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As the Industrial Internet of Things (IIoT) develops rapidly, cloud computing and fog computing become effective measures to
solve some problems, e.g., limited computing resources and increased network latency. The Industrial Control Systems (ICS)
play a key factor within the development of IIoT, whose security affects the whole IIoT. ICS involves many aspects, like
water supply systems and electric utilities, which are closely related to people’s lives. ICS is connected to the Internet and
exposed in the cyberspace instead of isolating with the outside recent years. The risk of being attacked increases as a result.
In order to protect these assets, intrusion detection systems (IDS) have drawn much attention. As one kind of intrusion
detection, anomaly detection provides the ability to detect unknown attacks compared with signature-based techniques,
which are another kind of IDS. In this paper, an anomaly detection method with a composite autoencoder model learning
the normal pattern is proposed. Unlike the common autoencoder neural network that predicts or reconstructs data
separately, our model makes prediction and reconstruction on input data at the same time, which overcomes the
shortcoming of using each one alone. With the error obtained by the model, a change ratio is put forward to locate the
most suspicious devices that may be under attack. In the last part, we verify the performance of our method by conducting
experiments on the SWaT dataset. The results show that the proposed method exhibits improved performance with 88.5%
recall and 87.0% F1-score.

1. Introduction

In the context of Industry 4.0, the Industrial Internet of
Things (IIoT) has attracted high attention in the academia
and industry. Within IIoT, more and more devices have been
joined together and produce massive industrial data every
day, which requires powerful computing resources. Benefited
from cloud computing, enterprises can move the computing
tasks into the cloud instead of their own physical machines in
order to mitigate the pressures. Also, cloud computing can be
integrated into the mobile computing environment, which is
called mobile cloud computing.

However, as the development of IIoT, the amount of data
collected from sensors or other devices grows exponentially.
When these data are transmitted to the cloud, network
latency and bandwidth become a bottleneck [1]. To over-

come these problems, edge computing (e.g., cloud-aware
fog computing mechanism [2, 3]) is one of the most promis-
ing solutions. In real applications, industrial enterprises
could make some necessary computing tasks close to the
machine in the industrial control system (ICS). Only some
important computing tasks or results are delivered and
stored in the cloud center [4]. Workloads of the cloud center
could be reduced sharply in this way. There are some
researches that focus on problems of edge computing. Since
data are sent to remote machines, the security of data trans-
mission is another problem; thus, the authors of [5] proposed
a new secure communication scheme to solve it.

In fact, ICS is an important part of the industrial edge,
and its safety issues are becoming critical to the IIoT’s devel-
opment. Attacks on ICS have increased over the last two
decades, and the most famous one is Stuxnet. Damages to
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ICS can cause serious consequences; therefore, the study of
methods to protect these systems is very important.

Intrusion detection system (IDS) is one means to provide
protection. There are two ways to classify IDS according to
their techniques used, namely, signature-based IDS and
anomaly-based IDS [6]. When using signature-based tech-
niques, the attacks are detected by comparing the character-
istics of known attacks with new events like traffic and
commands. An anomaly-based IDS constructs a template
of normal behavior and detects attacks by calculating the
deviations of observed behavior with the template. Since
anomaly detection need only normal work conditions to
learn the normal profile, it can detect unknown attacks. We
focus on anomaly-based techniques in this paper.

There are two main issues concerned with anomaly
detection of ICS. Firstly, it is a challenging task to model
the complex system. Since there are many devices within
the system, it is hard to learn the associations between them.
How to locate abnormal devices is another challenge.
Methods finding the devices that work abnormally could
help workers to check the system in time correctly, which
could reduce losses caused by anomalies.

Many anomaly detection techniques have been specifi-
cally developed for ICS. A discrete multi-input and multiout-
put (MIMO) system model [7] is used to represent the
control and process behavior. But the model is not applicable
to the nonlinear model. Using the phenomenon that traffic
between devices is periodic; Goldenberg and Wool [8] mod-
eled the Modbus/TCP traffic by deterministic finite automa-
ton (DFA). However, their model is suitable for single-period
traffic patterns only. Deep learning has demonstrated prom-
ising results to learn the complicated relations of variables.
There are some works using deep learning methods to do
anomaly detection [9, 10]. In order to achieve the anomaly
detection in ICS, we use a composite autoencoder model
similar to [11] to learn the work pattern of ICS and with
our contributions as follows.

(i) We propose a composite autoencoder model to learn
the work pattern of ICS by predicting and recon-
structing the input data. Anomaly is detected using
the error obtained by the model

(ii) Using the error distribution, we can locate the vari-
ables that behave abnormally. We define a change
ratio to seek which devices are suffering attack

(iii) We conduct experiments on the SWaT dataset,
which is collected from a real ICS. Experiment
results show that our method outperforms the other
three methods with 88.5% recall and 87.0% F1-score

The remainder of this paper is organized as follows. Some
related work about anomaly detection is summarized in
Section 2. Section 3 introduces the dataset used in this paper
briefly. The problem of detecting anomaly dealt with time
series data is analyzed theoretically in Section 4. Section 5
describes our proposed method in detail. Section 6 conducts
the experiments as well as performance analysis. Lastly,
Section 7 presents our conclusions and future work.

2. Related Work

The security issues of ICS have been extensively studied. In
[12], the authors presented some threats and secure methods
for these infrastructures. In [13, 14], the authors surveyed
some researches on ICS and also presented some challenges
that need to be addressed. Two strategies were described in
[15] for securing SCADA networks in general. Besides, many
researchers have put forward new techniques based on
anomaly detection.

Anomaly detection method discovery attacks by estimat-
ing its differences with the normal profile. The normal profile
can be constructed using many categories of data sources.
The work in [8, 16–18] used network traffic within ICS as a
data source to model the normal communication. The Hid-
den Markov model (HMM) [16] was used to model packets
delivered between devices for intrusion detection. In addi-
tion, [17] proposed a method that learns the Modbus/TCP
traffic transactions using the request message only. The
authors of [18] employed a dynamic Bayesian network struc-
ture to characterize normal command and data sequences at
a network level and achieved a low false positive rate.

Every device in ICS are assumed to have their behavior
pattern, the authors of [19] used features like the data
response time and the physical operation time to create
a physical fingerprint for the devices within ICS environ-
ment. To find malicious codes, a deep learning method
was utilized to model the normal behavior of the power-
grid controller [20].

In this research, we aim to use the time series data of
devices within ICS to model the normal working condition.
When it comes to anomaly detection of multivariable time
series, some deep learning methods have been put forward.
Malhotra et al. [9] used the stacked LSTM neural network.
The network is trained on normal data only, and the pre-
diction errors are used to determine whether the observa-
tion is normal or anomalous. And the mechanism in [10]
reconstructed the normal time series data with the LSTM
encoder-decoder. In [21], a deep convolutional neural net-
work (CNN) is used to predict the time series.

Our proposed method experiments on the SWaT dataset
would be described in Section 3. There are some works that
have been done on this dataset. Goh et al. [22] used the LSTM
neural network to predict the time series of ICS and used
cumulative sum (CUSUM) for anomaly detection, but only
the P1 stage in the dataset had been checked. The timed
automata learning is combined with the Bayesian network
for anomaly detection [23]. Inoue et al. [24] proposed two
methods to detect the anomalies, namely, DNN and one-
class SVM. In this research, the work in [23, 24] is used to
compare with our proposed method.

3. Dataset Description

In this paper, we use the Secure Water Treatment (SWaT)
dataset to test and verify our method. The SWaT dataset is
provided by the Singapore University of Technology and
Design [25]. It is collected from a water treatment plant
testbed that produces purified water. Within the testbed,
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there are a numbers of devices, which are categorized into a
sensor and actuator. The devices are distributed in six stages
as demonstrated in Figure 1.

All the data of sensors and actuators are logged every
second during the total 11 days of running, which means it
is a multivariable time series data. In the whole running,
the first seven days were under normal condition. And there
are 36 attacks in the remaining four days. In the attack data,
there are four types of attacks, namely, SSSP, SSMP, MSSP,
and MSMP, which are described detailed in Table 1. For full
explanations of the dataset, please refer to [25].

The SWaT dataset contains traffic data also, which had
been parsed already. But in this paper, the time series data
are our focus of work.

4. Problem Statement

As described in Section 3, the data we deal with are multiple
variable time series. Consider a time series X = fx1, x2,⋯,
xNg of length N , where one point is a m-dimensional vector
fx1t , x2t ,⋯, xmt g at time tðt ≤NÞ. We use a window of length
T sliding over the time series to obtain multiple time series.
Also, a sequence of continuous observations fxt , xt+1,⋯,
xt+Tg from time t to t + T is denoted as xt:t+T .

The objective of anomaly detection for multivariable time
series is to find anomalous part exploiting the regular pattern
appeared in the history data.

In this research, we use the observations under normal
working condition to train the model for learning the system
work pattern by predicting future time series and recon-
structing the origin input. After model learning the working
pattern, it is used to detect the test dataset which includes
attacks. The anomaly results are obtained by comparing the
error of attack data against a threshold. A higher error
indicates the point is anomalous with a higher likelihood.

5. Proposed Method

The whole process of our proposed method consists of two
parts, training phase and testing phase. The training part
learns the working pattern of ICS using only normal data.
When the model is trained, the error obtained by training
on normal data is used to select ananomaly threshold. The
testing part checks the model’s performance using the data
that includes attacks. The trained model is used to recon-
struct and predict the testing data that includes attacks. The
observations whose error is higher than the threshold are
denoted as anomalous. After that, the abnormal part which
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Figure 1: The SWaT testbed process overview from [25].

Table 1: Description of attack types.

Attack type Meaning Example

Single Stage Single-Point (SSSP) Attack to one device in any single stage The 1st attack with target MV-101

Single Stage Multi Point (SSMP) Attack tomultiple devices in any single stage The 16th attack with targets MV-101 and LIT-101

Multi Stage Single Point (MSSP) Attack to one devices in many stages The 33rd attack with targets AIT-402 and AIT-502

Multi Stage Multi Point (MSMP) Attack to multiple devices in many stages
The 18th attack with targets P-602, DPIT-301,

and MV-302
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may be suffering an attack is located. The whole structure
of our method is demonstrated in Figure 2. The detail of
our model is introduced in this section. In the process of
learning the pattern of ICS, we employed a composite
autoencoder model, which has the power to learn nonlin-
ear relationships. Also, a change ratio is proposed to locate
the anomaly devices.

5.1. Autoencoder Model. Researchers from different scientific
fields have applied deep learning in their respective area of
research, since deep learning has exhibited a powerful ability
to solve complex problems in fields like computer vision and
natural language processing in recent years.

An autoencoder neural network is an unsupervised
learning framework. Generally speaking, an autoencoder
has an input layer, an output layer, and one or more hidden
layers. Unlike common deep neural networks, an autoenco-
der has an architecture where hidden layers are smaller than
input layers. Benefited from this, it could learn a compressed
representation.

In this research, we use the architecture of the autoenco-
der as shown in Figure 3, which is divided into two parts, the
encoder and the decoder. The compressed representation of
input data is learned by the encoder part, from which the
decoder reconstructs the input. In some researches, after
training the autoencoder, the decoder is removed and the
remaining part is used for classification. However, we use
the whole autoencoder to reconstruct the origin input.

We choose LSTM as the building blocks for the autoen-
coder model to deal with the time series. LSTM is a special
RNN (recurrent neural network); it is designed to solve prob-
lems suffered by common RNN. Due to space limitations, we
do not expand a detailed description.

5.2. Composite Model. The LSTM autoencoder can recon-
struct the input (see in Section 5.1). It can be used as a future
predictor also. In this paper, we use a composite autoencoder
to achieve the goals of the learning the pattern of ICS normal
working. The designed model can do the input reconstruc-
tion and future prediction work both, which can learn better
data representations using them both in the same time [11].
Its architecture is shown in Figure 4.

Imagine the input of a composite model is xt:t+T , whose
length is T . The model could output two part data, namely,
the reconstructed time series and the predicted time series.
We use yt and zt to denote the output of the model. Consid-
ering a time series xt:t+T as the input of the composite model,
yt:t+T is the reconstructed series and zt+T:t+2T is the predicted
series. For example, an input time series of length 5, fx0,
x1, x2, x3, x4g. The output of the model is in two parts, the
reconstruction part fy0, y1, y2, y3, y4g and prediction part
fz5, z6, z7, z8, z9g, separately.

The MSE (mean square error) is used to calculate the
difference between the actual input and output. Considering
an input series xt , its mth dimension value is xmt , and the
prediction or reconstruction output is x̂mt . The calculation
of MSE is given in (1).

MSE = xmt − x∧m
tj j2 ð1Þ

And the loss function L is used to calculate MSE of the
whole time length. The reconstruction part loss is Lc and
the prediction part loss is Lp. The model will try to minimize
the sum of both parts, Ls = Lc + Lp.

5.3. Anomaly Detection. In this section, we introduce the
process of anomaly detection. As we mentioned in the previ-
ous section, the two-part output of composite autoencoder
model aren’t matched in the time dimension. The yt:t+T is
reconstructed from input xt:t+T , and the zt:t+T is predicted
from input xt−T:t . It is significant to adjust the output values
and make them match in time dimension before it passes to
anomaly detection.

The error obtained by two parts is calculated separately
and added together to obtain the overall error value Et . The
steps of calculating are as follows.

econst = xt − ytj j, ð2Þ

epredt = xt − ztj j, ð3Þ

Et = econst + epredt : ð4Þ

In order to eliminate the error that happened due to
abruptly changing of the input data, we use an exponentially
weighted moving average method (EWMA) like paper [26]
to obtain a smoothed error SEt .

SEt = αEt + 1 − αð ÞSEt−1, ð5Þ

Data
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Model
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Threshold
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Predict data &
reconstruct data

Anomaly
results 

Abnormal
variables

Model Threshold
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Testing phase

Figure 2: The whole structure of the proposed anomaly detection
method.
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Figure 3: An example of autoencoder neural network.
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SE0 = 0, ð6Þ

α = 1 − exp
ln 0:5ð Þ

H : ð7Þ

Meanwhile, we use a power technique to decrease the
false negative rate.

PEt =
1
m
〠
m

i=1
SEi

t

�
�

�
�
p
: ð8Þ

When the error PEt is higher than threshold V thre, the
observation at time t is classified as anomaly. The threshold
V thre is selected from the error PEt of training part. Steps
used to detect anomaly are listed in Algorithm 1.

At =
1, PEt ≥ V thre,

0, Else:

(

ð9Þ

5.4. Locate Attacked Variables. Generally speaking, with the
purpose of damaging the ICS or affecting its normal work,
some attackers choose to destroy the devices like sensors or
actuators. After the method mentioned in the last section
detecting anomaly successfully when attacks happen, the
next step is to locate variables (devices in ICS) that are suffer-
ing an attack. It helps the workers find anomaly and take
measures to bring the system back to normal.

Unlike research [26] using the greatest error of variables,
we use a change ratio to denote whether one part is anoma-
lous. We believe if one device is attacked by attackers, the
SEt obtained within the anomaly detection phase presents
difference between the normal and attacked conditions. Spe-
cifically, our model should output lower SEt when ICS works
normally than the time when the attacks happen. Under this

assumption, the change ratio is proposed to measure the
difference. The change ratio is given in (10).

cit =
1
Tc

SEi
t:t+Tc

− SEi
t:t−Tc

�
�
�

�
�
�: ð10Þ

When one observation xt at time t is classified as anom-
aly, every dimension of its SEt is checked by calculating the
difference between average of SEi

t on time window before
the attack and after it. The length of the time window is
denoted as Tc. In this research, some attacks among test
dataset have multiple targets. Therefore, we use the top-k to
denote k devices that are under attack.

6. Experiments and Result Analysis

Based on the method mentioned in above part, the process of
experiments on the SWaT dataset and results are listed in this
section. First, we demonstrate the preprocessing steps for the
input data. After that, the machine environment where our
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Figure 4: A composite autoencoder model.

Input:
Input time series xt ; reconstruct time series yt ;
Predict time series zt ; error check threshold V thre;

Output:
Anomaly result At ;

1: Calculate sum of error Et by (2), (3), (4)
2: Calculate smoothed error SEt by EWMA methods (5)
3: Calculate p-power error PEt by (8)
4: Mark the anomaly At by (9)
5: Return the anomaly observations At

Algorithm 1: Anomaly detection.
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model is trained and the evaluation metrics we used to access
our method are introduced. In the last part, we analyze the
final results in detail, including attack detection results, the
comparisons with other methods, etc.

6.1. Data Preprocessing. There are 51 variables (devices) in
the SWaT dataset. The training data has 496,800 records
which are collected when the testbed works under a normal
condition. Also, testing data has 449,919 records and there
are 36 attacks among them. Because the system has to be
stabilized, so the first part of normal data has been trimmed.

In the experiment, we find that some variables are unsta-
ble, e.g., AIT-201. Its distribution between train dataset and
test dataset is different extremely. Since we use normal data
to train the model only, so these unstable and unrepresenta-
tive variables are removed, including AIT-201, P201, and all
the variables in P6. Especially, variables in the P6 stage were
not completely used during data collection as said in [23].
After removing these variables, 45 variables are remaining.

In this research, we use a sliding window approach to
divide origin time series, and the length of window is l. In
order to learn the whole pattern in the training phase, an
overlap length loverlap is used. Overlap means two continuous
time series have the same part, the beginning loverlap length of
the second part is the same as the end loverlap of the first part.
But when calculating the training error to select the threshold
or testing the model, the data are divided without overlap.

To accelerate the training speed and increase detect
accuracy, all the training data are scaled to (0, 1). It would
be wrong if we scale all the data including test data, since
information would be leaked in this way. The test set that
includes the attack is scaled using the minimal and maximal
of every variables from the training set. Because our method
uses a composite model, the output constructed part and
predicted part are not in same time window, which result
in the first sequence having only the reconstruction part
and the last sequence do not have a prediction part. For these
circumstances, the error only count one part.

In the experiment, we set l as 120 seconds and overlap
length loverlap as 115 seconds. Although the overlap part of
every time series is large, we believe the model learns better
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Figure 6: Detection result of attack no. 5.
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Table 2: Confusion matrix.

True class
Detection result

Attack Normal

Attack True positive (TP) False negative (FN)

Normal False positive (FP) True negative (TN)
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representation using more time series by such allocation.
Some arguments used in the method are listed here. The
H used in (6) is 120 seconds, which has the same length
with l. The p is 4 and the Tc for locating suspicious vari-
ables is 120 seconds also. The maximum of error obtained
by training on the nonoverlap time series is selected as
threshold.

6.2. Model Training. The model is trained and tested on our
machine which consists of Intel(R) Xeon(R) CPU E5-2640
v4 @ 2.40GHz, 3 NVIDIA Tesla P100 PCIe 12GB, and
128GB RAM.

We implement our model based on Keras library (version
2.2.4) whose programming of neural networks is more con-
venient than Tensorflow. In order to elevate the training
and testing time, we use the CuDNNLSTM as the building
block, which has the same effects with LSTM.

In the experiment, the neuron number of two layers
within encoder part is 64 and 32, respectively. The first layer
is larger than the input dimension, which does not strictly
obey the rule of hidden layers is smaller than the input layer.
But it gets better performance in the experiments still. The
neuron number of reconstruction part and prediction part
is 32 and 64, which are symmetry with the encoder part.

We choose the Adam optimizer [27] and the training
epochs is 100. Earlystop is used to cut down the training time.
To overcome the problem of local minimum when training
neural network, we train the composite autoencoder multiple
times and choose the best one to present. The training losses
of both parts are shown in Figure 5.

6.3. Evaluation Metrics. In the dataset, the records are labeled
as “attack” or “normal” for every second. We use this label
directly to evaluate our detect results. All possible results
are listed in Table 2. When one record is classified as attack
if it is attack indeed, this is a true positive (TP). Otherwise,
a false negative (FN) is the situation when an attack record

is marked as normal. Also, a true negative (TN) is that nor-
mal records been classified correctly. For the last one, a
false positive (FP) is a prediction that the normal record
is misclassified as an attack. We use Precision = TP/TP +
FP, Recall = TP/TP + FN, and F1 = ð2 ∗ Precision ∗ RecallÞ/
ðPrecision + RecallÞ to denote our performance.

6.4. Result Analysis. Before diving into the overall perfor-
mance, we first analyze the detected results of some attacks.
We demonstrate our method using two examples, attack
no. 5 and attack no. 31.

In Figure 6, the original value is presented with the con-
struction part and prediction part. Its value was decreased
to a lower value during the attack. Since we use the EWMA
method to smooth the error, the shape of the error is not a
rectangle. We detect this attack with 100% recall. With
decreasing the sensor’s value to extremely lower value, the
error obtained after p-power processing is bigger. As a result,
this attack is easily detected relatively.

Another attack is no. 31, which impacts device LIT-101,
as shown in Figure 7. Compared with attack no. 5, it causes
lower value change. The value of error is small also, which
affects the detect performance. The recall for this attack
is 79.6%.

From Figures 6 and 7, we can see that the error does not
shrink quickly after the attack is over. This is because the
system needs time to stabilize. The recall of all attacks is
shown in Figure 8.

We compare the results of our method (Com-AE) with
the other three methods, which are DNN and SVM [24], as
well as TABOR [23]. The performance obtained is shown
in Table 3. Our method achieves higher recall and F1-score
when compared with the other three methods. But the preci-
sion is lower. Through analysis, we find that using a higher
threshold will obtain a higher precision. The number of
detected attacks is reduced in this way, however. With con-
sideration of detecting more attacks, we use the maximal
error obtained during the training phase as the threshold as
described before.

A detailed comparison of recall for every attack is listed in
Table 4. There are 36 attacks total within testing data which
were the records in the remaining 4 days. DNN and SVM fail
to check some attacks. TABOR method makes 24 attacks
detected. Our method Com-AE detects 26 attacks success-
fully. It seems some attacks may have little impact on the
system since all the methods fail to detect them.
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Figure 8: Recall of all attacks.

Table 3: Comparison of the performance with other methods.

Method Precision Recall F1 score

DNN 0.98295 0.67847 0.80281

SVM 0.92500 0.69901 0.79628

TABOR 0.86171 0.78803 0.82322

Com-AE 0.85596 0.88525 0.86976
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6.5. Detected Target. Because of space limitation, we just list
attacks associated with devices within the P1 stage in
Table 5. As Table 5 shows, our method can locate 5 attacks
within 10 attacks rightly. Even if there are 5 attacks located,
they are not recognized as the most suspicious anomaly part.

There are some reasons behind these. The variables are
associated with each other closely since ICS is a complex sys-
tem. And this system includes two types of devices, namely,
the sensor and actuator. When one variable is suffering an
attack, the other one would change also. The degree may be

higher than the original variables. How to detect the most
suspicious part considering these factors will be our future
work directions.

For the detailed detection result, please check Table 4,
where all the total 36 attack detection result are listed.

7. Conclusions and Future Work

A composite autoencoder neural network model is proposed
in this paper. The model is aimed at learning the pattern of

Table 4: Comparisons with other models. The results of TABOR are taken from paper [23]. And the results of SVM and DNN are taken
from [24].

No. Target Detection
Recall

DNN SVM TABOR Com-AE

1 MV-101 FIT-101, MV-101, PIT-502 0 0 0.049 0.966

2 P-102 P-102, P-302, FIT301 0 0 0.930 0.919

3 LIT-101 P-302, FIT-301, DPIT-301 0 0 0 0.120

4 MV-504 — 0 0.035 0.328 0

5 AIT-202 AIT-202, P-203, P-302 0.717 0.720 0.995 1.0

6 LIT-301 P-205, P-203, P101 0 0.888 0 0.354

7 DPIT-301 P-302, DPIT-301, FIT-301 0.927 0.919 0.992 0.992

8 FIT-401 FIT-401, UV-401, P-501 1 0.433 0.994 0.150

9 FIT-401 UV-401, FIT-401, P-501 0.978 1 0.998 1.0

10 MV-304 — 0 0 0 0

11 MV-303 — 0 0 0 0

12 LIT-301 — 0 0 0 0

13 MV-303 P-101, MV301, P-302 0 0 0.597 0.275

14 AIT-504 — 0.123 0.13 0.004 0

15 AIT-504 AIT-504, AIT-503, AIT-501 0.845 0.848 0.997 0.929

16 MV-101,LIT-101 — 0 0.0167 0.083 0

17 UV-401,AIT-502,P-501 UV-401, P-501, FIT-504 0.998 1 0.998 0.961

18 P-602,DPIT-301,MV-302 DPIT-301, P-302, FIT-301 0.867 0.875 0 0.984

19 P-203,P-205 P-203, P-205, P-204 0 0 0 0.523

20 LIT-401,P402 — 0 0.009 0 0

21 P-101,LIT-301 P-102, AIT-503, FIT-201 0 0 0.999 0.976

22 P-302,LIT-401 — 0 0 0.196 0

23 P-302 P-302, MV-304, FIT-301 0.936 0.936 1.000 0.977

24 P-201,P-203,P-205 — 0 0 0 0

25 P-101,MV-101,LIT-101 FIT-201, P-102, AIT-503 0 0.003 0.999 0.964

26 LIT-401 — 0 0 0 0

27 LIT-301 P-205, P-203, P-101 0 0.905 0 0.045

28 LIT-101 P-302, FIT-301, DPIT-301 0 0 0.890 0.225

29 P-101 P-102, P-101, AIT-503 0 0 0.990 0.178

30 P-101,P-102 AIT-202, P-101, FIT-201 0 0 0.258 0.507

31 LIT-101 AIT503, MV304, LIT-101 0 0.119 0.889 0.796

32 P-501,FIT-502 FIT-504, FIT-503, PIT-502 1 1 0.998 0.795

33 AIT402,AIT502 FIT-101, AIT-502, AIT-402 0.923 0.927 0.996 1.0

34 FIT-401,AIT-502 AIT-503, FIT-401, AIT-502 0.940 0 0.369 0.788

35 FIT-401 FIT-401, P-501, UV-401 0.933 0.927 0.997 0.805

36 LIT-301 LIT-301, AIT-402, AIT-502 0 0.357 0 0.321
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ICS working conditions using data under normal conditions
only. After predicting and reconstructing the origin input
time series at the same time, the error obtained from both
parts is used to determine whether an observation of multi-
variable time series is anomalous or normal. With anomaly
results, the change ratio comes to locate the variables which
are suffering an attack.

We demonstrate the effectiveness of our methods by
experimenting on the SWaT dataset which is collected from
a real industrial control system. The F1 score is 87.0% and
recall is 88.5%, which is higher than other current researches.

In the future, there are some directions to enhance the
performance of our method.

(i) When handling the error obtained by the neural net-
work model, a static value is selected as a threshold to
determine whether an anomaly happens. It will be
more accurate if we use a dynamic threshold

(ii) Although the algorithm used for locating attacked
variables can find target most likely in some attack
scenes. The accuracy needs some improvements

Also, we have only experimented with our method on the
SWaT dataset. It is more significant to test its performance
on more datasets.

Data Availability

Readers who want to reproduce our result or test their
own methods can access the dataset used in this research
from the website: https://itrust.sutd.edu.sg/itrust-labs_datasets.
Please follow the instructions on the website to obtain this
dataset.
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