
Tffff i
�

; ð12Þ

where �ðxÞ ¼ ð1þ e�xÞ�1 is the sigmoid function, and

Iðyi; yj; xxxx; i; jÞ ¼ yiyj � vvvv
T����ðffff i; ffffj; i; jÞ ð13Þ

are based on a feature vector ffff i that concatenates the spatial
and temporal anomaly scores of site i at the L spatial scales,
plus a bias term (set to 1):

ffff i ¼
	

1; T 1ðiÞ; . . . ; T LðiÞ;S1ðiÞ; . . . ;SLðiÞ

T
: ð14Þ

wwww; vvvv are parameter vectors and ���� a compound feature:

����ðffff i; ffffj; i; jÞ ¼ e��ji�jj expð�hhhhi;jÞ; ð15Þ

where ji� jj is the euclidean distance between sites i; j, and
expð�hhhhi;jÞ the entry-wise exponential of �hhhhi;j. The vector
hhhhi;j contains the diagonal entries of ðffff i � ffffjÞðffff i � ffffjÞ

T .
The single-site potential of (12) reflects the anomaly

belief at site i. Using it alone, i.e., without (13), (11) is a
logistic regression model. In this case, the detection of each
anomaly is based on information from site i exclusively. The
addition of the interaction potential of (13) enables the
model to take into account information from site i’s
neighborhood N i. This smoothes the single-site prediction,
encouraging consistency of neighboring labels. The inter-
action potential can be interpreted as a classifier that
predicts whether two neighboring sites have the same
label. Note that because ffff contains anomaly scores at
different spatial scales, hhhhi;j (or ����i;j) accounts for the
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Fig. 3. Computation of temporal anomaly maps with multiscale spatial supports using the H-MDT. MDTs of increasingly larger spatial support are
estimated recursively, with the H-EM algorithm. Their application to a query video produces temporal anomaly maps based on supports of various
spatial scales.



similarity between the two observations in anomaly spaces
of different scale (i.e., under different spatial normalcy
contexts). The interaction potentials adaptively modulate
the intensity of intersite smoothing according to these
similarity measures (and how they are weighted by vvvv). The
parameters wwww and vvvv encode the relative importance of
different features.

5.2 Online CRF Filter

The model of (11) requires inference over the entire video
sequence. This is not suitable for online applications. An
online version can be implemented by conditioning the
anomaly label yyyyð�Þ at time � on 1) observations for t 	 � , and
2) anomaly labels for t < � , leading to
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where S� is the set of observations at time � (pixels of the

current frame). Two neighborhoods are defined per location

i: spatial N SS
i (N SS

i 
 S� ) and temporal N TT
i (N TT

i 
 fS
tg��1t¼1 ).

The graphical model is shown at the top of Fig. 4, and these

neighborhoods at the bottom. The parameters �� ¼
fwwww; vvvvTT; vvvvSS; �TT; �SSg are estimated during training.

5.2.1 Learning

Both (11) and (16) can be learned with standard optimization
techniques, such as gradient descent or the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method. To improve generalization,
the model is regularized with a Gaussian prior of standard

deviation 	, for all parameters. Given N independent
training samples fxxxxðnÞ; yyyyðnÞgNn¼1, the gradients of the regular-
ized log-likelihood with respect to wwww, vvvv, and � are
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where the expectation is evaluated with distribution
pðYjX; ��Þ. The conditional expectations of (17)-(19) require
evaluation of the partition function Z, a problem known to
be NP-hard. As is common in the literature, this difficulty is
avoided by estimating expectations through sampling.
Although sampling methods such as Markov chain Monte
Carlo (MCMC) can converge to the true distribution, this
usually requires many iterations. Since the procedure must
be repeated per gradient ascent step, these methods are
impractical. On the other hand, approximations such as
contrastive divergence minimization (which runs MCMC a
limited number of times with specific starting points) have
been shown to be successful for vision applications [40],
[41]. We adopt these approximations for CRF learning.

This leverages the fact that, denoting any of the
parameters wwww; vvvvTT; vvvvSS; �TT; �SS by 



, the partial gradients of
(17)-(19) are
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where F@



ðyyyy; xxxxÞ is the sum of the terms in the summations
of (17), (18), or (19) that depend on 



. Contrastive
divergence approximates the intractable conditional
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Fig. 4. CRF filter. Top: Graphical model. Bottom: Spatial and temporal
neighborhoods.



expectation IEðYjX;�Þ½F@



ðyyyy; xxxx
ðnÞÞ� by F@



ðŷyyy; xxxx

ðnÞÞ, where ŷyyy is

the “evil twin” of the ground-truth label field yyyyðnÞ [41]. ŷyyy is

drawn by MCMC, using the inference procedure discussed

in Section 5.2.2, the current parameter estimates, and the

ground-truth labels yyyyðnÞ as a starting point.
Given the estimate of the partial gradients, the gradient

ascent rule for parameter updates reduces to
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where � is a learning rate. In our implementation, this rule

is initialized with vvvvTT ¼ vvvvSS ¼ 1 and �TT ¼ �SS ¼ 0. The initial

value of wwww is learned, assuming a logistic regression model

(vvvvTT ¼ vvvvSS ¼ 0 in (16)), with the procedure of [43].

5.2.2 Inference

The inference problem is to determine the most likely

anomaly prediction yyyy? for a query frame xxxxð�Þ, given

previous predictions fyyyyðtÞg��1t¼1 , and observations fxxxxðtÞg�t¼1:

yyyy? ¼ argmax
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Again, exact inference is intractable. We rely on Gibbs

sampling to approximate the optimal prediction. This

consists of drawing labels from the conditional distribution:
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where Fiðfxxxx
ðtÞg�t¼1; fyyyy

ðtÞg��1t¼1 ; yyyy�i; yi;�Þ is the sum of poten-

tial functions that depend on site i (i.e., its “Markov
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and Z�i the corresponding partition function:
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The procedure is detailed in Algorithms 2 and 3, available

in the online supplemental material, where we present the

online CRF filter used to estimate the label field. During

learning, the filter is initialized with the ground-truth labels

(yyyy0 ¼ yyyyð�Þ). During testing, this initialization relies on the

predictions of the single-site classifiers (vvvvTT ¼ vvvvSS ¼ 0). In our

implementation, the filter is run for Ns ¼ 10 iterations.
Again, the complete anomaly detection procedure is
summarized in Algorithm 4, available in the online
supplemental material.

6 EXPERIMENTS

In this section, we introduce a new data set and an
experimental protocol for evaluation of anomaly detection
in crowded environments and use it to evaluate the
proposed anomaly detector.

6.1 UCSD Pedestrian Anomaly Data Set

In the literature, anomaly detection has frequently been
evaluated by visual inspection [19], [7], [3], or with coarse
ground truth, for example, frame-level annotation of
abnormal events [4], [1]. This does not completely address
the anomaly detection problem, where it is usually desired
to localize anomalies in both space and time. To enable this,
we introduce a data set1 of crowd scenes with precisely
localized anomalies and metrics for the evaluation of their
detection. The data set consists of video clips recorded with
a stationary camera mounted at an elevation, overlooking
pedestrian walkways on the UCSD campus. The crowd
density in the walkways is variable, ranging from sparse to
very crowded. In the normal setting, the video contains
only pedestrians. Abnormal events are due to either 1) the
circulation of nonpedestrian entities in the walkways, or
2) anomalous pedestrian motion patterns. Commonly
occurring anomalies include bikers, skaters, small carts,
and people walking across a walkway or in the surrounding
grass. A few instances of wheelchairs are also recorded. All
abnormalities occur naturally, i.e., they were not staged or
synthesized for data set collection.

The data set is organized into two subsets, corresponding
to the two scenes of Fig. 5. The first, denoted “Ped1,”
contains clips of 158� 238 pixels, which depict groups of
people walking toward and away from the camera, and
some amount of perspective distortion. The second,
denoted “Ped2,” has spatial resolution of 240� 360 pixels
and depicts a scene where most pedestrians move horizon-
tally. The video footage of each scene is sliced into clips of
120-200 frames. A number of these (34 in Ped1 and 16 in
Ped2) are to be used as training set for the condition of
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1. Available from http://www.svcl.ucsd.edu/projects/anomaly/data-
set.html.

Fig. 5. Exemplar normal/abnormal frames in Ped1 (top) and Ped2
(bottom). Anomalies (red boxes) include bikes, skaters, carts, and
wheelchairs.



normalcy. The test set contains clips (36 for Ped1 and 12 for
Ped2) with both normal (around 5,500) and abnormal
(around 3,400) frames. The abnormalities of each set are
summarized in Table 1.

Frame-level ground-truth annotation, indicating whether
anomalies occur within each frame, and manually collected
pixel-level binary anomaly masks, which identify the pixels
containing anomalies, are available per test clip. We note
that this includes ground truth on Ped1 contributed by
Anti�c and Ommer [9], and supersedes the ground truth
available on an earlier version of this work [43]. We denote
the current ground truth by “full annotation” and the
previous one by “partial annotation.” Unless otherwise
noted, the results of the subsequent sections correspond to
the full annotation.

6.2 Evaluation Methodology

Two criteria are used to evaluate anomaly detection
accuracy: a frame-level criterion and a pixel-level criterion.
Both are based on true-positive rates (TPR) and false-
positive rates (FPRs), denoting “an anomalous event” as
“positive” and “the absence of anomalous events” as
“negative.” A frame containing anomalies is denoted a
positive, otherwise a negative. The true and false positives
under the two criteria are:

. Frame-level criterion. An algorithm predicts which
frames contain anomalous events. This is compared
to the clip’s frame-level ground-truth anomaly
annotations to determine the number of true- and
false-positive frames.

. Pixel-level criterion. An algorithm predicts which
pixels are related to anomalous events. This is
compared to the pixel-level ground-truth anomaly
annotation to determine the number of true-positive
and false-positive frames. A frame is a true positive
if 1) it is positive and 2) at least 40 percent of its
anomalous pixels are identified; a frame is a false
positive if it is negative and any of its pixels are
predicated as anomalous.

The two measures are combined into a receiver operating
characteristic (ROC) curve of TPR versus FPR:

TPR ¼
# of true-positive frame

# of positive frame
;

FPR ¼
# of false-positive frame

# of negative frame
:

Performance is also summarized by the equal error rate
(EER), the ratio of misclassified frames at which
FPR ¼ 1� TPR, for the frame-level criterion, or rate of
detection (RD), i.e., 1-EER, for the pixel-level criterion.

Note that, although widely used in the literature, the
frame-level criterion only measures temporal localization
accuracy. This enables errors due to “lucky co-occurrences”
of prediction errors and true abnormalities. For example, it
assigns a perfect score to an algorithm that identifies a
single anomaly at a random location of a frame with
anomalies. The pixel-level criterion is much stricter and
more rigorous. By evaluating both the temporal and spatial
accuracy of the anomaly predictions, it rules out these
“lucky co-occurrences.” We believe that the pixel-level
criterion should be the predominant criterion for evaluation
of anomaly detection algorithms.

6.3 Experimental Setup

Unless otherwise noted, observation sites are a video sub-
lattice with spatial interval of four pixels and temporal
interval of five frames. Temporal anomaly maps rely on
patches of 13� 13� 15 pixels. The temporal extent of
15 frames provides a reasonable compromise between the
ability to detect anomalies and the delay (1.5 s) and storage
(15 video frames) required for anomaly detection. To
minimize computation, patches of variance smaller than
500 are discarded.2 Temporal H-MDT models are learned
from fine to coarse scale. At the finer scale, there are 6� 10

windows R1
i on Ped1 (8� 11 for Ped2), each covering a

41�41 pixel area and overlapping by 25 percent with each
of its four neighbors. An MDT of five components is
learned per window. At coarser spatial scales, an MDT is
estimated from the MDTs of the four regions that it covers
at the immediately finer resolution. Each estimated MDT
has one more component than its ancestor MDTs. Overall,
there are 10 scales in Ped1 and 11 in Ped2. Spatial anomaly
maps use a 31�31 center window and surround windows
of size equivalent to Rs

i . For segmentation, 7� 7� 10

patches are extracted from the 40 frames surrounding that
under analysis. There are five DT components at all levels
of the spatial hierarchy. Both temporal and spatial MDTs
have an eight-dimensional state space. The sensitivity of
the proposed detector to some of these parameters is
discussed in Appendix C.2, available in the online
supplemental material.

6.4 Descriptor Comparison

The first experiment evaluated the benefits of MDT-based
over optical flow descriptors. The optical flow descriptors
considered were the local motion histogram (LMH) of [19],
the force flow descriptor of [4], and the mixture of optical
flow models (MPPCA) of [3]. LMH uses statistics of local
motion, and is representative of traditional background
subtraction representations, force flow is a descriptor for
spatial anomaly detection, and MPPCA a temporal
anomaly detector. For the MDT, only the anomaly maps
of finest temporal and coarsest spatial scale were con-
sidered here. Since the goal was to compare descriptors,
the high-level components of the models in which they
were proposed, for example, the LDA of [4], the MRF of
[3], and the proposed CRF, were not used. Instead,
anomaly predictions were smoothed with a simple
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2. This variance threshold is quite conservative, only eliminating regions
of very little motion. For the data sets used in our experiments, this has not
led to the elimination of any objects from further consideration. In other
contexts, for example, scenes where objects are static for periods of time,
this could happen. In this case, the threshold should be set to zero.

TABLE 1
Composition of UCSD Anomaly Data Set

anumber of clips/number of anomaly instances. b some clips contain
more than one type of anomaly.



20� 20� 10 Gaussian filter. Anomaly predictions were
generated by thresholding the filtered anomaly maps and
ROC curves by varying thresholds.

The performance of the different descriptors, under both
the frame-level (EER) and pixel-level (RD) criteria (using
both full and partial annotation in Ped1), is summarized in
Table 2. The corresponding ROC curves are presented in
Appendix C.1 (Fig. 13), available in the online supplemental
material. Examples of detected anomalies are shown in
Fig. 6. Under the frame-level criterion, temporal MDT has
the best performance in both scenes. Spatial MDT performs
worse than others in Ped1 but ranks second in Ped2.
However, for the more precise pixel-level criterion, spatial
MDT is the top or second best performer. In this case, both
MDTs significantly outperform all optical flow descriptors.
The gap between corresponding competitors (e.g., temporal
MDT versus MPPCA or LMH, spatial MDT versus force
flow) is of at least 10 percent RD. These results show that
there is a definite benefit to the joint representation of
appearance and dynamics of the MDT.

This is not totally surprising, given the limitations of
optical flow. First, the brightness constancy assumption is
easily violated in crowded scenes, where stochastic motion
and occlusions prevail. Second, optical flow measures
instantaneous displacement, while the DT is a smooth
motion representation with extended temporal support.
Finally, while optical flow is a bandpass measure, which
eliminates most of the appearance information, the DT
models both appearance and dynamics. The last two
properties are particularly important for crowded scenes,
where objects occlude and interact in complicated manners.

Overall, although optical flow can signal fast moving
anomalous subjects, it leads to too many false positives in
regions of complex motion, occlusion, and so on. More
interesting is the lack of advantage for either spatial or
temporal anomaly detection, both among MDT maps and
prior techniques (no clear advantage to either force flow or
MPPCA). In fact, as shown in Fig. 6, temporal and spatial
anomalies tend to be different objects. This suggests the
combination of the two strategies.

6.5 Scale and Globally Consistent Prediction

We next investigated the benefits of information fusion
across space and scale, with the proposed CRF. We started
with a single-scale description (S-MDT), using only the
anomaly maps at finest temporal and coarsest spatial
scales, i.e., a 3D feature per site. We next considered a
multiscale description, using the whole H-MDT. In both
cases, inference was performed with logistic regression, i.e.,
the interaction term of (16) turned off, and the Gaussian
filter of the previous section. In each trial, the logistic
classifier was trained by Newton’s method [42]. Finally, we
considered the full blown CRF, denoted CRF filter. The
dimensions of the spatial and temporal CRF neighborhoods
were set to jN SSj ¼ 6, jN TTj ¼ 3. ROC curves were generated
by varying the threshold for prediction.

Table 3 presents a comparison of the three approaches.
The corresponding ROC curves are shown in Appendix C.1
(Fig. 14), available in the online supplemental material.
Under the pixel-level criterion, the multiscale maps have
higher accuracy than their single-scale counterparts, demon-
strating the benefits of modeling anomalies in scale space
(improvement of RD by as much as 11 percent). The CRF
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TABLE 2
Descriptor Performance on UCSD Anomaly Data Set

�numbers outside/inside parentheses are results by full/partial annota-
tion (same for the rest of the paper).

TABLE 3
Filter Performance on the UCSD Anomaly Data Set

Fig. 6. Anomaly predictions of temporal MDT, spatial MDT, MPPCA, force flow, and LMH (from left to right). Red regions are abnormal pixels. All
predictions generated with thresholds such that the different approaches have similar FPR under frame-level protocol (these settings apply to all the
subsequent figures unless otherwise stated).



filter further improves performance (improvement of RD by
as much as 3 percent), demonstrating the gains of globally
consistent inference. As shown in Fig. 7, the visual improve-
ments are even more substantial.3 Simple filtering does not
take into account interactions between neighboring sites and
smooths the anomaly maps uniformly. On the other hand,
the CRF adapts the degree of smoothing to the spatiotem-
poral structure of the anomalies, increasing the precision of
anomaly localization. Note how, in Fig. 7, the CRF-filter
successfully excludes occluded but normally behaving
pedestrians from anomaly regions. These improvements
are not always captured by the frame-level criterion. In fact,
there is little EER difference between S-MDT and H-MDT.
The inconsistency between frame- and pixel-level results in
Tables 2 and 3 shows that the former is not a goodmeasure of
anomaly detection performance. Henceforth, only the pixel-
level criterion is used in the remaining experiments on this
data set.

6.6 Anomaly Detection Performance

We next evaluated the performance of the complete
anomaly detector. For this, we selected two detectors
from the recent literature, with state-of-the-art perfor-
mance for temporal [8] and combined spatial and
temporal anomaly detection [9]. The RD of the various
methods is summarized in Table 4, for both partial and
full annotation. The corresponding ROC curves are shown
in Fig. 8. Table 4 also presents the processing time per
video frame of each method. Missing entries indicate
unavailable results for the particular data set and/or
annotation type. A discussion of the detection errors made
by the detector is given in Appendix C.3, available in the
online supplemental material.

On Ped1, the temporal component of the proposed
detector substantially outperforms the temporal detector of
[8]. A multiple-scale temporal anomaly map with CRF
filtering increases the 46 percent RD4 of [8] to 52 percent.
A similar implementation of the spatial anomaly detector
(amultiple-scalemapplusCRF filtering) achieves 58 percent.
Combining both maps and multiple spatial scales further

improves the RD to 65 percent. Computationally, the
proposed detector is also much more efficient. For
implementations on similar hardware (see footnotes
of Table 4), it requires 1.11 s/frame, as compared to the

3.8 s/frame reported for [8].
Like the proposed detector, the Bayesian video parsing

(BVP) of [9] combines spatial and temporal anomaly
detection, using a more complex video representation,
parsing of the video to extract all the objects in the scene,
a support vector machine classifier for detection of temporal
anomalies, a graphical model with seven nodes per site

(and multiple nonparametric models for location, scale, and
velocity) for detection of spatial anomalies, and occlusion
reasoning. This is an elegant solution, which achieves
slightly better RD than the proposed detector (2 percent for
full and 3 percent for partial annotation), but at substan-

tially higher computational cost (5 to 10 times slower). We
believe that when both accuracy and computation are
considered, the proposed detector is a more effective
solution. However, these results suggest that gains could

be achieved by expanding the proposed CRF, as [9] trades a
much simpler representation of video dynamics (optical
flow versusMDT) for more sophisticated inference. It would
be interesting to consider CRF extensions with some of the
properties of the graphical model of [9], namely, explicit

occlusion reasoning. This is left for subsequent research.
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TABLE 4
Performance of Various Methods (RD/Seconds per Frame) by Pixel-Level Criterion on UCSD Anomaly Data Set

Implementation: } C/2.8-GHz CPU/2-GB RAM; \ C++ and Matlab (feature extraction and model inference)/2.6GHz CPU/2GB RAM; #Matlab/dual-
core 2.7GHz CPU/8GB RAM.

Fig. 7. Examples of anomaly localization with Gaussian smoothing (in blue) and CRF filter (in red). The latter predicts more accurately the
spatiotemporal support of anomalies in crowded regions, where occlusion is prevalent.

Fig. 8. ROC curves of pixel-level criterion on Ped1.

3. More results at http://www.svcl.ucsd.edu/projects/anomaly/
results.html.

4. These numbers refer to partial annotation, the only available for [8].



6.7 Role of Context in Anomaly Judgments

We next investigated the impact of normalcy context in
anomaly judgments. For temporal anomalies, context is
determined by the subregion size: As the latter increases,
temporal models become more global. Fig. 9 shows that the
scale of normalcy context significantly impacts anomaly
scores. For example, the two cyclists on the left-most
columns of the figure are missed at small scales but
detected by the more global models. On the other hand, a
leftward heading pedestrian in the third column has high
anomaly score at the finest scale but is not anomalous in
larger contexts. In summary, no single context is effective
for all scenes. Due to the stochastic arrangements of people
within crowds, two crowds of the same size can require
different context sizes. In general, the optimal size depends
on the crowd configuration and the anomalous event.

A similar observation holds for spatial anomalies, where
context is set by the size of the surround window. For
example, in the fourth column of Fig. 9, the subject walking
on the grass is very salient when compared to her
immediate neighbors, and anomaly detection benefits from
a narrower context. For larger contexts, she becomes less
unique than a man that walks in the direction opposite to his
neighbors. On the other hand, the cart and bike of the last
column only pop out when the surround window is large
enough to cover some pedestrians. In summary, anomalies
depend strongly on scene context, and this dependence can
vary substantially from scene to scene. It is, thus, important
to fuse anomaly information across spatial scales.

6.8 Performance on Other Benchmark Data Sets

The detection of anomalous events in crowded scenes can be
evaluated in a few data sets other than UCSD. These have
various limitations in terms of size, saliency of the
anomalies, evaluation criteria, and so on. They are discussed
in this section where, for completeness, we also present the
results of the proposed anomaly detector.

UMN. The UMN data set5 contains three escape scenes.
Normal events depict individuals wandering around or
organized in groups. Abnormal events depict a crowd
escaping in panic. Each scene contains several normal-

abnormal events (e.g., seconds of normalcy followed by a
short abnormal event). The main limitations of this data set
are that

1. it is relatively small (scenes 1, 2, and 3 contain two,
six, and three anomaly instances),

2. it has no pixel-level ground truth,
3. the anomalies are staged, and
4. it produces very salient changes in the average

motion intensity of the scene.

As a result, several methods achieve near perfect detection.
The proposed detector was based on 3� 3 subregions of

size 180� 180 at the finest spatial scale and a 3-scale
anomaly map for both the temporal and spatial compo-
nents. One normal-abnormal instance of each scene was
used to train the temporal normalcy model and CRF filter,
and the remaining instances for testing. A comparison to
previous results in the literature, under the frame-level
criterion, is presented in Table 5 and Fig. 11. Due to the
salient motion discontinuities, the temporal component
(99.2 percent AUC) substantially outperforms the spatial
component (97.9 percent). Nevertheless, the complete
detector achieves the best performance (99.5 percent). This
is nearly perfect, and comparable to the previous best
results in the literature.

Subway. The Subway data set [19] consists of two
sequences recorded from the entrance (1 h and 36 min,
144,249 frames) and exit (43 min, 64,900 frames) of a
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TABLE 5
Anomaly Detection Performance in AUC/ERR (Percent)

Fig. 9. Impact of context on anomaly maps. First three columns: Temporal anomalies, cell coverage at different HMDT layers shown in blue. Last two
columns: Spatial anomalies, example center (surround) windows shown in blue (light yellow).

5. http://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi.



subway station. Normal behaviors include people entering
and exiting the station; abnormal consist of people moving
in the wrong direction (exiting the entrance or entering the
exit) or avoiding payment. The main limitations of this data
set are: 1) reduced number of anomalies, and 2) predictable
spatial localization (entrance and exit regions). The original
512� 384 frames were down sampled to 320� 240, and 2�
3 subregions of size 90� 90, covering either the entrance or
exit regions, were used at the finest spatial scale. A 3-scale
anomaly map was computed for both spatial and temporal
anomalies. Video patches were of size 15� 15� 15, and
10 min of video from each sequence was used to train the
temporal normalcy model and CRF filters, while the
remaining video was used for testing. Table 5 and Fig. 11
present a comparison of the proposed detector against
recently published results on this data set. Again, the
temporal component outperforms its spatial counterpart,
but the best performance is obtained by combination of both
temporal and spatial anomaly maps (H-MDT CRF). This
achieves the best result among all methods, outperforming
the sparse reconstruction of [8] and the local statistical
aggregates of [23]. Note that, for this data set, the gains in
both AUC and EER are substantial.

U-turn. The U-turn data set [5] consists of one video

sequence (roughly 6,000 frames of size 360� 240) recorded

by a static camera overlooking the traffic at a road

intersection. The video is split into two clips of equal length

for cross validation and anomalies consist of illegal vehicle

motion at the intersection. The main limitations of this data

set are: 1) the limited size, 2) absence of pixel-level ground

truth, and 3) sparseness of the scenes. The latter enables the

use of object-based operations, for example, tracking and

analysis of object trajectories [5], which we do not exploit.

For temporal anomaly detection, MDTs were learned
using 20� 20� 30 patches from 3� 4 subregions covering
the intersection. This was the finest level of a 3-scale
hierarchicalmodel. For spatial anomaly detection, segmenta-
tion was computed with a 5-component MDT learned from
15� 15� 30 patches extracted from 45 consecutive frames.
An observation lattice of step 15� 15� 10 was used to
evaluate anomaly scores, and the neighborhood size of the
CRF filter was 2. The performance of the detector is
summarized in Table 5 and Fig. 11. Due to the sparsity of
the scenes (not enough spatial context around cars making
illegal turns to establish themas anomalous) the performance
of the spatial anomaly detector is quite weak. However, the
combination of the spatial and temporal anomalymaps again
outperforms the temporal channel, achieving the best
performance. Overall, the proposed detector has the best
AUC on this data set. Examples of detected anomalies, for
this and the other two data sets, are shown in Fig. 10.

7 CONCLUSION

In this work, we proposed an anomaly detector that spans
time, space, and spatial scale, using a joint representation of
video appearance and dynamics and globally consistent
inference. For this, we modeled crowded scenes with a
hierarchy of MDT models, equated temporal anomalies to
background subtraction, spatial anomalies to discriminant
saliency, and integrated anomaly scores across time, space,
and scale with a CRF. It was shown that the MDT
representation substantially outperforms classical optical
flow descriptors, that spatial and temporal anomaly
detection are complementary processes, that there is a
benefit to defining anomalies with respect to various
normalcy contexts, i.e., in anomaly scale space, and that it
is important to guarantee globally consistent inference
across space, time and scale. We have also introduced a
challenging anomaly detection data set, composed of
complex scenes of pedestrian crowds, involving stochastic
motion, complex occlusions, and object interactions. This
data set provides both frame-level and pixel-level ground
truth, and a protocol for the evaluation of anomaly
detection algorithms. The proposed anomaly detector was
shown effective on both this and a number of previous data
sets. When compared to previous methods, it outperformed
various state-of-the-art approaches, either in absolute
performance or in terms of the tradeoff between anomaly
detection accuracy and complexity.
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Fig. 11. ROC curves of frame-level criterion on the UMN (left), Subway (center), and U-turn (right) data sets.

Fig. 10. Anomalies detected by H-MDT CRF on the UMN (left), Subway
(center), and U-turn (right) data sets.
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