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More recently, smart agriculture has received widespread attention, which is a deep 
combination of modern agriculture and the Internet of Things (IoT) technology. To achieve 
the aim of scientific cultivation and precise control, the agricultural environments are 
monitored in real time by using various types of sensors. As a result, smart agricultural 
IoT generated a large amount of multidimensional time series data. However, due to the 
limitation of applied scenarios, smart agricultural IoT often suffers from data loss and 
misrepresentation. Moreover, some intelligent decision-makings for agricultural 
management also require the detailed analysis of data. To address the above problems, 
this article proposes a new anomaly detection model based on generative adversarial 
networks (GAN), which can process the multidimensional time series data generated by 
smart agricultural IoT. GAN is a deep learning model to learn the distribution patterns of 
normal data and capture the temporal dependence of time series and the potential 
correlations between features through learning. For the problem of generator inversion, 
an encoder–decoder structure incorporating the attention mechanism is designed to 
improve the performance of the model in learning normal data. In addition, we also present 
a new reconstruction error calculation method that measures the error in terms of both 
point-wise difference and curve similarity to improve the detection effect. Finally, based 
on three smart agriculture-related datasets, experimental results show that our proposed 
model can accurately achieve anomaly detection. The experimental precision, recall, and 
F1 score exceeded the counterpart models by reaching 0.9351, 0.9625, and 0.9482, 
respectively.

Keywords: anomaly detection, smart agriculture, time series data, deep learning, generative adversarial network, 
attention mechanism
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INTRODUCTION

Nowadays, Internet of Things (IoT) technology has been obtained 
rapidly developments, as a paradigm, to drive the evolution 
of modern industries and smart cities. As for serious challenges 
in environmental pollution, energy depletion, and water shortage 
in the whole world, there is an urgent need for the agriculture 
industry to move toward digitalization (Cao et  al., 2021). To 
address these challenges, smart agriculture solutions based on 
real-time monitoring and decision-making have been received 
increasing attention. Smart agriculture is a deep combination 
of IoT technology and modern agriculture, which mainly takes 
modern agriculture as an application scenario and applies IoT 
technology to achieve a goal of scientific cultivation and precise 
control (Farooq et  al., 2019).

For smart agriculture IoT systems, automated management 
and smart decision of IoT applications are driven by the detailed 
analysis of data (Cao et  al., 2021). These data are collected 
by a large number of various types of sensors and provide 
information about different environmental conditions. Thus, 
environmental monitoring and data analysis play an important 
role in increasing crop yields. The sensors in different application 
scenarios are shown in Figure  1. However, IoT devices in 
smart agriculture are usually exposed to harsh environments 
and are highly susceptible to damage due to cost control (Rafii 
and Kechadi, 2019; Abdallah et  al., 2021). In addition, the 
heterogeneous nature of network devices makes it difficult to 
design protocols, and the transmission of data is easily 
compromised (Pundir and Sandhu, 2021). Poor communication 
quality can lead to data loss and misrepresentation. Increasingly 
complex IoT systems bring technical complexity and therefore 
make the design of privacy and security mechanisms more 
difficult. This can also expose the network to attacks that could 
lead to data tampering (Abdallah et  al., 2021). Missing or 
misrepresented data is significantly different from normal data 

in the time series data collected by the sensors (Moso et  al., 
2021). These can be  considered as anomalies in the data 
(Adkisson et al., 2021). Moreover, IoT applications also require 
an algorithm to analyze these data to facilitate intelligent 
decision-making. By analyzing the data in detail, the intelligent 
system can make the most efficient resource scheduling to 
increase crop yield. Testing for crop growth patterns can help 
reduce soil depletion, and different weather and soil conditions 
can affect irrigation decisions (Vilenski et  al., 2019; Vyas and 
Bandyopadhyay, 2020; Garg et  al., 2021). The main idea of 
data analysis in the smart agriculture scenario is to analyze 
various sensor data, and the analysis results can reflect the 
changes in the environment (Khalil et  al., 2021). In particular, 
data that differ from normal data due to environmental changes 
can be also designated as anomalies. Therefore, anomaly detection 
has become an important work of smart agricultural IoT.

The data collected by smart agriculture IoT sensors is mainly 
called stream data, also called time series data. They are a 
series of infinite data points with a timestamp T . The purpose 
of time series anomaly detection is to find anomaly points or 
anomaly subsequences in a time series. In previous years, 
machine learning-based data mining techniques have been 
evaluated and achieved high performance in anomaly detection 
(Nassif et  al., 2021; Pang et  al., 2021). Due to the specificity 
of time series, their data sets lack labeling information. Therefore, 
it is usually treated as unsupervised machine learning. 
Unsupervised tasks do not require expert knowledge and can 
automatically adapt to data changes (Yu et  al., 2021). Different 
environmental indicators generate different time series data. 
Multiple time series form multidimensional time series data, 
which is the main data format in smart agriculture. There are 
potential correlations between the different dimensions of these 
data, which should be  considered primarily. However, existing 
unsupervised machine learning methods cannot handle the 
non-linearity of potential correlations in multidimensional time 

FIGURE 1 | Sensors in different application scenarios.
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series (Li et  al., 2019). Up to date, with the increasing number 
and types of sensors, smart agriculture generated a large amount 
of time series data, and there exist two challenges in anomaly 
detection. One is that the amount of monitored variables and 
data points is exploding, and the other is that there are potential 
correlations and time dependencies between multidimensional 
variables. They lead to high-dimensional and heterogeneous 
time series data features, which cannot be  accomplished by 
machine learning-based anomaly detection models (Yang et al., 
2021). Thus, it is necessary to find some new research approaches 
to solve these emerging problems of anomaly detection in 
smart agriculture.

In recent years, deep learning has been proposed for anomaly 
detection, and most of them are reconstruction-based models. 
The general process of reconstruction-based anomaly detection 
is that a model is employed to learn the distribution of normal 
data, and then the trained model is used to reconstruct the 
data to be  measured. The error between the reconstructed 
data and the original data is used to determine if the data is 
anomalous. Reconstruction-based anomaly detection models 
can model large-scale data and capture potential correlations 
between multidimensional data. Among them, generative 
adversarial networks (GAN) work well (Goodfellow et al., 2014). 
GAN generally contain generator and discriminator. The generator 
can generate samples, and the discriminator can determine 
whether the input sample is the original sample or the sample 
generated by the generator. The generator wants to generate 
samples that are closest to the original samples to fool the 
discriminator. The discriminator wants to accurately determine 
whether the sample is a real sample or not. The learning 
ability of the model is continuously improved by the adversarial 
learning of both. GAN was initially introduced to anomaly 
detection to solve problems related to image data (Schlegl 
et  al., 2017; Zenati et  al., 2018a). With the growth of the 
number and dimensionality of time series data, GAN was 
introduced to time series data anomaly detection due to its 
superiority in processing high-dimensional data. GAN-based 
anomaly detection belongs to the reconstruction-based anomaly 
detection models, in which GAN is used to learn the distribution 
of normal data. A trained GAN to reconstruct anomaly data 
will produce large reconstruction errors. Finally, the anomaly 
score is used to determine whether the test sample is anomalous, 
where the anomaly score mainly includes the reconstruction error.

Li et  al. (2019) and Bashar and Nayak (2020) introduced 
the general GAN into the anomaly detection model for time 
series data. The goal of these algorithms is to detect time 
series data anomalies quickly and accurately by GAN. Generally, 
there are two main types of anomalies: one is data loss or 
data misrepresentation caused by equipment failure or network 
anomalies, and the other is data anomalies that do not conform 
to the potential correlation of normal data distribution. However, 
since the generator input of GAN is random normal data, 
this brings inconvenience to the calculation of reconstruction 
error. The calculation of each reconstruction error requires 
finding the optimal normal data corresponding to the 
reconstructed samples, which needs the inversion of the generator. 
This leads to a large computational cost and may also degrade 

the detection results. Some works in the field of anomaly 
detection have focused more on changes in model structure, 
but there have been few improvements to the way errors are 
calculated. Most studies considered only a single computational 
method, and the point-wise difference calculation was widely 
adopted (Li et  al., 2019; Bashar and Nayak, 2020; Geiger et  al., 
2020). This does not exactly fit the time series data format 
and sometimes does not conform to the true definition of 
error. Time series data is a series of data points that can form 
a smooth curve. For the curve as a form of data, the curve 
similarity should be  considered as an error measure.

Motivated by the above observation, we focus on the anomaly 
detection of multidimensional time series data, which is generated 
from different sensor data in smart agricultural systems. In 
this paper, we  propose a new GAN-based anomaly detection 
method. In particular, for generator inversion, an encoder–
decoder architecture is designed. In this architecture, 
we  introduce an attention mechanism that can effectively 
improve the reconstruction effect. Then, a new reconstruction 
error calculation is provided. The point-wise difference and 
curve similarity are jointly considered as reconstruction errors, 
which makes the error definition more realistic and improves 
detection performance. Finally, we  conduct experiments using 
three data sets related to smart agriculture and specialize the 
model parameters according to the data set characteristics. 
The experimental results show that our approach outperforms 
the other four counterpart anomaly detection methods.

RELATED WORK

With the rapid development of computer technology, researchers 
began to experiment with computer technology to solve anomaly 
detection. Hawkins (1980) had a widely accepted explanation 
of anomalies, namely, “in a given data set, anomalous data 
are that part of the data that is significantly different from 
the majority of the data.” Current anomaly detection methods 
can be  broadly classified into proximity-based methods, 
probability-based methods, prediction-based methods, and deep 
learning-based methods (Aggarwal, 2017). These methods except 
deep learning are called traditional methods. They used statistical 
measures to calculate the correlation between the data records. 
These techniques assumed that the time series is linear and 
follows a known statistical distribution, which makes them 
inapplicable to many practical problems (Adhikari and Agrawal, 
2013). As the volume and dimensionality of data grow, more 
deep learning algorithms have been proposed for anomaly 
detection on complex data. Deep learning-based anomaly 
detection methods have advantages over these methods in 
characterizing multidimensional time series data and are more 
helpful in solving practical problems.

Generally, time series data anomaly detection algorithms 
are divided into two steps. The data are modeled by different 
data structures and then the degree of deviation of the test 
data from the normal data is evaluated based on different 
forms of metrics (e.g., distance-based and density-based). Data 
with excessive deviations are judged to be  abnormal. The deep 
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learning-based anomaly detection is similar to the above process. 
Neural networks are used in the data representation phase to 
learn the data distribution, and reconstruction-based methods 
are applied in the anomaly calculation phase to measure error. 
Since the data structure learns the normal data distribution, 
there will be  a large reconstruction error using this model to 
reconstruct abnormal data. In recent years, there has been an 
increasing number of studies using GAN for anomaly detection. 
As a result, a state-of-the-art survey of the anomaly detection 
for GAN is discussed in the following section.

GAN for Image Anomaly Detection
AnoGAN (Schlegl et  al., 2017) was the first work that applied 
GAN for image anomaly detection. The model was trained 
with normal data and the final anomaly scores were obtained 
by calculating errors in the trained generator and discriminator. 
The reconstruction error was calculated in the generator to 
calculate the error more efficiently. However, this computation 
requires finding the inverse mapping from the data space to 
the latent space and is not synchronized with the training. It 
can lead to extremely high error computation time. Zenati 
et al. (2018a) proposed an efficient GAN-based anomaly detection 
to solve the above problem. They added an extra encoder to 
GAN to avoid looking for latent vector at each detection. The 
calculation of the anomaly error was the same as the 
AnoGAN. Skip-GANomaly proposed by Akçay et  al. (2019)  
introduced an architecture of skip connection to improve image 
reconstruction. The model improved image reconstruction but 
did not perform well on all data sets, which was limited by 
unstable training. Zenati et al. (2018b) pointed out that AnoGAN 
was inappropriate for real-time anomaly detection or larger 
data sets. They proposed a bi-directional GAN for image 
anomaly detection, which simultaneously trained the inverse 
mapping through an encoder network. The model contained 
three discriminators which effectively improved training stability.

GAN for Time Series Anomaly Detection
The achievements of GAN in image anomaly detection have 
attracted the attention of researchers, and have been introduced 
into time series anomaly detection. Li et  al. (2018) proposed 
a GAN-based anomaly detection method (GAN-AD) for time 
series data, which was used to detect possible anomalous 
behaviors in complex networks. To capture the correlation of 
time series data, Long Short-Term Memory networks (LSTM) 
were used as the basic model to learn normal data distribution 
patterns. For the evaluation of the error, since the output of 
the discriminator indicated whether the sample is false or not, 
it was used directly as the anomaly score to find the anomaly. 
Li et  al. (2019) later extended their study to use a vanilla 
GAN model to capture multivariate time series model 
distributions and detect anomalies using reconstruction errors 
and discriminator outputs. Bashar and Nayak (2020) improved 
on AnoGAN (Schlegl et  al., 2017) and proposed an anomaly 
detection algorithm for time series data. The model used a 
convolutional neural network (CNN) as the basic network to 
capture the correlation between variables. Both of the above 

models can learn the time correlation of time series data and 
effectively detect anomalies. However, they also need to find 
the inverse mapping from the real space to the latent space, 
which requires an inversion of the generator resulting in a 
longer computation time.

To address this problem, Geiger et  al. (2020) proposed 
TadGAN based on Zenati et al. (2018a). This model introduced 
cycle-consistent GAN architectures, which allowed the generator 
to compute the reconstruction error directly without finding 
the inverse mapping and reducing the computation time. For 
the calculation of the anomaly score, the combination of point-
wise difference and discriminator was typically considered as 
the anomaly score. However, using point-wise difference measures 
alone does not exactly fit the time series data characteristics. 
The time series can form different smoothing curves, and the 
shape differences between these curves should be  equally 
considered in the reconstruction error calculation. The TadGAN 
used curve similarity as a form of calculation of reconstruction 
error. However, they studied the point-wise difference and 
curve similarity separately and did not consider them together 
to meet a realistic definition. Apart from this, the existing 
articles are insufficient for the study of reconstruction errors.

Anomaly Detection in Smart Agriculture
Research on deep learning-based anomaly detection for IoT 
systems has yielded excellent results, some of which have been 
introduced into smart agriculture to address emerging challenges. 
Most of the research on smart agriculture has focused on the 
field of anomaly detection in agricultural images, such as the 
identification of pests and crop diseases. TPest-RCNN proposed 
by Li et  al. (2021) aimed to identify whitefly and thrips in 
greenhouses. The model was trained on a set of pest images 
captured by a flytrap and used a transfer learning strategy to 
achieve improved detection. Liu and Wang (2020) optimized 
the feature layer of Yolo V3 model by using the image pyramid 
to achieve multi-scale feature detection and improved the 
detection accuracy and the speed of Yolo V3 model. Experiments 
showed that the model can accurately and quickly detect the 
location and category of tomato pests and diseases.

For time series data generated in agricultural IoT systems, 
some researchers have focused on anomaly detection of sensor 
network data. Several papers have offered specifics on anomalies 
in smart ecosystems (Cook et  al., 2019; Hasan et  al., 2019; 
Park et  al., 2021). In smart agriculture scenarios, agricultural 
IoT devices are often exposed to harsh conditions that can 
lead to failure of the device itself, compromised communications, 
or malicious attacks, which can lead to data anomalies. Adkisson 
et  al. (2021) proposed an anomaly detection model for smart 
farming using an unsupervised autoencoder machine learning 
model. The model used an autoencoder to encode and decode 
the data, and anomalous data generated a high reconstruction 
loss value. Ultimately, the test data was determined to 
be  anomalous based on a threshold value. Abdallah et  al. 
(2021) applied autoregressive integrated moving average 
(ARIMA) and LSTM model to a smart agricultural system 
and specialized models based on sensor constraints. The transfer 
learning strategies were introduced into the models to improve 
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the prediction. Anomaly detection for time series data can 
also be applied in crop harvesting. Moso et al. (2021) proposed 
a powerful ensemble-based approach for anomaly detection, 
which was mainly used for data streams generated in smart 
agriculture. This technology can be  applied to crop data sets 
and identify anomalies that affect crop harvest.

In summary, time series anomaly detection based on deep 
learning has obtained excellent results, and GAN for anomaly 
detection has been continuously explored. Various deep learning 
models have been introduced to solve the problem of time 
series data for smart agriculture. As the amount and 
dimensionality of data increase, existing smart agriculture 
anomaly detection models are unable to handle the data. GAN 
has been introduced to various fields to process multidimensional 
time series data with better results. Therefore, we  introduce 
GAN into smart agriculture for anomaly detection and specialize 
model structure for smart agriculture data characteristics. 
However, the existing studies of GAN for anomaly detection 
are limited by the problem of generator inversion and the 
reconstruction error is calculated in a simple way. To address 
the problem of GAN for anomaly detection, we  design a new 
architecture and an error calculation method to improve the 
anomaly detection performance.

PROPOSED APPROACH

In this section, we  first describe a novel GAN-based anomaly 
detection model and focus on how it uses an adversarial 
learning architecture by considering the dependencies between 
time series data. Then, the internal detailed architecture of 
the model is shown, which includes the encode–decoder in 
the generator and the structure of the discriminator. These 
designs have strong relevance to the goals of improving 
reconstruction effects and reducing error computation time. 
To better learn the data distribution, a multi-channel attention 
mechanism is embedded in the encoder and decoder, which 
can further improve the reconstruction effect. Finally, 
we  introduce a new error calculation method in this model, 
which can describe the errors more rationally and improve 
the detection results effectively.

The core idea of the reconstruction-based anomaly detection 
method is to encode a data point (time series data in this 
model) and then decode the encoded data point to reconstruct 
the data. Anomalous data loses a lot of information during 
the encoding–decoding process, because what the model should 
learn is how to reconstruct normal data. Thus, a normal trained 
model cannot reconstruct abnormal data in the same way as 
normal data. Large reconstruction errors will arise in the process 
of reconstructing anomalous data. This means that the 
reconstructed data has a large difference from the original 
data. In this paper, GAN model is used to model the data 
in an attempt to learn the normal distribution of the data.

The basic task of anomaly detection is to identify whether 
the data to be  tested conforms to the distribution of normal 
data, and data that do not conform to the normal distribution 
are defined as anomalous (Chalapathy and Chawla, 2019;  

Kwon et  al., 2019). In this work, the completed trained GAN 
is used for anomaly detection. The test samples are processed 
in the same data processing manner and then fed into the 
model in an attempt to reconstruct them. The anomaly score 
is calculated using a jointly trained generator and discriminator, 
which consists of the output of the discriminator and the 
reconstruction error of the generator. For reconstruction errors, 
we  use a new calculation to detect potential anomalies in the 
data (more details will be  described in “Anomaly Detection”).

The Proposed GAN Framework
The general architecture of our proposed model is shown in 
Figure  2. The first objective of this model is to learn the 
normal distribution of a given data set by means of adversarial 
training. Previous studies have taken random normal vectors 
in the latent space Z  and inputted them into the generator 
for training (Li et  al., 2019; Bashar and Nayak, 2020). The 
trained generator is able to implicitly capture the multivariate 
distribution of the training data and learn the mapping of 
random data to normal data. However, the error between the 
reconstructed time series data and the real data needs to 
be  calculated in anomaly detection. In order to reconstruct 
the data, it is necessary to find the random normal data 
corresponding to the reconstructed data at each calculation. 
This process requires the inversion of the generator and is 
time-consuming and computationally resource intensive. To 
solve this problem, an encoder–decoder architecture is designed 
as a generator, in which the encoder learns the mapping of 
normal data to latent vector in the latent space and optimizes 
the computation time of reconstruction errors.
Sensors in smart agricultural systems perform continuous 
measurement tasks to detect changes in the environment. 
Therefore, they generate a large amount of multivariate time 
series data. We  use LSTM as the basic model of generator 
and discriminator to deal with complex multidimensional time 
series data. For the characteristics of multidimensional time 
series data, the data streams are not processed separately. The 
entire data set is processed concurrently to capture potential 
interactions between variables. Multivariate time series data 
are divided into subsequences that are fed into the model 
through a sliding window mechanism. We  set the window 
size as the super parameter of the model to determine the 
optimal window length, which can capture the data distribution 
in different situations according to the characteristics of different 
data sets. Here, the window size is set as

 s i iw = ´ =30 1 2 10, , , .

The data first needs to be  preprocessed before training. The 
multivariate time series data F Ì ´RT N  of the length T  and 
number N  of variables are partitioned into a training set 
Ftrain

T NRÍ ´1 , a validation set Fvalidation T NRÍ ´2  and a test 
set Ftest T NRÍ ´3 . Noted that the training set data must be  all 
normal data. Next, the training data set Ftrain T NRÍ ´1  is divided 
into a series of subsequences X X m Rtrain train

i S Nw= ={ }Í ´
,i , ,1 2  

using a sliding window of size sw , where Xtrain  denotes Xt s tw- : .  
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Given the step size st , the number of subsequences can 
be calculated by ( )1 1  = − +w tm T s s . Similarly, the validation 
set Fvalidation

T NRÍ ´2  can be  partitioned into a series of 
subsequences X X j n Rvalidation validation

j S Nw= ={ }Í ´
, , ,1 2 , 

where ( )2 1=  −  + w tn T s s . Subsequences in the validation 
data set are marked to indicate whether the sequence is abnormal 
or not (1 means normal, 0 means abnormal). The test set is 
handled exactly in the same way as the validation set.

Model training is performed after the data preprocessing 
is completed. The distribution of the data is learned by the 
GAN model in adversarial training. In our model, the mapping 
functions of the X  and Z  domains are learned as e : X Z®  
and G Z X: ® , respectively. X  is the input data, which 

represents the training samples x Xi
N

i

t1
1

¼

=
( ){ } Î  given by the 

model. Z  is the vector in latent space and the encoder 
learns the mapping e : X Z®  to encode the input data as 
a latent vector. The mapping G Z X: ®  is learned by the 
decoder, which reconstructs the vector in latent space to the 
input data. With the above two mapping functions, we  can 
achieve the data reconstruction: x x G x xi i i i® ( )® ( )( ) »e e
. These two mapping functions are obtained by adversarial 
learning methods, and together they form the generator of 
the GAN architecture.

The generator tries to deceive the discriminator by generating 
the real sample through the encoder–decoder architecture so 
that the discriminator judges the generated data as the real 
sample. To ensure that the distribution pattern of normal 
data is learned by the model, we  make sure that the training 
data are all normal during the training phase. Unlike the 
general GAN that inputs the variables in latent space to the 
generator, the normal sample xi  after data segmentation 
processing is directly fed into the generator and the two 
mapping functions e  and G  mentioned above learn the 
mapping patterns of the two stages, respectively. The samples 
are reconstructed as much as possible to the original samples 
after two mappings. Both the generator output G xie ( )( )  and 
the original data xi  are then sent to the discriminator to 
distinguish whether they are generated data or not. The 
generator tries to generate the same samples as the original 
data, and the discriminator tries to distinguish the real samples 
from the generated samples. This process is similar to the 
one in which the generator G uses the discriminator D as 
an adversary (Goodfellow et  al., 2014). Adversarial training 
of both G and D continuously improves their performance 
until a set number of iterations is reached or the model 
converges. After continuous iterations of adversarial learning, 
the generator implicitly learns the normal data distribution 
and the discriminator can distinguish the real data from the 

FIGURE 2 | Overall framework of GAN.
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generated data. The overall loss function in this process is 
mainly adversarial loss.

Adversarial Loss
Both the generator and the discriminator try to optimize the 
competing loss functions during training. Thus, the optimization 
process can be considered as a minimax game problem. During 
the game, the generator tries to minimize the loss to make 
the generated sample as close as possible to the original sample. 
The discriminator tries to maximize the loss to distinguish 
the real samples from the generated samples. The adversarial 
loss of the training process is defined as follows:

( )( ) ( )( )( )( )~ ~log log  = + −   1adv X pX X pXL E D X E D G Xε
 

(1)

where D X( )  is the discriminator output, EX pX~  represents 
the true sample sampled from the real space, log D X( )( )  
means that the original sample is expected to be  judged as 
true by the discriminator, and ( )( )( )( )log 1 X− εD G  means 
that the generated sample is expected to be  considered false.

Feature Loss
GAN may lead to training instability when both the generator 
and the discriminator try to optimize the losses. To  
solve this problem, we introduced the feature matching proposed 
by Salimans et al. (2016) and used this loss function to stabilize 
the model training. It is defined by the following equation:

 
( ) ( )( )( )~= −

2fea X pXL E f X f G Xε
 

(2)

where f *( )  is the output of the last layer of the discriminator, 
and the loss is L2  norm of X( )  and f G Xe ( )( )( ) .

Mapping Loss
The goal of the model is to learn two mappings to reconstruct 
the sample. However, relying only on adversarial loss does 
not guarantee that a single original sample xi  can be  mapped 
to the latent vector zi  and thus reconstructed as ˆix . To reduce 
the search space in the mapping process, we  minimize the 
L2  norm of residuals of the original and reconstructed samples. 
Its loss can be  calculated as

 
( )( )−

2map X ~ pXL = E X G Xε
 

(3)

The generator tries to minimize the loss function, and the 
final overall loss function is obtained by combining (1), (2), 
and (3), as

 = + +G a adv f fea m mapL L L Lλ λ λ  (4)

where la ， l lf m, and represent the weights of each loss 
function, respectively.

The generator is trained directly using the adversarial loss 
in an attempt to maximize the following adversarial loss:

( )( ) ( )( )( )( )~ ~log log  = + −   1D X pX X pXL E D X E D G Xε
 

(5)

The set loss function will be optimally searched by employing 
stochastic gradient descent (SGD). After continuous iterative 
adversarial learning, the discriminator and generator performance 
are gradually improved. When the set epoch or loss function 
convergence is reached, the GAN model can learn the distribution 
of normal data. After that, anomaly scores can be  designed 
based on the model output to detect anomalies (described in 
Section “Anomaly Detection”).

The Architecture of Generator and 
Discriminator
To improve the reconstruction effect, we  optimize the design of 
the generator for time series data, and the basic model of the 
generator and discriminator of GAN is designated as LSTM. Inspired 
by the Jiang (2020), the LSTM module is improved into the 
Enhanced LSTM structure, which consists of multiple LSTM 
structures, as shown in Figure  3. It shows in detail the internal 
structure of the 3-layer Enhanced LSTM we  introduced. The 
horizontal direction is the time step of the LSTM, that is, the 
time window size. The vertical is the number of LSTM layers, 
so that ht

0( )  and ( )0
tc  are the hidden cell state and memory 

state of the first LSTM layer at moment t, respectively. The 
general LSTM passes the hidden cell state hi  and the memory 
state ci  horizontally to the LSTM cell at the next moment and 
passes hi  to the next LSTM layer in vertical direction.

Unlike the general stacked LSTM structure, the Enhanced 
LSTM binds both the hidden cell state and the memory state 
of each LSTM cell layer at a certain moment. It has the 
advantage of making full use of the hidden cell state and 
memory state of the current layer. The hidden cell state and 
the memory state of all layers except the current layer are 
used as the auxiliary input. This can improve the learning 
capability of the model network for time series data.

Recently, the attention mechanism has been widely applied 
in various research areas of neural networks. The attention 
mechanism allows the importance of different features to the 
final effect to be  calculated, enabling the model to give higher 
weights to features that are beneficial to the outcome. In 
addition, the attention mechanism has a high degree of 
correctness and interpretability. RAIM (recurrent attentive and 
intensive model; Xu et  al., 2018) was a model including an 
attention mechanism, which used multi-channel attention to 
improve the prediction of the model. Hashimoto et  al. (2021) 
introduced RAIM into GAN to detect time series anomalies 
generated by semiconductor sensors. To this end, we  consider 
a multi-channel attention mechanism, and an attention module 
is connected before both the encoder and the decoder.

The multi-channel attention module is divided into two 
stages, which can adaptively give different weights to 
multidimensional variables. The encoder and decoder structures 
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are shown in Figures 4A,B, respectively. The first stage performs 
the attention calculation in the time dimension. This mechanism 
based on the features extracted from the past sequences calculates 
the importance of different time steps of the input sequence. 
The input data X x t Tt= ={ }, , ,1  is a series of time series 
data of length T , where the data xt dÎ  at time t  is an 
d -dimensional vector. Let the i -th subsequence be  Xi s dwÎ ´ ,  
when X is split by a sliding window sw  (Hashimoto et  al., 
2021). Then the importance aij  of the time dimension is 
calculated by the following equation:

 
S W h X w bi
time

h
a
i i

T
x
a a= + +( )-tanh · 1

 
(6)

 

( )
( )

exp
, , , ,

expΣ ′=′

= = 

1

1 2
w

time
ij

ij wS time
j ij

S
a j S

s
 

(7)

where Wh
a s hw ´  and wxa d 1́  are the weighting 

matrices, ba sw 1́  is the learning parameter through the 
attention mechanism, and hi-1  is the hidden state vector 
extracted from the Enhanced LSTM in the previous time step.

The second stage performs attention calculation in the feature 
dimension. Within the same time step, different weights are 

given according to the importance of different dimensional 
features, and the importance bij  of each feature is calculated 
by the following equations:

 ( )tanh · −= + +1
feature T

i i xi hS W h X w bβ β β
 

(8)

 

( )
( )

exp
, , , ,

expΣ ′ ′=

= = 

1

1 2
feature

ik
ij featured

k ik

S
b k d

s
 

(9)

where Wh
d hb ´  and wx swb 1́  are the weighting 

matrices, b db 1́  is the learning parameter through the 
attention mechanism, and hi-1  is the hidden state vector 
extracted from the Enhanced LSTM at the previous time step. 
After a two-stage attention mechanism, the model can capture 
important features more accurately.

The attention mechanism calculates the importance of the 
features and time of the input multidimensional time series 
data and weights them with the input to obtain a new input. 
The Enhanced LSTM captures the correlation and time 
dependence between the input data weighted by the attention 
mechanism. In the encoder, the Enhanced LSTM input is 
the original sample after weighting and the output is the 

FIGURE 3 | Enhanced LSTM structure.
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feature vector. After that, the linear layer independently maps 
each feature vector as a latent vector each time. The decoder 
then reconstructs the latent vector into the original data by 
the same process. The discriminator is a simple Enhanced 
LSTM architecture, which is mainly used to distinguish the 
input samples as the real samples or the reconstructed samples. 
The performance of the discriminator and generator is gradually 
improved by adversarial learning.

Anomaly Detection
Our proposed model has been iteratively trained to learn the 
distribution pattern of normal data. The GAN model has the 
advantage of training a generator and a discriminator together, 
both of which can output metrics to help identify anomalies. 
The anomaly detection process is shown in Figure 5. The labeled 
test set data are divided into subsequences according to time 
windows using the same method as the training set data. The 
segmented time series data X X j n Rtest test

j S Nw= ={ }Í ´
, , ,1 2  

will be  binary classified. Each subsequence is determined to 
be  normal (close to the normal data distribution) or abnormal 

(deviating from the normal data distribution) based on a 
threshold. We  try different thresholds by using empirically 
determined threshold intervals and finally determine the threshold 
that results in optimal anomaly detection.

Reconstruction error is a measure of the difference between 
the true sample and the reconstructed sample. The ordinary 
generator only learns the mapping G Z X: ®  from random 
normal data in latent space to normal data, but there is no 
inverse mapping G X Z- ®1

: . That is to say, it is necessary 
to find the optimal latent vector z ZÎ , such that the sample 
G z( )  reconstructed by the generator is closest to the test 
sample xt st

j
e  in terms of distribution pattern. This process is 

the inversion of the generator. It needs to be  further trained 
for the test sample to find the optimal latent vector, which 
generates the reconstruction sample with minimum error. The 
general procedure is to randomly sample z Z1Î  in the latent 
space and feed it into the generator to obtain the fake generative 
sequence G z1( ) . After that, the loss function is defined for 
the generated samples and the best latent vector z  is found 
by gradient update in successive iterations. The degree of similarity 

A

B

FIGURE 4 | Encoder–decoder internal detailed structure (A) encoder structure; (B) decoder structure.
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between the generated sample of the latent vector and the 
original sample determines the accuracy of the reconstruction 
error calculation.

In this paper, the generator has learned how to map the 
normal data in real space to the latent vector in latent 
space and then decode the latent vector back to the normal 
data. For the reconstructed samples, its corresponding latent 
vector is obtained by simply feeding it into the encoder 
without inversion. To improve the reconstruction effect and 
constrain the search domain, we  add a new loss function 
(equation (3)). The reconstruction error can be  obtained 
after the test data set is reconstructed by the generator. 
We  combine two different error calculations to define the 
error more realistically.

The most intuitive way to measure the error is to use the 
point-wise difference, which directly calculates the difference 
between the corresponding points within each time step of 
the two series data. The error of the test data set at moment 
t is calculated as follows:

 
( )( ), ,

=
= −∑

1

n
test i test i

d t t
i

l x G xε
 (10)

where x Rt
test i n,   is the measured value of i-th variables at 

moment t .
Time series data is a series of data points that make up a 

smooth curve. For this feature, we  introduce the dynamic time 
warping (DTW) algorithm (Berndt and Clifford, 1994), which 
calculates the optimal match between two time series data 
and measures whether the two curves are similar in shape. 
This algorithm can solve the time shift issue of time series. 
As shown in Figure  6, there are two curves with the same 
shape, but they are not synchronized in time steps. In the 
actual error calculation, this should be  determined as a low 
error. However, using a point-wise difference at the 10th time 
step leads to a larger error value. After the accumulation of 
multiple time steps, the error value may reach a level that 
affects the detection results. Based on this case, the DTW 

FIGURE 5 | Anomaly detection.
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algorithm is introduced to measure the error more rationally. 
For the original subsequence X x x xt t t sw= ¼( )+ + -, , ,1 1  and the 
reconstructed subsequence ( )1 1ˆ , , ,ˆ ˆ ˆ+ + −= …

wt t t sxX x x , we  define 
the matrix W R s sw w 2 2* ´ * , let the (i,j)-th element wk  represent 
the distance between xi  and ˆ jx . We  want to find the warp 
path w w w wk* = ( )1 2· , ,  that defines the minimum distance 
between the two curves, subject to boundary conditions at 
the start and end, as well as constraints on continuity and 
monotonicity (Geiger et  al., 2020). The two curve distances 
are defined as follows:

 
( )ˆ, min∗

=

 
 = = =
  

∑
1

1 k

t k
k

S W DTW X X w
k

 

(11)

The final reconstruction error is given by using (10) and 
(11) as:

 = +R d tL L Sα β  (12)

where a  and b  are the coefficients of the two reconstructed 
calculated values, which are the empirical values that make 
the experimental effect optimal.

During the training process, the main goal of the 
discriminator is to distinguish real samples from the generated 
samples and the output LD  (between 0 and 1) can be regarded 
as a parameter to determine whether the sequence is a real 
sample (close to 1) or a fake sample (close to 0). Thus, the 
output of the discriminator can be  used as a measure of the 
anomaly score. The reconstruction error and the discriminator 
output are considered together as the final anomaly score. 
However, the reconstruction error and discriminator output 
cannot be  simply used because a larger reconstruction error 
with a smaller discriminator output can lead to a very high 
anomaly score. The above problem is solved by using numerical 
normalization. The normalized result is calculated by the 
following formula to obtain the final anomaly score.

 ( ) ( )= + −1R DA x L Lτ τ  (13)

where τ determines the relative importance of the two indicators 
(default value is 0.5).

Metrics, such as the precision of anomaly detection, can 
be  calculated from the labeled test set data. Thresholds taken 
from the empirically determined threshold interval are used 
for anomaly detection. Different thresholds are obtained for 
different data sets, which results in optimal detection accuracy. 
Our proposed method is summarized in Algorithm 1.

EXPERIMENTS

In this section, we  present the experimental design and the 
experimental results. The experimental design contains data 
set processing and parameter settings. The evaluation metrics 
for anomaly detection are briefly described. Experimental results 
include comparison experiments and model performance. Finally, 
the results of each experiment are discussed.

Datasets and Experimental Settings
To evaluate the performance of the proposed model, we  test 
it on an agriculture-related time series data set. For future 
anomalies that may be  encountered in smart agriculture, 
we  mainly use three data sets that can represent relevant 
anomalous behaviors: SWMRU (USDA-ARS, 2016), KDDCUP99 
(Blake and Merz, 1999), and HomeC (Taranveer, 2019).

The SWMRU data set contains 15-min mean weather data 
from the United States Department of Agriculture-Agricultural 
Research Service (USDA-ARS) Conservation and Production 
Laboratory (CPRL), Soil and Water Management Research Unit 
(SWMRU) research weather station, Bushland, Texas (Lat. 
35.186714°, Long. -102.094189°, elevation 1,170 m above MSL) 
for all days in 2016. The data set has 18 variables and 35,139 
time durations and it collects the values of sensors deployed 
at different heights on the grass during the irrigation season.

KDDCUP99 data set is the data set used for The Third 
International Knowledge Discovery and Data Mining Tools 
Competition. The data set is a network traffic data set that has 
42 variables with 56,235 data points each. This data set is used 
to train a network intrusion detection model, which is adopted 
in our experiments to simulate possible anomalies in smart 

FIGURE 6 | Time shift issue of time series.
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agricultural IoT due to intrusions. Most anomaly detection data 
sets have far fewer anomalous data points than normal data 
points, which leads to an imbalance in anomaly detection. This 
data set is a relatively balanced data set and its introduction 
allows for a more objective assessment of model performance.

The existing public data set for IoT power monitoring in 
agriculture has small dimensions, so the smart home IoT power 
usage data set HomeC can be  used to simulate the power 
monitoring of IoT devices in future smart agriculture. It is 
collected in a smart home application scenario, and the data 
structure is similar to that of the agricultural IoT data set but 
with higher dimensionality. This data set contains 32 variables 
with 503,900 data points each. The information about the data 
set is presented in Table  1. The normal data points in the data 
set are marked as 1 and the abnormal data are marked as 0. 
The original data set is divided into the training set, the validation 
set, and the test set, and the training set contains only normal 
data. We  use an unsupervised training approach, where the 
labeled validation set is used to find the optimal parameters of 
the model, and the labeled test set is used to compute the 
results of anomaly detection to evaluate the model performance.

For data preprocessing, we use a sliding window mechanism 
to partition the data as described in section 3.1. The optimal 
window size is an important element in the study of time 
series data. For this case, we use different window sizes, namely, 
s i iw = ´ =30 1 2 10, , , , to capture the state of the data at 
different accuracies. The results of this experiment are useful 
for exploring the effect of window size on detection performance. 
To better capture the normal data distribution, the training 
phase time step st  is set to 10. During the testing phase, the 
time step is set to a time window size to ensure that anomalies 
are not repeatedly detected. The generator uses an Enhanced 
LSTM as the encoder and decoder, where the Enhanced LSTM 

depth is set to 3 and the hidden unit is set to 100. Generally, 
the discriminator follows the same parameter settings. However, 
unlike the generator, the final output dimension is 1, because 
the value of the discriminator indicates the degree of abnormality 
of the input sample. Li et  al. (2019) evaluated the effect of 
latent vector dimensionality on the results in their experiments 
and verified that a dimension of 15 produced better data 
reconstruction, so we  consider setting the dimension to 15  in 
our experiments. Since the discriminator converges faster, we set 
to train the discriminator once in one epoch but train the 
generator three times, with the epoch set to 100. The main 
parameters of the model are shown in Table  2.

Evaluation Measures
We use three standard evaluation measures, namely, Precision 
(Pre), Recall (Rec), and F1 score, to evaluate the anomaly 
detection performance of the proposed model:

 
Pre TP

TP FP
=

+  
(14)

 
Rec TP

TP FN
=

+  
(15)

 
F Rec

Pre Rec
1 2 e
= ´

´
+

Pr

 
(16)

The objective of the model is anomaly detection, so the 
detected anomalies are positive samples. Therefore, TP is the 
correctly detected abnormal (True Positives: detected as abnormal 
while labeled as abnormal), FP denotes the incorrectly detected 
abnormal (False Positives: detected as abnormal while labeled 
as normal), TN represents the correctly detected normal (True 
Negatives: detected as normal while labeled as normal), and 
FN means the incorrectly detected normal (False Negatives: 
detected as normal while labeled as abnormal). TP FP+  denotes 
all the anomalies detected by the model, so precision indicates 
how many of the detected anomalies contain real anomalies, 

A B C

FIGURE 7 | Comparison of reconstruction effects on the SWMRU data set (A) Real sample; (B) No attention mechanism; (C) attention mechanism.

TABLE 1 | Details of datasets.

Dataset Number of 
variables

The total length 
of time series

Proportion of 
anomaly

SWMRU 18 35,139 5%
KDDCUP99 42 56,235 19.5%
HomeC 32 503,900 8%
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while TP FN+  is all the actual anomalies, so recall indicates 
how many of all the existing anomalies are detected by the 
model. The F1 score is the equal-weighted harmonic mean of 
the precision and recall. In the application scenario of anomaly 
detection anomalies are not common; that is, the distribution 
of anomalous and normal data is not balanced. Thus, the 
accuracy metric will not be  used to evaluate the performance 
of the model.

Results and Discussion
We evaluate the anomaly detection performance of the proposed 
model on the above three data sets. To compare the performance 
of the models, MAD-GAN, TadGAN, TAnoGAN, and 
AutoEncoder (AE) were adopted to perform experiments on 
the same data set and record the experimental results. The above 
four counterpart models commonly used the reconstruction-
based anomaly detection methods (Malhotra et  al., 2016; Li 
et  al., 2019; Bashar and Nayak, 2020; Geiger et  al., 2020). In 

addition, to verify the validity of our proposed model structure, 
the results of the ablation experiments are shown and discussed.

Data Reconstruction Performance
To evaluate the reconstruction ability of the generator for the 
samples, we  first visualize the multidimensional time series 
samples generated by the model with the original data. For 
more visualization, only one of these dimensions is shown for 
two data sets. In order to measure the degree of improvement 
of the attention mechanism on the reconstruction effect, the 
samples generated by the models without the attention mechanism 
are shown together. As shown in Figures  7, 8, the samples 
without the attention mechanism have largely conformed to 
the original sample distribution in terms of the overall trend. 
However, the comparison shows that the attention mechanism 
still leads to an improvement in the reconstruction effect. When 
the curve changes more dramatically, the generated samples 
are closer to the original samples because the attention mechanism 
allows the model to learn the samples more accurately.

TABLE 2 | Model parameter settings.

Window size
Training window 

step size
Test window step 

size
Input dimension

Number of LSTM 
hidden units

Number of LSTM 
layers

Latent space 
dimension

30 , 1,2, 10i i× =  10 Window size Data set dimension 100 3 15

A B C

FIGURE 8 | Comparison of reconstruction effects on the HomeC data set (A) Real sample; (B) No attention mechanism; (C) Attention mechanism.

A B C

FIGURE 9 | MMD values for each data set (A) SWMRU; (B) KDDCUP99; (C) HomeC.
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ALGORITHM 1 | Algorithm for proposed method.

In addition, Maximum Mean Discrepancy (MMD) was used 
to evaluate whether the GAN model actually learns the 
distribution of the training data (Li et al., 2015, 2019). Therefore, 

MMD was also introduced into the experiment to compare 
the effect of reconstruction. The decrease in the MMD values 
indicates that the data generated by the model conform more 
to the distribution of the original sample. The MMD values 
generated from the three data sets by iterative training of the 
GAN are plotted in Figure  9. As shown in these figures, as 
the number of iterations increases, the model outputs samples 
that are increasingly closer to the original samples. And the 
samples generated in the three data sets by the model 
incorporating the attention mechanism obtained lower MMD 
values. The MMD value more clearly illustrates that the attention 
mechanism improves the reconfiguration effect.

Window Setting and Reconstruction Error 
Metric
The sliding window size setting is critical to the processing 
of time series data, so we conduct experiments on the validation 
data set to determine the appropriate window size. The 
relationship between the sliding window size setting and the 
reconstruction error metric will also be discussed in this section. 
Next, the experiments are described using the HmoeC data 
set as an example. The sliding window size is still set to 
s i iw = ´ =30 1 2 10, , , , but the reconstruction error is calculated 
in two ways to explore its relationship with the window size. 
The model proposed in this paper uses the point-wise difference 
coupled with the DTW algorithm results as the final 
reconstruction error calculation, where the parameters a  and 
b  are derived from multiple experiments on the validation 
set tuned according to different data sets.

In the previous experiments, we  used the coupling results as 
a reconstruction error metric to determine its potential correlation 
with the window size. It was found experimentally that all three 
indicators of the experiment showed a decreasing trend as the 
time window increased. And when the time window increases 
to a certain extent, these indicators show a large decline. However, 
the common models that use point-wise error as a reconstruction 
metric do not show this phenomenon. For comparison, 
we conducted experiments using the universal point-wise difference 
calculation ( b  = 0). None of the three indicators showed a 
significant decrease with increasing time windows. The precision, 
recall, and F1 scores of the data set are shown in Figure  10.

A B C

FIGURE 10 | Variation of metric with time window for the HomeC data set(A) Precision; (B) Recall; (C) F1 Score.
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From the above experimental results, it can be  seen that the 
best values of precision, recall, and F1 score can indeed be obtained 
by using the calculation method proposed in this paper. However, 
as the time window increased, the experimental results showed 
a significant downward trend. This is because the DTW algorithm 
outputs the similarity measure of the two curves, and it is 
proposed to solve the time shift problem of the curves. But 
the tolerance of the DTW algorithm to curve similarity increases 
due to the excessive time window. The DTW algorithm has a 
small probability of finding the optimal distance between two 
curves in a small window and outputs a large calculated value. 
The anomaly will be  detected because it improves the 
reconstruction error value. When the window becomes larger, 
the DTW algorithm can always find the corresponding minimum 
distance. Therefore, the output value is reduced, resulting in 
the abnormal subsequence being incorrectly classified as normal.

The experimental results also clarify that the window size 
does have a large effect on the results, so the window size needs 
to be  determined reasonably. The window size should be  strictly 
determined when using DTW as a reconstruction error metric. 
The experimental time window size is finally determined to 
be  90, at which time the optimal F1 score is 0.9388.

Comparison Experiments and Discussion
The window size is set to 90 based on the results obtained in 
section 4.3.2, and the remaining hyperparameters are tuned using 
the validation set. Anomaly detection is performed on three test 
data sets using our proposed model with optimal hyperparameters 
to obtain precision, recall values, and F1 scores. To demonstrate 
the effectiveness of our proposed model, we conduct experiments 
using each of the four reconstruction-based anomaly detection 
models mentioned above, including MAD-GAN, Tad-GAN, 
TAnoGAN, and AE. The average values of Precision, Recall, and 
F1 score after ten rounds are calculated on three data sets, and 
the comparison results of five algorithms are shown in Table  3. 
As shown in Table 3, the metrics of our proposed model exceed 
0.9 on all three data sets and outperform other algorithms in 
several of the three metrics. The experimental results indicate 
that the model proposed in this paper has better performance 
and outperforms other algorithms in the specified data set.

In addition, to demonstrate the validity of our proposed model 
improvement, the results of the ablation experiments are also 
presented in Table  3. To prove the effectiveness of the encoder–
decoder architecture containing the attention mechanism, 
we  modify the generator to the same LSTM architecture as 
MAD-GAN. At the same time, the discriminator and the error 
calculation method are kept constant. The reconstruction error 
is obtained after generator inversion. The experimental results 
are noted as “Ours-Gen,” that is, the experimental results obtained 
by removing the improvements of the generator. To demonstrate 
the boosting effect of Enhanced LSTM on the discriminator, 
we also keep the remaining architecture constant and only change 
the generator to the general LSTM architecture. Since there is 
no change in the generator, the experimental results can be obtained 
directly without generator inversion. The experimental results 
are noted as “Ours-Dis,” which is the experimental result obtained 
after removing the discriminator improvement. For the error 

calculation method, the experimental results are noted as “Ours-
Gen-Dis.” After the generator and discriminator improvements 
are all removed, the remaining architecture of our proposed 
model is equivalent to MAD-GAN except for the error calculation 
method. As shown in Table  3, after removing the generator 
improvements, our proposed model shows a substantial decrease 
in the experimental metrics for all three data sets. It is concluded 
that our proposed encoder–decoder architecture incorporating 
the attention mechanism does improve the model performance. 
In addition, the results of the “Ours-Dis” also showed a small 
decrease. The Enhanced LSTM that was introduced into the 
discriminator is also relevant for model performance improvement. 
The experimental metrics of “Ours-Gen-Dis” are higher than 
MAD-GAN, which can prove that our proposed error calculation 
method improves the detection effect.

The model proposed in this paper significantly outperforms 
AE, MAD-GAN, and TAnoGAN in all three metrics. Our 
proposed model generator is similar to AE, but the final detection 
performance is better than AE. The autoencoder alone does 
not detect anomalies very well, because the autoencoder trained 
with appropriate loss functions in adversarial training is better 
able to learn the general data distribution. The better the generator 
learns normal data, the more sensitive it is for the abnormal 
data in anomaly detection. For MAD-GAN and TAnoGAN, 
these two models share a similar structure, in which their 
generators are similar to simple decoders. They both use random 
normal data directly to generate the reconstruction data, after 
which the reconstruction error is calculated. In order to obtain 
the accurate reconstruction error, it is necessary to find its 

TABLE 3 | Experimental results of different methods on three data sets.

Data set Methods
Precision 

(%)
Recall (%) F1 score

SWMRU Ours 92.37 95.55 0.9482
Ours-Dis 92.05 94.50 0.9403
Tad-GAN 91.08 94.13 0.9348
Ours-Gen 87.95 90.31 0.8891
Ours-Gen-Dis 87.16 89.94 0.8835
MAD-GAN 85.41 89.23 0.8754
TAnoGAN 86.43 89.35 0.8876
AE 69.48 75.26 0.7238

KDDCUP99 Ours 93.51 96.25 0.9385
Ours-Dis 93.38 96.05 0.9365
Tad-GAN 93.17 94.83 0.9405
Ours-Gen 87.19 92.35 0.8847
Ours-Gen-Dis 86.49 91.42 0.8794
MAD-GAN 83.65 89.30 0.8689
TAnoGAN 85.58 88.23 0.8736
AE 75.43 81.41 0.7749

HomeC Ours 91.12 92.79 0.9235
Ours-Dis 90.73 92.48 0.9205
Tad-GAN 88.49 92.53 0.9199
Ours-Gen 85.74 88.63 0.8749
Ours-Gen-Dis 84.16 88.11 0.8636
MAD-GAN 83.39 87.09 0.8419
TAnoGAN 82.24 88.67 0.8676
AE 67.26 72.84 0.6929

The bold values in Table 3 are the highest values of each experimental metric for each 
data set.
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corresponding optimal latent vector for the test sample. In the 
reconstruction error calculation process of the two models 
mentioned above, the best latent vector is derived from the 
inversion of the test sample by the generator. This may allow 
the model to improve the reconstruction performance on the 
test sample, thus allowing the reconstruction error values to 
be  reduced to the extent that affects the final test results. Our 
models are trained based on normal samples, and both the 
encoder and decoder learn the two mappings based on the 
distribution pattern of the normal samples. The encoder learns 
how to map a normal sample to a latent vector to reconstruct 
the normal sample. And for test samples that may have anomalies, 
the encoder mapping may lose some information. The same is 
true for the decoder, which learning goal is to improve the 
reconstruction ability of the latent vector for normal samples. 
After two mappings, test samples with distribution patterns that 
differ significantly from the normal sample may yield greater 
reconstruction errors. In other words, the encoder–decoder 
structure can widen the gap between normal and abnormal 
samples, which helps to improve detection performance.

On the other hand, TadGAN introduced the cycle-consistent 
loss and trained the encoder together with the generator, which 
was used to learn the mapping of normal data to latent vectors. 
Both this model and our model train the encoder and generator 
together, so they have almost similar experimental performance. 
The difference is that this model used cycle-consistent loss for 
training and introduced a new discriminator for the encoder 
to improve learning, whereas our model improves learning 
through an attention mechanism. Both training methods prevent 
the contradiction between the encoder and the generator and 
find the corresponding optimal latent vector to the test sample 
using the most direct method. TadGAN explored different ways 
of coupling different reconfiguration computations with 
discriminator outputs, and we  have conducted experiments 
using its best structure. The average F1 score of this model 
is higher than that of our model, but the recall of our model 
is higher than it. This proves that our model can detect more 
anomalies that are present actually. Meanwhile, the optimal 
F1 value of our model outperformed it in ten training rounds.

CONCLUSION

In this paper, we  proposed a GAN-based anomaly detection 
model for multidimensional time series data generated in smart 
agricultural IoT. This model used the GAN architecture to learn 
the distribution patterns of normal data and applied reconstruction 
methods for anomaly detection. Considering the time dependence 
of time series data and the potential correlation between 
multidimensional variables, an improved Enhanced LSTM network 
to form the basis of the GAN was considered in this model. 
For the problem of generator inversion, the encoder–decoder 
architecture was adopted as the generator structure of GAN. The 
co-training of the encoder and decoder eliminated the inversion 
of the generator for test samples. This effectively reduced the 
computation time and met the demand for real-time anomaly 
detection. The performance of anomaly detection has been 

improved by the use of encoder–decoder architecture. To further 
improve the reconstruction effect, the encoder–decoder architecture 
incorporates an attention mechanism, which can extract weights 
in the time and feature dimensions to help the model reconstruct 
the samples. For anomaly detection, a new anomaly score 
calculation was proposed, which took the coupled result of the 
point-wise difference error and the curve similarity metric as 
the reconstruction error. The point-wise error and curve similarity 
were considered together to better fit the definition of realistic error.

Experiments were designed on three smart agriculture-related 
data sets and these results were compared with four previous 
anomaly detection algorithms to verify the effectiveness and 
superiority of the algorithm. The results proved that our method 
outperformed other methods in most of the metrics, and the 
error calculation method proposed in this paper can better detect 
the anomaly. Not only that, our proposed model obtained superior 
experimental metrics on high-dimensional smart agriculture data 
sets, which also reflects that GAN can better handle high-dimensional 
time series data. With the continuous development of smart 
agriculture, the dimensionality and quantity of data will grow. 
The model proposed in this paper also provides a new and useful 
insight for the anomaly detection of high-dimensional time series 
data in smart agriculture. However, the time window size setting 
needed to be  considered primarily, which may be  the reason 
why this model is lower than one of the counterpart models in 
terms of F1 score. Thus, how to choose time windows in time 
series is an important research topic, and the calculation method 
proposed in this paper also has a strong correlation with the 
size of time windows, we  will continue our work on anomaly 
calculation methods and time windows in the future.
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