
 Open access Proceedings Article DOI:10.1109/ISSRE.2016.32

Anomaly Detection and Root Cause Localization in Virtual Network Functions
— Source link

Carla Sauvanaud, Kahina Lazri, Mohamed Kaaniche, Karama Kanoun

Published on: 23 Oct 2016 - International Symposium on Software Reliability Engineering

Topics: Virtual network, Hardware virtualization, Virtual machine, IP Multimedia Subsystem and Dependability

Related papers:

 UBL: unsupervised behavior learning for predicting performance anomalies in virtualized cloud systems

 PREPARE: Predictive Performance Anomaly Prevention for Virtualized Cloud Systems

 Anomaly detection: A survey

 A Fault Correlation Approach to Detect Performance Anomalies in Virtual Network Function Chains

 Localizing Faults in Cloud Systems

Share this paper:

View more about this paper here: https://typeset.io/papers/anomaly-detection-and-root-cause-localization-in-virtual-
3xyuestxcw

https://typeset.io/
https://www.doi.org/10.1109/ISSRE.2016.32
https://typeset.io/papers/anomaly-detection-and-root-cause-localization-in-virtual-3xyuestxcw
https://typeset.io/authors/carla-sauvanaud-2uhynwwwdu
https://typeset.io/authors/kahina-lazri-21o7d94pr6
https://typeset.io/authors/mohamed-kaaniche-38p4aixflj
https://typeset.io/authors/karama-kanoun-3fzg9q9lao
https://typeset.io/conferences/international-symposium-on-software-reliability-engineering-36nd1kjw
https://typeset.io/topics/virtual-network-36l5i8wh
https://typeset.io/topics/hardware-virtualization-3qrg85am
https://typeset.io/topics/virtual-machine-1wyvv06f
https://typeset.io/topics/ip-multimedia-subsystem-x7w75yh6
https://typeset.io/topics/dependability-23csuu5f
https://typeset.io/papers/ubl-unsupervised-behavior-learning-for-predicting-46mz5v9qax
https://typeset.io/papers/prepare-predictive-performance-anomaly-prevention-for-3hm2sl728h
https://typeset.io/papers/anomaly-detection-a-survey-1x33g9m0a3
https://typeset.io/papers/a-fault-correlation-approach-to-detect-performance-anomalies-3laf0fp7yc
https://typeset.io/papers/localizing-faults-in-cloud-systems-214wradh8v
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/anomaly-detection-and-root-cause-localization-in-virtual-3xyuestxcw
https://twitter.com/intent/tweet?text=Anomaly%20Detection%20and%20Root%20Cause%20Localization%20in%20Virtual%20Network%20Functions&url=https://typeset.io/papers/anomaly-detection-and-root-cause-localization-in-virtual-3xyuestxcw
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/anomaly-detection-and-root-cause-localization-in-virtual-3xyuestxcw
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/anomaly-detection-and-root-cause-localization-in-virtual-3xyuestxcw
https://typeset.io/papers/anomaly-detection-and-root-cause-localization-in-virtual-3xyuestxcw

HAL Id: hal-01419014
https://hal.archives-ouvertes.fr/hal-01419014

Submitted on 18 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anomaly Detection and Root Cause Localization in
Virtual Network Functions

Carla Sauvanaud, Kahina Lazri, Mohamed Kaâniche, Karama Kanoun

To cite this version:
Carla Sauvanaud, Kahina Lazri, Mohamed Kaâniche, Karama Kanoun. Anomaly Detection and Root
Cause Localization in Virtual Network Functions. 27th International Symposium on Software Relia-
bility Engineering (ISSRE 2016), Oct 2016, Ottawa, Canada. pp.196 - 206, 10.1109/ISSRE.2016.32.
hal-01419014

https://hal.archives-ouvertes.fr/hal-01419014
https://hal.archives-ouvertes.fr

Anomaly Detection and Root Cause Localization in

Virtual Network Functions

Carla Sauvanaud∗, Kahina Lazri†, Mohamed Kaâniche∗, Karama Kanoun∗

∗LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
†Orange Labs, 38 rue du General Leclerc, 92130 Issy-Les-Moulineaux, France

Emails: firstname.name@laas.fr, firstname.name@orange.com

Abstract—The maturity of hardware virtualization has mo-
tivated Communication Service Providers (CSPs) to apply this
paradigm to network services. Virtual Network Functions (VNFs)
result from this trend and raise new dependability challenges
related to network softwarisation that are still not thoroughly
explored. This paper describes a new approach to detect Service
Level Agreements (SLAs) violations and preliminary symptoms
of SLAs violations. In particular one other major objective of
our approach is to help CSP administrators to identify the
anomalous VM at the origin of the detected SLA violation, which
should enable them to proactively plan for appropriate recovery
strategies. To this end, we make use of virtual machine (VM)
monitoring data and perform both a per-VM and an ensemble
analysis. Our approach includes a supervised machine learning
algorithm as well as fault injection tools. The experimental testbed
consists of a virtual IP Multimedia Subsystem developed by the
Clearwater project. Experimental results show that our approach
can achieve high precision and recall, and low false alarm rate
and can pinpoint the root anomalous VNF VM causing SLA
violations. It can also detect preliminary symptoms of high
workloads triggering SLA violations.

Keywords—VNF, monitoring data, machine learning, fault in-
jection, SLA, root cause analysis.

I. INTRODUCTION

Network functions (NFs) were for a long time inseparable
of specialized proprietary hardware and stringent topology
requirements. With the maturity of virtualization technologies,
Communication Service Providers (CSPs) led multiple initia-
tives to extend hardware virtualization to network services.
Moreover, as cloud computing emerged, it became attractive
to host NFs as virtual machines (VMs) running on virtualized
and well orchestrated commodity servers. These initiatives
gave rise to the Network Function Virtualization paradigm
(NFV). NFV promises operating expenditure savings, quick
deployments, scalability and high flexibility in the management
of virtualized NFs. In this context, Virtual Network Functions
(VNFs) represent any virtual execution environment configured
to provide a given network service. VNFs are often divided
into several components each one hosted on single VMs.

As a result of their softwarization, NFs are exposed to
anomalies present in IT applications in addition to other cate-
gories of anomalies specific to virtualized infrastructures. Un-
fortunately, NFs are more performance stringent than common
IT applications, and anomalies may quickly lead to customers’
quality of service degradation. The need of anomaly detection
techniques for VNF is consequently preeminent.

Anomaly detection is an important problem that has been

widely studied in several domains and often tackled with
machine learning approaches [1] [2] [3] [4] [5] [6]. Our goal
is to explore the ability of such methods to accurately detect
anomalies in VNFs that could lead to performance degradation
impacting the end user experience. In more details, this work
particularly studies the agreements on the VNF service level
contracted between end users and CSP. It aims at detecting
anomalies leading the VNF not to achieve these service level
agreements (SLAs). As an agreement is not achieved, a vio-
lation is recorded. SLAs are widely used by CSPs as a basis
for defining the quality of service (QoS) a user can expect
from a provider [7]. There is however no straightforward
way for an easy online analysis of the expressed QoS. A
provider generally relies on its own engineering approaches
and experience to guaranty a QoS. Verification or certification
usually provides needed analyses to ensure them. As the QoS
is intricate to handle online, our work intends to study SLA
violation based on monitoring data characterizing the behavior
of system level resources that we can obtain from commodity
servers or VMs at runtime. Monitoring data are system-level
metrics that are easy to obtain from commodity servers of VMs
at runtime.

Thus, this paper proposes an approach (we call it detection
approach) to detect SLA violations, by means of machine
learning models and based on monitoring data. The detection
of SLA violations can lead a system administrator to reboot
an anomalous VM or horizontally scale a VNF (i.e., add more
nodes). In addition to this detection, it would be of interest
to detect preliminary symptoms of such violations, or in other
terms, to identify the behaviors of a VNF before it leads to an
SLA violation. This would enable to adopt proactive measures
before a violation actually happens and may disrupt a user
experience. Also, when either an SLA violation is imminent
or already occurring, it is not enough for administrators to get
a global alarm over a large distributed VNF. The root cause
of such events, or at least an indication of it, is required to
plan adequate measures. In that concern, this paper focuses on
these three objectives to be tackled online:

• Detection of SLA violations

• Detection of preliminary symptoms of SLA violations

• Detection of SLA violations with root cause
localization

The detection of preliminary symptoms of SLA violations
should be performed together with the detection of SLA
violations. They are complementary objectives. Any time the
detection of preliminary symptoms failed, the detection of SLA

1

violations still can detect the violation as it occurs. Our third
objective aims to improve the detection of SLA violations as it
also localizes the root cause of the violations. Localization is
carried out by either pinpointing a workload being too heavy
or identifying anomalous VNF VMs.

Our approach to achieve the three detection objectives
is based on models that are designed to perform online.
Nevertheless, an offline training phase is needed, during which
these models are defined and trained with monitoring data
to identify the anomalous VNFs behaviors that we intend to
detect. Since a system is mostly exhibiting a normal behavior
during runtime, fault injection techniques are used in our
approach so as to accelerate the occurrence of behaviors
leading to SLA violations. These techniques aim at deliberately
provoking anomalous behaviors in a system. They are used in
this work in order to build complete monitoring datasets so as
to train models. Injections are performed at a local level by
means of local injections in single VMs or, at a global level,
by submitting heavy workloads.

Two types of analysis of the validation results are also
carried out, per-VM or globally using an ensemble analy-
sis combining per-VM analyses. Moreover, two application-
agnostic monitoring sources are studied at the VM level and
at the hypervisor level, both for the monitoring of the VNF
VMs. Validation experiments are performed on a real case
study, namely a virtual IP Multimedia Subsystem (IMS) [8]
implemented by the Clearwater project. This IMS implements
multiple components, dynamically chained together, each one
hosted on a VM.

In the following, we first present our global anomaly
detection approach in Section II. The implementation of an
operational system based on this approach is presented in
Section III. Then we describe our case study and platform
in Section IV. Section V provides validation results of our ap-
proach. Section VI discusses related work. Finally, Section VII
concludes and provide some directions for future work.

II. GLOBAL APPROACH

In the following, the three main points composing our
global approach are presented. We describe the detection
approach and the monitoring data used to detect anomalies in
a VNF. Then, we present our fault injection approach aimed
at gathering datasets representing several behaviors of a VNF.
During an offline training phase, these datasets are used to
define models used for online detection.

A. Detection approach

The VNF QoS that an SLA encompasses may be defined
by several complementary high level characteristics such as
service availability or speed [7]. These characteristics can be
described by lower level metrics such as the service response
time or the service throughput. As a consequence, we hereby
provide some definitions related to the VNFs service level as
studied in our work.

The service level is evaluated as the percentage of suc-
cessful completion of user requests by the VNF, in other
terms, the percentage of successful requests (PSR). In our
work, we evaluate the percentage of unsuccessful requests

(PUR = 1−PSR) to study VNF SLA violations. The SLA is
satisfied as long as the PUR does not overpass a maximal PUR
value called PUR max, or the PSR is not below a minimum
value. An SLA violation (SLAV) happens when PUR max is
overpassed (PUR > PUR max). A preliminary symptom of
SLAV is represented by the state describing the system behavior
during a period [t − δt, t] where t is the time of occurrence
of the SLAV. The state is described by the monitoring data
collected during this period.

As stated earlier, three detection objectives are considered
i) the detection of SLAV, ii) the detection of SLAV-PS due to
heavy workload, and iii) detection of SLAV with root cause
localization.

The detection of SLAV or their preliminary symptoms
leverages the classification of behaviors into normal and
anomalous behaviors. It can pinpoint whether the VNF ex-
hibits an anomalous behavior. The detection with root cause
localization is the preeminent detection investigated in this
work. It performs detection with online localization of an
anomalous behavior cause. In this work, the cause of an
anomalous behavior can be an anomalous VM suffering from
local performance stressing, or it can also result from a global
heavy workload toward the VNF.

The detection of SLAVs or their preliminary symptoms
turns out to be a classification problem: is there an SLAV
(resp. a preliminary symptom) or not? We even can go further,
and in case of violation, can we identify its cause? Machine
learning is a famous field of computer science aimed at getting
automatic computing procedures to learn a task without being
explicitly programmed. It turned out to be extremely relevant
for classification problems [9]. Machine learning can be ap-
plied to our problem so as to classify behaviors corresponding
or leading to SLAVs, or not. As there is an SLAV or a
preliminary symptom of SLAV, we consider that a system
exhibits an anomalous behavior. Otherwise it has a normal
behavior.

There are a plethora of machine learning algorithms and
a lot of them are specifically dedicated to handle numerical
data. Actually, monitoring data enable us to directly observe a
system and represent its behaviors by means of numerical data.
Representing a behavior needs some heavy preprocessing when
using audit data, OS logs, or application logs. Besides, this
work particularly focuses on the identification of anomalous
behaviors from monitoring data of VMs OSs such as CPU
consumption, disk I/O, and free memory. As seen in previous
researches [10]–[16], these data are well suited to reflect the
behavior of a computing system.

With respect to the machine learning models that we aim to
build for detection (in our case, classifiers), samples of labeled
monitoring data are needed to train them to discern different
VNF behaviors. Considering our two first objectives, samples
should be labeled with two classes corresponding to normal or
anomalous behavior so as to train models to classify these two
behaviors. As for the third objective, samples should be labeled
with several classes according to the several SLA violation
origins in the VNF. This method is called supervised learn-
ing (by opposition to unsupervised learning, i.e., clustering).
Samples are called training data. They are obtained during a
training-purposed runtime phase (i.e., training phase) during

2

which a testbed or a development infrastructure is monitored
while experiencing different types of behaviors. Based on our
field knowledge about system anomalies that may lead to
SLAVs, we can emulate them during a training phase and train
models from the collected data. The emulation is performed
through fault injection campaigns (they are described in II-C).
Once a model is trained from a training dataset, it can be
used online during a detection phase. Thereupon, it performs
predictions of whether a given monitoring sample belongs to
a particular class of behaviors that it learned to discern. The
ability of models to perform accurate predictions is referred to
as predictive accuracy in this paper.

Anomaly detection is performed over the monitoring data
subdivided into data related to each VM hosting a VNF
component. We call it a per-VM analysis, as in [10]. By not
combining all monitoring data from all VMs, this analysis
enables not to accumulate irrelevant features (i.e., monitoring
metrics) in one dataset and thus, to improve the predictive
accuracy of models. It also eases the comparison of the
predictive accuracy of detection models based on different
monitoring sources. Finally, it is a possible means to analyze
error propagation [17] between VMs through monitoring data.

The predictive accuracy obtained from the combination of
the per-VM predictions is also evaluated in this work. We call
it an ensemble analysis. The ensemble analysis is a means to
provide CSP administrators with one single prediction output
while giving further access to the per-VM analysis when it is
required. Besides, we believe that a study could be performed
to identify which types of VNF component (proxy, database,
etc.) are best to detect SLAVs caused by particular anomalies.
From this study, we could give higher weight to the predictions
of VM models that are more likely to give good individual
predictive accuracy.

Table I summarizes all acronyms and abbreviations used in
this paper.

TABLE I. ACRONYMS AND ABBREVIATIONS TABLE

CSP Communication Service Provider.

SLA Service Level Agreement.

SLAV SLA Violation.

SLAV-PS Preliminary Symptoms of SLAV.

PSR Percentage of Successful Requests.

PUR Percentage of Unsuccessful Requests.

It is the service level characteristic being studied in this work.

PUR max . . . Maximum value of the PUR agreed with customers.

It stands at the limit between the agreement and the violation.

A violation takes place if PUR > PUR max.

VNF Virtual Network Function.

B. Monitoring

Monitoring provides units of information about a system
that are called performance counters (referred to as counters).
The actual counter values being collected from a system are
called performance metrics (referred to as metrics). A vector
of metrics collected at a given timestamp corresponds to a
monitoring observation (also referred to as observation).

In this work, observations related to a VNF VMs hosted in
a virtualized infrastructure are collected from two monitoring
sources, namely the hypervisor, or the OS of the VMs.

• The hypervisor hosting the VNF VMs can provide
monitoring data related to each VM it hosts such as the
memory, the CPU speed or the network bandwidth that
the hypervisor grants to the VM. Such a monitoring
source is called black-box as it does not need any tool
to be installed in the VMs.

• Monitoring data can also be collected directly from
the OS of the VNF VMs. Collected observations from
VMs require the installation of monitoring agents in
VMs. This is referred to as a grey-box monitoring
source. Considering this source, the number of avail-
able counters is more important than in the case of
the black-box source since they can relate to the OS
performance in terms of system buffers size and use,
and in terms of memory pages state for instance.
These low level VMs counters cannot be known by
the underlying hypervisor.

Both monitoring sources provide periodically observations
related to each single VM of the VNF. We evaluate the benefits
in terms of the predictive accuracy a grey-box monitoring
may provide for the detection objectives. For both monitoring
sources, our approach does not require knowledge about the
VNF implementation. Therefore, it can easily be applied to all
types of VNFs.

C. Fault injection approach

To accelerate the occurrence of faults during the training
phase of our detection approach we use fault injection tech-
niques. We particularly focus on injecting anomalous behaviors
in the VNF. Our injections emulate widespread anomalies ex-
isting in common computing system due to punctual and abrupt
behaviors changes (we do not study long term degradations).
Such anomalies arise when software or hardware faults are
activated.

Two methods are used in order to trigger these anomalies:

• Local emulation of anomalies within VNF VMs (in-
crease of CPU consumption, memory leaks, etc.).

• Global configuration of the benchmark with a heavy
workload. In other words, the VNF is stressed at a
heavy load beyond which a correct service is not guar-
anteed and SLAVs are likely to be observed (the load
level is set with regard to the platform deployment and
its maximum capacities).

Anomaly injections in the VNF depend on three parame-
ters, namely a type, an intensity, and a target VM. By means of
our two methods, six types of anomalies are emulated, namely
1) CPU consumption, 2) misuse of memory (i.e. memory
increase), 3) anomalous number of disk accesses (i.e. increase
of disk I/O access and synchronizations), 4) network packet
loss, 5) network latency, and 6) heavy workload. They are
respectively referred to as CPU, memory, disk, packet loss,
latency, and heavy workload injections, and described bellow.

CPU consumption. Anomalous CPU consumptions may
arise from anomalous programs encountering impossible ter-
mination conditions leading to infinite loops, busy waits or
deadlocks of competing actions, which are common issues in
multiprocessing and distributed systems.

3

Memory leaks. Anomalous memory usages are common
whose allocated chunks of memory are not freed after their use.
Accumulations of unfreed memory may lead to memory short-
age and system failures. We believe that such cloud-related
mechanism as ballooning may also lead to such failures.

Anomalous number of disk access. A high number of disk
accesses, or an increase of disk accesses over a short period of
time, emulates anomalous disks whose accesses often fail and
lead to an increase in disk access retries. It may also result
from an anomalous program stuck in an infinite loop of data
writing.

Network anomaly. Such anomalies may arise from net-
work interfaces or the interconnection of networks. We emulate
packet losses, and latency increases. Packet losses may arise
from undersized buffers, wrong routing policies and even
firewall misconfigurations. Latency anomalies may originate
from queuing or processing delays of packets on gateways.

Heavy workload. They emulate a large number of users
consuming the VNF service, too important with regard to the
testbed deployment.

Finally, two intensities were selected for the local VM
anomalies, namely medium and high. We calibrated them
based on prior experimentations on our testbed. Regarding the
memory, disk and CPU injections, the intensity values of an
anomaly are constrained by the capacity of VMs OSs. In other
words, the high intensity injection (resp. medium) is the maxi-
mum resource consumption (resp. 50% of resource) allowed by
the OS. Considering the remaining types of injections, the high
intensity injection (resp. medium) value is set so as to lead to
around 99% (resp. around 50%) PUR when applied in at least
one VNF VM. Indeed, even if all VMs are configured with
the same VM template, the components installed in each VM
do not use VM resources in a similar way. As a consequence,
high intensity injections in VM A could lead to a maximal
PUR whereas the same injection in VM B would lead to
a 2% PUR. Heavy workloads are carried out by calibrating
the benchmark workload for our testbed capacities and trigger
SLAVs.

III. IMPLEMENTATION

This section presents the implementation of an operational
system based on our approach. We first describe the detection
approach implementation, then the monitoring of the VNF and
finally the fault injection approach implementation.

A. Detection approach

The Random Forest algorithm is used in order to classify
the VNF behaviors. This algorithm is well known to provide
good classification results and to handle a large number of
vector features (i.e. observations counters) [18]. Although we
use a per-VM approach, the number of OS features (more
than twenty) are considered as high-dimensional. Besides, once
a model is trained, the prediction overhead is extremely low
[19]. Finally, the Random Forest algorithm also enables to get
insight about the most important metrics that influence the
prediction output [19].

The algorithm is configured with ten decision trees, based
on preliminary works that showed good results with as many

trees. Besides, trained Random Forest models are configured to
predict the probabilities of class membership of an observation.
We call them prediction probabilities. The output of a model
is therefore a probability. For instance, a model output for an
observation can be a probability of 0.2 for it to be in the class
labeled 1. Given the resulting probabilities, it is then easy to
set a threshold defining the limit probability from which an
observation corresponds to an anomalous behavior.

Finally, the models on which relies our approach can be
trained and tested on an external machine to the VNF. It
can be run either on the monitoring module machine, or on
any separate machine. Thus, our approach does not introduce
overhead in the VNF runtime.

B. Monitoring

Monitoring data are collected from two separate monitoring
sources as described in II-A. For both monitoring sources,
observations of each VM are collected every 15sec.

The black-box source heavily relies on our VMware
underlying infrastructure (see IV-A). The library Pysphere1

communicates with the VMware SDK and is used to collect
VMs metrics from the hypervisor. For each VM, we collect
observations composed of the 152 metrics listed online2.

The grey-box source is implemented by a Ganglia [20]
monitoring agent installed in each Clearwater VM. We con-
figured the agent with python modules so as to collect from
each VM 227 metrics listed online3.

During the training-phase, observations are stored in
database so as to train offline our models. During the runtime
of our operational system, observations should directly be
provided to the models in order for them to perform predic-
tions. Nonetheless, the observations of each VM are studied
separately in order to perform anomaly detection in each single
VM (per-VM approach).

C. Fault injection approach

1) Single injection: Anomalies presented in the descrip-
tion of our approach (II-C) emulate behaviors that could be
activated by software, hardware, or configuration faults. We
emulate them by software means.

Injections that consist in a heavy workload are carried out
by running a load calibrated so as to lead to SLAVs between
2% and 30% of PUR considering our testbed configuration.

Injections that emulate anomalies in the VNF VMs are
carried out by injection agents that stress the VNF components
individually. Injection agents are installed in each VM. They
are run through an SSH connexion orchestrated by a campaign
handler which is a configurable entity hosted on any machine
apart from the VNF VMs (in order to maintain experiment
isolation). We use the Linux kernels tools iptables and tc
for the injection of network latencies on the POSROUTING
chain, and iptables on the INPUT and OUTPUT chains for
the injection of packet losses. The stress test tool Stress-ng4

is run for CPU, disk, and memory related injections.

1https://pypi.python.org/pypi/pysphere
2https://homepages.laas.fr/ csauvana/datasets/pysphere vm counters.txt
3https://homepages.laas.fr/ csauvana/datasets/ganglia vm counters.txt
4http://kernel.ubuntu.com/∼cking/stress-ng/

4

2) Campaigns: An injection campaign targets a single VM.
In each campaign, the benchmark is run for 80min. After
40min an anomaly of 3min is injected. The injection time
is calibrated so as to affect several instances of benchmark
scenario executions (an execution lasts less than 1sec) and at
the same time not to be too short regarding our monitoring
period of 15sec. The workload request rate during normal
behavior periods is calibrated to lead to less than 1% PUR
of the VNF.

Finally, for our experiments, several injection campaigns
are run so as to get statically significant large datasets. First, a
heavy workload is run, then campaigns are run the following
way: each injection of each intensity is performed in each VM.
At the end of each injection campaign, the VMs are rebooted.

IV. CASE STUDY AND PLATFORM

Our testbed is composed of three main entities detailed
below: the cloud infrastructure, the Clearwater VNF running
on the infrastructure, and the workload. The workload is used
for the simulation of VNF users and for the PUR computation
that is needed for validation purposes.

A. Infrastructure

The virtualized platform is a VMware vSphere 5.1 private
platform composed of 2 servers Dell Inc. PowerEdge R620
with Intel Xeon CPU E5-2660 2.20GHz and 64GB memory.
Each server has a VMFS storage. One hypervisor hosts the
workload as well as the monitoring module and the other hosts
all Clearwater components VMs. Each VM has 2 CPUs, a
10GB memory, a 10GB disk. VMs are connected through a
100Mbps network.

B. Clearwater VNF

Clearwater is an open source implementation of an IMS
for cloud platforms. It provides SIP-based (Session Initiation
Protocol) voice and video calling, and messaging applications.
It implements key standardized interfaces and functions of an
IMS (except a core network) which enable industries to easily
deploy, integrate and scale an IMS. Clearwater was initially
designed for clouds commodity servers. It is consequently well
suited for NFV related studies. It encompasses six software
components, namely Bono, Sprout, Homestead, Homer, Ralf,
and Ellis (Figure 1).

Bono is the SIP proxy implementing the P-CSCF function
(Proxy-Call/Session Control Functions). It handles the users
requests and routes them to Sprout. It also performs Network
Address Translation traversal mechanisms.

Sprout is the IMS SIP router receiving requests from Bono
and routing them to the adequate endpoints. It implements
some S-CSCF (Serving-CSCF) and I-CSCF (Interrogating-
CSCF) functions and gets the required users profiles and
authentication data from Homestead. Sprout can also call
application servers and actually contains itself a multimedia
telephony (MMTel) application server, whose data are stored
in Homer (when calls are configured to use its services).

Homestead is an HTTP RESTful server and stores Home
Subscriber Server data in a Cassandra database (i.e. informa-
tion about subscribed services and locations). It is in charge
of some I-CSCF and S-CSCF functions.

Thus, Bono, Sprout, and Homestead work together to
control the sessions initiated by users and handle the entire
CSCF.

Homer is a XDMS (XML Document Management Server)
server with an XML Configuration Access Protocol Server
(XCAP) interface, and runs a Cassandra database. It stores
configuration information about MMTel service.

Ralf is the CTF (Charging Trigger Function). It bills the
events collected by Bono and Sprout and reports them to a
Charging Data Function server (this server is not included in
the Clearwater project).

Ellis is a provisioning portal offering a web interface to
users for testing purposes.

The IMS scales-out horizontally by means of a simple DNS
load balancing mechanism. Our testbed encompasses Bono,
Sprout, Homestead and Homer, each of which is deployed on
one VM (see Figure 1). In this study, the billing function is
not configured, so Ralf is not included in our testbed. Neither
is the testing component Ellis. Also, our deployment does not
encompass redundancy. We focus our work on Bono, Sprout
and Homestead constituting the entire CSCF: we perform
injections and provide evaluation results for these VMs.

Homestead
I/S-CSCF

Bono
P-CSCF

Ellis
Provisioning

web interface

Homer
XDMS

Ralph
CTF

Sprout
I/S-CSCFSIP

HTTPHTTP

SIP

User

Equipment /

Benchmark

SIPp

HTTP

XCAP

HTTP

Testbed

HTTP

Injection target

Fig. 1. Testbed deployment and Clearwater components.

C. Workload and PUR evaluation

In order to validate our approach we need a tool to simulate
our VNF workload and from which to compute our PUR. IMS
workloads for Clearwater can be emulated by means of the
SIPp benchmark5. The benchmark workload can be configured
with a number of calls per second (we call it load parameter)
to be sent to the IMS. A call corresponds to the execution of a
scenario . A scenario is described in terms of SIP transactions
in XML and a workload is defined by a scenario and a load
parameter. A SIP transaction is a SIP message to be sent and an
expected SIP response message. A call fails when a transaction
fails. A transaction may fail for two reasons: either a message
is not received within a precise duration which triggers a
timeout, or an unexpected message is received. Unexpected
messages are the HTTP error codes 500 (Internal Server Error),
503 (Service Unavailable) and 403 (Forbidden). Also, in our
testbed, the PUR more exactly accounts for the percentage of
unsuccessful calls.

Now considering our validation experiments, the selected
scenario simulates a standard call between two users and en-
compasses the standard SIP REGISTER, INVITE, UPDATE,
and BYE messages (additional details about the load during

5http://sipp.sourceforge.net/index.html

5

experiments are presented in II-C). The SLA of the VNF
corresponds to the PUR computed for all users calls simulated
by the benchmark. (for instance a real case context would be:
a main company asked for the use of a VNF for several of
its own users and agreed on a PUR value). The benchmark
simulates all users and by the analysis of its logs we can
compute the combined PUR for all users. Finally, a SLAV-
PS is regarded as the behavior the VNF VMs observe over a
time window before an SLAV happens.

V. VALIDATION RESULTS

In order to validate our approach, we collected one dataset
for each monitoring source from our testbed so as to train
models and to make them perform predictions. In the fol-
lowing, we first present the preparatory work performed on
the monitoring observations before running the training phase
of our models. The validation metrics used to evaluate the
predictive accuracy of the models are presented in a second
part. Then, our validation results for the detection phase are
presented. We present results related to the detection of SLAV
and the detection with root cause localization of anomalous
VMs. Then we show results related to the detection of SLAV-
PSs.

Detection results are presented with a per-VM and an
ensemble analysis and also depending on the monitoring
source namely black-box or grey-box (hypervisor or monitor-
ing agent). Considering the ensemble analysis, we take the
mean prediction probabilities of each model related to the
detection of the same event across all VMs.

A. Preparatory work

In our experimental validation, we focus on Bono, Sprout,
and Homestead VM observations corresponding to the entire
CSCF. Injections are performed in these three VMs and results
are provided considering the observations of these VMs. When
analyzing a model trained only with VM A observations, we
call VM A the detection-VM. When similar results are ob-
served from models trained with our three different detection-
VMs, only Bono results are provided.

In order to perform validation, for each monitoring source,
a dataset representing several behaviors of our VNFs is as-
sembled. It is large enough to train detection models and to
test them. For both monitoring sources, around 16500 obser-
vations for each VM are collected while we ran the injection
campaigns presented in II-C (global dataset of around 66000
observations). Before the creation of models, our validation
dataset is shuffled and split into 60% of training data and 40%
of testing data from which our results are computed.

Moreover, K-fold cross validation has been performed
on the VMs observations associated with 5 classes (normal
behavior, heavy workload, injections in Bono, injections in
sprout, injections in homestead). For a 10-fold case, a small
standard deviation of 0.2 was observed for both precision
and recall metrics which means that the following results are
relevant and easily generally applicable.

B. Validation metrics of the operational system

The validation of the machine learning models to classify
anomalous behaviors is based on several metrics, namely the

Receiver Operating Characteristic (ROC) curve, as well as the
precision, recall and F1-score. ROC curves are obtained by
computing performance measures for different thresholds of
the prediction probabilities (see III-A for more details). The
ROC curve corresponds to the true positive rate (TPR) against
the false positive rate (FPR). A perfect classifier would have
an area under the curve (AUC) of 1.

The ROC curves are relevant to study the predictive accu-
racy of our models and their consistency while the prediction
probability thresholds change. They enable us to evaluate our
approach with metrics that do not change with the proportion
of normal or anomalous behaviors in the validation dataset.
In other words, they are not sensitive to the class skew and
the results can easily be generalized to several case scenarios
of detection with different baseline distributions. Also, the
FPR (i.e., the rate of false alarm) can easily be analyzed
and it is of interest in our domain. Indeed, it is expensive
(in terms of time and money) for a CSP to take counter
measures on components, and the fewer false alarms there are,
the better is the approach. As for precision and recall, they are
defined by the well known formulas: Precsion = TP

TP+FP

and Recall = TP

TP+FN
where TP are the true positives, FP

are the false positives, and FN are the false negatives. The
F1-score corresponds to the harmonic mean between precision
and recall. These metrics provide a precise evaluation of the
predictive accuracy, that can give an account of the efficiency
of our method for a CSP. They are defined with a given
prediction probability threshold.

C. Detection of SLAV

1) Per-VM analysis: The aim is to analyze the ability
of our approach to detect SLAVs on a per-VM basis. In
this analysis, we also test whether models trained to detect
SLAs defined with different values of PUR max have different
predictive accuracies. Three models were actually trained to
detect violations with PUR max = {2%, 5%, 10%}. By this
mean we can quickly notice whether our models are sensitive
to PUR max.

1.0

False Positive Rate

(b) Bono, grey-box

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
s
it

iv
e
 R

a
te

ROC curves for several error rates

(a) Bono, black-box

PUR_max = 2% (area = 0.932)

PUR_max = 5% (area = 0.897)

PUR_max = 10% (area = 0.888)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
s
it

iv
e
 R

a
te

ROC curves for several error rates
PUR_max = 2% (area = 0.980)

PUR_max = 5% (area = 0.970

PUR_max = 10% (area = 0.962

Fig. 2. ROC curves for SLAV detection: Bono observations, detection only,
with PUR max = {2%, 5%, 10%}.

Figure 2-a presents the ROC curves of three models trained
with Bono observations to detect the three values of PUR max,
for a black-box monitoring. The curve related to PUR max =
2% has an AUC of 0.93, compared to 0.89 for PUR max =
10%. This shows that the higher is PUR max (i.e., the lower
is the SLA expectation), the lower is the TPR. We believe the
reason for this lower predictive accuracy is that some injections
change the VMs behaviors enough for the model to detect the
change but not enough for an SLAV to be well identified. For

6

all values of PUR max, the ROC curves reach at least a 0.80
TPR with a 0.2 FPR. Results are similar when models are
trained from the observations of Sprout and Homestead.

Also, Table II shows precision, recall and F1-score for
the detection depending on the detection-VM and PUR max
values. From all detection-VMs, SLAVs can be detected with
good precision an recall with a minimum of 0.97 precision
and 0.90 recall for PUR max = 10%. The best precision and
recall are always obtained with Sprout observations. Sprout
has indeed a central role in the Clearwater CSCF. This means
that the black-box monitoring can be used by CSPs as a first
step toward the triggering of reconfiguration actions with very
good predictive accuracy.

TABLE II. PREDICTIONS OF SLAV: DETECTION ONLY, GREY-BOX.

Monitoring
Measure

PUR max= PUR max= PUR max=

observation 2% 5% 10%

Precision 0.92 0.91 0.88

Bono Recall 0.95 0.95 0.90

F1-score 0.93 0.93 0.89

Precision 0.92 0.90 0.90

Sprout Recall 0.95 0.94 0.93

F1-score 0.93 0.92 0.91

Precision 0.89 0.88 0.87

Homestead Recall 0.93 0.90 0.91

F1-score 0.90 0.89 0.89

Ensemble Precision 0.92 0.90 0.89

analysis Recall 0.96 0.95 0.93

F1-score 0.94 0.93 0.91

Figure 2-b presents the ROC curves of the models trained
with the same PUR max value as for Figure 2-a and with
a grey-box monitoring. The ROC curves for the different
PUR max are more significantly close to each other than in
Figure 2-a but still, the case where PUR max = 2% leads
to a better predictive accuracy with a ROC AUC of 0.98.
Moreover, ROC results are significantly better compared to
black-box monitoring.

This last remark is notably due to the larger variety of
metrics that can be retrieved from a monitoring agent. An
other reason is that these metrics are updated more frequently.
Indeed, we regularly noticed in our dataset that some obser-
vations collected from the hypervisor are not updated at strict
regular intervals as expected from the configuration. In other
words, successive observations from a dataset can happen to be
the same although they are collected 15s apart (i.e., the period
of data collection). Thus, we believe that with a reasonably
sound and higher data collection period, we could achieve
better results with the black-box monitoring.

2) Grey-box ensemble analysis: Table V (last row) presents
the precision, recall and F1-score for the combined prediction
probabilities of all detection-VMs. The F1-score has a mean
value of 0.93 across all PUR max values. Its lower value is
0.91 for PUR max = 10% and it reaches 0.94 with PUR max
= 2%.

D. Detection with root cause localization

1) Root cause localization in anomalous VMs: For each
detection-VM, four models are trained to classify SLAVs
caused by a heavy workload, injections in Sprout, Bono and
Homestead respectively. The PUR max is set to 2%.

Figures 3-a, 4-a, and 4-b present the ROC curves of
the detection with root cause localization of models trained
respectively on Bono, Sprout and Homestead observations with
a black-box monitoring. It can be noticed that SLAVs due to
injections in Homestead lead to the lower FPR compared to
injection in Bono and Sprout. Indeed it achieves a ROC AUC
mean over the three VMs of almost 1. This SLAV cause is well
detected by models trained from Bono, Sprout and Homestead
observations. The heavy workload is detected with the lower
TPR. However, it is detectable over all detection-VMs with a
mean ROC AUC of 0.94.

(b) Bono, grey-box(a) Bono, black-box

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
s
it

iv
e
 R

a
te

ROC curves for SLA violation detected
depending on injections

heavy workload (area = 0.940)

injection in bono (area = 0.968)

injection in sprout (area = 0.979)

injection in homestead (area = 0.998)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
s
it

iv
e
 R

a
te

ROC curves for SLA violation detected
depending on injections

heavy workload (area = 0.974)

injection in bono (area = 0.993)

injection in sprout (area = 0.985)

injection in homestead (area = 0.993)

Fig. 3. ROC curves for SLAV detection: Bono observations, detection with
root cause localization.

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
s
it

iv
e
 R

a
te

ROC curves for SLA violation detected
depending on injections

heavy workload (area = 0.936)

injection in bono (area = 0.952)

injection in sprout (area = 0.986)

injection in homestead (area = 0.995)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
s
it

iv
e
 R

a
te

ROC curves for SLA violation detected
depending on injections

heavy workload (area = 0.947)

injection in bono (area = 0.968)

injection in sprout (area = 0.972)

injection in homestead (area = 0.997)

(b) Homestead, black box(a) Sprout, black-box

Fig. 4. ROC curves for SLAV detection: Sprout (a) and Homestead (b)
observations, detection with root cause localization, black-box.

TABLE III. PREDICTIONS OF SLAV: BONO OBSERVATIONS,
DETECTION WITH ROOT CAUSE LOCALIZATION, BLACK-BOX.

Monitoring
Measure

Cause in Cause in Cause in Cause by

observation Bono Sprout Homestead heavy load

Precision 0.87 1.00 1.00 0.86

Bono Recall 0.63 0.57 0.57 0.85

F1-score 0.74 0.72 0.72 0.86

Table III presents the precision, recall, and F1-score con-
sidering Bono observations and depending on the SLAVs
cause, for a black-box monitoring (results from Sprout and
Homestead observations follow a similar trend). The F1-score
does not overpass 0.86 which is obtained for the detection
of high workload SLAVs. Also, the SLAVs originated from
Sprout and Homestead are detected with a very low recall
of 0.57. In other words, several true alarms are missed. The
black-box monitoring is in this case of detection with root
cause localization not sound enough to be applied by a CSP.

7

Figure 3-b presents the ROC curves of the detection with
root cause localization of models trained from Bono observa-
tions with a grey-box monitoring. Here again, the predictive
accuracy is better than with the black-box monitoring. Indeed,
the mean ROC AUCs for all causes is close to 1 whereas it
was of 0.97 with black-box monitoring. The heavy workload is
in this case not detected with a TPR significantly below to the
TPR of other causes. Indeed, the corresponding ROC curve
shows that there exists a probability threshold that enables
a TPR of 0.94, and a FPR of 0.05, which is an excellent
predictive accuracy that can convince a CSP to use our
approach. Thus, there is a higher FPR on average in black-box
monitoring, except for the detection of SLAVs originated from
Homestead which has in both monitoring sources a ROC AUC
of almost 1. A grey-box monitoring is therefore more suitable
when it is possibly deployable. This is consequently due to the
lack of some relevant observation counters in the black-box
monitoring data. The Random forest implementation actually
provides a ranking of the most important counter enabling
correct detection and we indeed notice that the most influent
counters are counters linked to the TCP/IP stack that are not
known from the basic hypervisor monitoring (for instance the
TCP forward retransmission, or the TCP fast retransmission
failure).

Table IV presents the precision, recall and F1-score ob-
tained for all detection-VMs depending on the SLAV cause
and in grey-box monitoring. This table enables us to get more
insight about the predictive accuracy of our models in general
for a real case scenario. SLAVs caused by a heavy workload
are detected with the highest recall but not the highest precision
due to its low TPR shown in previous figures of this subsection.
We notice that Homestead observations enable the detection of
SLAVs originating from Sprout (precision and recall of 0.99
and 0.85). More generally speaking, SLAVs originating from a
VM A can be detected from observations of VM B. Moreover,
across all VMs, SLAV originated from a VM A can be detected
with at least 0.90 precision and 0.80 recall. We can conclude
that our approach enables to detect SLAVs and localize their
cause while training models either on the observations of Bono,
Sprout or Homestead.

TABLE IV. PREDICTIONS OF SLAV: ALL DETECTION-VMS,
DETECTION WITH ROOT CAUSE LOCALIZATION, GREY-BOX.

Monitoring
Measure

Cause in Cause in Cause in Cause by

observation Bono Sprout Homestead heavy load

Bono Precision 0.98 0.99 1.00 0.93

Recall 0.86 0.87 0.83 0.94

F1-score 0.92 0.92 0.91 0.93

Precision 0.99 0.98 0.98 0.92

Sprout Recall 0.80 0.90 0.80 0.93

F1-score 0.89 0.94 0.88 0.92

Precision 0.99 0.99 0.96 0.90

Homestead Recall 0.79 0.85 0.83 0.94

F1-score 0.88 0.92 0.89 0.92

Ensemble Precision 0.99 0.98 0.99 0.92

analysis Recall 0.82 0.93 0.83 0.96

F1-score 0.90 0.95 0.89 0.94

Moreover, since SLAVs originating from a VM A can be
detected from observations of VM B, we conclude that an
error propagation [17] exists between the VNF components
and that we can identify it in monitoring observations. We
also show that the observations of a VM A are in general the
best observations to identify an SLAV caused by A. This result

is relevant since our service level is defined by the PSR which
is of a different level compared to local level performance
metrics. An hypothesis could have been that the router VM is
in any case the VM performing the best prediction given its
central role.

Another remark can be derived from the comparison of
Figures 2 and 3. It can be noticed that the detection of SLAVs
related to either injections in Bono, Sprout or Homestead
(Figure 3, injections in VMs curves) leads to ROC AUCs that
are closer to 1 than the detection of SLAVs grouping SLAs
originated from all types of events (Figure 2, PUR max = 2%).
This means that the dissociation of classes of SLAVs enables
us to obtain better predictive accuracy. As a consequence, the
separation of SLAVs according to their cause facilitates the
decision trees of the models to get more insight about the
violations and to make more clear-cut decision conditions.
Notwithstanding, this last point should be analyzed with cau-
tion. In the case a VNF component changes very frequently
its behavior or the workload changes abruptly, the predictive
accuracy might not be as good since the decisions conditions
are too tightly adapted to a few precise behaviors.

2) Grey-box ensemble analysis: Table IV (last row)
presents the predictive accuracy obtained while combining
the prediction probabilities of our three VMs, in grey-box
monitoring, for a detection with root cause localization of
anomalous VMs. We compare these results to the predic-
tive accuracy obtained from Bono observations in grey-box
monitoring. Results show that the predictive accuracy for the
combination of probabilities leads to similar results as the per-
VM analysis in the case of SLAVs originated from Homestead.
SLAVs originated from Bono are detected with more precision
(0.99) but less recall (0.82). Finally, SLAVs originated from
Sprout and heavy workload are detected with more precision
and recall.

Thus, an analysis combining prediction probabilities eases
the use of anomaly detection for a VNF composed of several
components. It also provides similar results compared to the
results of individual VMs. It is consequently a good analysis
of anomaly detection outputs in VNFs with root cause local-
ization.

E. Detection of SLAV-PS

Given that SLA violations due to a heavy workload are not
caused by injection agents run in VMs, but by faults activated
by the load, we can create models that are trained for the
detection of SLA violation preliminary symptoms due to heavy
workloads. We hereby study models that are trained for the
detection of SLAV-PSs. Preliminary symptoms are computed
over a time window of 75s before an SLAV happens (it
actually corresponds to the five monitoring observations before
the violation considering a 15s monitoring period, see III-B).
Results with a black-box monitoring are not presented as they
do not achieve acceptable precision and recall for CSPs to
use it (the F1-score is most of the time less than 0.70 with a
detection with root cause localization).

1) Grey-box per-VM analysis: Table V presents the pre-
cision, recall and F1-score for the three detection-VMs and
depending on the PUR max value. It shows that the best
predictive accuracy is obtained with PUR max = 5% for any

8

detection-VM, and it has a F1-score average across all VMs
of 0.89. These results show that our approach for detection
only of SLAV-PSs is efficient and could be applied by a CSP.
Results are similar independently from the PUR max value.

TABLE V. PREDICTIONS OF SLAV-PS: BONO OBSERVATIONS,
DETECTION ONLY, GREY-BOX.

Monitoring
Measure

PUR max= PUR max= PUR max=

observation 2% 5% 10%

Precision 0.79 0.86 0.80

Bono Recall 0.89 0.93 0.93

F1-score 0.84 0.89 0.86

Precision 0.79 0.85 0.83

Sprout Recall 0.92 0.94 0.94

F1-score 0.85 0.89 0.88

Precision 0.80 0.84 0.82

Homestead Recall 0.91 0.92 0.93

F1-score 0.85 0.88 0.87

Ensemble Precision 0.80 0.85 0.82

analysis Recall 0.95 0.95 0.96

F1-score 0.75 0.90 0.89

2) Grey-box ensemble analysis: Table V (last row) presents
the precision, recall and F1-score for the combined prediction
probabilities of all detection-VMs. The F1-score has a value
of 0.75 with PUR max = 2% and even reaches 0.90 with the
PUR max = 10%. This result is quite promising and could be
considered for the use by a CSP.

F. Results summary

Validation results show that the detection of SLAV-PSs due
to a heavy workload with grey-box monitoring is efficient and
could be applied by a CSP. Good results are obtained when
working on a per-VM or an ensemble analysis. The detection
of SLAVs with black-box monitoring, can be used by a CSP
to detect our anomalies with a mean precision and recall of
0.91 and 0.94 over different PUR max values (PUR max ∈
{2%, 5%, 10%}). Best prediction results are obtained with the
Sprout component which has a central role in Clearwater. We
would argue that it should be tested whether detection tends to
be generally better from major components of a VNF. ROC,
precision and recall results are better in grey-box monitoring
than in black-box monitoring. It is the case for all validation
results of our objectives.

In detection with root cause localization, we show that
SLAVs originating from a VM A can be detected from ob-
servations of VM B. There is indeed an error propagation that
enables us to locate anomalous VMs with monitoring data with
high predictive accuracy. An ensemble analysis combining
all per-VM predictive probabilities can also be applied while
keeping high predictive accuracy in grey-box monitoring. The
ensemble analysis provides one single output of detection
and it consequently eases the proactive analysis of detection
alarms. Thus, it is a good for detection of SLAVs with root
cause location.

As a result, a model for a detection only of SLAV-PSs
as well as models for the detection with root cause localiza-
tion of SLAVs should be used together. The first detection
model enables to warn CSP administrators to take appropriate
proactive reconfiguration decisions (it would depend on the
SLA of the customers). When the models for the detection
of SLAVs raise alerts, the CSP administrator should configure
its platform to automatically and directly reconfigure its VNF.

The higher is a configured customer SLA, the more carefully
the CSP administrator should examine the alarm caused by
SLAV-PSs.

Considering the application of our anomaly detection ap-
proach in a real case deployment, several points are to be
addressed. The training phase of our approach should be
performed offline or on a development infrastructure when it is
possible. The training duration depends on the number of dif-
ferent VNF components. Models can be replicated when used
for the detection in VMs hosting the same VNF component
and with the same resources. It is actually widespread to use
templates of VMs and work with VMs with identical resources.
Since resource consumption of VMs in real deployments
is predictable [21], resource reconfiguration like hot plugs
of CPU or memory are rare. This largely limits the online
reconfiguration of the VMs resources, and motivates the use
of VMs templates. As a new VNF VM is deployed, no new
training dataset is needed in the case the new VM follows the
same template as previously deployed VMs. Notwithstanding,
models of our approach should at times (depending on the VNF
environment reconfiguration period) be trained offline from
new datasets comprising new anomalous behaviors tightly
linked to new faults that can occur in the VMs with their
evolving normal behaviors. Finally, for a real case scenario,
the detection phase operating online should be handled by a
big data processing framework (such as Apache Spark) in order
to quickly manage several models for several VMs.

VI. RELATED WORK

NFVs and related paradigms aimed at introducing in-
novation inside networks like Software-Defined Networking
have been heavily investigated [22], [23]. However, bringing
networks in automated software-based platforms leads to all
the more intricate SLA violation scenarios. Recent research
results show the sensitivity of NFV to IT failures. In [24],
Ge et al. show that NFV on commodity servers may need
hardware acceleration to handle network processing tasks
such as Deep Packet Inspection, Network Deduplication, or
Network Address Translation. Moreover, some virtualization
features like live VM migration may also represent a source
of performance degradation for VNFs since it may cause
unacceptable downtime [25]. In order to counter these issues,
most of recent research work related to VNF is focused on
the implementation of VNF dedicated OS as ClickOS [26] a
virtualized platform optimized for middlebox processing, or
the implementation of a single VNF like virtualized Deep
Packet Inspection functions (vDPI), offered as a cloud service
[27] or Software Defined Monitoring functions by Choi et al.
[28].

Our work deals with anomaly detection in VNFs in par-
ticular which is a field not thoroughly explored. However,
it has been extensively studied for cloud infrastructures. In
previous work [19] we defined Tejo, an approach based on
machine learning for anomaly detection in databases. In this
paper we evaluate such an approach for VNF while tackling
error propagation in VMs as well as preliminary symptoms
of SLA violations. DAPA performance diagnostic framework
[29] models the existing relationships between application
performance and underlying system metrics to detect SLA

9

violations. The SLA violation diagnostic is performed af-
terward with an unsupervised learning algorithm. PeerWatch
[30], an anomaly detection and diagnosis tool, uses a cor-
relation analysis to model the relationship existing between
the components of distributed applications, and detects an
anomaly when the correlation between these components drops
significantly. In comparison to these works, our approach
proposes to detect online causes of SLA violations. FChain
[11] monitors the running of distributed applications to detect
performance anomalies and to pinpoint the faulty component
by reconstructing the propagation patterns of abnormal change
points. Our approach has the advantage not to depend on
strict synchronisation constraints between several components
and the master diagnosis entity. The reconstruction is based
on which component started to fail in a first place. In [10]
the authors present PREPARE which addresses the problem
of anomaly prevention in virtualized cloud infrastructures on
a per-VM basis by means of supervised learning methods.
In addition, our work is specially intended to detect SLA
violations and their preliminary symptoms, and not only to
detect potentially anomalous VMs. Indeed, potentially anoma-
lous VMs may not lead to SLA violation which is actually
the problem of interest for CSP. We go further pinpointing
anomalous VMs and evaluate to what extent they lead to global
service impact.

Unlike these contributions, our approach only relies on
monitoring data and no other specification of the VNFs is
required. We also evaluate it on the opensource Clearwater
project IMS and show that it is capable to detect preliminary
symptoms of SLA violations.We also perform online root
cause localization.

VII. CONCLUSIONS AND FUTURE WORK

In this practical experience report, we evaluated the effi-
ciency of a new anomaly detection approach to cope with three
detection objectives, namely the detection of SLA violations,
the detection of preliminary symptoms of SLA violations,
and the detection with root cause localization. Our approach
is based on the Random Forest algorithm and application-
agnostic VNF VMs monitoring data. We validated it on a
Clearwater testbed, with black-box and grey-box monitoring
sources. A per-VM and an ensemble analysis were validated.
The ensemble analysis is a means to provide CSP adminis-
trators with one single prediction output while giving further
access to the per-VM analysis when it is required during
root cause analysis. Results show that we can detect our
first objective with high predictive accuracy using black-box
source. Our three objectives can be detected with excellent
predictive accuracy using the grey-box source. Grey-box mon-
itoring always lead to better results compared to black-box
monitoring because it encompasses low level metrics notably
TPC/IP metrics. Grey-box monitoring is notably essential for
the detection of preliminary symptoms of SLA violations
and for the root cause localization. We also show that error
propagation enables to efficiently localize root causes of SLA
violations in each VNF VM. Moreover, results show that an
ensemble approach combining all per-VM prediction outputs
can ease the proactive analysis of detection alarms and keep
high predictive accuracy for our three detection objectives.

In this work, a first validation of our approach was per-

formed by means of Clearwater. We aim for future work to
study a more representative case study with load balancing
and redundancy. As for the fault injection process, we intend
to expose our platform to cloud management actions such as
ballooning and live VM migration. In this way we will test
whether and to what extent such actions might impact the IMS
operation and whether the NFV management and orchestration
layer should make use of such techniques.

REFERENCES

[1] D. Denning, “An intrusion-detection model,” Software Engineering,

IEEE Transactions on, vol. SE-13, no. 2, pp. 222–232, Feb 1987.

[2] W. Lee, S. Stolfo, and K. Mok, “A data mining framework for building
intrusion detection models,” in Security and Privacy, 1999. Proceedings

of the 1999 IEEE Symposium on, 1999, pp. 120–132.

[3] L. Heberlein, “Network security monitor (nsm)–final report.” 1995.

[4] J. Zhang, M. Zulkernine, and A. Haque, “Random-forests-based net-
work intrusion detection systems,” Systems, Man, and Cybernetics, Part

C: Applications and Reviews, IEEE Transactions on, vol. 38, no. 5, pp.
649–659, Sept 2008.

[5] E. Aleskerov, B. Freisleben, and B. Rao, “Cardwatch: a neural network
based database mining system for credit card fraud detection,” in
Computational Intelligence for Financial Engineering (CIFEr), 1997.,

Proceedings of the IEEE/IAFE 1997, Mar 1997, pp. 220–226.

[6] W. Lee and D. Xiang, “Information-theoretic measures for anomaly
detection,” in Security and Privacy, 2001. S P 2001. Proceedings. 2001

IEEE Symposium on, 2001, pp. 130–143.

[7] ETSI Technical Report 103 125 V1.1.1. (2012) Cloud; slas for cloud
services. http://www.etsi.org/deliver/etsi tr/103100 103199/103125/01.
01.01 60/tr 103125v010101p.pdf.

[8] Project Clearwater. (2016) http://www.projectclearwater.org/.

[9] D. Michie, D. J. Spiegelhalter, C. C. Taylor, and J. Campbell, Eds.,
Machine Learning, Neural and Statistical Classification. Upper Saddle
River, NJ, USA: Ellis Horwood, 1994.

[10] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan,
“Prepare: Predictive performance anomaly prevention for virtualized
cloud systems,” in Distributed Computing Systems (ICDCS), 2012 IEEE

32nd International Conference on, 2012, pp. 285–294.

[11] H. Nguyen, Z. Shen, Y. Tan, and X. Gu, “Fchain: Toward black-box
online fault localization for cloud systems,” in Distributed Computing

Systems (ICDCS), 2013 IEEE 33rd International Conference on, July
2013, pp. 21–30.

[12] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scal-
ing for cloud systems,” in 2010 International Conference on Network

and Service Management, Oct 2010, pp. 9–16.

[13] D. J. Dean, H. Nguyen, and X. Gu, “Ubl: Unsupervised behavior
learning for predicting performance anomalies in virtualized cloud
systems,” in Proceedings of the 9th International Conference on

Autonomic Computing, ser. ICAC ’12. New York, NY, USA: ACM,
2012, pp. 191–200.

[14] Q. Guan and S. Fu, “Adaptive anomaly identification by exploring
metric subspace in cloud computing infrastructures,” in 2013 IEEE 32nd

International Symposium on Reliable Distributed Systems, Sept 2013,
pp. 205–214.

[15] G. Silvestre, C. Sauvanaud, M. Kaâniche, and K. Kanoun, “An
anomaly detection approach for scale-out storage systems,” in
26th International Symposium on Computer Architecture and High

Performance Computing, Paris, France, Oct. 2014.

[16] C. Sauvanaud, G. Silvestre, M. Kaâniche, and K. Kanoun, “Data Stream
Clustering for Online Anomaly Detection in Cloud Applications,”
in 11th European Dependable Computing Conference (EDCC 2015),
Paris, France, Sep. 2015.

[17] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic con-
cepts and taxonomy of dependable and secure computing,” Dependable

and Secure Computing, IEEE Transactions on, vol. 1, no. 1, pp. 11–33,
2004.

10

[18] A. Verikas, A. Gelzinis, and M. Bacauskiene, “Mining data with
random forests: A survey and results of new tests,” Pattern Recognition,
vol. 44, no. 2, pp. 330 – 349, 2011.

[19] G. Silvestre, C. Sauvanaud, M. Kaâniche, and K. Kanoun, “Tejo:
A Supervised Anomaly Detection Scheme for NewSQL Databases,”
in 7th International Workshop on Software Engineering for Resilient

Systems (SERENE 2015), Paris, France, Sep. 2015.

[20] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: Design, implementation and experience,” Parallel

Computing, vol. 30, p. 2004, 2003.

[21] R. Birke, A. Podzimek, L. Y. Chen, and E. Smirni, “State-of-the-
practice in data center virtualization: Toward a better understanding of
vm usage,” in 2013 43rd Annual IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN), June 2013, pp. 1–12.

[22] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” Communications Surveys Tutorials, IEEE, vol. 18,
no. 1, pp. 236–262, Firstquarter 2016.

[23] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.

[24] X. Ge, Y. Liu, D. H. Du, L. Zhang, H. Guan, J. Chen, Y. Zhao, and
X. Hu, “Openanfv: Accelerating network function virtualization with a
consolidated framework in openstack,” SIGCOMM Comput. Commun.

Rev., vol. 44, no. 4, pp. 353–354, Aug. 2014.

[25] Openstack. (2016) Live Migration at HP Public Cloud.
https://www.openstack.org/summit/vancouver-2015/summit-videos/
presentation/live-migration-at-hp-public-cloud.

[26] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in 11th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 14). Seattle, WA: USENIX Association, Apr.
2014, pp. 459–473.

[27] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral, “Deep packet
inspection as a service,” in Proceedings of the 10th ACM International

on Conference on Emerging Networking Experiments and Technologies,
ser. CoNEXT ’14. New York, NY, USA: ACM, 2014, pp. 271–282.

[28] T. Choi, S. Kang, S. Yoon, S. Yang, S. Song, and H. Park, “Suvmf:
Software-defined unified virtual monitoring function for sdn-based
large-scale networks,” in Proceedings of The Ninth International

Conference on Future Internet Technologies, ser. CFI ’14. New York,
NY, USA: ACM, 2014, pp. 4:1–4:6.

[29] H. Kang, X. Zhu, and J. L. Wong, “Dapa: Diagnosing application
performance anomalies for virtualized infrastructures,” in Presented as

part of the 2nd USENIX Workshop on Hot Topics in Management

of Internet, Cloud, and Enterprise Networks and Services. Berkeley,
CA: USENIX, 2012.

[30] H. Kang, H. Chen, and G. Jiang, “Peerwatch: A fault detection and
diagnosis tool for virtualized consolidation systems,” in Proceedings of

the 7th International Conference on Autonomic Computing, ser. ICAC
’10. New York, NY, USA: ACM, 2010, pp. 119–128.

11

