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Abstract: This article aims to present the real-world implementation of an anomaly detection system
of a hydraulic power unit. Implementation involved the Internet of Things approach. A detailed
description of the system architecture is provided. The complete path from sensors through PLC
and the edge computer to the cloud is presented. Some technical information about hydraulic
power units is also given. This article involves the description of several model-at-scale deployment
techniques. In addition, the approach to the synthesis of anomaly and novelty detection models was
described. Anomaly detection of data acquired from the hydraulic power unit was carried out using
two approaches, statistical and black-box, involving the One Class SVM model. The costs of cloud
resources and services that were generated in the project are presented. Since the article describes
a commercial implementation, the results have been presented as far as the formal and business
conditions allow.

Keywords: predictive maintenance; internet of things; hydraulic power units; machine learning;
anomaly detection; cloud computing; Microsoft Azure Cloud

1. Introduction

The concept of IoT and Industry 4.0 is an appropriate area for performing research that
could be deployed in production and gives potential business value. This article includes a
description of a case study of a project that involves a scientific approach to developing
real business solutions in the industry.

The scope of the task described in the article was to perform:

• data acquisition;
• data analysis;
• data visualization in MOLOS.CLOUD [1] web SCADA by REDNT S.A.

The described case study focuses on the description of all efforts that were made to
implement monitoring and anomaly detection systems for hydraulic power units. The
performed data acquisition and analysis processes are described from both architecture
and development aspects. The scientific approach within the project is concentrated on
developing anomaly detection algorithms for hydraulic power units using methods and
approaches described in the scientific literature [2–4]. The goal is to deliver a functional,
innovative approach that could give business value via a reduction in maintenance costs.
More information about the business aspects of a project is presented in Section 1.2. The
main challenges that emerged during project implementation such as data acquisition and
integration with Microsoft Azure Cloud from the edge computer were described with some
practical guidelines.

The fourth industrial revolution (Industry 4.0) is a concept describing a complex
process of technological and organizational transformation of enterprises, which includes
integration of the value chain, the introduction of new business models, and digitiza-
tion of products and services. The implementation of these solutions is made possible

Future Internet 2023, 15, 206. https://doi.org/10.3390/fi15060206 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15060206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-6998-5731
https://orcid.org/0000-0003-2492-4155
https://doi.org/10.3390/fi15060206
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15060206?type=check_update&version=1


Future Internet 2023, 15, 206 2 of 29

through the use of new digital technologies, data resources, and the provision of networked
communication between machines, devices, and people. The driving factor behind the
transformation to Industry 4.0 is the increasingly individualized needs of customers and
the growing trend of personalization of products and services [5,6]. Within Industry 4.0, the
Cyber-Physical System (CPS) plays a crucial role as an integrator, and its success depends
on the smart management of interconnected systems between its physical components
and computational capabilities, utilizing state-of-the-art technology in both cyber and
physical worlds [7]. The Industrial Internet of Things (IIoT) refers to the application of the
Internet of Things IoT in the industrial field. The IIoT integrates the industrial internet,
next-generation information technology, and industrial systems. It can effectively reduce
production costs without compromising production efficiency. The IIoT is considered the
foundation of the future industrial system. Along with the increased productivity, the IIoT
generates massive, high-dimensional, and heterogeneous real-time data [8]. This poses
challenges associated with the Big Data concept—the enormous volume of data that cannot
be managed and processed by conventional data management methods [9]. Processing
this enormous volume of data falls into Data Mining. As a definition, it is the analysis of
large-sized groups of observed data to search for potentially summarized forms of data that
are more understandable and useful to the user. With the aim of extracting or discovering
useful and exploitable knowledge from a large collection of data, it helps explore hidden
facts, knowledge, and unexpected models [10]. Examples of CPS, IIoT, Big Data, and
Data Mining are presented in the article within a commercial use-case regarding anomaly
detection systems for hydraulic power units.

The subject of the project was a single hydraulic power unit (HPU). However, the
developed methodology could be propagated on more devices of the same kind. Propa-
gation on exactly the same hydraulic power unit model devices would be easy. However,
in the case of implementation on different models of hydraulic power units, some actions
have to be carried out. This means that to perform anomaly detection tasks properly, data
from new models of devices should be acquired and analyzed in the same way as it would
be for the hydraulic power units described in this article. This approach is not scalable
within the same product line, as the models of HPUs manufactured by PONAR within
the same product line differ not only in operating parameters (e.g., power) but also in
design, which prevents full scaling of the approach. However, on each HPU manufactured
by PONAR Wadowice, it is possible to measure the same variables that are important
from the point of view of the created approach to anomaly detection within this use case.
Thus, this limitation in order to use a scalable approach can be partially addressed by a
unified method of processing data on the cloud side. This means choosing the same input
variables for anomaly detection models. However, due to the aforementioned differences
within products from the same product line, it is impossible to synthesize a single anomaly
detection model that would apply to all HPU models. Rather, the model for each HPU
would need to be retrained.

Due to confidentiality, some plots that describe statistical property data from HPU
cannot be shared, and a listing of detected anomalies could not be presented. However,
this is the only limitation related to confidentiality within the article. Other described parts
of the solution, such as hardware and software architecture, algorithms design and imple-
mentation, and cyber security aspects, are described without any confidentiality remarks.

1.1. Hydraulic Power Unit Description

The object of this research was one of the high-pressure units manufactured for several
years by PONAR Wadowice—the largest Polish manufacturer of hydraulic components
and systems. This type of aggregate with a working pressure exceeding 1500 bar is used for
the use of water as a tool, including for cleaning surfaces from rust or paint, cutting hard
materials and drilling holes in them, and cleaning underwater surfaces of oil platforms
from growths or cleaning tanks or deep wells. Aggregates of this type are equipped with
diesel drives, which enable their mobile use in any place. Due to the use of ultra-high
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components, they work directly with water under this pressure, they are very expensive
elements, and their possible failures affect the availability of the entire unit, and thus the
entire process [11]. A photo of the hydraulic power unit that is the subject of a project is
presented in Figure 1.

Figure 1. Photo of the hydraulic power unit that is the subject of the project.

1.2. Business Needs

The industry of hydraulic components and systems (including high-pressure water
systems) in recent years has experienced a very large development of new products that
are currently used on the market. However, it should be mentioned that the dynamic
development of hydraulic devices, such as HPU, is not possible indefinitely, as the pressures
used today are sufficient for the current industrial applications to carry out most of the
planned processes. Being aware of the above, the current portfolio of products and complete
applications expands and develops solutions in the field of Industry 4.0, so that PONAR
machines and devices are characterized by the highest possible availability, no uncontrolled
downtime, and thus, savings and satisfaction on the part of the customer. The remote
monitoring and predictive maintenance systems described in this article make the classic
solutions in the field of power hydraulics “smart”, and introduce devices to the world of
industry 4.0, thus building a competitive advantage. An important aspect to be mentioned
is that the anomaly detection system presented in the article is not real-time. Nonetheless,
a real-time system was not mandatory for the described project.

1.3. Literature Review

To compare the solutions developed in the article, a literature review is mandatory. The
tools, concepts, and techniques that have been applied and described so far in the literature
could be useful to point out the advantages and disadvantages of the presented approach.
What is more, the examination of the state of the art allows for indicating innovations that
this article brings into the domain.

More generally, not only related to hydraulic units, anomaly detection in industry
was described in the survey by [12]. According to the categorization presented in that
paper, the work within this article could be described as statistical/machine learning—
constructive—point—online. In reference to the same survey, this project by application
fits into the “machine condition monitoring” category of anomaly detection. An example
of a case study involving a statistical anomaly detection method also described within the
article is presented in the work [13]. The authors used the interquartile range (IQR) [2]
method to determine anomalies for e-coating plants. IQR was considered a better tool than
the Isolation Forest and Elliptic Envelope algorithms that were also taken into account.
Many anomaly detection algorithms and use cases were mentioned and classified in the
context of IoT in the publication [14]. According to the paper, sources of the anomaly could
be, among others, errors and noise while collecting data and anomalous events during the
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operation of the device. The authors proposed grouping anomalies into three groups: point
outliers, contextual outliers, and collective outliers.

Regarding the hydraulic domain, in the article [15], an online leakage detection system
was developed that was also based on IQR value. The acquired 1-year monitoring datasets
contain four gradual leakage events and two burst events. The presented results showed
that the proposed method has successfully detected all leakage events with a short detection
time and did not generate any false alarms in a year, which showed a promising future for
this method.

The second modeling approach used in the paper involves black-box models, which
are capable of capturing more complex dependencies in data; however, it is harder than in
the case of the statistical approach to precisely describe in detail how output hypotheses
were developed by the model. In the literature in an industrial context, HVAC devices
were the subject of a research study presented in the publication [16]. The authors used
the One Class SVM model with success to detect anomalies by first determining data from
a device operating in nominal conditions. Afterwards, they changed the operating point
and evaluated the learned model. The approach presented in [17] describes condition
monitoring of complex hydraulic systems. The monitored elements were coolers, valves,
internal pumps, and hydraulic accumulators. The Deep Neural Network (DNN) model was
explained with the use of Deep SHapley Additive exPlanations (DeepSHAP) to determine
what the most important factors that influence the final output of a model are. The accuracy
metric that describes the quality of fault detection performed within the paper for monitored
hydraulic elements were as follows: cooler-99.87%, valve-99.60%, internal pump leakage-
99.09%, and stage flag (94.17%), with the exception of the hydraulic accumulator conditions
(88.60%). Very good performance in terms of F1-score was achieved by the One Class SVM
model presented in the same paper. The F1-score for the hydraulic system that was the
subject of the research study was 99.68%. The anomaly detection approach developed for
the hydraulic system was presented in the publication [18]. The dataset used within the
paper comes from a real-world installation in Singapore. It emerged as a business need for
research. In 2018, on a yearly basis, an average of 4.6 leak events per 100 km were reported.
A model that is capable of signalizing anomaly 3 days before and localized with near 400 m
accuracy with 80% F1-score has been developed. More than 3300 data-driven models were
trained for optimizing the model performance to achieve the desired quality of modeling.

An anomaly detection system for HPU specifically was developed and presented in
the paper [19]. The authors used several deep learning models such as the autoencoder,
one-dimensional convolutional neural network, and long-short-term-memory network.
The best model (1DCNN) achieved a distinction between normal data and data including
anomalies with 94% accuracy in an industrial dataset enhanced with artificial anomalies.

In the context of the article, the use of expert knowledge for feature engineering is
crucial. In the literature so far, the use of expert knowledge was applied successfully in
the publication [20] for the spot welding process. In the described use case, the wear
count threshold was set by domain experts, and this value determined the workflow
of the anomaly detection algorithm. Another example of incorporating domain experts’
knowledge for feature engineering into industry was described in the article [21]. The
subject of the article was a bitumen oven. As the authors stated, the description of the
operating point and the ranking of the inputs were important for achieving satisfying
quality in the models for predicting the surface temperature of the oven. The output of
the model was used to enable the optimization of process parameters. However, in the
literature, there is no described use of domain experts’ knowledge about hydraulic power
units in the context of feature engineering for anomaly detection tasks, which is presented
in this article.

The feature selection process, which is also part of the presented anomaly detection
solution, was described in the literature using different approaches. One of the simple ones,
which involves the Pearson Correlation Coefficient (PCC), was presented in the article [22]
for the purpose of feature engineering of sensorized stamping presses. A use case closer
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to the subject of the herein article is presented in [23], where the authors used PCC to
perform feature engineering for hydraulic components anomaly detection. There are also
more complicated modern approaches involving neural networks. As an example of usage,
autoencoders [24] or convolutional neural networks [25] could be provided. In addition,
there is also the possibility of mixing together both PCC and neural networks in the feature
engineering process as presented in the publication [26].

In the context of designing IoT solutions, in the publication [27], several trends and
guidelines were provided. The authors mentioned that due to limited edge device resources,
instead of implementing a whole TCP/IP stack based on the Open Systems Interconnection
(OSI) model, a lightweight IP stack is normally implemented. Another important aspect
to keep in mind while developing or projecting IoT solutions is the energy consumption
of the device because that energy consumption primarily regulates the implementation
of suitable protocols and standards in IoT devices. The study reveals that, in the context
of security, Kumar et al. [28] proposed a lightweight encryption scheme that enables
fast hash-keys-based encryption for IoT modules in the perception layer. The proposed
scheme can mitigate security risks by only allowing communication between authenticated
IoT devices.

Considering current issues and trends in the domain of anomaly detection for hy-
draulic power units, some open research problems can be named. Researchers try to
explain black-box models so that the influence of input variables on the final output can be
measured. The quality of the algorithms developed so far is very good. However, there are
many more possibilities to combine existing algorithms, neural networks, and statistical
approaches. Therefore, there is a broad area of research to create new algorithms that
could obtain even better quality in anomaly detection and machine monitoring generally.
Anomaly detection for hydraulic power units specifically is not a common research subject,
so it could be explored much deeper. More often, as hydraulic systems, the smart water
grid (SWG) is the subject of much research.

2. Materials and Methods

To implement the whole solution properly, a careful design has to be proposed. Within
this section, the path from sensors through PLC and the edge computer to the cloud is
presented. As the project was implemented in a production environment, aspects that are
important from a business point of view, such as the costs of the solution and possible easy
further solution propagation, were taken into consideration during development.

2.1. Data Acquisition and Communication

Good quality data is a fundamental principle to performing mature, useful, and
reliable mechanisms for alarming, detecting, and predicting anomalies and failures. For
that reason, the process of acquiring data from the very beginning, from the sensors layer,
should be carefully designed.

2.1.1. Hardware and Software Architecture

All available measurements were aggregated in Siemens SIMATIC S7-400 [29] Pro-
grammable Logic Controller (PLC) acting as Modbus Slave. From proper input registers of
the Modbus map, the following measured variables were available:

• Pressure behind filter, bar;
• Engine oil pressure, bar;
• Fuel level, %;
• Water level in the tank, %;
• Fuel consumption, L;
• Engine coolant temperature, °C;
• Water temperature in the tank, °C;
• Oil temperature, °C;
• Power, W;



Future Internet 2023, 15, 206 6 of 29

• Rotation speed, 1
min ;

• Oil flow, L
min .

There are more variables available in PLC; however, they are diagnostics and binary
quantities such as the presence of a sensor. Eventually, they are control-related variables
such as set points. The SIMATIC S7-400 PLC unit can be considered relatively obsolete
in comparison with, for example, S7-1200/1500, also manufactured by SIEMENS [30].
However, for practical and business reasons, there is no need to replace the PLC. Required
functionalities such as the acquisition of signals from sensors and sharing measurements
using the MODBUS protocol are ensured by the SIMATIC S7-400 unit. The replacement of
the PLC would generate additional costs, require time for the PLC programmer, and also
require taking HPU from the client for a while.

It would be possible to fulfill project requirements such as sending data to the cloud,
and the use of anomaly detection algorithms using modern industrial software solutions,
even compatible with SIEMENS, such as MindSphere [31]. However, using custom software
implemented on the edge computer and in the cloud, rather than the use of out-of-the-box
solutions, gives more flexibility in the context of further software and analytics development.

Software written in Python 3.8 was implemented to acquire data on the edge computer
MOXA UC8100 [32] and send it to the cloud. Therefore, two functionalities were written:

1. Reading data from Modbus (program acting as Modbus Master);
2. Sending data to the cloud in a proper format.

Thanks to software written on PLC, measurements were available through only one
protocol—Modbus TCP. Only one program for data acquisition was necessary. The imple-
mentation of 1 involved the PyModbus Python package on BSD license [33]. Sending data
to the cloud was performed using mechanisms available direct out-of-the-box from Python
SDK for Azure IoT Edge [34] in the same program as Modbus Master.

The program fulfilling functionalities from points 1 and 2 has about 200 lines of code
in total. The Pseudocode of the program is presented in Algorithm 1. Implementation
in the development environment was performed as any other Python script. Deploying
the solution into production is a bit more complex. Therefore, a separate paragraph
(Section 2.1.2) for describing this process with the whole ecosystem around it is needed.

Algorithm 1 Program for reading measurements from PLC and sending them to the cloud

Require: N = 11 . Number of measurement variables
t← 1 . Time in seconds
Xt ← x1, x2, . . . xN . Vector of current measurement variables
Xt−1 ← 0 ∈ RN . Vector of previously read measurement variables
while True do

if Connection with PLC is established then
Read measurement variables from PLC and assign it to Xt.
if Value of any corresponding variable differs in Xt and Xt−1 then

Send values of corresponding variables to the cloud.
end if
Xt−1 ← Xt

else
Try to establish connection with PLC

end if
Wait a second.
t← t + 1

end while

Figure 2 schematically shows the high-level solution architecture described above.
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Figure 2. Communication scheme.

2.1.2. Azure IoT Edge

Azure IoT Edge [35] is a framework for developing and deploying edge solutions
using Docker containers [36] that can communicate with each other. The core of IoT Edge
architecture consists of two containers: Edge Agent and Edge Hub. The first container is
responsible for handling and keeping an eye on all containers belonging to the solution.
Whenever some container needs to be started, restarted, stopped, or updated, Edge Agent
comes into play. Edge Hub is responsible for handling communication between containers
with containers and containers with the cloud. Just like any other Docker container,
containers within IoT Edge can fulfill desired functionalities by performing code inside the
container. Containers are stored in a cloud container registry where they can be downloaded
and uploaded. Deployment at scale is one of the most important features of Azure IoT
Edge. Using this feature for purposes of anomaly detection for the HPUs project will be
described in Section 5. A full description of Azure IoT Edge is presented on its official
website [35].

On the edge computer, the Azure IoT Edge ecosystem was installed. With the dedi-
cated software mentioned above (points 1 and 2), IoTEdge was responsible for acquiring
measurements and sending them to Azure Cloud. Functionality is encapsulated in the
Docker container.

A container can be thought of as a virtual machine but far more minimalist. It is an
environment that provides all that is needed to run a program inside it. In the context of
the described project, the Modbus Master container, visible in Figure 3, must have a Python
interpreter with the PyModbus package installed and a minimal quasi-Linux operating
system that is able to run the Python interpreter. It is important that the same container
can be run on edge devices of different kinds, provided that they have the same CPU
architecture and Docker environment installed.

The process of deploying containers on edge devices is carried out as follows:

1. Code development, including implementation of data acquisition presented in Algo-
rithm 1;

2. Building Docker container;
3. Pushing Docker container to container registry;
4. Order container download to edge device via Azure CLI [37] or Portal Azure [38].

Programming within step 1 is performed in the same way as for a code that is not
intended for containerization. This means that there are no additional techniques to be
learned by the developer to provide a code that will also work within the container. The syn-
thesis of the Docker container in step 2 requires a couple of specific Docker commands [39]
and configuration files. As a result, a new Docker container appears, which is ready to be
uploaded in step 3, for example, to Docker Hub [40] or Azure Container Registry [41]. The
last step 4 ends the process of the deployment container on the edge device. Thanks to
Edge Agent core-container, the just downloaded custom container starts automatically.
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Figure 3. IoTEdge ecosystem deployed on edge device.

2.2. Algorithms Design

Before deploying algorithms into production, they should be carefully designed. The
whole process begins with data preparation. Then, discovering key features that could
be extracted from data takes place. Finally, a model that delivers value to the end user
is developed.

2.2.1. Feature Engineering

Consultations with domain experts (engineers from PONAR S.A.) give two potential
features that could be useful:

• Fuel consumption divided by power;
• Rotation speed divided by pressure behind the filter.

According to the knowledge of domain experts from PONAR Wadowice S.A., both
features are known to be positively correlated. However, consultations with experts did
not provide mathematical equations that express both features. Only general insight
was given. Therefore, Section 2.2.2 contains a description of the process of designing
mathematical formulas that explain the relationship between variables within each of the
features mentioned in the list in Section 2.2.1. The first feature is valuable from a business
perspective because of the ability to monitor the exploitation process. The second in single
value gives information on whether HPU works correctly—this means it gives output with
proper quality.

It was decided to analyze only periods of stable work of the monitored device. Output
pressure is a variable that determines whether some periods should be labeled as stable. Its
course is analyzed to obtain information about stable periods. After labeling some time
periods as stable, appropriate features from that period can be extracted. These features are
mentioned in list in Section 2.2.1. The procedure of resolving stable periods using the GLR
algorithm was described in [42]. There are other methods, such as the Iterative Algorithm
for Time Series Decomposition into Trend and Seasonality presented in publication [43]
or the Weighted CUSUM Algorithm [42] that are useful to resolve stable periods. Since
programming the use of the GLR method was judged as easy during the implementation,
we decided to use it in this method.

Such an approach is suited to detect abnormal behavior in the device operating point,
where it is crucial to maintain proper and stable exploitation parameters. On the other
hand, the approach proposed in the article as a whole is not useful to analyze transitions
between operating points or on the hot/cold-start of HPU. The reason for this is that the
proposed method of analysis assumes steady states of measured variables. For analysis of
behavior during non-steady states, methods based on extreme value theory (EVT) [44] or
DeepLSTM [45] are better suited.

Within each stable period, several basic statistics on measured data were calculated.
These values are mean, median, standard deviation, 1st, and 3rd quartile. A couple of
features were extracted. The next step will be to extract the most useful ones.
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To verify the correctness of assumptions in accordance with expert knowledge, the
Pearson correlation matrix [46] was constructed. Correlating all values with each other
resulted in approximately 200 characteristics. Then, characteristics were filtered to take
only several correlations that have the highest absolute value of the Pearson correlation
coefficient (PCC). The correlation matrix with the most significant correlation pairs is
shown in Figure 4. It is worth mentioning that only positive Pearson correlation coefficients
are significant.

Figure 4. Correlation matrix with several most correlated variables.

Fuel consumption with respect to power has the highest correlation coefficient. Pres-
sure behind the filter due to pressure before the filter has the second highest value. However,
according to domain experts’ knowledge, it does not represent any physical phenomena.
The third highest PCC value has a rotation speed mean with respect to pressure behind the
filter. Therefore, both characteristics proposed by domain experts in the list in Section 2.2.1
are taken into consideration in the next steps of modeling.

2.2.2. Fitting to Characteristics

The features proposed in Section 2.2.1 should be somehow handled to give value.
Plotting them on scatter-plots (Figures 5 and 6) shows that some reference curves can be fit.
The shape of characteristics seems to be simple to determine. Then, it was decided to use a
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simple tool—linear regression from Python NumPy package [47]. An explanation of linear
regression principles is beyond the scope of this article but can be found at [48].

Two characteristics were fit:

• Power mean due to fuel consumption mean;
• Pressure behind filter mean due to rotation speed mean.

Figure 5. Scatter plot with fitted curve—power due to fuel consumption.

Figure 6. Scatter plot with fitted curve—pressure due to rotation.

2.2.3. Anomaly Detection

After establishing reference curves, the anomaly detection algorithm comes into play.
The chosen approach involves an examination of deviations from reference characteristics.
The process of finding the point-to-curve distance (PTCD) is described in [3]. The approach
assumes the curve as a closed-form expression, which is the case presented in Section 2.2.2.
Firstly, the distance from the curve to new measurements put on characteristics is calculated.
Secondly, a histogram of distances from the curve is established. The last step is to identify
outliers. To identify them, it was decided to use the Interquartile Range (IQR) Criterion [2].

Concise mathematical use of the IQR Criterion could be presented as follows. Firstly,
IQR is calculated as presented in Equation (1).

IQR = Q3 −Q1 (1)

where Q3 denotes the third quartile (75th percentile) and Q1 denotes the first quartile
(25th percentile) of all acquired PTCD values for each characteristic separately. For each
characteristic separately, any PTCD value denoted as PTCDi that meets the condition
presented in Equation (2) is considered as abnormal.

PTCDi > Q3 + 1.5IQR (2)

While using IQR Criterion, values that also meet the condition presented in Equa-
tion (3) are considered abnormal. However, for the case analyzed in this study, the wider
the point is from the reference curve, the more suspicious it is to be considered as an
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anomaly. Therefore, to determine if a point on characteristics is considered an anomaly,
only the condition from Equation (2) is applied in the article.

PTCDi < Q1 − 1.5IQR (3)

There are more anomaly detection algorithms available, such as those based on au-
toencoders [49] or SVM [50]. However, PTCD with IQR Criterion was applied in this study
because it was considered as easy enough to interpret by domain experts from PONAR
Wadowice. For now, it is not possible to change anomaly detection algorithms because the
solution was deployed into production and HPU works with the client.

Variables used within the anomaly detection algorithm were proposed by domain
experts from PONAR Wadowice based on their experience. The choice of the variables was
also supported by correlation analysis performed in Section 2.2.1. These variables are power,
pressure, fuel consumption, and rotation speed. Other variables, such as temperature or
fluid level, can help increase the accuracy of anomaly detection; however, other variables
were taken into the final algorithm design based on domain experts’ experience. The range
of variables that are used by the anomaly detection algorithm could not be performed and
implemented because the solution is currently deployed in production. The use of other
variables than those chosen so far for the anomaly detection algorithm could be carried out
while deploying the algorithm solution on the next HPU.

2.2.4. Novelty Detection

After implementing the approach described in Section 2.2.3, another was proposed
and developed. The goal was to analyze data in higher dimensional space. Therefore, some
black-box or gray-box algorithms could be used as they are capable of drawing conclusions
from high dimensional data much more efficiently than by-hand analysis. The assumption
was performed that all data we take into account in this approach are non-anomalies. Then,
instead of anomaly detection, the task was novelty detection [51]. It was decided to use One
Class SVM (OCSVM) [4] because it is easy to deploy with the scikit-learn Python package
[52].

The principles of the OCSVM algorithm are as follows [53]. The training process
involved taking only data that come from standard HPU working conditions according to
the knowledge of domain experts from PONAR Wadowice. Therefore, we let the dataset of
normal samples be:

X = [x1, x2, . . . , xn]
T ∈ RNxL (4)

and the target decision hyperplane be:

f (x) = ωφ(x)− ρ = 0 (5)

Afterwards, the optimization problem could be constructed and solved:

min
ω∈F,ξ∈RN ,ρ∈R

1
2
||ω||2 + 1

Nv

N

∑
i=1

ξi − ρ (6)

s.t. ωφ(xi) ≥ ρ− ξi, ξi ≥ 0 (7)

where:

• N is the length of the dataset used for training;
• v is the regularization parameter;
• ξi is the slack variable corresponding to each dataset;
• ω and ρ are the decision planes that can be decided with participation;
• φ denotes the way the data are spatially mapped [54].
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The OCSVM model is obtained by introducing Lagrange multipliers αi ≥ 0 and βi ≥ 0
and solving the Lagrange equations.

L(ω, ξ.ρ, α, β) =
1
2
||ω||2 + 1

Nv

N

∑
i=1

ξi − ρ−
N

∑
i=1

αi[ωφ(xi)− ρ + ξi]−
N

∑
i=1

βiξi (8)

Partial differentiation of the variables in the above equations gives the pairwise form
of the optimization problem [55]:

min
α

αT Hα (9)

s.t. ≤ αi ≤
1

Nv
,

N

∑
i=1

αi = 1 (10)

where H denotes the kernel matrix, the components of which are Hij, which can be ex-
pressed as:

Hij = K(xi, xj) = φ(xi)φ(xj) (11)

where K(xi, xj) denotes the kernel function, that for the purpose of the article is the Gaussian
kernel function. As for the RBF kernel function, only one parameter, denoted as σ, is to
be adjusted. This parameter directly affects the width of the RBF kernel function, and the
calculation formula is presented in Equation (12).

K(xi, xj) = exp
−||xi−xj ||

2

2σ2 (12)

The quadratic problem that is stated above leads to solving α, whereupon ω and ρ can
be computed separately as presented in Equations (13) and (14)

ω =
N

∑
i=1

αiφ(xi) (13)

ρ =
N

∑
j=1

αjK(xi, xj) (14)

As a result, a decisional hyperplane in the feature space can be found from the solved
ω and φ.

The decision function that is defined in Equation (15) is established for classifying the
test sample zk from the training set Z = [z1, z2, . . . , zM]T ∈ RMxL.

F(zk) = sign[ωφ(zk)− ρ] (15)

The sample is classified as a normal sample when the value of the decision function
is positive, so when F(zk) = +1. When the value of the decision function is negative, i.e.,
when F(zk) = −1, the sample is classified as an abnormal sample because it falls outside
the decision hyperplane.

It was decided to take the following variables as input to the algorithm:

• PressureBehindFilterMean;
• HighPressureMean;
• RotationSpeedMean;
• PressureBeforeFilterMean.

The choice was dictated by the same logic as described in Section 2.2.1. These variables
have the highest PCC in all available pairs of variables in the solution. Therefore, they tend
to form not-so-dispersed shapes (cloud of points) in high-dimensional space.

Naturally, more variables could be taken into consideration as an input into algorithm.
For example, temperature or fluid level. However, the fewer variables the model has, the
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easier it is usually to interpret. In the described project for domain experts, it was crucial to
understand the behavior of HPU as tangible as possible and to make the novelty detection
model as easy to interpret as possible for the domain experts from PONAR Wadowice. The
possibility of expanding the range of variables could be considered during deploying the
presented solution on the next HPU. For now, the solution is deployed in production and
there is no possibility of its modification.

2.3. Algorithms Deployment

After developing models that are useful and give value to the end user, it is time to
make them work in a production environment. Data are stored in Microsoft Azure Cloud
as described in Section 2.1. To provide an ecosystem for models that is maintenance-free
and convenient in implementation, it was decided to use Microsoft Azure Cloud. Using
such an approach, it is possible to deliver value from models to the end user.

According to Figure 7, the architecture of cloud services does not involve only analyti-
cal tools per se. It also contains API that is used for acquiring data from cloud storage. In
addition, it contains MOLOS.CLOUD web SCADA by REDNT S.A., where the end user
can see measurements and alarms emerging from developed analytical hypotheses.

The core of the system is Azure Functions [56] paired with analytical models. As
described in Section 2.2, two approaches have been developed. Each approach has a
different method of deployment. However, they are embedded in the cloud in the same way.

Figure 7. Cloud ecosystem for deploying algorithms into production.

Embedding algorithms in the cloud involves Microsoft Azure Functions. This cloud
service allows us to run programs and scripts written in JavaScript, C#, F#, Java, PowerShell,
Python, and TypeScript in the cloud, i.e., serverless [57]. The code developed within the
project was written in Python, so the language was supported by Microsoft Azure Functions.
For project purposes, the execution of functions was scheduled. However, it is not the only
mechanism to trigger the execution of the Azure Function [58]. Each developed algorithm
has its own timer-triggered Azure Function that is executed once an hour. Therefore, two
Azure Functions were developed in total.

2.3.1. Anomaly Detection

The goal of deployment is to perform calculations hourly to provide information
about anomalies. The developed approach involves a reference curve described by three
parameters per characteristic and an error threshold per characteristic. Such a set of
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parameters enables us to check whether, in the monitored time period, the anomaly has
appeared. Such a functionality could be implemented with Azure Functions.

Azure Functions are part of the Azure Function App, which is an environment for
Azure Functions execution. This environment has its own environment variables that can
be accessed by Azure Functions inside it. The parameters required to work out the anomaly
detection hypothesis are:

• a, b, c—coefficients for Equation (16). Two sets of parameters, because of two fit-
ted characteristics;

• Interquartile Range (IQR) criterion mentioned in Section 2.2.3. Two parameters, one
per each characteristics.

In total, the Function App had to store eight parameters, which is a complete set to
run Azure Function for anomaly detection. All these parameters are declared as Function
App environment variables.

The parameters of the algorithm could be accessed from other sources such as Azure
BLOB Storage or Table Storage. For simplicity of implementation, it was decided to
place them inside the Function App. In this way, it is easy to change them on the spot
without modification of the Azure Function code, which is important from a long-term
maintenance perspective.

Finally, the algorithm should deliver value to the end user. For fulfilling this require-
ment, after developing hypotheses, feedback to the IoTHub in the form of a JSON message
is provided. The message contains information on whether an anomaly has occurred,
with specifications on from which characteristics the anomaly has emerged. Moreover, the
“intensity” of the anomaly is sent to IoTHub. The message after processing is put with its
content into Azure Table Storage. Then, MOLOS.CLOUD web SCADA is able to extract
data from Table Storage and show alarms about anomalies if necessary. In the end, the end
user is aware of occurring anomalies.

2.3.2. Novelty Detection

The novelty detection algorithm runs once an hour inside the timer-triggered Azure
Function. The mechanism that decides whether novelty has been detected is the One Class
SVM model trained in Section 2.2.4. After training the model, it is exported as a *.joblib file,
and inside the Azure Function model, it is imported and used. This is common practice
while dealing with scikit-learn models [59]. Finally, the model tries to find novelty in
delivered data.

Similarly to Section 2.3.1, for the novelty detection case, a message to IoTHub is also
sent. The message contains information on whether novelty has been detected or not.

2.3.3. Tests Performed before the Solution Was Deployed in Production

Deployment of both code and models were preceded by tests. The testing code was
performed on a dedicated experimental measurement station in the REDNT S.A. office. The
station included the same model of edge computer (MOXA UC-8100) as on the hydraulic
power unit. Due to the lack of SIMATIC S7-400 PLC in the office, Modbus Slave was
simulated by Modbus Slave software [60] during tests on a test stand in the office. The
register map was simulated according to the map that was implemented on PLC on the
hydraulic power unit. Testing the code involved manual tests that were carried out by
changing the values of the registers with the same addresses and same variable types as
variables stored on destination PLC on HPU. From a functional point of view, it is not a
problem that Modbus Slave software was used for tests in the office instead of SIMATIC S7-
400 PLC. The communication interface, register map, and register data types were replicated
as it was on HPU with PLC. There was no possibility of performing manual testing on
destination installation stated in Section 2.1.1 because PONAR Wadowice conducted other
activities to prepare the HPU for shipment to the customer. Therefore, a carefully designed
testing environment was needed in the office.
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The procedure of manual testing of the data acquisition process was designed with
consultations with domain experts from PONAR Wadowice S.A. They provided ranges
of values that are possible when HPU is in an acceptable working state. The testing
experiments consisted of manually changing values of registers that correspond to variables
in the Modbus register map within acceptable ranges provided by domain experts.

During testing, it emerged that the register that held the power measurement Sec-
tion 2.1.1 was 16-bit, but for values of power that were beyond this range it needed a 32-bit
register. Therefore, to avoid incorrect measurement values, changes in PLC software in
production were required.

After performing manual tests of data acquisition software on the simulated envi-
ronment and ensuring that data acquisition software is written without bugs, tests on
destination installation mentioned in Section 2.1.1 were carried out. The aim of the test-
ing was to change the operating point by decreasing and increasing the value of output
pressure. Both changes that are within an acceptable working regime and beyond it were
performed. After performing test scenarios on HPU and checking that data were properly
acquired, models and algorithms were trained. After training, models were tested using
data from test scenarios performed on HPU to ensure that they will not raise anomalies
within an acceptable working regime. Testing of the models was carried out by manually
putting data from different operating points on the input of the models. These operating
points were picked with consultations with domain experts from PONAR Wadowice to
help consider whether test input data should be considered as an anomaly. In total, four
tests were performed. All tests were carried out during one workday. Each of the tests
lasted one hour. Unfortunately, there was no possibility to perform extensive tests because
the hydraulic power unit was dedicated to concrete commercial projects, not for research
purposes only. Therefore, a limited amount of time and human resources from both REDNT
S.A. and PONAR Wadowice S.A. could be provided for the research. The simulation data
are not suitable for training because the simulator did not properly reproduce the behavior
of the actual HPU. The simulator was created only for the purpose of verifying the data ac-
quisition software and checking the reference ranges and pre-preparing the data processing
pipeline for training. It did not cover the relationships between variables, nor did it take
into account the dynamics of changes in variables. It only allowed changes in individual
variables listed in the list in Section 2.1.1.

2.3.4. Summary of Algorithms Workflow in Production Environment

To summarize Sections 2.3.1 and 2.3.2, step by step, the deployed algorithm runs
as follows:

1. Download required variables time series (power, pressure, fuel consumption, rotation
speed) from cloud storage using API from the last hour.

2. Determine stable periods.
3. Calculate mean for each variable for each stable period.
4. Handle anomaly detection:

(a) Calculate point-to-curve distance (PTCD);
(b) Confront PTCD with IQR Criterion.

5. Handle novelty detection:

(a) Download model from BLOB storage;
(b) Use model to predict novelty.

6. Send feedback to IoTHub on whether an anomaly or novelty was detected or not.
MOLOS.CLOUD will raise an alarm if necessary.

It is worth mentioning the costs of deployed workflow and ecosystem for analytical
solutions. Several components that generate cost could be named:

• Function App as a consumption plan [61]:

1. Costs are generated per Azure Function run;
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2. In described solution it is 2 f unctions ∗ 24 executions
day∗ f unction ∗ 30 day

month = 1440 executions
month .

• Storage:

1. Costs are generated by read operations—both volume and quantity of reads;
2. Read operations from table storage with time series data for desired variables;
3. Read operations BLOB storage with models for anomaly detection;
4. Read operations BLOB storage with models for novelty detection.

• API:

1. Fee is charged for working hour.

The approximate cost of Azure cloud resources for data analysis in the described
project is about EUR 10 per month. The costs were calculated based on invoices received
from Microsoft. Unfortunately, the costs of specific components pointed out in the list in
Section 2.3.4 were restricted and could not be provided in the article. In the context of
project cloud costs, it is also possible to use the Azure Pricing Calculator; however, it gives
only a rough estimate of costs. An accurate cost calculation using only the Azure Pricing
Calculator is hard because making assumptions about data of inbound and outbound traffic
in the cloud is hard to be carried out accurately and often requires the usage of special
traffic monitoring tools [62]. Moreover, the proper interpretation of calculations made
using the Azure Pricing Calculator is often hard [63]. Therefore, a common experience is
that accurate costs of cloud resources are known only after deploying the solution.

It is important to notice that the solution is not real-time monitoring. Hypotheses are
developed once an hour. Assumptions made during the synthesis of Azure Architecture
have not involved real-time workflow. Therefore, the used cloud tools are not suited
for such a workflow. For a fast and responsive tool for monitoring in Azure, see Azure
Stream Analytics [64]. Moreover, to estimate the cost of the whole delivered Azure solution
(visualization + analytics) to the above costs, a couple of other components should be added.
Nevertheless, it is beyond the scope of this article because the description of visualization
details in both a frontend and backend manner is not the purpose of the article.

A concise summary of workflow and tools used while putting algorithms into produc-
tion is shown in Figure 7.

2.4. Cyber Security

As every software solution requires connecting to the internet and using interfaces
to interact and communicate with other devices, the described solution could also be
vulnerable to cyber attacks. However, several security tools, concepts, and mechanisms
were applied to ensure safety on a high level. First of all, firewall rules on the edge device,
MOXA UC-8100, were applied. Whole inbound network traffic was blocked and then
gradually opened for appropriate ports and IP addresses. IP addresses of Azure servers
are known [65]. The number of ports through which communication with the cloud takes
place is also known (8883-MQTT). Therefore, proper firewall rules could be applied. The
connection with Azure IoTHub is secured using TLS/SSL. A comprehensive description of
communication details related to IoTHub could be found in Microsoft documentation [66].
MOXA UC-8100 also communicates with PLC using the Modbus TCP protocol. The IP
addresses of PLC and Modbus TCP port (502) are known, so another suitable firewall rule
could be written. Nevertheless, the described actions were taken to improve security and
minimize the risk of security incidents.

3. Results

Each of the approaches stated in Section 2.2 delivered results that were part of the
final solution. The results will be described and compared with other similar use cases
from the literature.
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3.1. Anomaly Detection

With the use of the NumPy package, the curve fitting procedure was carried out.
Based on the shape of characteristics in Figures 5 and 6, linear, quadratic, and exponential
functions were taken into consideration as reference curves. In the results, it arises that the
optimal curve that explains both characteristics are quadratic. The standard form of the
quadratic function was used to fit the reference curves:

f (x) = ax2 + bx + c (16)

where:

• a, b, c are functions coefficients that are real numbers.

The values of determined coefficients for each of the considered characteristics are
presented in Table 1. The coefficient a for the characteristic from Figure 5 and coefficient
b for the characteristic from Figure 6 have low values. They could be eliminated after
applying some regularization, for instance, L1 or L2 [67]. However, characteristics are fit
using only data from the proper behavior of HPU. Therefore, they were not necessary to
eliminate negligible coefficients.

Table 1. Values of quadratic function coefficients for fitted curves rounded to two significant digits.

Characteristics a b c

Power mean vs. fuel consumption mean 1.5× 10(−4) 3.3× 10(−1) −4.1

Pressure behind filter vs. rotation speed mean 1.8 6.3× 10(−4) 1.5× 10(−1)

According to the approach described in Section 2.2.3, threshold values that are nec-
essary for deciding whether measurements are anomalous or not were computed. Based
on the error distribution that is presented in Figures 8 and 9 and the application of IQR
Criterion, threshold values were evaluated. The values are presented in Table 2.

Table 2. Error thresholds calculated using IQR Criterion.

Characteristics Error Threshold

Power mean vs. fuel consumption mean 10.4

Pressure behind filter vs. rotation speed mean 0.998

Figure 8. Deviations power vs. fuel.
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Figure 9. Deviations pressure vs. rotation.

In the current phase of the project, detected anomalies are consulted on an ongoing
basis with domain experts from PONAR Wadowice S.A. An assessment of the results and
quality of the developed solution in production is in progress.

3.2. Novelty Detection

The One Class SVM algorithm was trained using standard parameters defined in the
scikit-learn package [52]. As kernel type, the Radial Basis Function (RBF) was used. The
kernel coefficient was set to scale, so it was dependent on the number of features and their
variance. The coefficient related to the upper bound on the fraction of training errors and
the lower bound of the fraction of support vectors (called nu) was set to 1 because the
novelty detection algorithm was trained entirely on only non-anomalous data. Similarly to
anomaly detection results presented in Section 3.1, so far, anomalies detected during the
project are consulted on an ongoing basis with domain experts from PONAR Wadowice
S.A. The solution undergoes evaluation in production.

4. Discussion
4.1. Algorithms

Both anomaly and novelty detection approaches could be useful in the context of
determining whether HPU working parameters become anomalous. The results related
to anomaly detection presented in Section 3.1 show that the use of selected reference
characteristics is justified. PCC values for the characteristics and quality of fitted curves are
good enough to make assumptions that are starting points for picking anomaly detection
criteria. An industrial example of an anomaly detection system that also selects inputs to the
model with the use of PCC values is presented in [68]. The authors claim that the use of PCC
to select inputs to the model improved the accuracy of the presented system even if PCC
has limitations as it is only sensitive to the linear relationship between variables. The use
of the IQR Criterion applied to the distribution of distances from points on characteristics
that come from measurements to reference curves results in the determination of clear and
understandable threshold values. When the distance of data points from measurements
exceeds these values an anomaly is signaled. Such an approach could be presented and
explained to a non-expert person from the client side, which is also a plus in the context
of the described project. Incorporating IQR Criterion into anomaly detection algorithms
on industrial datasets presented in the study [69] shows that fewer false positive alarms
are raised in comparison to other techniques used in the paper such as Isolation Forest
or Elliptic Envelope. On most of the datasets considered in the study, the precision score
of the algorithm with IQR Criterion applied was significantly better (best value 0.6) than
for Isolation Forest (best value 0.16) or Elliptic Envelope (best value 0.2). More modern
algorithms such as autoencoders in combination with LSTM or CNN networks are effective
real-world hydraulic solutions [70]. The presented approach allowed us to detect anomalies
2.5 h before failure occurred. Being aware of method limitations and the possibility of
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using more modern techniques, after consultations with domain experts from PONAR
Wadowice, it was decided to implement PTCD with the IQR Criterion algorithm because
of its simplicity accepting that the algorithm could potentially be of a lower quality than
the aforementioned.

Novelty detection described in Section 2.2.4 involves a One Class SVM model, which
is a kind of black-box. This model is less explainable than the threshold-based approach
within the anomaly detection approach. Consulting anomalies detected using this approach
with domain experts is therefore harder. Due to the ability of OCSVM to analyze data
having more dimensions than the approach involving IQR Criterion, OCSVM is able to
potentially capture anomalies of different kinds to anomalies detected by the approach
involving IQR Criterion. As a method that is easy to implement in Python using the
scikit-learn package, we decided to implement OCSVM. It was presented in the article
[71] that, using hyperparameters tuning (manual search, grid search, random search, and
Bayesian optimization), the quality of the algorithm could be improved. The worst F1
score equal to 0.55521 was obtained by manual search, and the best F1 equal to 0.6488
was obtained for Bayesian optimization hyperparameter tuning. For the purpose of the
presented case study, the OCSVM algorithm has default hyperparameter values, and no
tuning was performed. As a recent anomaly detection algorithm with a high F1 score equal
to 79%, the Graph and Temporal Neural Network for Multivariate Time Series Anomaly
Detection (GTAD) presented in paper [72] could be pointed out. Therefore, when revisiting
the solution, investing time in tuning hyperparameters or even changing the algorithm is
worth considering.

Use cases of commercially implemented anomaly detection systems for hydraulic
systems were described in papers [73,74]. However, they do not involve integration
with Microsoft Azure Cloud and IoTEdge technology specifically. Paper [75] describes a
framework for data capturing and processing in the cloud but without Azure IoT Edge
technology. Therefore, the literature lacks publications that characterize commercial sys-
tems for anomaly detection for hydraulic power units with the use of Azure cloud and
Azure IoT Edge.

The results obtained in the article are specific to the monitored device. However, as
described in paper [76], IQR Criterion is proved to be useful in the context of detecting
anomalies in the automotive industry. On the other hand, as presented in paper [77],
regression could be useful in the context of outlier detection. Therefore, a fusion of these
approaches presented in the article has the potential to give reasonable quality of anomaly
detection system. The novelty detection algorithm involving One Class SVM presented in
the article was commonly applied in industry as presented in papers [78? ]. Therefore, it is
reasonable to pick this algorithm for a system developed during the described project.

The evaluation of algorithms in production is in progress and due to formal business
determinants presenting detailed results is not allowed so far.

4.2. Solution Limitations

Potential limitations of the presented solution that are related to connectivity, data
quality, and algorithm quality could be discussed. As HPU is the device that is a stan-
dalone mobile device, it has many potential locations where it can work. Therefore, some
connectivity issues could arise. The most possible one is that no internet access will be
available in the place where HPU operates. Hardware, for instance, the network card or
antenna in MOXA UC-8100, also could be damaged. Azure IoT Edge, the technology used
within the solution, is capable of storing data that should be sent to the cloud when the
device has not got internet access. Data are stored on the edge computer hard disc, so
in case of problems with the power supply, data will not be lost. As data are stored on a
hard disk, its volume is an important aspect to mention. MOXA UC-8100 has 8GB eMMC
storage in total. After installing the operating system, software, libraries, and packages
that are required for the whole solution to work properly on the edge computer, there is
almost 5GB of space left on the device. This is enough to store approximately one month of
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measurements with selected acquisition parameters and variable range. It is possible to
use an SD card as external storage in MOXA UC-8100. However, data stored on a hard disk
is safer than stored on an SD card, even if such a card is industrial grade.

Even if the edge computer is capable of storing enough measurements to ensure that
lack of internet access is not a problem in a broad time horizon, there could emerge con-
nectivity issues between the edge computer and PLC. For the period when the connection
is broken, data are lost. There is a gap in data that cannot be filled. The connection from
sensors to the PLC input module also has the possibility of being interrupted. In such a case,
there not will be a gap in data, but the quality of acquired measurements is poor. Corner
cases that could emerge in such a situation are handled. There are registers in PLC that store
information about the presence of the sensors. Input data to anomaly detection algorithms
are filtered in a simple way by applying a threshold on data. Justification for such an ap-
proach is a known issue related to a range of sensor indications when, in case of its failure,
the sensor outputs a minimal or maximal analog value that corresponds to too large or too
small indications. Corrupted data from two corner cases described above is therefore not
considered for further analysis. However, there is no mechanism implemented that ensures
all issues with sensors that could emerge. Therefore, data corruption, however unlikely,
is always possible even if measurements do not seem suspicious. To address potential
problems with reading from sensors, in the literature in the paper [80], the algorithm related
to machine condition monitoring that takes data from malfunctioning sensors into account
is presented. Another interesting example was presented in the publication [81], where the
authors developed an algorithm called the adjacent information recovery (AIR) filter, which
handles incomplete data issues in fault detection systems. The mentioned methods solve a
variety of issues with incomplete data; however, the adaptation of the above algorithms
into the solution presented in this article will consume time that, at this stage of a project, is
not available.

Models tests that were carried out during algorithm development helped to train
and tune algorithms in a way that they did not raise useless alarms (false positives) or
that algorithms missed alarms (false negatives). The amount of data from tests is not
sufficient to cover all possible conditions and working regimes of HPU. For sustainable
industry, as stated in the publication [82], both alerting on the most severe anomalies
and minimizing false positives are critical. From that point of view, the number of false
negatives increases; however, this is a common compromise for anomaly detection tasks
in industrial applications [83]. To address this aspect, in the article [82], it was proposed
that raising the alarm should occur when the number of consecutive anomalies detected
by the algorithm is higher than a specific number determined by the experts. To address
this aspect more data should be acquired to be more aware of device operating points,
and then after revisiting the solution, suggesting an approach involving raising an alarm
after more than one detected anomaly should be considered. For now, it is not possible to
present how many false positives or false negatives algorithms raised. Accessing quality of
anomaly detection algorithms could be performed after revisiting solutions in a broader
time horizon.

4.3. Costs of the Solution

As the presented solution is deployed in production commercially, several aspects
related to the costs of the solution should be discussed. HPU without an anomaly detection
system also contains PLC and also contains sensors that are useful in the context of an
anomaly detection system. HPU enhanced with an anomaly detection system requires
an edge computer attached. As mentioned in Section 2.1.1, the edge computer used in
the solution is MOXA-UC8100. The cost of this edge computer is about 3000 PLN [84]
gross. The approximate cost of Microsoft Azure Cloud resources costs is about EUR 10, as
presented in Section 2.3.4. A component of the overall cost of implementing the solution is
also the time that developers and analysts spent on the software development and analytical
part of the solution. The quantifiable added value, in terms of saved funds, energy, and
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time, of the implemented anomaly detection system will be able to be estimated over a
longer time horizon of production deployment. Due to confidentiality, it is not possible to
present detailed calculations (including, for example, spare parts cost or cost of the time
spent on software development) that prove that the solution is worth implementation. The
presented use case involves not only anomaly detection but also machine monitoring in
the context of machine parameters visualization in the cloud. Not quantifiable, but an
important business benefit of the project, is the process of building a competitive advantage
on the market having described the solution in the portfolio. According to consultations
with domain experts from PONAR Wadowice, analyzing both costs and benefits of the
solution from a business perspective, it is worth implementing.

4.4. Commercial Applications

In industry, there are many providers of anomaly detection systems. One of the
providers is TIBCO, which claims to use many different techniques to solve anomaly
detection tasks [85]. Another example of a company that delivers software used for
anomaly detection systems is crosses [86]. Both companies offer integration with the
cloud, and specific cloud services such as IoTEdge or Azure Storage are named and
mentioned in the presented use cases. However, in any of the cases mentioned above, there
is no actual description of the used algorithms and no presentation of concrete numbers
that are incorporated into algorithms. Hardware and software architecture is unavailable
on a level that allows the reader to reproduce even part of the solution. It is common
practice in industry to protect know-how. Therefore, there is a lack of commercial industrial
implementations of anomaly detection systems that are described in a way that more
in-depth analysis could be performed on them.

4.5. Contributions of the Article

The contributions that this article brings into the domain of anomaly detection for
hydraulic power units can be shown while discussing two aspects: commercial implemen-
tation and incorporation of IoTEdge and Microsoft Azure Cloud. The commercial solutions
present on the market do not use, or do not allow, open insight into algorithms and solution
architectures that are presented in the manuscript. The presented know-how in aspects
such as integration with cloud, software, and hardware architecture and algorithms design
and deployment are added value in the context of the paper’s novelty and contribution.
The combination of Microsoft IoTEdge and Microsoft Azure Cloud for anomaly detec-
tion purposes is a novelty among hydraulic power unit solutions. This article contains
a description of the whole path from sensors through PLC, edge computer, cloud, and
finally, hypotheses regarding anomaly detection. The on-premise part is described with the
IoTEdge framework as the most important part. The cloud part of the solution involves
a description of combining cloud services such as Azure Functions, Azure Storage, and
Azure IoTHub into a single, working, commercial solution.

The commercial context of the solution implied the need to organize work and develop
algorithms in a strict time regime. The chosen approaches should have been easy to
implement, easy to understand by experts in the hydraulic power units domain, and as
effective as possible. Therefore, the scientific contribution could be defined as a description
of the process of creating an anomaly detection solution for a hydraulic power unit that
was limited in terms of time and availability of the object under investigation.

Both aspects, commercial implementation and incorporation of IoTEdge and Microsoft
Azure Cloud, could be named as scientific contributions to the domain. Both, in the specific
context of hydraulic power units, have not been developed and described before.

5. Further Research and Improvement Possibilities

Like any other project, this one also has room for improvement and further research.
In the following paragraphs, further actions that could increase the quality and profits
of the project will be described. The aspects presented in this section have not been
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implemented so far. However, the presented concepts contain practical guidelines that
enable the implementation of the following ideas for the purpose of the next project. The
following described cases are related to situations when connectivity to the internet is
limited, the quality of anomaly detection algorithms should be improved, and when a need
emerges to implement the solution at scale.

5.1. Make HPU More Independent from Cloud

Using Azure IoTEdge, it is possible to deliver many different kinds of Docker contain-
ers on edge devices. The container could contain not just code, there is the possibility to
deploy a machine learning model as a *.joblib file within it.

The anomaly detection algorithm described in Section 2.2.3 could be fully deployed as
code because it does not contain any black boxes. All that is needed to perform computa-
tions are polynomial coefficients and error thresholds. The question is how to provide these
values to the edge device. Like the Function App in the cloud, IoTEdge Docker containers
on the edge device can have environment variables. Such a mechanism allows us to pass
desired parameters to on-premise containers and execute the algorithm flawlessly.

A bit different is the method of deploying the on-premise novelty detection model, the
synthesis of which was described in Section 2.2.4. On the grounds that algorithm execution
using such a model involves black-box as a scikit-learn *.joblib file. To use this file Docker,
the container should be shipped with it. This is possible by performing appropriate actions
when building a container.

Deploying algorithms on-premise gives an opportunity to connect to other on-premise
components such as SCADA or HMI panels. In such a configuration, HPU operators could
be informed on the spot about anomalies without the need to rely on web SCADA. Properly
designed algorithms allow diagnostics to be closer to real-time. Expected latency would
be related to the period of data taken into consideration. As mentioned in Section 2.3,
algorithms so far are designed to be triggered once an hour, so anomalous behavior of HPU
could be reported even one hour after the anomaly appears. The time of execution of the
Azure Function that performs the calculation is about one second. After one more second,
the results computed by Azure Function are visible on MOLOS.CLOUD web SCADA. In
total, in the described project, it takes about two seconds from the start of calculations to the
presentation of hypotheses when algorithms are embedded in the cloud. When algorithms
are embedded on the edge device, the time from the beginning of developing hypotheses
using algorithms to the presentation of the results on the on-premise SCADA or HMI panel
would be shorter because on-premise calculations would take up less than a second, and
the standard on-premise HMI panel refresh rate is less than one second [87].

More frequent analysis in the cloud than assumed so far would result in higher costs of
Microsoft Azure Functions service. On-premise, there is no constraint related to monetary
cost, so analysis could be performed more frequently and latency could also be reduced
according to algorithms triggering frequency.

This way, the edge device can be independent of the cloud computation of analytical
hypotheses. However, one crucial aspect should also be mentioned. Applying logic to an
edge device implies that the edge device does not have to connect to the internet to detect
anomalies. The situation when the range of WiFi or GSM network is unavailable is common
when dealing with devices that are working in different places due to their mobility. In
turn, the whole solution is more reliable. Access to the internet is important because it
could emerge that software inside Docker containers should be updated. However, internet
availability all the time is not crucial in this context. The software will be updated if the
edge device gets internet connectivity again. Moreover, IoT Edge has the ability to store
acquired data on the edge device when the device has no internet access and is able to send
the data to the cloud when internet is available again. Data that could be stored is limited
due to space on the hard disk on the edge computer. However, in the case of the described
project, space on the edge computer is enough to store about a month of measurements.
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Therefore, the situation when data in the cloud is incomplete is unlikely in the case of
mobile HPU which is the subject of the described project.

In conclusion, in the context of making HPU more independent from cloud internet
connection is not important for edge devices with IoT Edge when the project is desired
to be on-premise. With the use of IoT Edge, on-premise project requirements could be
fulfilled because of the ability to store data and compute hypotheses internally. On the
other hand, implementing a variant of a project that involves presenting data in the cloud
but developing hypotheses on edge devices to make anomaly detection closer to real-time
is also possible. In that case, the solution benefits from IoT Edge’s ability to store data
internally and send it to the cloud.

A sample architecture of an on-premise IoTEdge solution is presented in Figure 10.
Notice that other components of the ecosystem remain untouched. Only an additional
Docker container with logic is applied, plus output from Modbus Master is duplicated.

Cost reduction, which is also the profit of making HPU independent from the cloud,
is discussed in Section 5.4.

Figure 10. IoTEdge ecosystem enriched in ML model deployed as Docker container.

5.2. Algorithms Refinement

In the case of project rollout, many more HPUs will be connected to MOLOS.CLOUD.
More devices equals more data. More data equals more reliable hypotheses. For now,
reference characteristics were determined based on only one HPU. From a statistical point
of view, it is definitely not enough. Nevertheless, industrial practice often does not allow
performing innovative projects at scale without proof of concept (PoC).

More data could give fresh insight into data. New dependencies, trends, and features
could be extracted. More models could be trained and, as a result, more anomalies could
be shown.

Ideally, when new HPUs are plugged in, automatic model retraining should take
place. The timer-triggered Azure Function can train models on new data. As a result, new
models in the form of *.joblib files and JSON files with polynomial coefficients for each
characteristic are uploaded to Azure BLOB storage. There are other methods of iterative
model retraining in Azure, but discussion on it is beyond the scope of this article [88].

A summary of the architecture discussed in this paragraph is shown in Figure 11.
Algorithm refinement could also be investigated in the context of used input variables.

More variables could be considered as input to anomaly detection algorithms. This includes
variables already measured, as well as potential new variables measured from additional
sensors. The solution is deployed in production and for that reason, it is not possible to
modify algorithms and to change their input variables. However, for future deployments,
it is not excluded to expand the solution with additional sensors after detailed consultation
with domain experts from PONAR Wadowice. To be coherent with the solution developed
so far, potentially new sensors would also be preferably connected to the PLC input module.
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Figure 11. Refinement pipeline for algorithms proposal.

5.3. Domain Expertise

Not only could working on raw data deliver profits because of gaining new insights, but
consulting hypotheses with domain experts could give some new clues and assumptions.

Furthermore, some kind of active learning [89] could be applied. Circumstances in
which detected anomalies and novelties appeared should be carefully analyzed. It would
work perfectly if domain experts could give information on whether the detected anomaly
was labeled correctly. Such an approach is time-consuming; nevertheless, it could be worth
applying in view of the benefits in the future.

5.4. Azure IoTEdge in Deployment at Scale

There is no need to use Docker containers and IoTEdge to fulfill desired project
functionalities. It is also possible just to develop pieces of code in Python and run it on
an edge device—in this case MOXA UC-8100. Placing data analysis and code inside the
Docker container is a bit harder and more time-consuming than developing raw code on
the edge device. Especially at the beginning of using such an approach, at a time when
Docker and IoTEdge are not well known. However, when it comes to managing more than
single-edge devices, it is harder to maintain coherent and stable software and models on
all devices.

IoTEdge gives the opportunity to deploy containers at scale. It is possible to order
the deployment of the same Docker containers on all edge devices with IoTEdge on
board. Receipt for deployment is called deployment manifest [90]. This precisely details
which container should be downloaded on devices. Every time some bugfix or feature
implementation should be performed, four steps are required to update the software on all
edge devices:

1. Perform bugfix, implement feature or refine model/algorithm;
2. Build Docker container;
3. Push container to container repository (ACR or Docker Hub);
4. Deploy it using deployment manifest.

Figure 12 shows schematically the method of deploying and updating containers at
scale. Conceptually, it is the same thing as described in Section 5.1. However, this time
deployment of containers is made for many devices, not only a single one.

The costs of analytics will scale up approximately linearly while introducing more
HPUs into the project. If analytics is placed on-premise, there are no Azure-related costs.
Storage for Docker containers (ACR [41] or Docker Hub [40]) is free for purposes and the
number of containers provided for the project.
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Figure 12. IoTEdge ecosystem enriched in ML model deployed as Docker container at scale.

Therefore, implementing data analysis on the edge computer is more tempting.

6. Conclusions and Final Thoughts

This article presents a method of combining analytical solutions, edge devices, and
SCADA. The subject of the project was a hydraulic power unit (HPU), a high-pressure
hydraulic device that fits into the water as a tool concept. Within the project, integration of
PLC, edge computer, and Microsoft Azure Cloud was performed. Communication with
PLC was performed using the Modbus protocol and communication with Azure IoTHub
was established using the MQTT protocol. The code of programs for data acquisition and
sending to the cloud was implemented in Python and enclosed within Docker containers
with the use of Azure IoTEdge technology. Moreover, developing analytical hypotheses
was implemented using Python; however, algorithms that determined whether anomaly
occurred or not were executed serverless using Azure Functions and Azure Storage.

Several conclusions could be derived from the work that was carried out in the
article. Everything that is presented came from the industrial project and is used in the
production of hydraulic power units. The approach to data acquisition, analysis, and
presentation could be a reference for other IoT projects. The algorithms described give an
insight into what can be important in the context of predictive maintenance and machine
monitoring for HPUs. The cost analysis of Azure cloud services and resources used in
project implementation was performed, so that the cost of deployment of the project at
scale could be more easily estimated.

Innovations that come from the project are algorithms and models designed and
developed for a concrete model of HPU. Furthermore, the use of algorithms described
in scientific literature distinguishes the project from other commercially implemented
solutions. In the literature, there are no presented use cases that involve the IQR statistical
measure for hydraulic power units specifically. The use of Microsoft IoTEdge and other
components of the Azure Cloud presented in the article was not previously described in
the literature in the context of commercial implementation. Furthermore, the method of
deploying algorithms, the possibility of rolling out the solution at scale, and the flexibility
of the solution to be implemented both in the cloud and on-premise variants are aspects
that together are added value that comes from the realization of the described project.

In the current phase of the project, PONAR Wadowice S.A. profits from the abil-
ity to monitor and diagnose HPU remotely via web SCADA. Therefore, the goal of the
project has been fulfilled. It is important from a business point of view, as a result of the
project, that PONAR Wadowice can sell HPU as an innovative product. The business
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value and effectiveness of the solution are worth inspecting again after gathering more
production data.
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