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Abstract—Anomaly detection is a problem with applications
for a wide variety of domains, it involves the identification of novel
or unexpected observations or sequences within the data being
captured. The majority of current anomaly detection methods
are highly specific to the individual use-case, requiring expert
knowledge of the method as well as the situation to which it is
being applied. The IoT as a rapidly expanding field offers many
opportunities for this type of data analysis to be implemented
however, due to the nature of the IoT this may be difficult. This
review provides a background on the challenges which may be
encountered when applying anomaly detection techniques to IoT
data, with examples of applications for IoT anomaly detection
taken from the literature. We discuss a range of approaches which
have been developed across a variety of domains, not limited to
Internet of Things due to the relative novelty of this application.
Finally we summarise the current challenges being faced in the
anomaly detection domain with a view to identifying potential
research opportunities for the future.
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I. INTRODUCTION

THE Internet of Things (IoT) is a paradigm within com-

puting related to the enablement of devices, ”things”,

with the ability communicate data with each other without

requiring the direct involvement of human agents [1]. These

devices may take the form of sensors, actuators, computers

or ’smart’ objects which are able to observe or interact with

their internal and external environments. The growth of IoT

has been enabled by the development of a wide range of cost

effective sensing and computing solutions able to work in

environments which would have previously been unattainable.

IoT is currently undergoing rapid expansion with estimates of

global economic impact of up to $11.1 trillion per year by

2025 [2] and up to 20 billion connected devices by 2020 [3].

Within the data analysis performed over IoT data there is

often a need to identify novel or unusual states within a system

being monitored by the sensors deployed within the direct

environment around that system. This type of analysis has

applications within a variety of domains from smart traffic

management, remote health-care and assisted living, efficient

smart energy management and automated industrial processes.

This process is often referred to as novelty detection, anomaly

detection, outlier detection or event detection.
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Currently many anomaly detection methods require signif-

icant human interaction to enable these systems and subse-

quently extract and interpret the data generated. It is relatively

easier for an expert to look a small subset of data representing

the state of a system and manually identify the trends and

patterns which are of interest, even if the system is small it

may be difficult to identify these trends manually. However

as the number of interconnected devices increases so does the

complexity of this data analysis, as such there is interest in

developing automated approaches allowing the experts to only

investigate the most important events observed.
In section II we define the main types of anomalies which

may be encountered in an IoT system. The potential uses

of anomaly detection in a variety of IoT settings are dis-

cussed in III. In section IV we discuss the specific challenges

which complicate the process of anomaly detection. Section

V investigates the range of approaches which have been

historically employed as well as those which are under current

development. Finally we will summarise the current research

challenges being encountered and potential future directions

within the domain in section VI.

II. DEFINING AN ANOMALY

There have been a number of attempts to define the

nature of anomalous data. Hawkins defines an outlier as:

”an observation which deviates so significantly from other

observations as to arouse suspicion that it was generated by a

different mechanism” [4]. An alternate definition was offered

by Barnett and Lewis where: ”an outlier is an observation (or

subset of observations) which appears to be inconsistent with

the remainder of that set of data” [5].

A general definition of an anomaly within the context of

the IoT is: the measurable consequences of an unexpected

change in state of a system which is outside of its local

or global norm. This definition comprises of a number of

important observations about the nature of IoT data:

• The majority of data captured by an IoT system can

be considered ’normal’ in that it represents the usual

operating characteristics for that specific system

• The concept of ’normal’ operation of a system can change

over time for a variety of reasons.

• The data generated by an IoT deployment represents only

a view of the actual processes which govern the system

being monitored.

A. Point anomaly

Point anomalies are the most similar to the definition

offered by Hawkins [4]. A key characteristic of these anomaly
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Fig. 1. A point anomaly (circled in red) in random gausian noise.

types (Fig. 1) is the return of the time-series to its previous

’normal’ state within a very short time period of only a few

observations.

These point anomalies may represent statistical noise, they

could be produced by faulty sensing equipment or they could

represent a significant short period event which is of interest

to the operators of the system.

B. Contextual anomalies

Fig. 2. Example of a contextual anomaly - the anomalous value at 600 is the
same as a number of other observations however in context this observation
is anomalous. Adapted from [6].

Contextual anomalies [6] are observations or sequences

which deviate from the expected patterns within the time-series

however if taken in isolation they may be within the range of

values expected for that signal. When taken in the context of

the surrounding observations (Fig. 2) a contextual anomaly is

a deviation from the norm.

C. Collective or Pattern Anomalies

A collective anomaly [6] or pattern anomaly [7] is a

collection of observations which are anomalous with respect to

the rest of the data. Individual observations within a collective

anomaly may or may not be anomalous, it is only when they

appear as a group that they arouse suspicion (Fig 3).

Fig. 3. Example of a collective anomaly in simulated ECG time-series,
marked in red adapted from [6].

III. APPLICATIONS FOR IOT

The IoT approach is being increasingly applied to a variety

of domains due to the inexpensive and non-intrusive nature of

the devices on the market and in development.

A general application of anomaly detection is the identifica-

tion of outlier observations which may affect future analytics

performed on data collected within the IoT network.

A. Industrial IoT and Industry 4.0

Anomaly detection methods have been applied to a variety

of industrial processes from system health monitoring in large-

scale power generation [8], intelligent maintenance scheduling

in smaller production plants [9], fault detection in residential

Heating Ventilation and Air Conditioning (HVAC) systems

[10] and quality control techniques in manufacturing [11].

Large and high-value installations can justify the expense of

human analysts or specifically tailored solutions, however as

the scale and value of the installation falls the need for more

generalised and automated approaches becomes clear.

Anomaly detection is used on sensor readings from engine-

based machines in [12], here they use simple machine learning

approaches to model the normal behaviour based upon a range

of parameters with a one minute resolution. These models

are then used to identify specific failure modes when the

received data falls outside of the learnt normal regions. In

this example the authors use expert knowledge to define

which of the many tracked data streams are most relevant

to specific fault modes. They utilise histograms to analyse

the relations between these reduced variable combinations to

help guide their detection algorithms. This tailored approach

assists in specifying the type of detected anomaly and reduces

computational complexity in comparison to using all available

data streams for each method.

Prediction and diagnosis of faults is performed on a 3MW

wind turbine in [13] where data is collected from the ex-

isting Supervisory Control and Data Acquisition (SCADA)

system avoiding the need for expensive sensor suites to be

retrofitted to device. Operational data was collected at ten-

minute intervals with labelled data available for fault states in
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the working turbine. Using a subset of features they trained

a number of classifiers to detect specific fault modes noting

difficulties with this training due to the imbalance between

normal and anomalous sub-sequences. They found they were

able to predict faults up to an hour in advance of when the

actual anomaly occurred, this may allow automated processes

to occur to mitigate the effects of the developing fault thereby

allowing for maintenence to be scheduled to repair the device

in question.

Surface mounted audio sensors are retrofitted to industrial

machinery in [14]. Audio spectrum data is used to monitor

the operation of internal components within the machine. The

authors provide a framework for low-cost non-intrusive mon-

itoring of system state which allows for faults to be detected

during their early stages before failure occurs, this allows

for responsive maintenance to be scheduled thereby reducing

unexpected down-time for the machinery they investigated.

IoT sensors were installed in a water treatment facility

[15] to aid in the management of chemical and particulate

concentrations in storage tanks. The aim of the anomaly

detection process would be to automatically identify when

the tank entered an unsuitable state and allow for reactive

measures to be triggered without human intervention.

As the price for IoT devices falls there is an increasing

likelihood of older industrial equipment being brought in-

line with newer devices by retrofitting monitoring solutions.

General purpose anomaly detection methods may be able

to provide deeper insight into the operational state of these

devices and thereby improve efficiency and up-time for the

processes on which they operate.

B. Smart Energy

The introduction of increased monitoring and sensing within

the power network has lead to a change in the way energy

is managed. Many countries are introducing ’Smart Meters’

across their network. These devices are able to monitor power

usage at a range of time intervals and automatically report

these values to the operator of the network. This provides

useful information to both the customer and controller which

gives the customer the opportunity to exercise this knowledge

to adjust their own behaviours whilst decreasing the require-

ment for manual or estimated meter readings on the part of

the power company.

One advantage of this near real-time monitoring of power

usage is the ability for the energy suppliers to identify faults

in the local distribution network as they happen rather than

relying upon customers to inform them of outages [16], their

approach uses data fusion from multiple customers to identify

faults at the individual or local levels as well as aiding in

localisation of those detected anomalies. If a number of units

all report similar issues at a similar time it is possible to

identify the location of a fault as well as potentially which

type of fault has been encountered.

In [17] power-line communication signals are used to iden-

tify and localise faults in the distribution network such as

electrical faults, impaired cables and unexpected impedance

changes. They utilise a two part algorithm, the first detects

and tracks the evolution of faults over time while the second

uses information about the network topology to localise the

faults identified by the first algorithm.

Values recorded by micro-synchrophasor units (sensors able

to detect voltage and current phase angle and magnitude at

GPS accurate time-steps) have been shown to be useful in

the detection and localisation of faults and failures in power

networks using more traditional big-data analysis techniques

in [18], the challenge faced in this case is the sampling

frequency from each installed unit (around 120 readings/s)

which poses a significant computational challenge for any

automated detection process which may be deployed.

In addition to the detection of technical losses within power

networks a number of approaches have been suggested for

the detection of non-technical losses (energy theft) using the

information provided by commonly installed smart meters

[19], [20]. Mashima and Cardenas [21] approach the problem

by assuming a worst-case physical attack on a smart meter

to show the ability for their method to detect a long-term

approach to energy theft.

C. Smart City and Buildings

The IoT paradigm is being extended to management and

monitoring of cities and buildings by introducing networks of

sensors to monitor events occurring within their environment.

This shift allows for additional data to be collected on the

environment in which the network is installed thereby enabling

data-driven analysis of the conditions present.

Within the smart city context IoT approaches have been

demonstrated to identify anomalous road conditions. A number

of applications use crowd-sourced data from mobile devices

to identify high-congestion locations within their route-finding

applications and therefore suggest alternate routes to con-

sumers, often this is enabled by the algorithm detecting and

aggregating unusual movement behaviour from the positional

information reported by user devices [22], this may allow the

user to avoid high-congestion areas thereby reducing impact

of their journey. Road surface health monitoring has been

suggested by [23], [24] using connected devices to enable

monitoring of road conditions, thereby allowing timely mainte-

nance to be performed as to reduce damage to private vehicles

and reduce road traffic incidents. Bus trajectory data is used

in [25] to map congestion within urban areas to help guide a

data-driven approach to urban management.

Airborne pollution levels within urban environments are

another important issue being faced globally. A number of

studies have demonstrated the use of networked sensors to

detect and monitor pollution levels in cities [26], [27]. The data

collected via these methods enables urban planners to make

informed decisions with Health, Traffic and the Environment

in mind.

Smaller IoT networks are increasingly being installed within

commercial and residential buildings. Data collected by these

networks may be used to analyse and improve energy effi-

ciency within the location [28], [29], [30], [31]. A number

of these approaches introduce additional contextual informa-

tion into their algorithms to account for variations in usage
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dependent upon the day of the week or which month is being

monitored as well as the current weather conditions.

Smart home data has been suggested for activity monitoring

within assisted living situations [32], [33] whereby the ’nor-

mal’ activities of the individual are learnt and significant de-

viations may be raised as anomalous thereby giving increased

awareness to carers or health services. An example provided in

[34] discusses the event that a monitored individual is found to

be on the floor in a kitchen for an extended period of time, this

behaviour would be unusual and may be suggestive of a fall

or collapse and therefore require assistance from emergency

services.

IV. CHALLENGES FACED IN ANOMALY DETECTION

At a basic level anomaly detection is the identification of

patterns which do not conform to the expected norm for the

system [6]. There are a number of elements which make this

basic interpretation very challenging.

A. Elements of IoT data

IoT data may present similarly to data collected from other

domains however there are a number of aspects to the structure

of the time-series as well as the environment in which the data

is being produced and analysed which could affect the success

of an anomaly detection algorithm.

1) Contextual information: With a variety of sensors dis-

tributed around the environment of the system being monitored

there is the opportunity to include contextual information

into the anomaly detection process [35], the inclusion of

this information offers the chance to improve the abilities of

the analytic framework but similarly introduces a number of

challenges which must be overcome.

Temporal Context - As the majority of IoT data is generated

in the form of time-series data [36] (whether sampled at set

intervals or via irregular sampling) there is some implication of

temporal correlation between observations - that is the reading

at time t is in some-way related to observations at times

[t−1 → t−n].
Spatial Context - Similarly when multiple sensors are de-

ployed monitoring the same system there is some implicit

spatial context to be managed [36], this becomes more difficult

to handle as the spatial context is increased in size or when

the sensors themselves are made mobile via some mechanism.

An example would be sensors mounted on a platform such as

a train. Observations which may be normal on flat ground in a

city may be anomalous when observed as the train is climbing

an incline in a rural area. This may be mitigated by addition of

other sensors to the network if this is thought to be important,

for instance an accelerometer measuring the current angle of

the engine could provide vital information when monitoring

system health.

External context - A subset of spatial context would be the

external conditions around the system being monitored. For

example if an IoT system were monitoring power usage in

a building with relation to internal temperature, for instance

to ensure the heating network was performing optimally, it

would be important to know the weather conditions outside

of the building being monitored. This additional contextual

information could be gathered by external sensors mounted

on the roof (however their readings may be inaccurate due

to weather conditions and heat loss through the roof) or by

using third-party weather information such as forecasts or local

weather station data.

The introduction of contextual information can enrich the

ability for an anomaly detection algorithm to correctly identify

those observations or sequences which do not conform to the

expected behaviour, however it does increase the complexity

of the process and therefore it is important to select the correct

contextual information when choosing the anomaly detection

process as well as when designing the initial sensor network.

2) Dimensionality: Dimensionality describes the number of

separate data attributes captured in each observation [6], the

dimensionality of the data affects the choice of method used as

certain approaches are unsuitable for higher-dimensional data.

Additionally the computational cost of higher-dimension data

may be more than that of lower-dimensional data.

IoT data is produced in two broad categories:

Univariate data consists of a sequence of observations taken

by a single sensor. These data-streams are most often in the

form of a key-value pair where the key is the time-stamp of the

observation with the value being a scalar, nominal or ordinal

reading of the environment being monitored, xt. These may

also be aggregated data from multiple sensors which has been

combined into a single value during a preprocessing stage.

Multivariate data consists of a sequence of observations

taken by multiple sensors. These data-streams are most often

in the form of a key-vector pair with a number of obser-

vations taken at the same time-stamp each associated with

a different sensor or actuator monitoring a single system,

xt = [xt
1
, ..., xt

n]. These can be thought of as being a collection

of temporally correlated univariate data streams which provide

a more complete view of the system being monitored.

Anomaly detection over univariate streams relies upon the

comparison of the current observation against the local or

global history of the time-series being analysed. This is

contrasted with multivariate streams where not only is the

history of the stream important to the detection task, but

also the relationship between each of the measurements which

combine to form the observation at a given time-step.

3) Noise: Noise is inherent in real-world systems. Noisy

data represents fluctuations in the reported values which is

not significant to the overall structure of the data as a whole

and may be caused by minor variations in the sensitivity of the

detector, unrelated events occurring within the vicinity of the

sensor or transmission based errors in the data management

system.

In an IoT environment where a large number of low cost,

resource constrained sensors are deployed the data quality is

often affected by significant noise, inconsistencies and missing

or duplicated data. Where the sensors are powered by battery

these challenges are often amplified as the available charge

decreases [37], it is often possible to aggregate data from

multiple similar sensors into a single observation to reduce

the environmental noise.
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In some cases a change in the quality, pattern, or distribution

of the noise may represent a significant event within the

system, therefore it is important to understand the nature and

causes of the noise and as such it may not be suitable to apply

traditional noise reduction techniques to the raw data before

the anomaly detection stage.
4) Stationarity: A stationary time-series is one where the

mean, variance and autocorrelation does not vary with time.

There are a number of ways in which a real-world time series

can display non-stationarity and it is these elements which

make many approaches unsuitable for IoT anomaly detection.
Concept Drift is the change in statistical distribution of a

data stream over time [7], [38], [39].
Seasonality refers to a special case of concept drift where

cyclical changes occur over varying time-scales of much

higher period than the sampling resolution [40].
Change Points are locally or globally permanent changes

in the normal state of a system being monitored [41]. These

changes are generally more abrupt than those seen in concept

drift and represent the rapid adoption of a new state within

a system. Change points may be expected such as when

upgrading a component within a machine, or unexpected such

as a sudden increase in usage of a particular stretch of road.
The ability for an anomaly detection method to adapt to

changes in the structure of the data is important for longer-

term deployments as data points which may have represented

anomalies at some point in the history of the system may now

no-longer be seen as anomalous given the current state of the

system.

B. Prior knowledge

When deploying an anomaly detection method into a new

or poorly known system it is often impossible to provide a

sufficient historic dataset to be able to correctly define both

the normal operating state of the system as well as any or all

potential anomaly types which may be seen [42].
This lack of prior knowledge of the data as well as the

relative scarcity of anomalous sequences of observations in

any data which may have already been collected causes dif-

ficulty when applying traditional supervised machine learning

approaches. There are a number of methods by which an im-

balanced dataset may be manipulated to allow for supervised

learning approaches. Re-sampling of initial training data i.e.

the reduction of ’normal’ instances or introduction copies of

known anomalies, can lead to significant under- or over-fitting

of the final model. Possibly the most applicable approach for

the IoT domain would be the introduction of synthetic anoma-

lies into the training set based upon known anomaly modes

using tools such as PARANOM [43]. All of these approaches

may however damage the temporal context of those anomalies

as there may be important prior trends which are not as visible

to the analyst designing the training data. Additionally the use

of a supervised classifier for anomaly detection, while useful

for identification of known anomaly modes, may subsequently

have difficulty with identifying novel anomaly modes upon

which it has not been trained.
There are some situations where a priori knowledge can

be transferred from similar systems, this is the case for many

network intrusion and security tasks such as the detection of

Distributed Denial of Service attacks [44], or in Industrial

IoT systems where the same machine has been deployed in

multiple locations with known failure modes.

For the majority of cases however this corpus of historic

data representing both the ’normal’ and ’anomalous’ instances

is simply not available and as such a basic assumption must

be made: The majority of observations made about the system

are within the bounds of ’normal’ operation.

There are machine learning techniques which provide an

opportunity to combat this lack of knowledge by utilising un-

supervised or semi-supervised processes. In these approaches

the system will be trained using the ’normal’ data collected

about the state of the system and therefore when data falls

outside of some boundary condition it is reported as anoma-

lous. This approach allows for the discovery of novel anomaly

modes or application to new or unique environments at the cost

of detailed information about the specific anomalies identified.

As the corpus of knowledge increases, more normal data

is collected as well as various data relating to anomalies it

may be possible to begin to include classifications of these

anomalous states into the analytics pipeline.

C. Time and Resource Constraints

Within an IoT deployment the majority of devices will

be of low power with limited computational resources, as

such the current model is generally to collect and process

the data at some centralised location, usually using cloud

or datacentre computing technologies. This model allows for

greater resources to be leveraged for the analytic process

however this also introduces some level of latency to the

system due to round-trip delays as well as resource scheduling

[45].

In some cases this is allowable as it is not important to act

quickly upon the knowledge gathered from the data, however

when looking towards automation of connected resources it

may be a requirement for the data to be processed quickly

and therefore reports be generated as soon as possible after

the data is generated [46]. The use of Edge/Fog devices offers

an opportunity for this to occur closer to the location the data is

generated, however these devices are inherently lower powered

than cloud services and therefore it is important to understand

the computational cost of any analytic task being performed

on that data.

Wireless IoT devices send small bursts of data, generally

using a low-powered or long-range communication protocol.

This allows for devices to be deployed in remote locations yet

still be able to communicate with central systems. The limits

on the quantity of data which can be sent via these protocols

is significantly limited. Repeated long range communications

also incur a significant cost in terms of battery usage where

the devices are self-powered, as such if limited processing can

be performed closer to the device and aggregated information

sent at a lower frequency it may be possible to increase the

lifetime of any such device [47].

Management and storage of data also becomes a concern

when large numbers of sensors are deployed [46], it may be
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impractical to store the entire dataset collected by an IoT net-

work in a format which can easily be accessed by the anomaly

detector, rather initial analysis can be performed before the

data is further transformed and archived. This requires the use

of techniques which do not require the presence of the entire

dataset:
Sliding windows offer an opportunity to reduce the storage

requirements on the devices tasked with processing the data

by only retaining recent observations. However there may be

features which can be missed by only performing the analysis

on these data windows therefore the anomaly detection model

would require some way of ’remembering’ past trends and

patterns without necessarily requiring access to the entire

historical dataset.
Incremental processing is the extreme limit of the windowed

approach, in this case only the most recent observation is

processed and as such each data point is analysed exactly

once by the anomaly detection method. Historic trends and

patterns must therefore by retained entirely within the model

being used for the task.

D. Reporting Method

There are two primary ways in in which anomalous data

may be reported [6], [48]:
1) Anomaly Score: An anomaly score is a value represent-

ing the degree to which a given observation deviates from the

expected value as defined by the anomaly detection model

being used. There are a variety of methods of generating

anomaly scores unique to each algorithm. This method is often

of use when performing later analysis of the collected data as

the analyst may choose to investigate only the top-n anomalies

within a given time period.
This scoring may also be useful in the identification and

management of outliers when performing associated analytic

tasks such as predictive analytics.
2) Labels: A binary label may be applied to each obser-

vation noting whether the detection algorithm has identified

the observation as ’normal’ or ’anomalous’. Some algorithms

may directly report this binary classification however often

this is calculated using some threshold over the initial score

generated by the detection algorithm. A basic method would

be to assume some distribution of scores over the time-series

and utilise a user defined threshold or deviation beyond which

an anomaly is flagged.
This approach may see the greatest utilisation where im-

mediate reporting is required such as in the identification of

failures in the system being monitored where the operator or

owner of the system requires near real-time notification of

anomalous states.
For more complex anomaly detection systems, in particular

those utilising a supervised learning approach, there may be

multiple anomaly classes each with their own label allowing

the option of different notifications to be triggered based upon

the assigned label.

V. CURRENT METHODS

As the growth of IoT technology is relatively recent there

are only a small number of approaches presented which oper-

ate in purely IoT environments, there is however a long history

of anomaly detection over time-series and non-temporal data

from a broad variety of domains from which techniques may

be investigated for IoT specific applications.
There are a number of surveys which have investigated the

problem of anomaly detection in general, often with short

sections discussing detection of anomalies in time-series data.

Early works include Hawkins [4] and Abraham and Chang

[49]. Markou and Singh [50], [51] provide a comprehensive

two-part survey investigating both statistical and neural net-

work approaches up to 2003. Chandola et al.[6] provide a deep

investigation of the methods available in 2009, with Zhang

et al.[52] discussing the approaches applicable to the early

IoT. More recently Chalapathy and Chawla [42] investigate

the application of deep learning approaches to the broader

field of anomaly detection with some space given to time-

series situations such as IoT and Industrial IoT. This review

pursues a narrower scope investigating only those techniques

most applicable to the types and structures of data expected

within the IoT time-series domain.
There are a broad range of algorithms and approaches

presented for the purpose of detecting anomalies in time-series

data. Whilst some techniques may combine elements from

multiple approaches the general methods can be divided into

the following groups:

• Statistical and Probabilistic: These methods utilise histor-

ical data to model the expected behaviour of a system.

When a new observation is received it is compared

against the current model for that system and if it does

not fit within that model it is registered as an anomaly

[51].

• Pattern matching: This method uses direct modelling

of the time-series. In a supervised setting with known

characteristics for expected anomalous sub-sequences the

detector will compare each new observation against a

database of labelled anomaly events and flag those which

are most similar. In the case where there is a lack of

prior labelled anomalies the detector may learn the most

common historic patterns within the normal data and

flag those novel sub-sequences which do not match the

historic corpus as anomalies.

• Distance based: A distance metric is defined such that

a newly received observation can be compared against

those preceding it with the assumption that a lower dis-

tance would most likely occur from similar mechanisms

and therefore would be flagged as normal. Conversely a

larger distance would indicate the observation as having

been generated by a different mechanism and as such

would be flagged as anomalous [6].

• Clustering: This approach projects the data into a multi-

dimensional space and utilises the density of the resulting

clusters. Those observations which present close and

within dense clusters are indicated as normal observations

while those which present further away from, or do not

belong to, these clusters are reported as anomalous [6].

• Predictive: A regression model is generated based upon

the recent and longer-term trends of the system predicting

the expected value at some future time. When a new
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observation is received it is compared against these pre-

dicted values and an assessment is made of how accurate

that prediction was, where the observed value and the

predicted value vary greatly that observation is flagged

as anomalous [15].

• Ensemble: The ensemble approach uses a number of

different algorithms to observe each data point and some

form of voting mechanism is employed over the outputs

from each method. An ensemble can be constructed from

a group of similar detectors, such as a range of predictive

models, or from a collection of dissimilar detectors,

such as the combination of probabilistic, clustering and

statistical detectors. Often the use of ensemble techniques

can improve the overall success of a detection suite at

the potential expense of increased set-up complexity and

computational time.

The choice of approach is strongly dependent upon a

number of factors within the data being monitored as well

as the environment in which the anomaly detector will be

deployed.

A. Anomaly Detection on Univariate Time-series Data

Univariate time series represent the data output from a single

source linked with the time of the observation. This may be a

current trading price for a stock or share, the electrical signal

from a single trace in an Electroencephalogram (EEG), total

network traffic at a specific time step or the value produced

by a single IoT sensor. The structure of the underlying system

being monitored is of high importance to the accuracy of any

univariate anomaly detection method.

1) Non-Regressive Approaches: For a stationary time series

the simplest detection method is to manually set high and low

thresholds such that when an observation is received outside

of these bounds an anomaly is reported.

A more advanced method is to produce a mean and variance

for the historic data and with a threshold defined based upon

these measures to report anomalies which fall outside of this

range [53]. Similar to this is the box-plot approach where the

distribution of the data is split into a range of smaller cate-

gories and new observations are compared against these ranges

[54], this may be extended with a larger number of splits

which leads to a histogram approach. These techniques are

very computationally efficient requiring only a small footprint

both in terms of processor time and memory requirements,

however these approaches do not work for a majority of time

series as they mostly ignore the temporal aspects of the data

and treat it as a simple distribution over univariate data, they

are therefore unable to detect a majority of contextual and

collective anomalies.

Artificial Neural Networks have also been applied to the

problem. Autoencoder Neural Networks work by taking the

values presented in the input layer and passing them into a

number of hidden layers with fewer neurons before symmet-

rically expanding that network towards the output layer. The

ability for a trained autoencoder to reconstruct any given input

vector gives some insight into how ’normal’ that input vector

is. A higher reconstruction error suggests that there is some

information within the input data which is not expected given

the data used to train that network. Autoencoders are placed

onto resource constrained sensor devices in [55], each device

is responsible for collecting sequential data over a period of

time and detecting anomalies based upon the reconstruction

error produced by its shallow autoencoder network. Training

is performed in a daily batch method in a central cloud location

using the reported input and output vectors generated by each

sensor. This relocates the expensive training requirement away

from the constrained device and into a more suitable location

whilst also reducing power requirements caused by multiple

communications per day.

Recurrent neural networks (RNNs) utilise feedback loops

within the hidden layers in a neural network to allow certain

neurons to be affected by outputs from previous time-steps

thereby providing some level of memory within the network

itself. This allows the network to capture relationships between

observations over a period of time. Early RNNs suffered from

vanishing gradients, that is difficulty in training over large

datasets, however with the development of new arrangements

of gates such as Long Short-term Memory (LSTM) and Gated

Recurrent Units (GRUs) this problem was mitigated.

An LSTM based encoder-decoder neural network is em-

ployed in [56] on a variety of univariate time-series where

the reconstruction error of the autoencoder is used to identify

anomalous sequences within the data, their method is a semi-

supervised approach in that the initial network is trained only

with normal data. They provide a thresholding mechanism over

their computed anomaly score to allow for tuning of the system

within a supervised or human-in-the-loop setting based upon

maximising the fβ score.

2) Regression Based Approaches: Another popular ap-

proach to identifying outliers is to apply some form of

predictive modelling of the time-series. The newly received

observation is compared against the predicted value and an

assessment is made based upon the difference between the

predicted and actual values [15].

There are a variety of methods for which can be used

for the predictive portion of this approach. Autoregressive

Moving Average (ARMA)[57] builds a parametric model of

the time series. ARMA has seen widespread usage in a

number of fields however this approach has difficulty with non-

stationary datasets in particular those which display significant

seasonality or mean shift. Autoregressive Integrated Moving

Average (ARIMA) allows for management of nonstationarity

by adding a number of differencing steps during the processing

phase to move the data towards a more stationary distribution

[58], [59], [60], [61], [62], [63]. Seasonal ARMA (SARMA)

approaches account for differing levels of seasonality within

the data by generating multiple models across the different

seasonal time-lags and apply the same techniques [64].

Another approach to the predictive method is to use Arti-

ficial Neural Networks to capture the dynamics of a time se-

ries, early Multi-Layer Perceptron (MLP) approaches showed

similar predictive abilities to those demonstrated in ARMA

derivative models [65] for stationary and non-seasonal time-

series.

ARIMA models are combined with MLPs in [29] for pre-
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dictive analysis, with a simple 2σ thresholding over the error

value to identify anomalous observations. They demonstrated

their method using electricity consumption data gathered each

minute from a university office situation. A very large window

size was utilised to generate their models (4 weeks, and 8

week) however full week ahead predictions were made based

upon these data. They note that this method was very sensitive

to certain occasional use situations such as when a printer was

in use which automatically exceeded the 2σ threshold they had

selected and therefore they introduced some additional rules

into the detection engine to compensate for these activities.

With the development of RNNs [66], [67] such as LSTM

and GRU the ability for the neural network approach to better

model the variability present in complex univariate systems

has been demonstrated in [68].

An online time-series prediction approach is presented by

[69] whereby the online updating of their LSTM based neural

network is weighted by the loss value from each new data

point. Where this loss is significant the algorithm reduces its

effect on the updation of the network thereby minimising the

effect of point anomalies on the predictive capacity of the

network whilst allowing for change points to be gracefully

handled by the network. While it is not mentioned in this paper

there is the opportunity for a pipeline to be developed to allow

for these anomalies to be reported to the system operators.

Attention Based RNNs are employed within an autoencoder

in [70] to more accurately predict complex long term patterns

within data.

Malhotra et al [71] present two approaches using stacked

layers of Recurrent Sigmoid Units (RSUs) and LSTMs to

capture long term dynamics in a variety of univariate systems.

Their networks predict the expected values for a number of

time steps ahead and the resulting error values are used to

calculate a probability score that the observation at that later

time is within the expected normal range, a threshold value

is computed for this probability score and those observations

falling below this level are reported as anomalous. They note

that for systems with long term temporal dependencies the

LSTM approach significantly outperforms the RSU approach.

A similar Deep LSTM network has been applied to ECG

signals in [72] to identify a variety of different anomalous

signals, again using the multiple time-step ahead probabilistic

error measure. These approaches both use off-line training

with a semi-supervised approach.

In [73] RNNs are used for regression and two approaches

are taken to converting between the raw output and a binary

label. Their first method uses a thresholding method before

being passed into an accumulator which counts up each

time an observation is deemed to be anomalous and counts

down by a larger factor each time a ’normal’ observation

is taken, thereby detecting collective anomalies due to their

longer presentation period. Their second uses a probabilistic

approach to calculate the anomaly likelihood in the most recent

observations.

Online time-series anomaly detection using deep RNNs is

performed in [38] alongside local normalisation of the incom-

ing data and incremental re-training of the neural network to

allow the network to adapt to concept drift across a variety of

datasets showing the applicability of the approach to a variety

of domains. Their approach uses the predictive error of the

network over a number of time-steps to quantify the presence

of anomalous observations in a scoring style manner.

While RNNs have shown promise for the prediction of time-

series the detection and reporting of anomalous observations

based upon these predictions is still somewhat of a challenge.

Xie et al. [74] present a method of analysing the prediction

errors using a Gaussian Naive-Bayes model to process output

of an RNN based model.

The Greenhouse method [75] computes a vector for each

observation using a multi-step ahead predictive RNN. Their

approach uses a three-phase training method, the initial phase

fits the RNN to normal data in a typical semi-supervised

approach, the second phase fits the error vectors generated

to a distribution and the final phase calculates Mahalanobis-

distances between these error vectors to produce a scoring

method to identify outliers according to a user supplied thresh-

old. When presented with a new time-series the algorithm can

therefore label each new observation as normal or anomalous

based upon the post-processed error vector. This approach is

currently an off-line method and therefore is susceptible to

changes in the distributions of the input data.

The RNN model presented by Bontemps et al. [76] focuses

on detecting collective anomalies by defining a minimum

period for a collective anomaly and calculating error mea-

surements over time, where the average error is above a given

threshold for a period of time an anomaly is identified.

Bayesian Neural Networks are investigated in [77], by using

an LSTM based auto-encoder to perform prediction for a

number of steps ahead, followed by a MLP to perform the

final prediction steps, this construction provides not only a

prediction for later values but a level of certainty in that

prediction, when a new observation is made which falls

outside of a defined predictive interval it would be flagged

as anomalous.

A recent development within the Artificial Neural Net-

work domain is a process described as Hierarchical Temporal

Memory (HTM) [78], this process is a bio-inspired model

for processing time-series based upon the behaviours of the

Neocortex. This method is applied to sequential streamed

univariate data in [79], [80] and compared against a range

of predictive models for time-series modelling. The technique

is further applied to the anomaly detection problem in [81],

[82], [83], [84] of note is the noise resistance of the approach

as well as the ability for continual online learning allowing

for the method to adjust to changes in data distribution over

time without extensive off-line retraining.

Simple Online Regression Anomaly Detector (SORAD) is

presented in [84] which uses an initial unsupervised off-line

training phase to learn the key features of the presented time-

series and then employs an online learning method to re-

compute mean and variance values at later time-steps with

stronger weighting to newer values. The algorithm has a built

in approach to converting from predictive error to anomaly

labels whereby an online method of calcuating the series mean

and variance is used and thresholding subsequently applied.

The authors intended for their method to act as a baseline for
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comparing benchmarking methods however they identified that

it performed well compared to the contemporary methods they

compared it against, including an offline variant of the same

algorithm. They do however note the importance of online

adaptation in anomaly detection methods.

B. Anomaly Detection on Multivariate Time-series Data

It is rare for a single sensor to be able to completely capture

the complex nature of environments such as those monitored

by IoT networks, therefore it is important to investigate

approaches which combine information from multiple sources.

This may allow the anomaly detection method to build a

more accurate model of the hidden processes behind the data

it receives by utilising the additional contextual information

granted by multiple monitoring approaches [35]. Additionally

the combination of multiple spatially-related data streams

measuring the same environmental variable provides additional

noise tolerance characteristics over the single-sensor use-case.

Similarly to the univariate case the choice of model for a

multivariate system is highly dependent upon the nature of the

data being produced and the functionality of the system being

modelled, this is exacerbated by the variability on relations

between each of the measured time-series as well as their

temporal characteristics.

1) Dimensionality Reduction: When multiple sensors are

monitoring a single system there is often a relationship be-

tween the values generated by each sensor, the interrelation

between these values can be used to provide insights into the

current state of the system. Dimensionality reduction seeks

to identify and abstract the key relationships between these

attributes. By modelling the normal operation of the system

it is possible to identify irregularities in the input data by the

effect it has on these reduced representations, this lowers the

quantity of variables which must be handled by an anomaly

detection algorithm and can provide insights into hidden states

within the data.

A common method for approaching multivariate systems

where there is unknown but likely co-dependence between

variables is to employ PCA (Principal Component Analy-

sis). This approach decomposes a multivariate system into

a reduced set of independent variables, thereby reducing the

overall size of the system to be investigated. PCA was applied

to network traffic anomalies in [85] here the authors note that

the method works as intended however it faces a wide number

of limitations inherent with their PCA method such as large

temporal window sizes causing difficulty with pinpointing the

origin of the anomaly, difficulty with tuning the PCA model

to a given data distibution, as well the opportunity for a

sufficiently abnormal anomaly to contaminate the ’idea’ of

normality within the PCA approach. A recursive PCA with

clustering based detection method was applied to an IoT sensor

environment in [86] which showed the ability to correctly

identify anomalous sequences, again however they note the

computational complexity of PCA as a limitation for edge

sensor implementations.

Projection Pursuit provides another method of reducing the

dimensionality of a multivariate system. In [87] the approach

is applied to outlier detection by reducing the dimensionality

of a complex system to one in which univariate methods

may be applied. Similarly to PCA projection pursuit incurs

a significant expense in the form of computational time.

Due to the reduced length of the hidden layers with an

autoencoder these methods can be utilised in a similar manner

to PCA. Reconstruction error is used to detect anomalies using

a range of autoencoder methods over satellite telemetry and

artificial data in [88]. The authors note that hidden represen-

tation of the input data deviates significantly in anomalous

observations when compared to the ’normal’ training data.

Computational cost is compared against PCA methods and

found to be significantly lower in the autoencoder approaches.

An ensemble of autoencoders and convolutional autoen-

coders are employed on building energy data in [89] to high-

light anomalies as well as inefficiencies in control strategies

with anomalies scored based upon reconstruction errors and

the addition of date-time and other contextual data is shown

to improve functionality. This method is suited to off-line

analysis as the authors sort observations by anomaly score

and select the top-N for further investigation.

Surface mounted audio sensors are combined with con-

volutional autoencoders in [14] to detect faults in industrial

machinery again using a semi-supervised approach. They

again use the accuracy of the reconstruction of the input data to

provide a measure of normality of the input data. A threshold

value α is learnt above which the observation window is

highlighted as anomalous. A second approach is demonstrated

where boundaries are learnt around the hidden representation

in the central layer of the auto-encoder. As this is trained based

on normal operation when a value presents outside of these

boundaries an anomaly is identified.

Convolutional Variational Autoencoders (CNN-VAE) are

utilised in an IoT inspired environment in [9], here the authors

demonstrate a method of reducing the size, complexity and

training cost of the autoencoder without damaging its ability to

identity anomalous instances. This makes the Squeezed CNN-

VAE (SCVAE) more suitable for deployment in edge devices

within an IoT network.

Variational autoencoders are again employed in [90] where

they are combined with GRUs to learn temporal and rela-

tional characteristics of multivariate time-series, by applying

a threshold to the reconstruction probability reported by the

VAE phase anomalies can be detected within the system.

Kieu et al,[91] present LSTM-autoencoder and Convolutional

autoencoder approach’s which uses data enrichment during

the pre-processing phase, this allows the autoencoder a larger

feature space from which to identify the most representative

features.

An unsupervised Generative Adversarial Network is pre-

sented in [92] where LSTM are used to capture the temporal

nature of the system in both the Generator and Discriminator

portions of the network. This is used to train the discriminator

the characteristics of the normal input data and therefore it

can directly report anomalous observations when they are

encountered. The presented usecase is a Cyber Physical system

with both sensor and actuator data present. PCA is employed

to reduce the dimensionality of the input multivariate data.
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2) Clustering: Lui et al. [93], [94] presents an ensemble

method utilizing isolation trees (termed isolation forests) to

perform the anomaly detection, this is compared to a number

of other contemporary methods including ORCA [95], One-

class SVM [96], LOF [97] and Random Forests [98]. They

note that due to the computational efficiency of their approach

it could be applied to streaming data.

Multiple Kernel Anomaly Detection (MKAD) [99] is ap-

plied to aerospace data. MKAD uses kernel functions to learn

similarity measures between variables within the datastream

with a one-class SVM being applied to perform the classifi-

cation task. They compared their results against ORCA [95]

and SequenceMiner [100], noting significant gains in detection

ability across both discrete and continuous streams.

3) Other methods: A range of methods have been presented

using recurrent neural networks to capture the temporal nature

of multivariate systems [101], [102], [103]. LSTM and GRU

based neural networks are applied to aircraft flight data in

[104] where their approach is compared to the results produced

by the MKAD method acheiving greater success at identifying

a range of anomaly types within those data.

LSTM based detectors using off-line training methods are

applied to space-craft telemetry in [105] where the authors

describe near real-time performance over 700 telemetry chan-

nels. They utilise the prediction errors from prior batches as

well as including knowledge from domain experts to calculate

threshold values for detection in later batches thereby adapting

for changes in the data they are receiving over time and to

account for rare or occasional expected processes.

CNNs are combined with a trainable wavelet transform

layer in [106] for the detection of change points in synthetic

multivariate data. This method is able to identify gradual

concept drifts and changes in the distribution of the input data

over time and may provide a method of detecting anomalies

before their main presentation.

A supervised approach to anomaly detection is presented in

[44], here the authors utilise the class labels from the training

data to provide additional information for the system operator

during decision making processes. This method displays a

potential direction towards which a semi-supervised or unsu-

pervised anomaly detection method could be taken as operator

knowledge is combined with the raw anomaly data.

Dynamic Bayesian Networks (DBN) were applied to both

univariate and multivariate environmental data in [107] where

they present a number of methods attempting to perform real-

time anomaly detection over sensor data. They note that their

DBN approach improved in detection ability when multiple

related sensor streams were combined to add context to the

detection process.

A graph based method is employed in [108] to learn depen-

dencies between variables. Nodes within the graph represent

individual observations or sequences of observations, where

the weighting between nodes is low (representing a low

dependency on other nodes) that node is flagged as anomalous.

A variation on Self Organising Maps (SOMs) are utilised

in [109] where the authors demonstrate the ability for their

method to capture the seasonal temporal characteristics of

multivariate data in an unsupervised manner. The authors

also show utility for their method when applied to univariate

systems.

VI. RESEARCH CHALLENGES AND FUTURE DIRECTIONS

Whilst anomaly detection has existed in literature and

practice for a long time [110], there are still a number of

problems which must be overcome in order to allow broad

implementation. Currently there is no single best approach

to the problem, rather a number of approaches which may

be more applicable to certain domains. Below we present a

summary of the major challenges within the field which need

to be investigated to allow for increased utility:

• Real-Time processing - As discussed in Section IV-C for

a majority of use-cases where data is being used to aid in

short term decision-making or automated decision mak-

ing (such as IIoT, smart traffic or smart energy) the ability

for an anomaly detection method to operate in real-time

or near real time is important. If a detector takes longer

to process an observation or set of observations than the

time between measurements eventually the computational

resources supplied to the detector will be exceeded and

the system will fail.

• Window or Incremental approaches - Due to the vol-

ume of data being produced it would be costly to hold

the entire dataset available for analysis especially when

analysis is performed on resource constrained devices.

Therefore as described in Section IV-C a sliding window

or incremental approach will reduce the memory and

storage requirements for the processing platform.

• Online adaptive learning - The non-stationarity of IoT

timeseries described in Section IV-A4 leads to a need

for adaptive approaches to anomaly detection. Therefore

while offline methods may be of use for the initial

deployment there should be some method for the can-

didate system to improve its model over time to adapt to

foreseen and unforeseen changes in the data distributions

without requiring extensive retraining of the system.

• Semi-supervised or Unsupervised - In real-world use

cases there will often be a severe lack of available labelled

anomaly data and it can be assumed that those data

which are available will not fully represent the range

of anomalies which could occur which we describe in

Section IV-B. Similarly due to the imbalance between

the normal data and anomalous data classical multi-

class machine learning approaches would be insufficient

to capture the nature of the data stream. Therefore an

approach which trains the candidate algorithm only on

normal data with anomalies being reported when they fall

outside of some region around this normal data would be

the most viable [9].

• Multivariate data - As shown by a number of methods

discussed in Section V-A the addition of contextual

information can improve the suitability of a given de-

tector this may be in the form of temporal information,

environmental information or additional sensor streams.

As such there is the need for anomaly detectors to operate

successfully within a multivariate setting.
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• Generalised Approach - While it is likely that no single

approach will be the best for every possible scenario,

the development of algorithms which can be applied to

multiple domains will aid in the reuseability of techniques

and the ease of deployment of anomaly detection methods

to a variety of tasks.

VII. CONCLUSION

The IoT approach offers significant opportunity for the

application of a number of analytical techniques in order to

extract useful knowledge from the large volume of data being

collected. In most cases manual analysis of these data streams

is impractical or financially infeasible and therefore automated

methods must be developed to convert from the raw data being

collected into actionable information.

In this survey we have discussed the definition of what an

anomaly is within the domain of time-series and IoT data. We

have described the use of anomaly detection as a data analysis

tool within a number of IoT specific use cases outlining the

aims and results for those approaches as well as some of the

benefits which may be derived from these applications.

We describe the major challenges (Section IV) faced while

developing an anomaly detection solution given the dynamic

and novel systems being monitored by IoT deployments and

discuss some methods which may be used to mitigate these

challenges. While there has been an historic focus on detection

of anomalous observations in univariate data (Section V-A)

the complexity of the systems being monitored by typical IoT

deployments will generally require the processing of multiple

data streams and a multivariate approach (Section V-B) to

detecting changes in the relationships between those variables.

This direction does however bring additional challenges due to

the increased complexity and computation required to manage

the larger number of dimensions within the data. Machine

learning offers some solutions to the problems encountered

however the low availability of pre-labeled data continues to

offer challenges to these methods. We finish by suggesting

a range of research challenges which may be faced when

developing novel anomaly detection systems for both case

specific and more general approaches.

As more IoT applications are developed and deployed across

the growing sectors of smart cities, the energy sector and

a variety of vertical industries we would expect to anomaly

detection play an increasingly important role in the processing

and analysis of the data being collected.
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