
Edith Cowan University Edith Cowan University

Research Online Research Online

Research outputs 2022 to 2026

9-30-2022

Anomaly detection in cybersecurity datasets via cooperative co-Anomaly detection in cybersecurity datasets via cooperative co-

evolution-based feature selection evolution-based feature selection

Bazlur A. N. M. Rashid
Edith Cowan University

Mohiuddin Ahmed
Edith Cowan University

Leslie F. Sikos
Edith Cowan University

Paul Haskell-Dowland
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2022-2026

 Part of the Information Security Commons

10.1145/3495165
This is an Author's Accepted Manuscript of: Rashid, A. N. M. B., Ahmed, M., Sikos, L. F., & Haskell-Dowland, P.
(2022). Anomaly detection in cybersecurity datasets via cooperative co-evolution-based feature selection. ACM
Transactions on Management Information Systems, 13(3), article 29.
https://doi.org/10.1145/3495165
This Journal Article is posted at Research Online.
https://ro.ecu.edu.au/ecuworks2022-2026/150

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks2022-2026
https://ro.ecu.edu.au/ecuworks2022-2026?utm_source=ro.ecu.edu.au%2Fecuworks2022-2026%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ro.ecu.edu.au%2Fecuworks2022-2026%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1145/3495165
https://doi.org/10.1145/3495165

Anomaly Detection in Cybersecurity Datasets via Cooperative
Co-Evolution-Based Feature Selection

A. N. M. BAZLUR RASHID∗, Edith Cowan University, Australia

MOHIUDDIN AHMED, Edith Cowan University, Australia

LESLIE F. SIKOS, Edith Cowan University, Australia

PAUL HASKELL-DOWLAND∗, Edith Cowan University, Australia

Anomaly detection from Big Cybersecurity Datasets is very important; however, this is a very challenging and computationally
expensive task. Feature selection (FS) is an approach to remove irrelevant and redundant features and select a subset of features,
which can improve the machine learning algorithms’ performance. In fact, FS is an effective preprocessing step of anomaly detection
techniques. This paper’s main objective is to improve and quantify the accuracy and scalability of both supervised and unsupervised
anomaly detection techniques. In this effort, a novel anomaly detection approach using FS, called Anomaly Detection Using Feature
Selection (ADUFS), has been introduced. Experimental analysis was performed on five different benchmark cybersecurity datasets
with and without feature selection and the performance of both supervised and unsupervised anomaly detection techniques were
investigated. The experimental results indicate that instead of using the original dataset, a dataset with a reduced number of features
yields better performance in terms of true positive rate (TPR) and false positive rate (FPR) than the existing techniques for anomaly
detection. For example, with FS, a supervised anomaly detection technique, multilayer perception increased the TPR by over 200%, and
decreased the FPR by about 97% for the KDD99 dataset. Similarly, with FS, an unsupervised anomaly detection technique, local outlier
factor increased the TPR by more than 40%, and decreased the FPR by 15% and 36% for Windows 7 and NSL-KDD datasets, respectively.
In addition, all anomaly detection techniques require less computational time when using datasets with a suitable subset of features
rather than entire datasets. Furthermore, the performance results have been compared with six other state-of-the-art techniques based
on a decision tree (J48).

CCS Concepts: • Security and privacy → Anomaly detection; • Computing methodologies → Feature selection; • Mathematics
of computing→ Evolutionary algorithms.

Additional Key Words and Phrases: anomaly detection, feature selection, cybersecurity, Big Data, cooperative co-evolution, machine

learning

ACM Reference Format:
A. N. M. Bazlur Rashid, Mohiuddin Ahmed, Leslie F. Sikos, and Paul Haskell-Dowland. 2021. Anomaly Detection in Cybersecurity
Datasets via Cooperative Co-Evolution-Based Feature Selection. In Special Issue on Pattern-Driven Mining, Analytics and Prediction for

Decision Making: ACM Trans. Manag. Inform. Syst.. ACM, New York, NY, USA, 40 pages. https://doi.org/10.1145/XXX

∗Corresponding Author: a.rashid@ecu.edu.au. Authors’ address: A. N. M. B. Rashid, M. Ahmed, L. F. Sikos, and P. Haskell-Dowland, School of Science,
Edith Cowan University, Australia; emails: a.rashid@ecu.edu.au, mohiuddin.ahmed@ecu.edu.au, l.sikos@ecu.edu.au, p.haskelldowland@ecu.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
Manuscript submitted to ACM

1

https://doi.org/10.1145/XXX

TMIS, 2021, ACM, NY Rashid et al.

1 INTRODUCTION

Generating massive volumes of data is commonplace in the Big Data era, as seen in areas such as cybersecurity [37, 39–
41]. While Big Data opens the door to the research community to explore new insights, analyzing the Big Cybersecurity
Data produced by different network applications in (near-)real time is often computationally expensive [2, 42, 45].
Anomaly detection is related to identifying data patterns, which deviate unusually from expected behaviour. Anomaly
detection is important in many domains, including cybersecurity, health, fault prevention, and Internet-of-Things
(IoT)/sensor networks [5, 55, 56]. Therefore, anomaly detection involves a pattern-driving data mining process in
Big Data Analytics. It can predict anomalous data that can later be used for decision-making in the decision support
or management information systems (MIS) [9]. Both supervised and unsupervised machine learning-based anomaly
detection techniques are used to learn, predict, detect, and classify data in this context [39]. Examples of some anonymity
algorithms include [5, 25]. Cybersecurity data consist of several features (attributes in dataset terminology). However,
not all of these are important, because some are redundant or irrelevant [48], and as such, may degrade the performance
of ML-based anomaly detection algorithms. Feature selection (FS) is a process that selects the relevant features and
removes the irrelevant ones to improve anomaly detection performance. Hence, removing unnecessary features from
the cybersecurity data can help a lot to the cybersecurity personnel before the anomaly detection techniques are applied,
which can reduce computational time and improve anomaly detection performance. Furthermore, removing irrelevant
features from the datasets before the anomaly detection process can also reduce the storage requirement [1, 39, 40].

When a dataset consists of 𝑛 features, it has 2𝑘 possible solutions of selected feature subset, which makes a feature
selection process computationally expensive. A number of search techniques, for example, evolutionary search, best
search, or greedy search, can be applied to the large search space to select a suitable subset of features. Evolutionary
algorithms (EA) are widely-used search techniques in this context. Cooperative co-evolution (CC), a meta-heuristic
algorithm, which follows a divide-and-conquer strategy, has been effectively applied in different domains, including
a limited number of feature selection applications [39, 40]. We previously proposed a Cooperative Co-Evolutionary
Algorithm-Based Feature Selection (CCEAFS) with a penalty-based wrapper objective function for Big Data. The experi-
ments performed on six UCI ML repository datasets using six supervised ML classifiers perform better than the existing
techniques [39]. We also proposed an improvement of CCEAS, called Cooperative Co-Evolutionary Algorithm-Based

Feature Selection with Random Feature Grouping (CCFSRFG) [38], which further improved classification accuracy. In this
paper, we apply the CCFSRFG technique for anomaly detection in cybersecurity datasets.

This paper introduces a novel anomaly detection approach by feature selection using a cooperative co-evolution
technique, called Anomaly Detection Using Feature Selection (ADUFS). This technique has been evaluated using both
supervised and unsupervised ML-based anomaly detection algorithms. Five different cybersecurity datasets have been
collected from the UNSW Canberra Cyber Centre repository,1[28] the Canadian Institute for Cybersecurity,2 and
the UCI ML repository.3 10 supervised and 10 unsupervised anomaly detection techniques have been used to detect
anomalies from the selected datasets [1, 20]. Based on the analysis of the comparative results, it has been observed that
in terms of true positive rate (TPR) and execution time (ET), ADUFS, in most cases, outperforms the anomaly detection
performance of the state of the art when using feature selection.

The feature selection process selects a subset of features, which is a representative subset of the original data. As a
result, apart from anomaly detection techniques, other types of detections, such as network traffic analysis applications,

1https://www.unsw.adfa.edu.au/unsw-canberra-cyber/
2https://www.unb.ca/cic/
3https://archive.ics.uci.edu/ml/

2

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/
https://www.unb.ca/cic/
https://archive.ics.uci.edu/ml/

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

can also be applied on the datasets with feature selection to improve the detection performance with less computing
time. This paper aims to investigate the following research questions:

• How can a feature selection process be applied to cybersecurity datasets that can select a suitable subset of
features, which can improve the performance of the supervised and unsupervised anomaly detection techniques?
– How can the supervised and unsupervised anomaly detection techniques be applied to the original datasets
and the datasets with fewer features?

– Can anomaly detection techniques perform as well on datasets with feature selection as on original datasets?
– Can the datasets with feature selection reduce the execution time of anomaly detection?

1.1 Contribution to the Society

In the era of the digital world, we are now almost entirely dependent on electronic devices and communication via the
internet. While we are getting advantages of this environment, so many safety and security issues are also involved.
According to the Australian Cyber Security Centre (ACSC)4, over 67,500 cybercrime reports were made through
ReportCyber5 during the 2020–21 financial year. This is an increase of about 13 per cent from the previous financial year.
It indicates one cybercrime report is made roughly every eight minutes in Australia. Researchers are contributing from
each corner to analyze a particular issue and provide an effective solution to tackle all the relevant issues. Accordingly,
our proposed solution on anomaly detection for data analysis will help identify the cyber world’s malicious activities. It
can also help to identify important biomarkers for effective medical diagnosis. We proved throughout the experiments
that our proposed solution is an effective solution for analyzing large-scale data, such as Big Data. Big Data consists of
many attributes, most of which are irrelevant and result in a time-consuming learning process and identifying malicious
activities or biomarkers. Therefore, we believe our proposed solution is an effective solution for society in dealing with
the problems in several domains, such as cybersecurity or health care.

The rest of the paper is organized as follows. Section 2 presents a literature review on anomaly detection in
cybersecurity datasets. Section 3 illustrates our novel anomaly detection approach by feature selection using cooperative
co-evolution. Section 4 contains experimental results and analysis based on benchmark cybersecurity datasets. The
conclusion and future work directions are included in Section 5.

2 LITERATURE REVIEW

Anomaly detection is an important data analysis task to detect the anomalous or abnormal data from a dataset [50].
The synonyms of anomaly detection are outlier detection, deviation detection, novelty detection, and exception mining,
which are widely used and studied in machine learning and statistics. The wide range of application domains of anomaly
detection includes cyber-situational awareness [47], network path estimation [32], intrusion detection, fraud detection,
sensor networks, medical, public health, and image processing [1]. An example of anomaly detection is cyberattack
detection [12]. A cyberattack can be a malicious attack, which may damage a computing system via unauthorized
network access, code, or data injection [43].

An anomaly can be of three different types [3]: 1) point/rare anomaly (when a specific data instance deviates from the
normal pattern in a dataset), 2) contextual anomaly (when a data instance behaves anomalously in a specific context),
and 3) collective anomaly (when a collection of similar data instances behave anomalously in an entire dataset). Different
anomaly detection techniques represent anomalies, either as a score or a binary (true/false) label. The anomaly detection
4https://www.cyber.gov.au/acsc/view-all-content/reports-and-statistics/acsc-annual-cyber-threat-report-2020-21
5https://www.cyber.gov.au/acsc/report

3

https://www.cyber.gov.au/acsc/view-all-content/reports-and-statistics/acsc-annual-cyber-threat-report-2020-21
https://www.cyber.gov.au/acsc/report

TMIS, 2021, ACM, NY Rashid et al.

techniques based on score assign an anomaly score to each data instance in a dataset, after which the analyst can select
anomalies based on a ranked score threshold. In the case of binary, the anomaly outputs can be labeled either as normal
or anomaly [1, 4]. There are many types of cyberattacks, such as 1) denial of service (DoS) (when the normal computing
environment is being interrupted, and the services become unavailable), 2) probe (when a targeted host or network is
attacked to collect information for reconnaissance purposes), 3) user to root (U2R) (when an attacker tries to get illegal
access to an administrative account for manipulating or abusing important resources), and 4) remote to user (R2U) (when
an attacker tries to get local access of a targeted computing system to send packets over its network). In the literature,
U2R and R2L are grouped into point/rare anomalies, DoS is grouped into collective anomalies, and probe is grouped
into contextual anomalies [2–4].

A number of anomaly detection techniques are used to handle various types of attacks. In the literature, cybersecurity
attacks have been handled by three dominant approaches: supervised, semi-supervised, and unsupervised [3, 4, 21]. A
taxonomy of anomaly detection techniques is shown in Fig. 1.

Anomaly

Detection

Supervised
Semi-

supervised
Unsupervised

Signature-

based

Anomaly-

based
Nearest-based Clustering

Frequent

Itemset

Fig. 1. A taxonomy of anomaly detection techniques [3, 4].

The anomaly detection techniques that rely on labeled training are supervised. Supervised techniques require training
data, which is usually expensive to generate, and these techniques face difficulties when it comes to detecting new types
of attacks. Semi-supervised methods require a small amount of labeled data for building a model to detect anomalies.
Unsupervised techniques do not need any training data, and can detect previously unseen attacks [3].

Supervised anomaly detection techniques are further classified into signature-based and anomaly-based techniques.
The former requires extensive knowledge of cyberattacks’ characteristics, i.e., the attack’s signature is the primary means
for detecting anomalies. Failure to provide the attack’s signature, these techniques are unable to detect new attacks.
In contrast, anomaly-based methods depend on the normal traffic activity profile for building a knowledge base and
take account of the activities that deviate from this base as anomalous. Although anomaly-based supervised detections
perform better than signature-based detections in detecting zero-day attacks, anomaly-based methods require training
to build a normal activity profile. In practice, training to build a normal activity profile is computationally expensive
and depends on the availability of new normal traffic instances, which are rare and expensive [3]. Semi-supervised
anomaly detection techniques are a subclass of supervised anomaly detection techniques and can train a model using a

4

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

small amount of labeled data with a large amount of unlabeled data. When the characteristics of cyberattacks evolve
over time, semi-supervised techniques will result in poor performance [1]. Unsupervised anomaly detection techniques
use unlabeled data to draw inferences from datasets. Clustering, support vector machine (SVM), nearest neighbor, and
frequent itemset data mining methods are core techniques in unsupervised anomaly detection approaches [3, 15, 19, 22].

Any type of information, especially if current, can be crucial for business continuity. Therefore, security models driven
by cybersecurity datasets are important in both proactive and reactive defense mechanisms. Nowadays, operations based
on government, commercial, military, and civilians are linked to network security and computer system availability.
Therefore, cybersecurity data analysis is very important to indicate vulnerabilities and unveil security breaches, such
as via detecting network inconsistencies [46]. The term cybersecurity can be defined as a set of measures to protect
computers, programs, data, and networks from security risks and malicious actions in cyberspace. Cybersecurity
tries to determine, prevent, and minimize the impacts of cyberattacks. This can be done by implementing a set of
countermeasures and eliminating vulnerabilities of computer systems [24]. Feature selection is an essential preprocessing
step in anomaly detection for cybersecurity data. In the literature, examples of feature selection as a preprocessing
step in anomaly detection include generic feature selection (GeFS) for intrusion detection (IDS) [29], a least square
support vector machine-based intrusion detection system (LSSVM-IDS) using a filter-based FS [7], feature extraction
and FS to classify cyber traffic threats [27], a combined FS for cyber IDS [26], hierarchical FS for DDoS mitigation
[23], an ensemble FS for cyber IDS [10], clustering and correlation-based FS to identify rare cyberattacks[8], and an
FS-based automated assessment of open source cyberthreat intelligence sources[52]. While the feature selection process
is applied to cybersecurity datasets to detect anomalies, evolutionary algorithms are the core search techniques used
in feature selection. The mutual information-based binary gravitational search algorithmic wrapper FS for IDS [11]
and the hybrid grasshopper-based FS for securing wireless network against cyberthreats [17] can serve as examples.
Furthermore, evolutionary computations are widely used for anomaly detection [6, 18, 24]. Cooperative co-evolution
(CC), a meta-heuristic algorithm, applies a divide-and-conquer strategy to decompose a large problems into several
subproblems, optimizes each subproblem individually, and collaborates different subproblems to build a complete
solution to the problem [34, 44]. Recently, the CC technique has been proposed in a wrapper-based FS process in Big
Data (CCEAFS) by the authors of this paper and evaluated on a range of six datasets using six supervised ML classifiers.
The performance results evaluated in terms of accuracy, precision, recall, and F1-score have performed better than the
existing techniques [39]. In addition, the authors have also proposed a CC-based FS approach with a random feature
grouping, called CCFSRFG. CCFSRFG outperforms CCEAFS on a mixed characteristics of datasets including lower
samples higher features and higher samples with lower features [38]. To utilize its beneficial properties, in this paper,
we apply CCFSRFG in cybersecurity datasets for anomaly detection.

A comparative study performed with ADUFS and existing recent literature based on feature selection approaches for
cybersecurity data analysis is listed in Table 1. The Table clearly indicates that the proposed ADUFS approach have
been investigated the application of feature selection in detecting anomalies in a large number of Big Cybersecurity
Datasets and evaluated using a total of 20 supervised and unsupervised anomaly detection techniques.

In the next Section, the novel anomaly detection approach by feature selection using cooperative co-evolution in
cyberesecurity data has been described in detail.

3 A NOVEL ANOMALY DETECTION APPROACH

In this paper, a novel anomaly detection approach, ADUFS, is introduced by feature selection (FS) using cooperative
co-evolution (CC). The motivation to apply feature selection in anomaly detection comes from the success of the FS

5

TMIS, 2021, ACM, NY Rashid et al.

Ta
bl
e
1.

A
co

m
pa

ra
ti
ve

st
ud

y
on

fe
at
ur

e
se
le
ct
io
n-
ba

se
d
ap

pr
oa

ch
es

fo
r
cy

be
rs
ec
ur

it
y
da

ta
an

al
ys
is
.

R
ef
er
en

ce
Te

ch
ni
qu

es
C
la
ss
ifi
er
s/
O
ut
li
er
s

D
at
as
et
s

Pu
rp

os
e

O
ut
co

m
es

Li
m
it
at
io
ns

[1
8]

D
E,

Fl
ex
ib
le

ne
ur
al
tr
ee
-b
as
ed

FS
[1
6]

Ru
le
s-
ba
se
d

10
%
KD

D
99

In
tr
us
io
n

D
et
ec
tio

n
(ID

)
H
ig
he
rd

et
ec
tio

n
ra
te

an
d

lo
w
er

FP
R
on

if-
th
en

se
cu
rit
y
po

lic
ie
s

Fa
ile
d
to

va
lid

at
e
w
ith

m
ul
ti

cl
as
st
ra
ffi
c
da
ta

[7
]

Fi
lte

r-
ba
se
d
FS

on
M
I

1
su
pe
rv
is
ed

(S
VM

)
KD

D
99
,N

SL
-k
D
D
,

an
d
Ky

ot
o
20
06
+

ID
H
an
dl
es

bo
th

lin
ea
ra

nd
no

nl
in
ea
rf
ea
tu
re
s

U
nb

al
an
ce
d
sa
m
pl
e

di
st
rib

ut
io
n
ha
sn

ot
be
en

co
ns
id
er
ed

[2
7]

A
N
N
-S
N
R
ba
se
d

FS
A
N
N

CD
X

Cy
be
rt
ra
ffi
c

th
re
at
s

Ca
n
de
te
ct
no

-t
hr
ea
ts
an
d

th
re
at
ss

ev
er
ity

A
N
N
m
od

el
de
ve
lo
pm

en
ti
s

co
m
pu

ta
tio

na
lly

ex
pe
ns
iv
e

[1
1]

M
I-B

G
SA

-b
as
ed

w
ra
pp

er
FS

1
su
pe
rv
is
ed

(S
VM

)
N
SL

-K
D
D

ID
S

hi
gh

er
ac
cu
ra
cy

an
d

de
te
ct
io
n
ra
te

co
m
pa
re
d
to

st
an
da
rd

m
et
ho

d

D
id

no
te

va
lu
at
ed

an
d

co
m
pa
re
d
w
ith

re
ce
nt

da
ta
se
ts

an
d
al
go

rit
hm

s

[2
6]

FG
LC

C,
CF

A
1
su
pe
rv
ise

d
(d
ec
isi
on

tr
ee
)

KD
D
99

ID
S

H
ig
he
ra

cc
ur
ac
y
an
d

de
te
ct
io
n
ra
te

w
ith

lo
w
er

fa
ls
e
po

si
tiv

e
ra
te
s

Pe
rf
or
m
an
ce

ha
sn

ot
be
en

ev
al
ua
te
d
w
ith

re
ce
nt

da
ta
se
ts

[8
]

k-
M
ea
ns

an
d

co
rr
el
at
io
n-
ba
se
d

FS

tw
o
su
pe
rv
is
ed

(N
B

an
d
J4
8)

U
N
SW

_N
B1

5
Ra

re
cy
be
r-
at
ta
ck
s

de
te
ct
io
n

Be
st
ac
cu
ra
cy

w
ith

w
or
m

at
ta
ck
s

Fe
at
ur
e
se
le
ct
io
n
co
ul
d
no

t
op

tim
al
su
bs
et

of
fe
at
ur
es

re
su
lti
ng

in
no

im
pa
ct
on

J4
8

cl
as
si
fie

r

[3
6]

Sc
iK
it

Le
ar
n-
ba
se
d
FS

4
su
pe
rv
is
ed

(L
R,

k-
N
N
),
D
T,

an
d
RF

IS
CX

-U
RL

-2
01
6,

N
SL

-K
D
D
,a
nd

CI
CI
D
S-
20
17

ID
S

Cr
os
s-
co
m
pa
ris

on
of

ba
se
lin

ed
an
d
fe
at
ur
e

se
le
ct
io
n
al
go

rit
hm

s

Va
lid

at
io
n
re
su
lts

ha
ve

no
t

be
en

pe
rf
or
m
ed

[2
3]

A
N
N
-b
as
ed

FS
1
un

su
pe
rv
is
ed

(k
-M

ea
ns
)

Co
lle
ct
ed

da
ta

fr
om

IS
P

D
D
oS

m
iti
ga
tio

n
D
D
oS

m
iti
ga
tio

n
th
ro
ug

h
fe
at
ur
e
se
le
ct
io
n

Va
lid

at
io
n
re
qu

ire
su

si
ng

be
nc
hm

ar
k
da
ta
se
ts

[1
7]

G
O
A
an
d

SA
-b
as
ed

FS
1
su
pe
rv
is
ed

(S
VM

)
N
SL

-K
D
D
an
d

U
N
SW

_N
B1

5
Cy

be
rt
hr
ea
ts

H
ig
he
rd

et
ec
tio

n
ra
te

an
d

lo
w
er

fa
ls
e
al
ar
m

ra
te

Va
lid

at
io
n
re
qu

ire
sw

ith
m
or
e

re
ce
nt

da
ta
se
ts
ap
ar
tf
ro
m

U
N
SW

_N
B1

5

A
D
U
FS

(p
ro
po

se
d)

CC
-b
as
ed

FS
[3
8]

10
su
pe
rv
is
ed

an
d
10

un
su
pe
rv
is
ed

M
L

al
go

rit
hm

s

W
in
do

w
s1

0,
W
in
do

w
s7

,
U
N
SW

_N
B1

5,
KD

D
99
,a
nd

N
SL

-K
D
D

A
no

m
al
y

de
te
ct
io
n

W
id
e
ra
ng

e
of

ev
al
ua
tio

n
us
in
g
be
nc
hm

ar
k
da
ta
se
ts
;

bo
th

su
pe
rv
is
ed

an
d

un
su
pe
rv
is
ed

de
te
ct
io
n

CC
FS
RF

G
pe
rf
or
m
an
ce

ca
n
be

im
pr
ov
ed

w
ith

ot
he
rs

ui
ta
bl
e

op
tim

iz
er
sa

nd
co
lla
bo

ra
tio

n
te
ch
ni
qu

es
fo
rh

ig
he
r

an
om

al
y
de
te
ct
io
n
ra
te

N
ot
e:
D
E–

D
iff
er
en
tia

lE
vo
lu
tio

n,
A
N
N
-S
N
R–

A
rt
ifi
ci
al
N
eu
ra
lN

et
w
or
k-
Si
gn

al
-to

-N
oi
se

Ra
tio

,M
I–
M
ut
ua
lI
nf
or
m
at
io
n,

BG
SA

–B
in
ar
y
G
ra
vi
ta
tio

na
lS

ea
rc
h

A
lg
or
ith

m
,F
G
LC

C
–F

ea
tu
re

G
ro
up

in
g
Ba

se
d
on

Li
ne
ar

C
or
re
la
tio

n
C
oe
ffi
ci
en
t,
C
FA

–C
ut
tle

fis
h
A
lg
or
ith

m
,G

O
A
–G

ra
ss
ho

pp
er

O
pt
im

iz
at
io
n
A
lg
or
ith

m
,

SA
–S

im
ul
at
ed

A
nn

ea
lin

g,
CC

–C
oo

pe
ra
tiv

e
Co

-E
vo
lu
tio

n.

6

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

strategy in Big Data using CC (CCEAFS) [39]. After CCEAFS, we proposed another FS technique in Big Data using CC
(CCFSRFG), which performs even better than CCEAFS [38]. In ADUFS, at first, the original datasets have been used
to detect anomalies. Then the datasets with a reduced number of features have been used to detect anomalies. Both
supervised and unsupervised anomaly detection techniques have been explored with original and datasets with a subset
of features for detecting anomalies. In addition, all datasets have also been used with an equal number of instances to
investigate the feature selection’s effectiveness in anomaly detection for all datasets. The comparative results have been
analyzed via different performance measures, including accuracy (ACC), true positive rate (TPR), false positive rate
(FPR), and execution time (ET). In the following subsections, feature selection, cooperative co-evolution, and supervised
and unsupervised anomaly detection techniques are described. Following the discussion on the related techniques, the
proposed methodology has been discussed in detail.

3.1 Feature Selection

Feature selection (FS) is a technique that selects the relevant features to reduce the dimension of data in order to improve
ML performance [40]. Formally speaking, feature selection is a process to select a subset of 𝑠 features from a full set of
𝑛 features (𝑠 < 𝑛) in a dataset by removing irrelevant and unimportant features, thereby representing it with a fewer
number of features [14]. A search technique initiates the feature selection process to discover feature subsets. Then,
feature subsets are evaluated by different performance measures, for example, classification accuracy. For instance, a
terminating criterion is the maximum number of generations used to terminate the FS process. A validation method at
the end of the FS process can test the validity of the selected subset of features [39, 40]. A taxonomy of FS approaches is
illustrated in Fig. 2.

3.2 Cooperative Co-Evolution

In 1994, Potter and De Jong introduced the cooperative co-evolution (CC) technique to solve optimization problems,
which are large-scale and complex [34]. This technique uses a divide-and-conquer approach to divide a large problem
into multiple subproblems, and iteratively evolves the interacting co-adapted subproblems to build a complete solution.

The CC technique consists of decomposing an 𝑛-dimensional problem of search information 𝑆 = {1, 2, . . . , 𝑛} into
𝑚 subproblems {𝑆1, 𝑆2, . . . , 𝑆𝑚} [34]. Each subproblem of the 𝑛 dimensions represents a new search space 𝑆𝑃 (𝑖) for a
particular problem, where the rest of the dimensions 𝑛 𝑗 , with 𝑗 ≠ 𝑆𝑖 , are kept fixed. This way, the entire search space is
decomposed into𝑚 subproblems with lower dimensions, which can be handled using any population-based evolutionary
computational approach. These subproblems can be optimized individually, and the communication between them
is required only to evaluate the objective (fitness) function 𝑓 . This implies that a candidate solution in search space
𝑆𝑃 (𝑖) contains a few elements (comprising an individual 𝐼) of the 𝑛-dimensional problem (𝐼 ∈ 𝑆𝑃). Therefore, in CC,
a common 𝑛-dimensional context vector 𝑣 is required to build using a collaborative individual (e.g., the current best
individual) from each subproblem. A candidate solution to the problem is then formed by a cooperative algorithm
to evaluate an individual in a subproblem; a candidate solution is built by joining representative collaborators from
the context vector. Potter and De Jong decomposed an 𝑛-dimensional problem into 𝑛 1-dimensional subproblems in
their original CC idea. In general, the 𝑛-dimensional problem can be decomposed into𝑚 subproblems with the same
dimension, i.e., 𝑛𝑚 = 𝑛/𝑚 [53]. Following this, a CC technique can be formally defined as follows[51]:

An 𝑛-dimensional problem is decomposed as

𝑆𝑖 =
{
(𝑖 − 1) × 𝑛𝑚 + 1, . . . , 𝑖 × 𝑛𝑚

}
7

TMIS, 2021, ACM, NY Rashid et al.

Feature Selection

Evaluation

Criteria

Evolutionary

Computation

Number of

Objectives

Information

Theory

T-test

k-NN

SVM

LASSO

Gradient

Boosting

NSGA-IIGA

GA

GP

Parallel GA

PSO

ACO
CCEA

mRMR+TLBOL

CMIM+BGA

TLBO+GSA

ABC

MA

DE

Filter Wrapper Embedded Single-objective Multi-objectives

Swarm

Optimization
CEAEA Hybrid Others

Fig. 2. A taxonomy of feature selection approaches [39].

and the context vector is built as

𝑣 = (𝑣 (1)1 , . . . , 𝑣
(1)
𝑛𝑚︸ ︷︷ ︸

𝑣 (1)

, (𝑣 (2)1 , . . . , 𝑣
(2)
𝑛𝑚︸ ︷︷ ︸

𝑣 (2)

, . . . , (𝑣 (𝑚)
1 , . . . , 𝑣

(𝑚)
𝑛𝑚︸ ︷︷ ︸

𝑣 (𝑚)

)𝑇

where 𝑣 (𝑖) is the 𝑛𝑚-dimensional problem, which represents the collaborative individual from the 𝑖th subproblem
(e.g., the current best individual in 𝑆𝑃 (𝑖)):

𝑣 (𝑖) =
(
𝑣
(1)
1 , 𝑣

(2)
1 , . . . , 𝑣

(1)
𝑛𝑚

)𝑇
Given the 𝑗th individual 𝐼 (𝑖, 𝑗) ∈ 𝑆𝑃 (𝑖) of the 𝑖th subproblem:

𝐼 (𝑖, 𝑗) =
(
𝐼
(𝑖, 𝑗)
1 , 𝐼

(𝑖, 𝑗)
2 , . . . , 𝐼

(𝑖, 𝑗)
𝑛𝑚

)𝑇
The fitness function of this problem is given by 𝑓

(
𝑣 (𝑖, 𝑗)

)
, where 𝑣 (𝑖, 𝑗) is defined as

𝑣 (𝑖, 𝑗) = (𝑣 (1)1 , . . . , 𝑣
(1)
𝑛𝑚︸ ︷︷ ︸

𝑣 (1)

, (𝐼 (2)1 , . . . , 𝐼
(𝑖, 𝑗)
𝑛𝑚︸ ︷︷ ︸

𝐼 (𝑖,𝑗)

, . . . , (𝑣 (𝑚)
1 , . . . , 𝑣

(𝑚)
𝑛𝑚︸ ︷︷ ︸

𝑣 (𝑚)

)𝑇

8

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

In general, the fitness of 𝑣 (𝑖, 𝑗) is evaluated on context vector 𝑣 by replacing the elements of the individual from the
𝑖th subproblem having the representative elements of individual 𝐼 (𝑖, 𝑗) .

This confirms that CC is comprised of three main phases: 1) problem decomposition, 2) subproblem evolution, and 3)
collaboration and evaluation.

3.2.1 Problem Decomposition. The first phase of CC, i.e., how to decompose a large problem into subproblems, generally
depends on the problem structure [44]. Problem decomposition techniques can be static or dynamic. If the problem
is decomposed statically, it will have one element in each subproblem. In contrast, if the problem is decomposed
dynamically, the grouping of elements into subproblems will be different. In the case of static decomposition, the
problem is decomposed into subproblems before the evolutionary process starts, and all subproblems are fixed [13]. In
contrast, in the case of dynamic decomposition, a problem is decomposed at the beginning; however, at the time of the
evolutionary process, subproblems can self-adaptively tune to appropriate collaboration levels [30]. A few examples of
decomposition techniques are presented in [30, 31, 57].

3.2.2 Subproblem Evolution. After problem decomposition, each subproblem is allocated to a subpopulation. Each
subpopulation is optimized individually either through a homogeneous or a heterogeneous evolutionary optimizer
[44]. Optimizations of subpopulations can be carried out either sequentially or in parallel. In the sequential case, only
one subpopulation evolves in each generation [33]. In contrast, in the parallel case, all subpopulations evolve in each
generation simultaneously [54]. The most widely used evolutionary optimizer in this area are genetic algorithms (GAs),
whereas differential evolution (DE) [49] is the most effective optimizer for CC.

3.2.3 Collaboration and Evaluation. Once subproblems are optimized, subpopulations cooperate to build a complete
solution to the problem. The fitness (objective function) of an individual is evaluated by selecting a collaborator
individual from each subpopulation. The performance of this collaboration is specified as the fitness value to an
individual being evaluated. Individuals having the best collaborating performance are joined together to discover the
final solution to the problem at the end of a CC process [44]. 1+1 collaboration [35], the 1+𝑁 collaboration model [13],
and reference sharing (RS) [44] are examples of collaboration models used in CC.

3.3 Supervised and Unsupervised Anomaly Detection Techniques

In this paper, both supervised and unsupervised anomaly techniques have been used to detect anomalies from cyberse-
curity datasets. In the case of supervised anomaly detection techniques, 10 supervised ML classifiers are used, which
fall into 5 different categories: Bayesian network, functions, instance-based learning, meta-classifiers, and decision
trees. The ML classifiers are naïve Bayes (NB), support vector machine (SVM), logistic regression (LR), simple logistic
regression (SLR), multilayer perception (MLP), k-Nearest Neighbor (k-NN), multiclass classifier (MCC), J48, random
forest (RF), and random tree (RT) [20]. In the case of unsupervised anomaly detection techniques, 10 unsupervised
techniques are used, which fall into 3 different categories: nearest neighbor, clustering, and statistical. The unsupervised
anomaly detection techniques are k-NN global anomaly score, local outlier factor (LOF), connectivity-based outlier
factor (COF), approximate local correlation integral (aLOCI), local outlier probability (LoOP), influenced outlierness
(INFLO), cluster-based local outlier factor (CBLOF), local density cluster-based outlier factor (LDCOF), clustering-based
multivariate Gaussian outlier score (CMGOS), and histogram-based outlier score (HBOS) [1]. The supervised and
unsupervised anomaly detection techniques are illustrated in Fig. 3 and Fig. 4.

9

TMIS, 2021, ACM, NY Rashid et al.

Supervised Anomaly Detection

NB k-NN

SVM

LR

SLR

MLP

Bayesian

Network
Functions

Instance-based

Learning

J48

RF

RT

MCC

Meta

Classifiers
Decision Trees

Fig. 3. Supervised anomaly detection techniques

Unsupervised Anomaly Detection

k-NN

LOF

COF

aLOCI

LoOP

INFLO

HBOS

CBLOF

LDCOF

CMGOS

Nearest Neighbour Clustering Statistical

Fig. 4. Unsupervised anomaly detection techniques [3]

3.4 Methodology

The proposed anomaly detection approach, ADUFS, is illustrated in Fig. 5. The preprocessing stage mainly deals with
the dataset conversion from CSV to ARFF to make it compatible with the experimental environment. Microsoft Excel
and WEKA6 have been used to preprocess the datasets. These datasets were then evaluated using both supervised and
unsupervised anomaly detection approaches.

In the supervised anomaly detection approach, the datasets were split into training and test datasets. The split
ratio between the training and test datasets were 60% and 40%, respectively. The training datasets were used to train
the model using and evaluated using the test datasets. Normalization and missing value replacement operators were
applied to preprocess the datasets for unsupervised anomaly detection approach when required. The anomaly detection
performance was calculated in terms of TPR and ET using all the 10 supervised ML classifiers mentioned in Section 3.3.
In the case of the unsupervised anomaly detection approach, the entire datasets were used to compute the outliers. TPR
and ET were then calculated to evaluate the performance of the unsupervised anomaly detection approach using the 10
unsupervised anomaly detection techniques mentioned in Section 3.3.

After the original datasets were used to detect anomalies, the FS approach inspired by our previous work, called
CCFSRFG [38], was used to reduce the dimension of the datasets. In CCFSRFG, a random feature grouping (RFG) based
dynamic decomposition was applied to decompose the datasets into multiple subdatasets. Formally, the CCFSRFG used
here can be described as follows:

A dataset 𝐷 consisting of 𝑛 features, i.e., 𝐷 = {𝑓1, 𝑓2, 𝑓3, . . . , 𝑓𝑛}. 𝐷 is decomposed randomly into𝑚 subdatasets with
𝑠 (𝑠 < 𝑛) features in each subdataset:

𝐷1 =
{
𝑓𝑖1 , 𝑓𝑖2 , . . . , 𝑓𝑖𝑠

}
𝐷2 =

{
𝑓𝑖1 , 𝑓𝑖2 , . . . , 𝑓𝑖𝑠

}
. . .

𝐷𝑚 =
{
𝑓𝑖1 , 𝑓𝑖2 , . . . , 𝑓𝑖𝑠

}
When the correlations are associated with a dataset’s records linearly, a linear correlation coefficient is applicable

for measuring the linear dependency between two random attributes in a network traffic dataset. In practice, the
correlation between the attributes (features) can be nonlinear for many real-world problems. Therefore, the nonlinear
dependency between the two features cannot be measured by a correlation study. Hence, selecting a subset of features
from the dataset that maximize the classification accuracy is more appropriate irrespective of whether the dependency
6https://www.cs.waikato.ac.nz/ml/weka/

10

https://www.cs.waikato.ac.nz/ml/weka/

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

E
x

te
rn

al

D
at

as
et

P
ro

ce
ss

ed
 D

at
as

et
F

ea
tu

re
 S

el
ec

ti
o
n

u
si

n
g

 C
C

F
S

R
G

D
at

as
et

 w
it

h

R
ed

u
ce

d
 F

ea
tu

re
s

E
x

ce
l

an
d

W
E

K
A

T
ra

n
sf

o
rm

S
u

p
e

rv
is

e
d

/

U
n

su
p

e
rv

is
e

d

A
n

o
m

al
y

 D
et

ec
ti

o
n

T
ra

in
in

g
 D

at
as

et
T

es
t

D
at

as
et

A
n
o
m

al
y

 D
et

ec
ti

o
n

S
p

li
t

D
at

as
et

S
u

p
e

rv
is

e
d

B
u

il
d

 M
o

d
el

C
o

m
p

u
te

 T
P

R
,

E
x

ec
u

ti
o

n
 T

im
e

D
et

ec
t

O
u

tl
ie

rs

U
n

su
p

e
rv

is
e

d

C
o
m

p
u

te
 T

P
R

,

E
x

ec
u
ti

o
n

 T
im

e

E
va

lu
a

te
 M

o
d

e
l

S
u

p
e

rv
is

e
d

/

U
n

su
p

e
rv

is
e

d

T
ra

in
in

g
 D

at
as

et
T

es
t

D
at

as
et

S
p

li
t

D
at

as
et

S
u

p
e

rv
is

e
d

B
u

il
d

 M
o

d
el

C
o
m

p
u

te
 T

P
R

,

E
x

ec
u

ti
o

n
 T

im
e

D
et

ec
t

O
u
tl

ie
rs

U
n

su
p

e
rv

is
e

d

C
o

m
p

u
te

 T
P

R
,

E
x
ec

u
ti

o
n

 T
im

e

E
va

lu
a

te
 M

o
d

e
l

In
v

es
ti

g
at

e
E

ff
ec

t
o

f

F
S

 o
n
 P

er
fo

rm
an

ce

In
v
es

ti
g
at

e
E

ff
ec

t
o

f

F
S

 o
n

 P
er

fo
rm

an
ce

Fi
g.
5.

Pr
op

os
ed

fe
at
ur
e
se
le
ct
io
n-
ba
se
d
an

om
al
y
de
te
ct
io
n
ap

pr
oa
ch

(A
D
U
FS

)

11

TMIS, 2021, ACM, NY Rashid et al.

between two features is linear or nonlinear [7]. Accordingly, the feature selection framework, CCFSRFG, with FRG as a
decomposer, selects a suitable subset of features without considering correlation.

Each subdataset is represented using a subpopulation in CCFSRFG. Here, 𝑠 is the number of features in each individual
(i.e., 𝑠 features of a subdataset). Consider the size of each subpopulation (𝑠𝑝) is 𝑠𝑧. An example of subpopulation 𝑠𝑝1

consisting 𝑠𝑧 individual can be the following:

𝑖𝑛𝑑1 = {0, 1, 1, 0, . . . , 1}

𝑖𝑛𝑑2 = {1, 1, 1, 0, . . . , 0}

. . .

𝑖𝑛𝑑𝑠𝑧 = {0, 1, 1, 1, . . . , 1}

1 in an individual indicates that the feature in the corresponding is selected for the feature subset selection; 0
indicates that the feature is not selected for the feature subset selection. An individual in any subpopulation is evaluated
by joining collaborators (i.e., individuals) from other subpopulations. For example, to evaluate individual 𝑖𝑛𝑑1 in
subpopulation 𝑠𝑝1, s.t. collaborator 𝑖𝑛𝑑3 from subpopulation 𝑠𝑝2 and collaborator 𝑖𝑛𝑑2 from subpopulation 𝑠𝑝3, these
three individuals are joined together to build a complete solution for the dataset with a reduced number features. Consider
a random decomposition of 9 features into three subpopulations (𝑠 = 4), is assumed with 𝑠𝑝1 {𝑖𝑛𝑑1}={𝑓3, 𝑓9, 𝑓7, 𝑓2},
𝑠𝑝2 {𝑖𝑛𝑑2}={𝑓6, 𝑓1, 𝑓5, 𝑓8}, and 𝑠𝑝3 {𝑖𝑛𝑑4}={𝑓4}. If features {𝑓7, 𝑓2} from 𝑠𝑝1 {𝑖𝑛𝑑1}, {𝑓1, 𝑓5} from 𝑠𝑝2 {𝑖𝑛𝑑2}, and {𝑓4}
from 𝑠𝑝3 {𝑖𝑛𝑑4} are selected because of a binary (0 or 1) representation of features, the complete solution with sorted
feature indices can be defined as follows:

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = {𝑓1, 𝑓2, 𝑓4, 𝑓5, 𝑓7}

The solution with this reduced number of features is then evaluated by the ML classifiers to measure accuracy,
sensitivity, and specificity performance. The best individual with a reduced number of features and the highest
classification accuracy is achieved by a penalty-based wrapper objective function introduced in the CCEAFS approach
[39]. The objective function for this is defined as

𝑓 = 𝑤1 ∗ 𝑓1 −𝑤2 ∗ 𝑓2 (1)

where 𝑓1 = 𝑇𝑐/𝑇 and 𝑓2 = 𝑆/𝑁 .

𝑓 is the overall objective function;

𝑤1 and 𝑤2 are two control parameters for the objective functions 𝑓1 and 𝑓2, which are used to adjust the penalty
term for 𝑓1 and 𝑓2, with𝑤1 +𝑤2 = 1;

𝑇 is the total number of test or train samples in the dataset (the test or train samples depend on the classification
mode of using cross-validation or the supplied test set);

𝑇𝑐 is the number of correctly classified instances in the test or train samples;

𝑆 is the number of features selected in the subset; and

𝑁 is the total number of features in the dataset.

In the first generation of CCFSRFG, when there was no previous information available, random collaborators
(i.e., individuals) from other subpopulations were used to build a complete solution that evaluated an individual in a

12

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

subpopulation. The best individuals from other subpopulations are used as collaborators from Generation 1 onwards.
The process continues until it reaches a fixed number of generations or until no better fitness is achieved over the
generations.

Once the FS, i.e., CCFSRFG, was applied to the datasets, the datasets with a reduced number of features were used to
detect anomalies using both supervised and unsupervised anomaly detection approaches. Similar to the supervised and
unsupervised anomaly detection approaches with original datasets, the same steps were used with the datasets with a
reduced number of features obtained through the FS using CCFSRFG. The performance of FS on datasets for anomaly
detection was investigated and compared between the original datasets and datasets with a subset of features.

The five cybersecurity datasets used in this paper have different complexities that range from a different number
of features and instances. To validate the effectiveness of the application of FS approach in cybersecurity datasets
in detecting anomalies efficiently, all datasets were preprocessed with a reduced number of randomized instances
(1,000 instances for each dataset), and the number of features remained the same as the original datasets. These
datasets were then used to detect anomalies using supervised and unsupervised anomaly detection approaches similar
to the process using original datasets. After that, CCFSRFG was applied to reduce the number of features from the
datasets with a reduced number of instances. These datasets with feature selection were used to detect anomalies
using both supervised and unsupervised anomaly detection approaches. Similar to the aforementioned performance
comparison, the performance of FS on datasets for anomaly detection was investigated and compared between the
datasets with a reduced number of instances and the datasets with a reduced number of instances and a reduced number
of features. Algorithms 1 and 2 are the pseudocodes of the proposed ADUFS approach using supervised anomaly
detection techniques and unsupervised anomaly detection techniques, respectively. A JAVA-based implementation of
ADUFS is available at GitHub.7

4 RESULTS AND DISCUSSIONS

Experimental results are included in this Section and analyzed with and without feature selection approaches.

4.1 Dataset Details

The datasets used in the experiments is listed in Table 2 with normal and anomaly data distribution.

Table 2. Distribution of normal and anomalous data. The Windows 10 and Windows 7 datasets belong to the TON_IoT
dataset.

Dataset Normal (%) Anomalous (%) No. of instances No. of features

Windows 108 69.13 30.87 35,975 125

Windows 79 78.92 21.08 28,367 133

UNSW_NB1510 44.94 55.06 82,332 42

NSL-KDD11 51.88 48.12 148,517 41

KDD9912 19.69 80.31 494,020 41

7https://github.com/bazlurrashid/cooperative-coevolution/tree/ADUFS/

13

https://github.com/bazlurrashid/cooperative-coevolution/tree/ADUFS/

TMIS, 2021, ACM, NY Rashid et al.

Algorithm 1 ADUFS-Supervised
Input: *.ARFF formatted dataset files;
Output: TPR, FPR, and ET;
1: Read the training dataset and set the class index;
2: Count the number of classes in the training data into 𝑛𝑢𝑚𝐶𝑙𝑎𝑠𝑠𝑒𝑠 ;
3: for 𝑥 = 1 to 𝑛𝑢𝑚𝐶𝑙𝑎𝑠𝑠𝑒𝑠 do
4: Store the class value into 𝑐𝑙𝑎𝑠𝑠𝑉𝑎𝑙𝑢𝑒 [𝑥];
5: end for
6: Define the classifier;
7: Build the classifier with the training dataset;
8: Read the unlabeled test dataset and set the class index;
9: Compute the number of unlabeled test instances into 𝑛𝑢𝑚𝑇𝑒𝑠𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ;
10: Read the ground truth dataset having only an anomaly class;
11: Count the number of anomaly instances in the ground truth data and store into 𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ;
12: Read the labeled test dataset and set the class index;
13: for 𝑥 = 1 to 𝑛𝑢𝑚𝑇𝑒𝑠𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 do
14: Read and store the class value of labeled test instance into 𝑐𝑙𝑠𝐿𝑎𝑏𝑒𝑙 ;
15: Read and store the class label of labeled test instance into 𝑎𝑐𝑡𝑢𝑎𝑙 [𝑥];
16: Classify the unlabeled instances and store the value into 𝑝𝑟𝑒𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛;
17: Label the instances for the value stored in 𝑝𝑟𝑒𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛;
18: Store the string value of labeled instances into 𝑝𝑟𝑒𝑑𝑆𝑡𝑟𝑖𝑛𝑔 [𝑥];
19: if 𝑎𝑐𝑡𝑢𝑎𝑙 [𝑥] == 𝑝𝑟𝑒𝑑𝑆𝑡𝑟𝑖𝑛𝑔 [𝑥] then
20: Increase the value of 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 by 1;
21: else
22: Increase the value of 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 by 1;
23: end if
24: end for
25: for 𝑥 = 1 to 𝑛𝑢𝑚𝐶𝑙𝑎𝑠𝑠𝑒𝑠 do
26: Store the 𝑐𝑙𝑎𝑠𝑠𝑉𝑎𝑙𝑢𝑒 [𝑥] into 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 ;
27: for 𝑦 = 1 to 𝑛𝑢𝑚𝑇𝑒𝑠𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 do
28: if 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 == 𝑎𝑐𝑡𝑢𝑎𝑙 [𝑦] AND 𝑎𝑐𝑡𝑢𝑎𝑙 [𝑦] == 𝑝𝑟𝑒𝑑𝑆𝑡𝑟𝑖𝑛𝑔 [𝑦] then
29: Increase the value of 𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡 [𝑖] by 1;
30: else if 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 == 𝑎𝑐𝑡𝑢𝑎𝑙 [𝑦] AND 𝑎𝑐𝑡𝑢𝑎𝑙 [𝑦]! = 𝑝𝑟𝑒𝑑𝑆𝑡𝑟𝑖𝑛𝑔 [𝑦] then
31: Increase the value of 𝑐𝑙𝑎𝑠𝑠𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 [𝑖] by 1;
32: else
33: // Do nothing here.
34: end if
35: end for
36: end for
37: for 𝑥 = 1 to 𝑛𝑢𝑚𝐶𝑙𝑎𝑠𝑠𝑒𝑠 do
38: Compute 𝑝𝑐𝑡𝐶𝑙𝑎𝑠𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡 [𝑥] = 𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡 [𝑥]/𝑛𝑢𝑚𝑇𝑒𝑠𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ∗ 100;
39: Compute 𝑝𝑐𝑡𝐶𝑙𝑎𝑠𝑠𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 [𝑥] = 𝑐𝑙𝑎𝑠𝑠𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 [𝑥]/𝑛𝑢𝑚𝑇𝑒𝑠𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ∗ 100;
40: end for
41: Compute 𝑝𝑐𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡 = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡/𝑛𝑢𝑚𝑇𝑒𝑠𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ∗ 100;
42: Compute 𝑝𝑐𝑡𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑖𝑛𝐶𝑜𝑟𝑟𝑒𝑐𝑡/𝑛𝑢𝑚𝑇𝑒𝑠𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ∗ 100;
43: Compute𝑇𝑃 = 𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡 [0]; 𝐹𝑁 = 𝑐𝑙𝑎𝑠𝑠𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 [0];
44: Compute𝑇𝑁 = 𝑐𝑙𝑎𝑠𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡 [1]; 𝐹𝑃 = 𝑐𝑙𝑎𝑠𝑠𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 [1];
45: Compute𝑇𝑃𝑅 = (𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)) ; 𝐹𝑃𝑅 = (𝐹𝑃/(𝐹𝑃 +𝑇𝑁)) ;
46: Compute𝑇𝑁𝑅 = (𝑇𝑁 /(𝐹𝑃 +𝑇𝑁)) ; 𝐹𝑁𝑅 = (𝐹𝑁 /(𝑇𝑃 + 𝐹𝑁)) ;
47: Compute𝑇𝑃𝑅_𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 = 𝑇𝑁 /𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ;
48: Display TPR, FPR, and ET;

8https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-ton-iot-Datasets/
9https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-ton-iot-Datasets/
10https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/

14

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-ton-iot-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-ton-iot-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

Algorithm 2 ADUFS-Unsupervised
Input: *.CSV formatted dataset files;
Output: TPR, FPR, and ET;
1: Using RapidMiner to compute the anomaly scores;
2: Sort the anomaly scores in descending order;
3: Separate the top instances based on the actual anomalies in the ground truth and store in a CSV file;
4: while Read the CSV files of actual anomalies and anomalies obtained in previous step until end do
5: Split the read lines into columns and store the first column’s values into 𝑔𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [𝑥] and 𝑜𝑢𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [𝑥];
6: Increase the value of 𝑥 by 1;
7: end while
8: Compute the number of anomaly instances from both CSV files and store into 𝑔𝑆𝑖𝑧𝑒 and 𝑜𝑢𝑡𝑆𝑖𝑧𝑒 , respectively;
9: Store the value of 𝑜𝑢𝑡𝑆𝑖𝑧𝑒 − 1 into 𝑛𝑢𝑚𝑠 array;
10: for 𝑥 = 1 to 𝑔𝑆𝑖𝑧𝑒 do
11: for 𝑦 = 1 to length of 𝑛𝑢𝑚𝑠 do
12: if 𝑔𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [𝑥] == 𝑜𝑢𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [𝑛𝑢𝑚𝑠 [𝑦]] then
13: Increase the value of 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 by 1;
14: Remove index 𝑦 from the 𝑛𝑢𝑚𝑠 array;
15: Jump the execution to the inner loop to continue checking with other index values;
16: end if
17: end for
18: end for
19: Assign the size of 𝑜𝑢𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 into 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 ;
20: Compute 𝑖𝑛𝐶𝑜𝑟𝑟𝑒𝑐𝑡 = 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 − 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ;
21: Compute𝑇𝑃𝑅 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡/𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 ;
22: Display TPR, FPR, and ET;

The five cybersecurity datasets have been used with increasing complexities. The datasets have been selected with
samples between 28,367 and 494,020 and a dimensionality between 41 and 133. The share of normal instances in the
datasets ranges between 19.69% and 78.92%, while the share of anomalous instances ranges between 21.08% and 80.31%.
Here the anomalous instances include the instances that are not normal. These are DDoS, DoS, Injection, MITM,
Password, XSS, and Scanning in the Windows 10 dataset; DDoS, DoS, Backdoor, Injection, Password, XSS, Scanning, and
Ransomware in Windows 7; Reconnaissance, Backdoor, DoS, Exploits, Analysis, Fuzzers, Worms, Shellcode, and Generic
in UNSW_NB15; and Buffer_overflow, Loadmodule, Perl, Neptune, Smurf, Guess_passwd, Pd, Teardrop, Portsweep,
IPsweep, Land, FTP_Write, Back, IMap, Satan, Phf, NMap, Multihop, Warezmaster, Warezclient, Spy, and Rootkit in the
KDD99 dataset. In the NSL-KDD dataset, there are only two classes: normal and anomaly. As one of the objectives of the
proposed anomaly detection approach is to validate the application of FS in detecting anomalies by a reduced number
of instances (1,000 instances) for each dataset, Table 3 lists the same datasets with a reduced number of instances and
corresponding ratios of normal and anomalous instances. These datasets, with a reduced number of instances, have
been selected carefully to maintain a similar proportion of normal and anomalous instances in each dataset. Interested
readers can find the dataset descriptions in the respective dataset repositories.

4.2 Unsupervised Anomaly Detection Parameters

The parameters used for different unsupervised anomaly detection techniques using RapidMiner13 are described
here. The maximum value of k, when required for different anomaly detection techniques, has been selected based

11https://www.unb.ca/cic/datasets/nsl.html
12http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
13https://rapidminer.com

15

https://www.unb.ca/cic/datasets/nsl.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://rapidminer.com

TMIS, 2021, ACM, NY Rashid et al.

Table 3. Distribution of normal and anomalous data with a reduced number of instances.

Dataset Normal (%) Anomalous (%) No. of instances No. of features

Windows 10 68.70 31.30 1,000 125

Windows 7 77.50 22.50 1,000 133

UNSW_NB15 43.00 57.00 1,000 42

NSL-KDD 52.40 47.60 1,000 41

KDD99 18.10 81.90 1,000 41

on the ceiling of the square root of the total number of instances in a dataset, while the minimum value was kept
at 2. For example, if a dataset has 100 instances, the maximum value of 𝑘 is 10. Mixed measures and mixed Eu-
clidean Distance parameters were set for 𝑘-NN, LOF, COF, aLOCI, LoOp, INFLO, CBLOF, LDCOF, and CMGOS. For
aLOCI, 𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 𝑜 𝑓 𝑙𝑒𝑣𝑒𝑙𝑠 𝐿 = 4, 𝑡𝑟𝑒𝑒 𝑑𝑒𝑝𝑡ℎ(𝑙𝑒𝑣𝑒𝑙𝑠) = 10, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑔𝑟𝑖𝑑𝑠 = 20, 𝑛 𝑚𝑖𝑛 = 20; For CBLOF,
𝑎𝑙𝑝ℎ𝑎 = 90.0, 𝑏𝑒𝑡𝑎 = 5.0; For LDCOF, 𝑔𝑎𝑚𝑚𝑎 = 0.1; For CMGOS, 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓 𝑜𝑟 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑙𝑎𝑠𝑠 = 0.975, 𝑔𝑎𝑚𝑚𝑎 =

0.1, 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛, 𝑡𝑖𝑚𝑒𝑠 𝑡𝑜 𝑟𝑒𝑚𝑜𝑣𝑒 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 = 1; For HBOS, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑚𝑜𝑑𝑒 = 𝑎𝑙𝑙 .

4.3 The CC Parameters

The common CC parameters used in the experiments are listed in Table 4.

Table 4. The CC parameters details

Phases Options

Problem decomposition Dynamic (RFG)
Subproblem evolution GA
Collaboration and evaluation 1+𝑁

The problem decomposition parameters used in the experiments are listed in Table 5.

Table 5. The decomposition parameters used for the experiments for original datasets and datasets with a reduced number
of instances.

Name No. of Subpopulation Subpopulation size

Windows 10 3 [42, 42, 41] 30
Windows 7 3 [45, 45, 43] 30
UNSW_NB15 2[22, 20] 30
NSL-KDD 2[21, 20] 30
KDD99 2[21, 20] 30

The common GA parameters used in the experiments are listed in Table 6.
In the case of GA optimization, the binary representation of the population is used, in which a binary 1 indicates

that a feature is selected, and a binary 0 indicates that a feature is not selected from the dataset. Subpopulations were
initialized randomly at generation 0. For CCFSRFG, in generation 0, since there is no previous history, to evaluate an
individual in a subpopulation, random collaboration has been performed to collaborate with individuals from other

16

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

Table 6. The GA parameters details

Parameters Value

Individual representation Binary (0 or 1)
Crossover rate 100%
Mutation rate 5%
Elitism 1
Selection strategy Tournament selection

subpopulations. In the subsequent generations, the best individuals from the previous generation were used as the
collaborators for evaluating an individual in a subpopulation. Collaboration performance, i.e., the fitness value was
assigned to the individual being evaluated. The best individuals were combined from all subpopulations to obtain the
best individual in a generation. To evaluate an individual in any subpopulation, the parameters for weightings 𝑤1

and𝑤2 were set to 0.6 and 0.4, respectively. A maximum number of 10,000 generations were allowed as a terminating
condition for the evolutionary process while verifying that there is no further improvement in the fitness value.

4.4 Experimental Results and Analysis

The first phase of our methodology is to apply the FS technique using CC in cybersecurity datasets to detect anomalies
and compare the anomaly detection performances with and without FS. Hence, the FS method, CCFSRFG [38], proposed
in our previous study using naïve Bayes classifier has been applied to the cybersecurity datasets listed in Table 2. The FS
process performance was evaluated using cross-validation. Typically, multiple evaluation metrics are used to indicate
the quality of a machine learning model. In this article, accuracy, true positive rate (TPR), false positive rate (FPR), and
execution time (ET) have been used throughout the paper where required. A summary of the performance results of
CCFSRFG is listed in Table 7 in terms of accuracy and number of features subset selection. The Table also lists the
execution time of CCFSRFG of all datasets within an hour.

Table 7. Summary of results for all datasets with and without FS using a naïve Bayes classifier.

Without FS With FS

Dataset ACC (%) No. of features ACC (%) No. of features Execution time (hour)

Windows 10 77.78 125 94.08 3 18.96

Windows 7 81.59 133 94.99 12 13.69

UNSW_NB15 76.34 42 82.47 6 3.73

NSL-KDD 87.28 41 88.19 3 7.13

KDD99 98.39 41 97.96 1 22.93

From Table 7, it can be observed that CCFSRFG was able to select a suitable subset of features with a very low number
of features compared to the original number of features in the dataset. With the exception of the KDD99 dataset, the
classification accuracy was improved significantly for all other datasets. For the Windows 10, Windows 7, UNSW_NB15,
and NSL-KDD datasets, the improvement in classification accuracy was 20.96%, 16.42%, 8.03%, and 1.04%, respectively. In
the case of selecting a suitable feature subset that improves classification accuracy, the percentage of reduction observed

17

TMIS, 2021, ACM, NY Rashid et al.

for each dataset listed in order were 97.6%, 90.98%, 85.71%, 92.68%, and 97.56%, respectively. Although CCFSRFG was
able to select a suitable subset of features with a reduced number of features for each dataset, this was at the cost of a
slight reduction of 0.44% in classification accuracy compared to the original accuracy using all features in the KDD99
dataset. In terms of the execution time taken by each dataset for the FS process, the UNSW_NB15 dataset required the
least amount of execution time, while KDD99 required the most. It can be seen that the execution time required for the
feature selection process depends on the increasing complexities of the datasets used in the experiments. Here, the
increasing complexities indicate either the increasing number of features or the increasing number of instances in the
datasets. The performance results of FS on the original datasets are also displayed graphically in Fig. 6 to clearly show
the improvements using feature selection.

1
2
5

1
3
3

3

1
2

0

30

60

90

120

Windows10 Windows7
N

o
.
o
f

fe
at

u
re

s

Original FS

4
2

4
1

4
1

6

3

1

0

10

20

30

40

UNSW_NB15 NSL-KDD KDD99

N
o
.
o
f

fe
at

u
re

s

Original FS

(a) (b) (c)

7
7
.7

8 8
1
.5

9

7
6
.3

4

8
7
.2

8

9
8
.3

9

9
4
.0

8

9
4
.9

9

8
2
.4

7

8
8
.1

9

9
7
.9

6

70

75

80

85

90

95

100

Windows10 Windows7 UNSW_NB15 NSL-KDD KDD99

A
cc

u
ra

cy
 (

%
)

Original FS

Fig. 6. Performance evaluation of the NB classifier with and without FS on all datasets, (a) Accuracy (b) No. of features on Windows
10 and Windows 7 datasets (c) No. of features on UNSW_NB15, NSL-KDD, and KDD99 datasets.

The original datasets and the datasets with a reduced number of features are used to detect anomalies using supervised
and unsupervised anomaly detection approaches. The experimental results of supervised anomaly detection techniques
in terms of TPR (%) are summarized in Table 8. The values indicated with bold in Table 8 indicate the improvements in
the application of FS in anomaly detection. Here, it can be observed that the highest TPRs (%) in detecting anomalies
were 98.81, 99.14, 97.71, 79.51, and 99.65 for the original Windows 10, Windows 7, UNSW_NB15, NSL-KDD, and KDD99
datasets by different supervised ML classifiers. The highest TPRs (%) in detecting anomalies by FS were 99.10, 99.01,
82.21, 94.30, and 97.86 for the Windows 10, Windows 7, UNSW_NB15, NSL-KDD, and KDD99 datasets with the selected
subset of features by different supervised ML classifiers.

The comparative performance results of anomaly detection using supervised anomaly detection techniques from
the Table 8 is illustrated in Fig. 7 only where the application of FS in detecting anomalies improve the detection
performance. It can be observed from Fig. 7 that for different datasets, different numbers of classifiers improve the
detection performance. For the Windows 10, Windows 7, UNSW_NB15, NSL-KDD, and KDD99 datasets, 8, 2, 2, 3, and
7 classifiers can improve the anomaly detection performance. In the case of Windows 10, the highest TPR was 99%
(NB), and the lowest one was about 89% (MLP) by FS. For the next three datasets, the highest and the lowest TPR by FS
were about 99% (J48) and 98% (RT), 66% (NB) and 58% (MLP), 94% (k-NN), and 60% (SVM), respectively. For KDD99, the
highest and lowest TPR was 98% by RT and SVM, respectively. Furthermore, it can be observed that MLP was the most
common classifier, which can improve the anomaly detection performance using FS in comparison to using original
features except for the Windows 7 dataset. From the simulation results in Fig. 7, it can be concluded that the supervised

18

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

Table 8. Summary of performance of the individual (supervised) anomaly detection techniques in terms of TPR (%) with
and without FS for all datasets. "Ori" indicates TPR(%) without FS and "FS" indicates TPR(%) with FS.

Classifier With or Dataset

Without FS Windows 10 Windows 7 UNSW_NB15 NSL-KDD KDD99

NB Ori 96.81 86.21 65.53 65.18 98.02
FS 94.63 81.46 65.98 60.80 97.75

SVM Ori 93.71 85.22 67.14 56.18 71.89
FS 95.46 72.68 57.98 60.59 97.70

J48 Ori 97.10 98.20 94.65 70.40 99.65
FS 99.10 98.76 79.16 58.30 97.86

RF Ori 98.81 99.14 97.71 65.26 28.89
FS 97.93 99.01 56.12 58.31 97.82

LR Ori 94.95 92.59 64.69 79.51 75.10
FS 94.99 72.08 63.14 60.00 97.77

k-NN Ori 95.42 94.43 72.93 56.89 98.99
FS 95.49 58.51 63.29 94.30 97.83

RT Ori 96.14 97.82 92.69 76.72 28.01
FS 96.30 97.90 82.21 58.18 97.83

MCC Ori 94.95 92.59 64.69 79.51 75.10
FS 94.99 72.08 63.14 60.00 97.77

SLR Ori 93.22 86.60 83.18 75.08 86.59
FS 94.99 63.04 64.82 59.88 97.77

MLP Ori 89.07 98.24 54.87 60.07 28.36
FS 89.36 58.77 57.77 92.57 97.80

anomaly detection techniques perform equally good for the Windows 10 and KDD99 datasets for most of the classifiers
when using feature selection.

The summary of timing performance of the individual supervised anomaly detection techniques in terms of execution
time in second with and without FS for all original datasets is listed in Table 8.

The average of the execution time of the individual supervised anomaly detection techniques on all original datasets
with and without FS is shown in Fig. 8. As it is expected to take reduced computing time to detect anomalies from all
the original datasets with FS, the simulation results indicate the same. It can be observed that the highest amount of
average time required for anomaly detection was by MLP, and the lowest amount of average time was required by
RT when using original datasets. When FS was used, the highest time was required by MLP similar to the original
datasets; however, the lowest one was required by the NB classifier. In summary, from the Fig. 8 (C), it can be clearly
observed that a 68.29% decrease in average time was required for all datasets when using FS in comparison to the
original datasets.

The experimental results of unsupervised anomaly detection techniques in terms of TPR (%) and ET (second) are
summarized in Table 10 and 11. The values with bold text in Table 10 indicate the improvements in the application of
FS in anomaly detection for all datasets. Here, it can be observed that the highest TPRs in detecting anomalies were

19

TMIS, 2021, ACM, NY Rashid et al.

8
9
.0

7

9
3
.2

2 9
4
.9

5

9
4
.9

5

9
3
.7

1 9
5
.4

2

9
6
.1

4

9
7
.1

0

8
9
.3

6

9
4
.9

9

9
4
.9

9

9
4
.9

9

9
5
.4

6

9
5
.4

9

9
6
.3

0

9
9
.1

0

85

90

95

100

MLP SLR LR MCC SVM k-NN RT J48

T
P

R
 (

%
)

Original FS

9
7
.8

2

9
8
.2

0

9
7
.9

0

9
8
.7

6

90

95

100

RT J48

T
P

R
 (

%
)

Original FS

5
4
.8

7

6
5
.5

3

5
7
.7

7

6
5
.9

8

50

55

60

65

70

MLP NB

T
P

R
 (

%
)

Original FS

5
6
.1

8

6
0
.0

7

5
6
.8

9

6
0
.5

9

9
2
.5

7

9
4
.3

0

50

60

70

80

90

100

SVM MLP k-NN

T
P

R
 (

%
)

Original FS

7
1
.8

9

7
5
.1

0

7
5
.1

0

8
6
.5

9

2
8
.3

6

2
8
.8

9

2
8
.0

1

9
7
.7

0

9
7
.7

7

9
7
.7

7

9
7
.7

7

9
7
.8

0

9
7
.8

2

9
7
.8

3

25

50

75

100

SVM LR MCC SLR MLP RF RT
T

P
R

 (
%

)
Original FS

(a) (b) (c)

(d) (e) (f)

Windows10

Windows7

UNSW_NB15

NSL-KDD

KDD99

NB

SVM

J48

RF

LR

k-NN

RT

MCC

SLR

MLP

Fig. 7. Performance of the individual (supervised) anomaly detection techniques with and without FS on all datasets, (a) Performance
improvement by FS for all dataset, (b) TPR for Windows 10, (c) TPR for Windows 7, (d) TPR for UNSW_NB15, (e) TPR for NSL-KDD,
and (f) TPR for KDD99.

(a) (b) (c)

3
.7

6

1
3
.5

1

4
0
.9

0

6
4
.6

9

2
.7

0

6
1
.8

8

0
.8

6

1
.3

1

1
0
.2

4

6
.3

4

0
.9

8 6
.2

8

0

15

30

45

60

75

NB J48 RF LR RT MCC

A
v
er

ag
e

T
im

e
(S

ec
o
n
d
s)

Original FS

4
2
6
.2

5

1
8
0
0
.8

9

2
0
5
.1

0

4
2
8
5
.9

2

2
6
9
.6

2

4
6
9
.0

4

1
4
.3

2

1
4
1
0
.5

9

0

1000

2000

3000

4000

5000

SVM k-NN SLR MLP

A
v
er

ag
e

T
im

e
(S

ec
o
n
d
s)

Original FS

6
9
0
.5

6

2
1
8
.9

6

0

200

400

600

800

A
v
er

ag
e

T
im

e
(S

ec
o
n
d
s)

Original FS

Fig. 8. Timing performance of the individual (supervised) anomaly detection techniques with and without FS on all datasets (a) NB,
J48, RF, LR, RT, and MCC, (b) SVM, k-NN, SLR, and MLP, (c) Anomaly detection (supervised) timing performance comparison with
and without FS on all datasets.

20

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

Table 9. Summary of timing performance of the individual (supervised) anomaly detection techniques in terms of
execution time (second) with and without FS for all datasets. "Ori" indicates execution time (second) without FS and "FS"
indicates execution time (second) with FS.

Classifier With or Dataset

Without FS Windows 10 Windows 7 UNSW_NB15 NSL-KDD KDD99

NB Ori 3.24 2.45 2.37 2.32 8.44
FS 0.64 0.73 0.85 0.76 1.31

SVM Ori 27.22 23.45 268.02 1,251.00 561.54
FS 1.56 5.45 1,014.00 324.96 2.11

J48 Ori 7.78 4.82 5.28 19.78 29.88
FS 0.83 1.03 1.62 1.34 1.71

RF Ori 12.86 7.40 18.35 45.96 119.94
FS 2.78 2.86 10.04 12.20 23.33

LR Ori 29.63 8.12 60.66 71.16 153.90
FS 0.84 1.04 24.01 2.14 3.66

k-NN Ori 29.80 12.88 93.30 300.48 8,568.00
FS 7.44 6.48 38.74 142.14 2,150.40

RT Ori 2.38 1.61 1.72 2.16 5.64
FS 0.62 0.73 0.94 0.92 1.67

MCC Ori 27.75 8.06 60.72 72.42 140.46
FS 0.88 1.03 23.56 2.10 3.83

SLR Ori 45.41 46.65 236.04 128.70 568.68
FS 2.25 2.39 28.01 11.07 27.90

MLP Ori 985.20 810.00 4,644.00 4,503.60 10,486.80
FS 4.90 15.49 2,481.60 26.47 47.34

about 50%(LDCOF), 60% (aLOCI), 70% (aLOCI), 89% (CBLOF, LDCOF), and 82% (INFLO) for all original datasets in order,
respectively. On the other hand, the highest TPRs in detecting anomalies by FS were about 41% (CBLOF), 55% (k-NN),
60% (CBLOF, LDCOF), 78% (INFLO), and 85% (aLOCI) for all datasets in order with the selected subset of features,
respectively.

The comparative performance results of anomaly detection using unsupervised anomaly detection techniques from
Table 10 are illustrated in Fig. 9 one for the results when FS in detecting anomalies improve the detection performance
compared to the original datasets. It can be observed that from Fig. 9 that a different number of anomaly detection
techniques improve the detection performance for different datasets. For the Windows 10, Windows 7, UNSW_NB15,
NSL-KDD, and KDD99 datasets, 1, 9, 6, 4, and 5 anomaly detection techniques can improve the anomaly detection
performance. In the case of the Windows 10 dataset, the TPR was above 30% (LOF). For the rest of the datasets, the
highest and the lowest TPR by FS were about 55% (k-NN) and 22% (LoOP), 60% (LDCOF and CBLOF) and 45% (CMGOS),
78% (INFLO), and 35% (aLOCI), and 85% (aLOCI) and 75% (k-NN, COF, LoOP, and HBOS), respectively. Furthermore, it
can be observed that LOF was the common anomaly detection technique, which can improve the detection performance
when using feature selection for all datasets.

21

TMIS, 2021, ACM, NY Rashid et al.

Table 10. Summary of performance of the individual (unsupervised) anomaly detection techniques in terms of TPR (%)
with and without FS for all datasets. "Ori" indicates TPR(%) without FS and "FS" indicates TPR(%) with FS.

Technique With or Dataset

Without FS Windows 10 Windows 7 UNSW_NB15 NSL-KDD KDD99

k-NN Ori 30.84 43.29 38.51 14.14 75.48
FS 30.53 55.25 33.35 10.92 75.48

LOF Ori 29.39 26.77 55.84 42.75 81.45
FS 30.55 37.98 56.43 63.32 75.61

COF Ori 33.17 23.81 54.21 45.25 75.48
FS 26.26 26.51 57.61 15.87 75.48

aLOCI Ori 32.62 59.73 69.99 8.97 75.48
FS 28.69 31.82 18.38 35.12 84.63

LoOP Ori 31.58 20.03 51.75 46.55 75.48
FS 25.81 22.46 57.60 12.22 75.48

INFLO Ori 30.94 25.94 59.64 45.72 81.66
FS 28.90 26.09 56.15 77.60 75.61

CBLOF Ori 47.16 5.23 41.14 89.15 77.34
FS 41.16 26.17 60.45 38.70 75.49

LDCOF Ori 50.20 9.06 40.70 89.15 77.34
FS 10.83 23.56 60.45 38.01 75.74

CMGOS Ori 20.79 11.59 36.84 27.35 75.68
FS 15.03 39.65 45.39 37.82 75.57

HBOS Ori 30.33 37.54 45.17 60.13 75.48
FS 26.06 43.96 36.45 44.06 75.48

The summary of timing performance of the individual unsupervised anomaly detection techniques in terms of
execution time is listed in Table 11.

The average execution times of the unsupervised anomaly detection techniques on all original datasets with and
without FS is shown in Fig. 10. The simulation results confirm that the anomaly detection techniques take less time
than the original datasets with feature selection. It can be observed that the highest amount of average time required
for anomaly detection by COF and the lowest amount of average time was required by HBOS when using the original
datasets. When FS was used, LOF requires the most time, and aLOCI the least. From Fig. 10 (c), it can be clearly observed
that an 80.66% decrease in average time was required for all datasets when using FS in comparison to using the original
datasets.

The second phase of the methodology is to apply the FS technique using CC in the cybersecurity datasets to detect
anomalies in order to confirm the impact of FS with the same number of instances in each dataset. Hence, the FS method
CCFSRFG using naïve Bayes classifier has been applied to the cybersecurity datasets listed in Table 3 with a reduced
number of instances (1,000 instances). Similar to the previous phase, the FS process performance was evaluated using
cross-validation. A summary of the performance results of CCFSRFG in the reduced number of instances datasets is

22

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

(a) (b) (c)

(d) (e) (f)

2
9

.3
9 3
0

.5
5

20

25

30

LOF

T
P

R
 (

%
)

Original FS

2
0

.0
3

9
.0

6

2
5

.9
4

5
.2

3

2
3

.8
1

2
6

.7
7

1
1

.5
9

3
7

.5
4 4
3

.2
9

2
2

.4
6

2
3

.5
6

2
6

.0
9

2
6

.1
7

2
6

.5
1

3
7

.9
8

3
9

.6
5

4
3

.9
6

5
5

.2
5

0

20

40

60

LoOP LDCOF INFLO CBLOF COF LOF CMGOS HBOS k-NN

T
P

R
 (

%
)

Original FS

3
6

.8
4

5
5

.8
4

5
1

.7
5

5
4

.2
1

4
0

.7
0

4
1

.1
44

5
.3

9

5
6

.4
3

5
7

.6
0

5
7

.6
1

6
0

.4
5

6
0

.4
5

30

40

50

60

CMGOS LOF LoOP COF LDCOF CBLOF

T
P

R
 (

%
)

Original FS

8
.9

7

2
7

.3
5

4
2

.7
5

4
5

.7
2

3
5

.1
2

3
7

.8
2

6
3

.3
2

7
7

.6
0

0

20

40

60

80

aLOCI CMGOS LOF INFLO

T
P

R
 (

%
)

Original FS

7
5

.4
8

7
5

.4
8

7
5

.4
8

7
5

.4
8

7
5

.4
8

7
5

.4
8

7
5

.4
8

7
5

.4
8

7
5

.4
8

8
4

.6
3

50

60

70

80

90

k-NN COF LoOP HBOS aLOCI

T
P

R
 (

%
)

Original FS

Windows10

Windows7

UNSW_NB15

NSL-KDD

KDD99

k-NN

LOF

COF

aLOCI

LoOP

INFLO

CBLOF

LDCOF

CMGOS

HBOS

Fig. 9. Performance of the individual (unsupervised) anomaly detection techniques with andwithout FS on all datasets, (a) Performance
improvement by FS for all dataset, (b) TPR for Windows 10, (c) TPR for Windows 7, (d) TPR for UNSW_NB15, (e) TPR for NSL-KDD,
and (f) TPR for KDD99.

(a) (b) (c)

7
1
3
.4

5

1
3
7
1
.2

2

2
1
1
4
.6

9

1
1
1
2
.9

6

1
0
9
0
.6

2

1
4
0
.2

2

1
7
4
.3

3

1
7
0
.8

6

1
6
2
.2

7

1
1
3
.8

5

100

600

1100

1600

2100

2600

k-NN LOF COF LoOP INFLO

A
v
er

ag
e

T
im

e
(S

ec
o
n
d
s)

Original FS

7
1
3
.6

7

1
3
8
.0

3

0

200

400

600

800

A
v
er

ag
e

T
im

e
(S

ec
o
n
d
s)

Original FS

1
8
5
.4

2

1
3
0
.8

1 1
4
3
.9

1

1
5
1
.4

6

1
2
2
.1

1

1
1
2
.9

4

1
3
0
.8

5

1
2
5
.6

9

1
3
3
.5

1

1
1
5
.8

2

100

125

150

175

200

aLOCI CBLOF LDCOF CMGOS HBOS

A
v
er

ag
e

T
im

e
(S

ec
o
n
d
s)

Original FS

Fig. 10. Timing performance of the individual (unsupervised) anomaly detection techniques with and without FS on all datasets, (a)
k-NN, LOF, COF, LoOP, and INFLO, (b) aLOCI, CBLOF, LDCOF, CMGOS, and HBOS, (c) Anomaly detection (unsupervised) timing
performance comparison with and without FS on all datasets.

23

TMIS, 2021, ACM, NY Rashid et al.

Table 11. Summary of timing performance of the individual (unsupervised) anomaly detection techniques in terms of
execution time (second) with and without FS for all datasets. "Ori" indicates execution time (second) without FS and "FS"
indicates execution time (second) with FS.

Technique With or Dataset

Without FS Windows 10 Windows 7 UNSW_NB15 NSL-KDD KDD99

k-NN Ori 215.91 153.43 317.32 2,35.55 2,645.06
FS 79.99 29.39 112.45 27.84 451.44

LOF Ori 225.89 122.44 298.88 2,430.32 3,778.58
FS 83.76 32.41 147.20 17.52 590.76

COF Ori 367.85 209.45 419.23 3,004.18 6,572.72
FS 95.11 41.53 137.18 26.32 554.16

aLOCI Ori 13.85 16.36 45.80 92.88 758.20
FS 3.78 10.54 14.61 24.23 511.56

LoOP Ori 241.86 137.44 260.47 1,969.43 2,955.62
FS 77.80 29.95 103.33 26.32 573.96

INFLO Ori 188.95 119.43 257.89 1,969.93 2,916.92
FS 61.73 32.56 102.42 8.52 364.02

CBLOF Ori 6.79 9.46 21.78 23.76 592.26
FS 0.82 0.47 8.63 19.11 625.20

LDCOF Ori 6.75 9.47 21.78 25.13 656.40
FS 0.85 0.49 8.18 20.65 598.26

CMGOS Ori 19.06 11.49 25.98 41.58 659.20
FS 0.80 1.45 9.09 22.22 634.00

HBOS Ori 1.88 1.43 8.36 19.68 579.22
FS 0.78 0.46 10.43 20.93 546.48

listed in Table 12 in terms of accuracy and the number of features. The table also lists the execution time of CCFSRFG
of all datasets.

Table 12. Summary of results for all datasets having a reduced number of instances with and without FS using a naïve
Bayes classifier.

Without FS With FS

Dataset ACC (%) No. of features ACC (%) No. of features Execution time (minute)

Windows 10 77.40 125 94.90 3 21.75

Windows 7 81.00 133 89.70 11 19.82

UNSW_NB15 76.20 42 81.60 4 2.25

NSL-KDD 86.40 41 91.50 3 2.75

KDD99 98.40 41 98.10 1 1.97

24

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

From Table 12, it can be observed that CCFSRFG was able to select a suitable subset of features similar to the first
phase with a very low number of features. Similar to the first phase—with the exception of the KDD99 dataset—the
classification accuracy was improved significantly for all datasets. For the Windows 10, Windows 7, UNSW_NB15, and
NSL-KDD datasets, the percentage of improvement in classification accuracy was 22.61%, 10.74%, 7.09%, and 5.89%,
respectively. In selecting a suitable feature subset that improves classification accuracy, the reduction observed for each
dataset listed in order were 97.60%, 91.73%, 90.48%, 92.68%, and 97.56%, respectively. Although CCFSRFG was able to
select a suitable subset of features with a reduced number of features in each dataset, this came at the cost of a very
slight reduction in classification accuracy (0.30%) compared to the original accuracy using all features in the KDD99
dataset. It was similar to the first phase of the methodology. The feature selection process is very time-consuming. This
section’s objective was to see the impacts of the FS process on each dataset with an equal number of instances. It can be
observed that the execution time required for the FS process depends on the increasing complexities of each dataset,
i.e., here it depends on the number of features in the original dataset. To clearly show the performance improvements
on each dataset by a FS process on an equal number of instances, the results are also displayed in Fig. 11.

1
2

5

1
3

3

3

1
1

0

30

60

90

120

Windows10 Windows7

N
o

.
o

f
fe

at
u

re
s

Original FS

4
2

4
1

4
1

4 3

1

0

10

20

30

40

UNSW_NB15 NSL-KDD KDD99
N

o
.

o
f

fe
at

u
re

s

Original FS

7
7

.4
0 8

1
.0

0

7
6

.2
0

8
6

.4
0

9
8

.4
0

9
4

.9
0

8
9

.7
0

8
1

.6
0

9
1

.5
0

9
8

.1
0

70

75

80

85

90

95

100

Windows10 Windows7 UNSW_NB15 NSL-KDD KDD99

A
cc

u
ra

cy
 (

%
)

Original FS

(a) (b) (c)

Fig. 11. Performance evaluation of the NB classifier with and without FS on all datasets with a reduced number of instances, (a)
Accuracy, (b) No. of features on the Windows 10 and Windows 7 datasets, and (c) No. of features on the UNSW_NB15, NSL-KDD, and
KDD99 datasets.

As this stage, the methodology aims to investigate the impacts of FS on an equal number of instances in each dataset,
the datasets with the reduced number of instances (1,000 instances) were experimented to detect anomalies again
using both supervised and unsupervised anomaly detection approaches. The experimental results of the supervised
anomaly detection techniques in terms of TPR (%) are summarized in Table 13. The values with bold texts indicate the
improvements in anomaly detection when using feature selection. Here, it can be observed that a larger number of
supervised anomaly detection techniques were able to improve the detection performance using FS for four datasets.
For Windows 7, only one algorithm (k-NN) could improve detection performance with FS compared two algorithms
(J48 and RT) with FS using the original Windows 7 dataset. The highest TPRs (%) reported by any anomaly detection
technique for each dataset in order when using FS was 97.35 (SVM, J48, LR, MCC, and SLR), 92.55 (k-NN), 96.40 (NB),
92.19 (LR, MCC), and 98.13 (LR and MCC), respectively.

The comparative performance results of supervised anomaly detection techniques on the datasets with a reduced
number of instances are displayed in Fig. 12 only when FS can improve the detection performance for any dataset.
It can be observed from the simulation that an increased number of supervised anomaly detection techniques can

25

TMIS, 2021, ACM, NY Rashid et al.

Table 13. Summary of performance of the individual (supervised) anomaly detection techniques in terms of TPR (%) with
and without FS for all datasets with a reduced number of instances. "Ori" indicates TPR(%) without FS and "FS" indicates
TPR(%) with FS.

Classifier With or Dataset

Without FS Windows 10 Windows 7 UNSW_NB15 NSL-KDD KDD99

NB Ori 90.27 85.11 63.96 89.06 98.44
FS 96.46 70.21 96.40 79.17 98.13

SVM Ori 91.15 79.79 48.20 86.46 1.87
FS 97.35 10.64 61.71 90.10 97.82

J48 Ori 87.61 96.81 94.14 94.79 99.07
FS 97.35 84.04 87.84 81.77 97.82

RF Ori 88.50 90.43 86.04 95.83 98.75
FS 92.92 89.36 88.29 60.94 97.82

LR Ori 84.07 82.98 15.77 78.65 2.18
FS 97.35 60.64 68.02 92.19 98.13

k-NN Ori 83.19 91.49 68.02 89.58 99.69
FS 89.38 92.55 85.14 76.04 97.82

RT Ori 84.07 86.17 63.06 49.48 0.00
FS 92.04 85.11 85.14 51.04 97.82

MCC Ori 84.07 82.98 15.77 78.65 2.18
FS 97.35 60.64 68.02 92.19 98.13

SLR Ori 88.50 84.04 60.36 86.46 75.70
FS 97.35 57.45 68.47 88.54 97.82

MLP Ori 84.96 91.49 59.01 84.90 72.59
FS 96.46 84.04 89.64 81.25 97.82

improve detection performance, which can be seen from the cases of four datasets (except for Windows 7) as compared
to the original datasets, as illustrated in Fig. 7. It can be noted that a total of 9 classifiers improved the detection
performance on the UNSW_NB15 dataset with 1,000 instances. In contrast, in the same dataset with all instances,
only two classifiers improved detection performance when using feature selection. Furthermore, in the Windows 10
dataset with 1,000 instances, all supervised classifiers can improve anomaly detection performance, increasing two
more classifiers’ performance compared to the original Windows 10 dataset.

The summary of timing performance of the individual supervised anomaly detection techniques in terms of execution
time with and without FS for all datasets with the reduced number of instances is listed in Table 14.

The average execution time of the individual supervised anomaly detection techniques on all datasets with the
reduced number of instances with and without FS is displayed in Fig. 13. Similar to the original datasets, the time taken
by each supervised detection technique is significantly lower with than without feature selection. Datasets with the
reduced number of instances take an 82.95% decrease average time by FS compared to not using feature selection (Fig.
13 (c)). It can be observed that with an equal number of instances in each dataset, the average execution time was

26

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

(a) (b) (c)

(d) (e) (f)

8
3

.1
9

8
4

.0
7

8
8

.5
0

8
4

.9
6

9
0

.2
7

8
4

.0
7

8
4

.0
7

8
7

.6
1

8
8

.5
0 9

1
.1

5

8
9

.3
8 9

2
.0

4

9
2

.9
2

9
6

.4
6

9
6

.4
6

9
7

.3
5

9
7

.3
5

9
7

.3
5

9
7

.3
5

9
7

.3
5

80

85

90

95

100

k-NN RT RF MLP NB LR MCC J48 SLR SVM

T
P

R
 (

%
)

Original FS

9
1

.4
9

9
2

.5
5

90

91

92

93

k-NN

T
P

R
 (

%
)

Original FS

4
8

.2
0

1
5

.7
7

1
5

.7
7

6
0

.3
6

6
3

.0
6

6
8

.0
2

8
6

.0
4

5
9

.0
1

6
3

.9
6

6
1

.7
1

6
8

.0
2

6
8

.0
2

6
8

.4
7

8
5

.1
4

8
5

.1
4

8
8

.2
9

8
9

.6
4

9
6

.4
0

10

40

70

100

SVM LR MCC SLR RT k-NN RF MLP NB

T
P

R
 (

%
)

Original FS

4
9

.4
8

8
6

.4
6

8
6

.4
6

7
8

.6
5

7
8

.6
5

5
1

.0
4

8
8

.5
4

9
0

.1
0

9
2

.1
9

9
2

.1
9

40

55

70

85

100

RT SLR SVM LR MCC

T
P

R
 (

%
)

Original FS

0
.0

0

1
.8

7

7
2

.5
9

7
5

.7
0

2
.1

8

2
.1

8

9
7

.8
2

9
7

.8
2

9
7

.8
2

9
7

.8
2

9
8

.1
3

9
8

.1
3

0

25

50

75

100

RT SVM MLP SLR LR MCC

T
P

R
 (

%
)

Original FS

Windows10

Windows7

UNSW_NB15

NSL-KDD

KDD99

NB

SVM

J48

RF

LR

k-NN

RT

MCC

SLR

MLP

Fig. 12. Performance of the individual (supervised) anomaly detection techniques with and without FS on all datasets with a reduced
number of instances, (a) Performance improvement by FS for all dataset, (b) TPR for Windows 10, (c) TPR for Windows 7, (d) TPR for
UNSW_NB15, (e) TPR for NSL-KDD, and (f) TPR for KDD99.

reduced by a 17.67% execution time (in the original dataset, the average time taken by FS approach was 68.29% decrease
compared to not using feature selection from Fig. 8 (c)).

The experimental results of individual unsupervised anomaly detection techniques with and without FS in terms of
TPR (%) are summarized in Table 15 for datasets with the reduced number of instances (1,000) each. The values with
bold text indicate the improvements in detecting anomalies with FS for all datasets. It can be observed that there was
no common algorithm that was able to improve anomaly detection performance with FS compared to not using FS
for all datasets; however, different algorithms perform better for different datasets with FS. The highest TPRs (%) for
anomaly detection by different datasets were 39.62 (CBLOF), 40.89 (LoOP), 65.26 (CBLOF, LDCOF), 74.58 (CMGOS), and
86.20 (aLOCI), respectively.

The comparative performance results of unsupervised anomaly detection techniques on the datasets with the reduced
number of instances with and without FS process are illustrated in Fig. 14 only when the FS improved the detection
performance over without FS. It can be observed that from Fig. 9 that a different number of anomaly detection techniques
improve the detection performance for different datasets. For the Windows 10, Windows 7, UNSW_NB15, NSL-KDD,
and KDD99 datasets, 3, 8, 4, 6, and 5 anomaly detection techniques can improve the anomaly detection performance.

27

TMIS, 2021, ACM, NY Rashid et al.

Table 14. Summary of timing performance of the individual (supervised) anomaly detection techniques in terms of
execution time (millisecond) with and without FS for all datasets with a reduced number of instances. "Ori" indicates
execution time (millisecond) without FS and "FS" indicates execution time (millisecond) with FS.

Classifier With or Dataset

Without FS Windows 10 Windows 7 UNSW_NB15 NSL-KDD KDD99

NB Ori 556.70 533.10 435.90 447.70 434.70
FS 399.40 409.50 407.10 373.70 389.10

SVM Ori 564.30 625.70 602.70 499.40 487.10
FS 432.40 424.50 424.30 454.90 403.40

J48 Ori 546.60 603.70 461.20 444.20 426.30
FS 403.00 424.30 396.40 375.30 384.70

RF Ori 724.70 732.60 661.50 632.40 598.40
FS 566.60 611.90 605.20 535.20 570.80

LR Ori 912.40 2,221.00 4,107.00 5,961.00 516.20
FS 415.40 435.70 418.90 458.20 427.20

k-NN Ori 591.80 548.70 440.00 497.50 470.30
FS 407.90 433.40 400.10 405.60 444.90

RT Ori 476.20 486.00 412.00 384.10 402.90
FS 387.10 398.50 393.60 381.40 383.40

MCC Ori 949.00 2,292.00 4,085.00 5,890.00 533.90
FS 424.90 446.30 437.80 482.70 413.60

SLR Ori 752.60 858.30 887.00 894.30 655.20
FS 531.30 605.00 507.00 587.90 522.00

MLP Ori 22,470.00 35,680.00 54,630.00 22,250.00 20,460.00
FS 556.50 832.70 605.60 11,930.00 509.00

(a) (b) (c) (d)

4
8
1
.6

2 5
5
5
.8

4

4
9
6
.4

0

6
6
9
.9

2

5
0
9
.6

6

4
3
2
.2

4

8
0
9
.4

8

3
9
5
.7

6

4
2
7
.9

0

3
9
6
.7

4

5
7
7
.9

4

4
1
8
.3

8

3
8
8
.8

0

5
5
0
.6

4

300

500

700

900

NB SVM J48 RF k-NN RT SLR

A
v
er

ag
e

T
im

e
(M

il
li

se
co

n
d
s)

Original FS

2
7
4
3
.5

2

2
7
4
9
.9

8

4
3
1
.0

8

4
4
1
.0

6

200

1200

2200

3200

LR MCC

A
v
er

ag
e

T
im

e
(M

il
li

se
co

n
d
s)

Original FS

3
1
0
9
8
.0

0

2
8
8
6
.7

6

1000

11000

21000

31000

41000

MLP

A
v
er

ag
e

T
im

e
(M

il
li

se
co

n
d
s)

Original FS

4
0
5
4
.6

7

6
9
1
.5

1

600

1600

2600

3600

4600

A
v
er

ag
e

T
im

e
(M

il
li

se
co

n
d
s)

Original FS

Fig. 13. Timing performance of the individual (supervised) anomaly detection techniques with and without FS on all datasets with
a reduced number of instances, (a) NB, SVM, J48, RF, k-NN, RT, and SLR, (b) LR and MCC, (c) MLP, and (d) Anomaly detection
(supervised) performance comparison with and without FS on all datasets with a reduced number of instances.

28

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

Table 15. Summary of performance of the individual (unsupervised) anomaly detection techniques in terms of TPR (%)
with and without FS for all datasets with a reduced number of instances. "Ori" indicates TPR(%) without FS and "FS"
indicates TPR(%) with FS.

Technique With or Dataset

Without FS Windows 10 Windows 7 UNSW_NB15 NSL-KDD KDD99

k-NN Ori 29.71 43.56 41.40 15.97 77.90
FS 23.96 28.89 52.81 63.45 77.90

LOF Ori 28.12 33.78 61.58 44.96 82.05
FS 26.84 38.67 48.77 67.65 85.84

COF Ori 21.41 37.78 58.95 45.38 78.02
FS 23.00 38.67 51.23 64.29 77.90

aLOCI Ori 26.84 31.11 57.89 4.83 77.90
FS 23.00 39.11 24.56 72.90 86.20

LoOP Ori 24.60 30.67 55.79 47.48 77.90
FS 26.84 40.89 47.19 56.30 77.90

INFLO Ori 26.52 32.00 58.95 49.58 83.52
FS 28.75 36.00 53.33 30.04 82.66

CBLOF Ori 49.20 26.67 41.58 76.26 78.88
FS 39.62 30.22 65.26 47.06 77.90

LDCOF Ori 50.48 22.22 38.42 76.26 78.75
FS 11.82 23.11 65.26 43.28 78.27

CMGOS Ori 27.80 13.33 50.18 52.94 80.71
FS 12.14 18.22 41.40 74.58 78.14

HBOS Ori 30.35 38.67 57.72 59.24 77.90
FS 12.46 29.78 60.35 21.85 77.90

Although more algorithms can improve the anomaly detection performance for the Windows 10 and NSL-KDD datasets,
a drop in the number of algorithms was observed for Windows7 and UNSW_NB15 datasets. Furthermore, it can
be observed that unlike the original datasets, here there was no common algorithm that could improve detection
performance with FS for all datasets. However, it can be concluded that at least 3 anomaly detection techniques were
able to improve detection performance with feature selection.

The summary of the timing performance of the individual unsupervised anomaly detection techniques in terms of
execution time in a millisecond with and without FS for all datasets with the reduced number of instances is listed in
Table 16.

The average timing performance of the individual unsupervised anomaly detection techniques using datasets with
the reduced number of instances with and without FS is shown in Fig. 15. Likewise, with the original datasets, the
unsupervised anomaly detection techniques within this case also consume a significantly lower computation, as
expected. From Fig. 15 (b), it can be seen that a 9.03% decrease was observed in terms of average execution time with FS
compared to without FS.

29

TMIS, 2021, ACM, NY Rashid et al.

(a) (b) (c)

(d) (e) (f)

2
1
.4

1

2
4
.6

0 2
6
.5

2

2
3
.0

0

2
6
.8

4 2
8
.7

5

15

20

25

30

COF LoOP INFLO

T
P

R
 (

%
)

Original FS

1
3
.3

3

2
2
.2

2 2
6
.6

7 3
2
.0

0

3
3
.7

8 3
7
.7

8

3
1
.1

1

3
0
.6

7

1
8
.2

2 2
3
.1

1

3
0
.2

2

3
6
.0

0

3
8
.6

7

3
8
.6

7

3
9
.1

1

4
0
.8

9

5

15

25

35

45

CMGOS LDCOF CBLOF INFLO LOF COF aLOCI LoOP

T
P

R
 (

%
)

Original FS

4
1
.4

0

5
7
.7

2

3
8
.4

2

4
1
.5

8

5
2
.7

8

6
0
.3

5 6
5
.2

6

6
5
.2

6

30

40

50

60

70

k-NN HBOS LDCOF CBLOF

T
P

R
 (

%
)

Original FS

4
7
.4

8

1
5
.9

7

4
5
.3

8

4
4
.9

6

4
.8

3

5
2
.9

4

5
6
.3

0 6
3
.4

5

6
4
.2

9

6
7
.6

5

7
2
.9

0

7
4
.5

8

0

20

40

60

80

LoOP k-NN COF LOF aLOCI CMGOS

T
P

R
 (

%
)

Original FS

7
7
.9

0

7
7
.9

0

7
7
.9

0

8
2
.0

5

7
7
.9

0

7
7
.9

0

7
7
.9

0

7
7
.9

0

8
5
.8

4

8
6
.2

0

60

70

80

90

k-NN LoOP HBOS LOF aLOCI

T
P

R
 (

%
)

Original FS

Windows10

Windows7

UNSW_NB15

NSL-KDD

KDD99

k-NN

LOF

COF

aLOCI

LoOP

INFLO

CBLOF

LDCOF

CMGOS

HBOS

Fig. 14. Performance of the individual (unsupervised) anomaly detection techniques with and without FS on all datasets with a
reduced number of instances, (a) Performance improvement by FS for all dataset, (b) TPR for Windows 10, (c) TPR for Windows 7, (d)
TPR for UNSW_NB15, (e) TPR for NSL-KDD, and (f) TPR for KDD99.

(a) (b)

8
8
.3

5

8
0
.1

1 8
2
.5

6

8
1
.3

3

8
0
.6

9

8
6
.2

8

8
6
.7

6

8
3
.5

2

9
0
.2

3

8
1
.5

8

8
5
.4

8

7
4
.5

9

7
4
.5

5

7
5
.8

6

7
6
.7

9

7
6
.2

6

7
4
.5

3

7
3
.1

7 7
6
.4

1

7
7
.8

1

70

75

80

85

90

95

k-NN LOF COF aLOCI LoOP INFLO CBLOF LDCOF CMGOS HBOS

A
v
er

ag
e

T
im

e
(M

il
li

se
co

n
d
s)

Original FS

8
4
.1

4

7
6
.5

4

70

75

80

85

90

95

A
v
er

ag
e

T
im

e
(M

il
li

se
co

n
d
s)

Original FS

Fig. 15. (a) Timing performance of the individual (unsupervised) anomaly detection techniques with and without FS on all datasets
with a reduced number of instances, and (b) Anomaly detection (unsupervised) performance comparison with and without FS on all
datasets with a reduced number of instances.

30

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

Table 16. Summary of timing performance of the individual (unsupervised) anomaly detection techniques in terms of
execution time (millisecond) with and without FS for all datasets with a reduced number of instances. "Ori" indicates
execution time (millisecond) without FS and "FS" indicates execution time (millisecond) with FS.

Technique With or Dataset

Without FS Windows 10 Windows 7 UNSW_NB15 NSL-KDD KDD99

k-NN Ori 88.11 76.27 97.78 82.96 96.65
FS 87.25 82.73 98.18 71.21 88.01

LOF Ori 75.41 66.82 82.81 81.54 93.99
FS 75.89 65.75 87.27 65.87 78.17

COF Ori 77.66 71.17 97.72 71.61 94.66
FS 71.42 66.92 79.57 70.01 84.85

aLOCI Ori 80.31 77.45 83.41 81.57 83.89
FS 73.65 67.77 82.18 75.46 80.23

LoOP Ori 80.76 68.08 81.87 82.10 90.66
FS 68.14 75.08 81.69 75.44 83.61

INFLO Ori 86.87 72.68 82.15 83.09 106.60
FS 67.84 67.18 90.08 73.36 82.82

CBLOF Ori 83.50 95.54 93.79 72.37 88.62
FS 68.61 67.60 82.84 73.18 80.42

LDCOF Ori 83.53 72.80 91.21 72.86 97.21
FS 69.50 66.10 74.06 69.17 87.01

CMGOS Ori 109.60 77.95 96.78 77.84 89.00
FS 75.72 64.81 86.06 68.51 86.94

HBOS Ori 80.96 70.91 90.51 76.10 89.44
FS 71.61 78.59 75.83 76.77 86.27

4.5 Key Improvements

From the experimental results and analysis (Fig. 7 and 9), it can be observed that in both cases of supervised and
unsupervised anomaly detection techniques, there was at least one technique that was able to improve the anomaly
detection performance in terms of TPR and decreased FPR (false positive rate). These two techniques were MLP in the
supervised detection approach and LOF in the unsupervised detection approach.

The key improvements with feature selection when evaluated by both supervised and unsupervised anomaly detection
approaches for at least one technique each in four datasets are displayed in Fig. 16. The simulation shows that TPR was
significantly increased by over 200% for KDD99, and FPR was decreased by about 97% compared to the original data by
supervised anomaly detection (MLP) with FS. Apart from KDD99, for the Windows 10 and NSL-KDD datasets, TPR was
increased at a higher rate; however, for UNSW_NB15, the TPR improvement was about 5% only. Although FPR was
decreased significantly for the NSL-KDD and KDD99 datasets, the FPR decrease rate for Windows 10 and UNSW_NB15
was only above 2% and 6%, respectively. In the case of unsupervised anomaly detection approach, LOF improved TPR
for Windows 7 and NSL-KDD both by more than 40%, and FPR was decreased by over 15% and about 36%, respectively.

31

TMIS, 2021, ACM, NY Rashid et al.

3
2

.5
6

5
.2

9

5
4

.1
0

2
4

4
.8

5

2
.6

5

6
.4

3

8
1

.3
9

9
6

.9
3

0

50

100

150

200

250

Windows10 UNSW_NB15 NSL-KDD KDD99

Im
p
ro

v
em

en
t

(%
)

o
f

M
L

P

TPR Increase FPR Decrease

3
.9

7

4
1

.8
8

1
.0

6

4
8

.1
2

1
.6

4

1
5

.3
1

1
.3

4

3
5

.9
3

0

10

20

30

40

50

Windows10 Windows7 UNSW_NB15 NSL-KDD

Im
p
ro

v
em

en
t

(%
)

o
f

L
O

F

TPR Increase FPR Decrease

(a) (b)

Fig. 16. Performance improvement by supervised and unsupervised anomaly detection approaches by FS for at least one technique
each in four datasets: (a) MLP, and (b) LOF.

Although an improvement in TPR and a decrease in FPR were observed for the Windows 10 and UNSW_NB15 datasets;
however, the rate was between 1% and 4%.

4.6 Comparison with the State-of-the-Art Algorithms

The proposed anomaly detection approach, ADUFS, has been compared with six state-of-the-art techniques. The
compared algorithms are Cyber intrusion detection by feature grouping based on linear correlation coefficient (FGLCC)
[26], Wrappers for feature subset selection (WrapperSubsetEval), evaluate attribute subsets using a classifier to estimate
the merit of the subset (ClassifierSubsetEval) and evaluate the worth of a subset of attributes by considering the
individual predictive ability of each feature along with the degree of redundancy between them (CfsSubsetEval). FGLCC
is a recent feature selection approach used to detect cyber intrusion by Mohammadi et al. in 2019. In this paper, FGLCC
has been implemented based on the algorithms in [26]. A JAVA-based implementation of ADUFS is available at GitHub.14

FGLCC selected feature subsets in three different ways. First, FGLCC has been experimented on each dataset to obtain
the same number of features as retrieved by CCFSRFG from each dataset. For example, CCFSRFG selected 6 features
from the UNSW_NB15 dataset. Similarly, FGLCC also selected 6 features from the same dataset. However, the features
selected by CCFSRFG and FGLCC are different as illustrated in Table 19. Second, FGLCC selected a fixed number of
features: 10 and 15 from each dataset; likewise, the experiment results in [26] except for KDD99 because feature selection
using FGLCC requires at least two clusters. The rest three feature subset selection approaches WrapperSubsetEval
(WSE), ClassififerSubsetEval(CSE), and CfsSubsetEval(CFSE) have selected from WEKA 15. These three methods are
wrapper-based feature selection approaches using evolutionary computation similar to CCFSRFG. Experiments were
performed using 10-fold cross-validation and testing with an independent dataset. All five datasets were split into 75%
and 25%. The first 75% were used to cross-validate the model, and the independent 25% were used to test the model’s
performance in terms of true positive rate, false positive rate, and accuracy. For the feature selection by WEKA methods,
the naïve Bayes classifier and best search strategy were used. Performance of all methods were evaluated based a
decision tree (J48) classifier. The selected subset of features from each dataset by different feature selection techniques
are listed in Tables 17-21.

14https://github.com/bazlurrashid/cooperative-coevolution/tree/ADUFS/
15(https://www.cs.waikato.ac.nz/ml/weka/)

32

https://github.com/bazlurrashid/cooperative-coevolution/tree/ADUFS/
(https://www.cs.waikato.ac.nz/ml/weka/)

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

Table 17. Selected features by different feature selection techniques on Windows 10 dataset.

Methods No. of Features Selected Features

CCFSRFG [38] 3 𝑓1, 𝑓76, 𝑓106
FGLCC3 [26] 3 𝑓1, 𝑓65, 𝑓124
FGLCC10 [26] 10 𝑓1, 𝑓17, 𝑓24, 𝑓30, 𝑓39, 𝑓44, 𝑓45, 𝑓65, 𝑓93, 𝑓124
FGLCC15 [26] 15 𝑓1, 𝑓17, 𝑓24, 𝑓30, 𝑓34, 𝑓39, 𝑓44, 𝑓45, 𝑓65, 𝑓80, 𝑓84, 𝑓88, 𝑓93, 𝑓101, 𝑓124
WSE 4 𝑓1, 𝑓67, 𝑓71, 𝑓90
CSE 4 𝑓1, 𝑓67, 𝑓71, 𝑓90
CFSE 3 𝑓1, 𝑓70, 𝑓86

Table 18. Selected features by different feature selection techniques on Windows 7 dataset.

Methods No. of Features Selected Features

CCFSRFG [38] 12 𝑓5, 𝑓11, 𝑓25, 𝑓30, 𝑓31, 𝑓101, 𝑓104, 𝑓115, 𝑓116, 𝑓118, 𝑓125, 𝑓130
FGLCC12 [26] 12 𝑓1, 𝑓3, 𝑓8, 𝑓19, 𝑓23, 𝑓34, 𝑓97, 𝑓102, 𝑓106, 𝑓121, 𝑓125, 𝑓132
FGLCC10 [26] 10 𝑓1, 𝑓19, 𝑓20, 𝑓23, 𝑓34, 𝑓97, 𝑓102, 𝑓121, 𝑓125, 𝑓132
FGLCC15 [26] 15 𝑓1, 𝑓8, 𝑓10, 𝑓19, 𝑓20, 𝑓23, 𝑓34, 𝑓97, 𝑓102, 𝑓106, 𝑓110, 𝑓116, 𝑓121, 𝑓125, 𝑓132
WSE 8 𝑓1, 𝑓19, 𝑓24, 𝑓34, 𝑓120, 𝑓122, 𝑓124, 𝑓130
CSE 7 𝑓1, 𝑓19, 𝑓24, 𝑓34, 𝑓42, 𝑓120, 𝑓130
CFSE 1 𝑓1

Table 19. Selected features by different feature selection techniques on UNSW_15 dataset.

Methods No. of Features Selected Features

CCFSRFG [38] 6 𝑓2, 𝑓13, 𝑓14, 𝑓25, 𝑓32, 𝑓41
FGLCC6 [26] 6 𝑓7, 𝑓13, 𝑓23, 𝑓26, 𝑓35, 𝑓38
FGLCC10 [26] 10 𝑓5, 𝑓7, 𝑓12, 𝑓13, 𝑓23, 𝑓26, 𝑓34, 𝑓35, 𝑓37, 𝑓38
FGLCC15 [26] 15 𝑓5, 𝑓6, 𝑓7, 𝑓12, 𝑓13, 𝑓16, 𝑓23, 𝑓24, 𝑓25, 𝑓26, 𝑓34, 𝑓35, 𝑓37, 𝑓38, 𝑓39
WSE 6 𝑓2, 𝑓12, 𝑓25, 𝑓32, 𝑓39, 𝑓42
CSE 5 𝑓2, 𝑓12, 𝑓25, 𝑓32, 𝑓39
CFSE 4 𝑓7, 𝑓10, 𝑓32, 𝑓35

Tables 22-24 list compare the feature selection performance of all five datasets by all methods in terms of TPR, FPR,
and ACC. It can be observed that the results obtained by different methods are quite similar and close to each other
for Windows 10, Windows 7, and KDD99 datasets for all algorithms. It can be noted that the lowest FPR achieved by
CCFSRFG for Windows 10 was 3.98%. Although TPR and FPR for the UNSW_NB dataset obtained by CCFSRFG are
lower than FGLCC and CFSE, these are not less than by WSE and CSE methods. A close TPR obtained by CCFSRFG
and FGLCC3 for the NSL-KDD dataset. However, it can be noted that FGLCC3 significantly increased FPR for both
NSL-KDD and KDD99 datasets, resulting in an increased number of the wrong prediction by this algorithm from an
inappropriate selection of features.

33

TMIS, 2021, ACM, NY Rashid et al.

Table 20. Selected features by different feature selection techniques on NSL-KDD dataset.

Methods No. of Features Selected Features

CCFSRFG [38] 3 𝑓26, 𝑓27, 𝑓37
FGLCC3 [26] 3 𝑓20, 𝑓32, 𝑓37
FGLCC10 [26] 10 𝑓7, 𝑓15, 𝑓20, 𝑓26, 𝑓28, 𝑓29, 𝑓32, 𝑓36, 𝑓37, 𝑓41
FGLCC15 [26] 15 𝑓2, 𝑓7, 𝑓15, 𝑓20, 𝑓26, 𝑓28, 𝑓29, 𝑓30, 𝑓32, 𝑓33, 𝑓35, 𝑓36, 𝑓37, 𝑓40, 𝑓41
WSE 3 𝑓3, 𝑓4, 𝑓8
CSE 3 𝑓3, 𝑓4, 𝑓11, 𝑓13
CFSE 8 𝑓4, 𝑓5, 𝑓6, 𝑓12, 𝑓26, 𝑓29, 𝑓30, 𝑓37

Table 21. Selected features by different feature selection techniques on KDD99 dataset.

Methods No. of Features Selected Features

CCFSRFG [38] 1 𝑓23
FGLCC3 [26] 3 𝑓15, 𝑓20, 𝑓35
FGLCC10 [26] 10 𝑓5, 𝑓6, 𝑓15, 𝑓20, 𝑓27, 𝑓29, 𝑓34, 𝑓35, 𝑓39, 𝑓40
FGLCC15 [26] 15 𝑓5, 𝑓6, 𝑓15, 𝑓20, 𝑓26, 𝑓27, 𝑓28, 𝑓29, 𝑓32, 𝑓34, 𝑓35, 𝑓38, 𝑓39, 𝑓40, 𝑓41
WSE 12 𝑓3, 𝑓10, 𝑓23, 𝑓27, 𝑓28, 𝑓31, 𝑓32, 𝑓34, 𝑓36, 𝑓39, 𝑓40, 𝑓41
CSE 13 𝑓3, 𝑓6, 𝑓10, 𝑓23, 𝑓27, 𝑓28, 𝑓31, 𝑓32, 𝑓34, 𝑓36, 𝑓39, 𝑓40, 𝑓41
CFSE 5 𝑓6, 𝑓12, 𝑓23, 𝑓31, 𝑓32

Table 22. Classification performance comparison of different feature selection techniques on Windows 10 and Windows 7 datasets.

Methods
Datasets

Windows 10 Windows 7

TPR (%) FPR(%) ACC(%) TPR (%) FPR(%) ACC(%)

CCFSRFG [38] 99.51 3.98 98.38 99.59 2.16 99.24
FGLCC∗ [26] 99.83 4.24 98.50 99.86 2.53 99.35
FGLCC10 [26] 99.54 4.23 98.31 99.73 2.61 99.24
FGLCC15 [26] 99.52 4.24 98.30 99.79 2.60 99.28
WSE 99.55 4.56 98.21 99.79 2.15 99.38
CSE 99.55 4.56 98.21 99.79 2.15 99.38
CFSE 99.79 4.12 98.51 99.87 2.40 99.39

FGLCC∗ indicates FGLCC3 and FGLCC12 for Windows 10 and Windows 7 datsets, respectively.

Comparison of anomaly detection performance by different methods with feature selection techniques on all datasets
is illustrated in Table 25.

The anomaly detection performance comparison in terms of TPR and FPR is illustrated in Fig. 17 and Fig. 18. It can be
observed that the highest TPR achieved by different techniques are FGLCC3, CFSE, FGLCC15, FGLCC15, and FGLCC10

for Windows 10, Windows 7, UNSW_NB15, NSL-KDD, and KDD99 datasets, respectively. However, the lowest FPR
34

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

Table 23. Classification performance comparison of different feature selection techniques on UNSW_NB15 dataset.

Methods TPR (%) FPR(%) ACC(%)

CCFSRFG [38] 73.84 12.73 80.09
FGLCC6 [26] 88.01 6.46 90.90
FGLCC10 [26] 90.86 5.67 92.71
FGLCC15 [26] 91.46 5.08 93.30
WSE 73.27 10.66 80.42
CSE 73.27 10.65 80.42
CFSE 87.30 6.66 90.43

Table 24. Classification performance comparison of different feature selection techniques on NSL-KDD and KDD99 datasets.

Methods
Datasets

NSL-KDD KDD99

TPR (%) FPR(%) ACC(%) TPR (%) FPR(%) ACC(%)

CCFSRFG [38] 86.16 2.45 90.81 91.71 0.33 98.00
FGLCC3 [26] 85.50 32.55 74.07 91.35 14.27 86.11
FGLCC10 [26] 93.58 5.10 94.20 99.86 0.20 99.56
FGLCC15 [26] 97.23 1.61 97.78 99.84 0.30 99.94
WSE 1.43 65.92 27.06 99.84 0.30 99.94
CSE 1.34 66.16 26.73 96.63 0.30 99.29
CFSE 92.27 2.92 94.44 97.48 0.15 99.38

Table 25. Anomaly detection comparison of different methods with feature selection techniques on all datasets.

Methods
Datasets

Windows 10 Windows 7 UNSW_NB15 NSL-KDD KDD99

TPR (%) FPR(%) TPR (%) FPR(%) TPR (%) FPR(%) TPR (%) FPR(%) TPR (%) FPR(%)

ADUFS
(proposed) 98.94 4.10 98.44 2.18 74.36 10.85 82.94 2.08 97.84 0.33
FGLCC∗ [26] 99.65 4.41 99.46 2.58 89.51 6.18 88.92 42.92 99.27 16.52
FGLCC10 [26] 99.01 4.38 98.98 2.65 92.18 5.55 92.92 4.99 99.97 0.20
FGLCC15 [26] 98.98 4.38 99.18 2.65 92.63 4.96 96.97 1.59 99.96 0.30
WSE 99.05 4.73 99.18 2.18 72.81 8.69 55.82 7.99 99.96 0.30
CSE 99.05 4.73 99.18 2.18 72.81 8.68 55.06 7.66 99.16 0.30
CFSE 99.54 4.27 99.52 2.45 88.81 6.34 91.15 2.74 99.38 0.15

FGLCC∗ indicates FGLCC3 for Windows 10, NSL-KDD, and KDD99 datasets, respectively. FGLCC∗ indicates FGLCC12
for Windows 7 and FGLCC6 for UNSW_NB15 datasets, respectively.

35

TMIS, 2021, ACM, NY Rashid et al.

9
8

.9
4

9
9

.6
5

9
9

.0
1

9
8

.9
8

9
9

.0
5

9
9

.0
5

9
9

.5
4

98

99

100

A
D

U
F

S

F
G

L
C

C
*

F
G

L
C

C
1

0

F
G

L
C

C
1

5

W
S

E

C
S

E

C
F

S
E

T
P

R
 (

%
)

9
8

.4
4

9
9

.4
6

9
8

.9
8 9

9
.1

8

9
9

.1
8

9
9

.1
8

9
9

.5
2

98

99

100

A
D

U
F

S

F
G

L
C

C
*

F
G

L
C

C
1

0

F
G

L
C

C
1

5

W
S

E

C
S

E

C
F

S
E

T
P

R
 (

%
)

7
4

.3
6

8
9

.5
1 9

2
.1

8

9
2

.6
3

7
2

.8
1

7
2

.8
1

8
8

.8
1

70

80

90

100

A
D

U
F

S

F
G

L
C

C
*

F
G

L
C

C
1

0

F
G

L
C

C
1

5

W
S

E

C
S

E

C
F

S
E

T
P

R
 (

%
)

8
2

.9
4 8

8
.9

2

9
2

.9
2

9
6

.9
7

5
5

.8
2

5
5

.0
6

9
1

.1
5

40

55

70

85

100

A
D

U
F

S

F
G

L
C

C
*

F
G

L
C

C
1

0

F
G

L
C

C
1

5

W
S

E

C
S

E

C
F

S
E

T
P

R
 (

%
)

9
7

.8
4

9
9

.2
7

9
9

.9
7

9
9

.9
6

9
9

.9
6

9
9

.1
6

9
9

.3
8

97

98

99

100

A
D

U
F

S

F
G

L
C

C
*

F
G

L
C

C
1

0

F
G

L
C

C
1

5

W
S

E

C
S

E

C
F

S
E

T
P

R
 (

%
)

(a) (b) (c)

(d) (e)

Fig. 17. Performance comparison by different anomaly detection approaches with feature selection for all datasets in terms of TPR:
(a) Windows 10, (b) Windows 7, (c) UNSW_NB15, (d) NSL-KDD, and (e) KDD99.

obtained by different methods are ADUFS, ADUFS, WSE, and CSE, FGLCC15, FGLCC15, and CFSE for the datasets in
order.

5 CONCLUSION AND FUTUREWORK

This paper introduced the application of a feature selection process based on cooperative co-evolution on cybersecurity
datasets for anomaly detection. It investigated both supervised and unsupervised anomaly detection techniques with and
without feature selection on five cybersecurity datasets. Furthermore, the datasets with a reduced number of instances
(1,000) followed the same procedure to compare feature selection effectiveness in detecting anomalies. Moreover,
the performance of the proposed anomaly detection approach, ADUFS, has been compared with six state-of-the-art
anomay/intrusion detection system via feature selection in terms of TPR, FPR, and ACC.

The experiments’ twofold objectives using all datasets were to compare the individual anomaly detection performances
in terms of TPR and ET both for supervised and unsupervised anomaly detection techniques investigated in this paper.
At first, the original datasets were experimented with and without feature selection to detect anomalies using both
supervised and unsupervised techniques in terms of true positive rates and execution time. For the FS process, CCFSRFG,

36

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

(a) (b) (c)

(d) (e)

4
.1

0

4
.4

1

4
.3

8

4
.3

8

4
.7

3

4
.7

3

4
.2

7
4.0

4.5

5.0
A

D
U

F
S

F
G

L
C

C
*

F
G

L
C

C
1

0

F
G

L
C

C
1

5

W
S

E

C
S

E

C
F

S
E

F
P

R
 (

%
)

2
.1

8

2
.5

8 2
.6

5

2
.6

5

2
.1

8

2
.1

8

2
.4

5

2.0

2.5

3.0

A
D

U
F

S

F
G

L
C

C
*

F
G

L
C

C
1

0

F
G

L
C

C
1

5

W
S

E

C
S

E

C
F

S
E

F
P

R
 (

%
)

1
0

.8
5

6
.1

8

5
.5

5

4
.9

6

8
.6

9

8
.6

8

6
.3

4

4

6

8

10

12

A
D

U
F

S

F
G

L
C

C
*

F
G

L
C

C
1

0

F
G

L
C

C
1

5

W
S

E

C
S

E

C
F

S
E

F
P

R
 (

%
)

2
.0

8

4
2

.9
2

4
.9

9

1
.5

9

7
.9

9

7
.6

6

2
.7

4

1

12

23

34

45

A
D

U
F

S

F
G

L
C

C
*

F
G

L
C

C
1

0

F
G

L
C

C
1

5

W
S

E

C
S

E

C
F

S
E

F
P

R
 (

%
)

0
.3

3

1
6

.5
2

0
.2

0

0
.3

0

0
.3

0

0
.3

0

0
.1

5

0

4

8

12

16

20

A
D

U
F

S

F
G

L
C

C
*

F
G

L
C

C
1

0

F
G

L
C

C
1

5

W
S

E

C
S

E

C
F

S
E

F
P

R
 (

%
)

Fig. 18. Performance comparison by different anomaly detection approaches with feature selection for all datasets in terms of FPR:
(a) Windows 10, (b) Windows 7, (c) UNSW_NB15, (d) NSL-KDD, and (e) KDD99.

a feature selection approach proposed in a previous study, was applied to select an appropriate subset of features that
represent the dataset with a higher classification accuracy. Once the original datasets were used to detect the anomalies
using both supervised and unsupervised approaches, the datasets were reduced to have an equal number of instances,
thereby investigating the impacts of feature selection with a common characteristic for all datasets. Though FS using
evolutionary computation is a time-consuming approach, it was investigated that if a suitable FS process can be applied
before anomaly detection, the detection performance can be improved significantly.

It can be concluded from the performance results in terms of both true positive rates and execution time that FS
can be recommended to apply before anomaly detection from the datasets. The actual timing performance with FS for
anomaly detection will always depend on the datasets’ complexities, including the number of features, the number of
instances, and the data itself. From the investigation of feature selection in cybersecurity data for anomaly detection
using the proposed approach, ADUFS, a number of recommendations can be made. For example, ADUFS can be widely
used for forensic investigations in which detection performance is more important than execution time. Next, ADUFS
can be applied to different security frameworks. In addition, ADUFS can be used to automate the security data analysis
using feature selection and anomaly detection. Therefore, as future work, an automation of ADUFS will be investigated

37

TMIS, 2021, ACM, NY Rashid et al.

that can be applied in a wide range cybersecurity datasets, in different security frameworks, and in forensic investigation
with accurate results.

ACKNOWLEDGMENTS

This research is supported by the Edith Cowan University (ECU) Higher Degree by Research Scholarship (HDRS) and
the ECU School of Science Research Scholarship.

REFERENCES
[1] M. Ahmed. 2019. Intelligent Big Data summarization for rare anomaly detection. IEEE Access 7 (2019), 68669–68677. https://doi.org/10.1109/

ACCESS.2019.2918364
[2] M. Ahmed, A. Anwar, A. N. Mahmood, Z. Shah, and M. J. Maher. 2015. An investigation of performance analysis of anomaly detection techniques

for Big Data in scada systems. EAI Endorsed Trans. Indust. Netw. & Intellig. Syst. 2, 3 (2015), e5. https://doi.org/10.4108/inis.2.3.e5
[3] M. Ahmed, A. N. Mahmood, and J. Hu. 2016. A survey of network anomaly detection techniques. Journal of Network and Computer Applications 60

(2016), 19–31. https://doi.org/10.1016/j.jnca.2015.11.016
[4] M. Ahmed, A. N. Mahmood, and M. R. Islam. 2016. A survey of anomaly detection techniques in financial domain. Future Generation Computer

Systems 55 (2016), 278–288. https://doi.org/10.1016/j.future.2015.01.001
[5] U. Ahmed, J. C. W. Lin, G. Srivastava, and Y. Djenouri. 2021. A deep Q-learning sanitiszation approach for privacy preserving data mining. In Adjunct

Proceedings of the 2021 International Conference on Distributed Computing and Networking (Nara, Japan) (ICDCN ’21). Association for Computing
Machinery, New York, NY, USA, 43—-48. https://doi.org/10.1145/3427477.3429990

[6] A. A. Alabdel Abass, M. Hajimirsadeghi, N. B. Mandayam, and Z. Gajic. 2016. Evolutionary game theoretic analysis of distributed denial of service
attacks in a wireless network. In 2016 Annual Conference on Information Science and Systems. 36–41. https://doi.org/10.1109/CISS.2016.7460473

[7] M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan. 2016. Building an intrusion detection system using a filter-based feature selection algorithm. IEEE
Trans. Comput. 65, 10 (2016), 2986–2998. https://doi.org/10.1109/TC.2016.2519914

[8] S. Bagui, E. Kalaimannan, S. Bagui, D. Nandi, and A. Pinto. 2019. Using machine learning techniques to identify rare cyber-attacks on the UNSW-NB15
dataset. Security and Privacy 2, 6 (2019), e91. https://doi.org/10.1002/spy2.91

[9] A. Belhadi, Y. Djenouri, G. Srivastava, D. Djenouri, A. Cano, and J. C. W. Lin. 2020. A two-phase anomaly detection model for secure intelligent
transportation ride-hailing trajectories. IEEE Transactions on Intelligent Transportation Systems (2020), 1–11. https://doi.org/10.1109/TITS.2020.3022612

[10] A. Binbusayyis and T. Vaiyapuri. 2019. Identifying and benchmarking key features for cyber intrusion detection: An ensemble approach. IEEE
Access 7 (2019), 106495–106513. https://doi.org/10.1109/ACCESS.2019.2929487

[11] H. Bostani and M. Sheikhan. 2017. Hybrid of binary gravitational search algorithm and mutual information for feature selection in intrusion
detection systems. Soft computing 21, 9 (2017), 2307–2324. https://doi.org/10.1007/s00500-015-1942-8

[12] A. Branitskiy and I. Kotenko. 2018. Applying artificial intelligence methods to network attack detection. In AI in Cybersecurity, L. F. Sikos (Ed.).
Springer, Cham. https://doi.org/10.1007/978-3-319-98842-9_5

[13] A. Bucci and J. B. Pollack. 2005. On identifying global optima in cooperative coevolution. In Proceedings of the 7th Annual Conference on Genetic and
Evolutionary Computation. ACM, New York., 539–544. https://doi.org/10.1145/1068009.1068098

[14] B. Chakraborty and A. Kawamura. 2018. A new penalty-based wrapper fitness function for feature subset selection with evolutionary algorithms.
Journal of Information and Telecommunication 2, 2 (2018), 163–180. https://doi.org/10.1080/24751839.2018.1423792

[15] C. H. Chee, J. Jaafar, I. A. Aziz, M. H. Hasan, and W. Yeoh. 2019. Algorithms for frequent itemset mining: a literature review. Artificial Intelligence
Review 52, 4 (2019), 2603–2621. https://doi.org/10.1007/s10462-018-9629-z

[16] Y. Chen, A. Abraham, and B. Yang. 2006. Feature selection and classification using flexible neural tree. Neurocomputing 70, 1 (2006), 305–313.
https://doi.org/10.1016/j.neucom.2006.01.022

[17] S. Dwivedi, M. Vardhan, and S. Tripathi. 2020. Incorporating evolutionary computation for securing wireless network against cyberthreats. The
Journal of Supercomputing (2020), 1–38. https://doi.org/10.1007/s11227-020-03161-w

[18] S. Elsayed, R. Sarker, and J. Slay. 2015. Evaluating the performance of a differential evolution algorithm in anomaly detection. In 2015 IEEE Congress
on Evolutionary Computation (CEC). 2490–2497. https://doi.org/10.1109/CEC.2015.7257194

[19] P. Fournier-Viger, J. C. W. Lin, B. Vo, T. T. Chi, J. Zhang, and H. B. Le. 2017. A survey of itemset mining. WIREs Data Mining and Knowledge Discovery
7, 4 (2017), e1207. https://doi.org/10.1002/widm.1207

[20] M. Gómez Ravetti and P. Moscato. 2008. Identification of a 5-protein biomarker molecular signature for predicting alzheimer’s disease. PLOS ONE 3,
9 (09 2008), 1–12. https://doi.org/10.1371/journal.pone.0003111

[21] N. M. Karie, N. M. Sahri, and P. Haskell-Dowland. 2020. IoT threat detection advances, challenges and future directions. In 2020 Workshop on
Emerging Technologies for Security in IoT. 22–29. https://doi.org/10.1109/ETSecIoT50046.2020.00009

[22] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman. 2019. Survey of intrusion detection systems: techniques, datasets and challenges.
Cybersecurity 2, 1 (2019), 1–22. https://doi.org/10.1186/s42400-019-0038-7

38

https://doi.org/10.1109/ACCESS.2019.2918364
https://doi.org/10.1109/ACCESS.2019.2918364
https://doi.org/10.4108/inis.2.3.e5
https://doi.org/10.1016/j.jnca.2015.11.016
https://doi.org/10.1016/j.future.2015.01.001
https://doi.org/10.1145/3427477.3429990
https://doi.org/10.1109/CISS.2016.7460473
https://doi.org/10.1109/TC.2016.2519914
https://doi.org/10.1002/spy2.91
https://doi.org/10.1109/TITS.2020.3022612
https://doi.org/10.1109/ACCESS.2019.2929487
https://doi.org/10.1007/s00500-015-1942-8
https://doi.org/10.1007/978-3-319-98842-9_5
https://doi.org/10.1145/1068009.1068098
https://doi.org/10.1080/24751839.2018.1423792
https://doi.org/10.1007/s10462-018-9629-z
https://doi.org/10.1016/j.neucom.2006.01.022
https://doi.org/10.1007/s11227-020-03161-w
https://doi.org/10.1109/CEC.2015.7257194
https://doi.org/10.1002/widm.1207
https://doi.org/10.1371/journal.pone.0003111
https://doi.org/10.1109/ETSecIoT50046.2020.00009
https://doi.org/10.1186/s42400-019-0038-7

Anomaly Detection in Cybersecurity Datasets via Cooperative Co-Evolution-Based Feature Selection TMIS, 2021, ACM, NY

[23] I. Ko, D. Chambers, and E. Barrett. 2019. Unsupervised learning with hierarchical feature selection for DDoS mitigation within the ISP domain. ETRI
Journal 41, 5 (2019), 574–584. https://doi.org/10.4218/etrij.2019-0109

[24] J. Kusyk, M. U. Uyar, and C. S. Sahin. 2018. Survey on evolutionary computation methods for cybersecurity of mobile ad hoc networks. Evolutionary
Intelligence 10, 3-4 (2018), 95–117. https://doi.org/10.1007/s12065-018-0154-4

[25] Y. Li, J. Chen, Q. Li, and A. Liu. 2020. Differential privacy algorithm based on personalized anonymity. In 2020 5th IEEE International Conference on
Big Data Analytics (ICBDA). 260–267. https://doi.org/10.1109/ICBDA49040.2020.9101213

[26] S. Mohammadi, H. Mirvaziri, M. Ghazizadeh-Ahsaee, and H. Karimipour. 2019. Cyber intrusion detection by combined feature selection algorithm.
Journal of Information Security and Applications 44 (2019), 80–88. https://doi.org/10.1016/j.jisa.2018.11.007

[27] K. L. Moore, T. J. Bihl, K. W. Bauer Jr, and T. E. Dube. 2017. Feature extraction and feature selection for classifying cyber traffic threats. The Journal
of Defense Modeling and Simulation 14, 3 (2017), 217–231. https://doi.org/10.1177/1548512916664032

[28] N. Moustafa and J. Slay. 2015. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In
2015 Military Communications and Information Systems Conference (MilCIS). 1–6. https://doi.org/10.1109/MilCIS.2015.7348942

[29] H. T. Nguyen, S. Petrović, and K. Franke. 2010. A comparison of feature-selection methods for intrusion detection. In Computer Network Security,
I. Kotenko and V. Skormin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 242–255. https://doi.org/10.1007/978-3-642-14706-7_19

[30] M. N. Omidvar, X. Li, Y. Mei, and X. Yao. 2013. Cooperative co-evolution with differential grouping for large scale optimization. IEEE Transactions
on Evolutionary Computation 18, 3 (2013), 378–393. https://doi.org/10.1109/TEVC.2013.2281543

[31] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao. 2017. DG2: A faster and more accurate differential grouping for large-scale black-box optimization.
IEEE Transactions on Evolutionary Computation 21, 6 (2017), 929–942. https://doi.org/10.1109/TEVC.2017.2694221

[32] D. Philp, N. Chan, and L. F. Sikos. 2019. Decision support for network path estimation via automated reasoning. In Intelligent Decision Technologies
2019, I. Czarnowski, R. J. Howlett, and L. C. Jain (Eds.). Springer, Singapore, 335–344. https://doi.org/10.1007/978-981-13-8311-3_29

[33] M. A. Potter. 1997. The design and analysis of a computational model of cooperative coevolution. Ph.D. Dissertation. George Mason University, VA,
United States.

[34] M. A. Potter and K. A. De Jong. 1994. A cooperative coevolutionary approach to function optimization. In International Conference on Parallel
Problem Solving from Nature. Springer, 249–257. https://doi.org/10.1007/3-540-58484-6_269

[35] M. A. Potter and K. A. D. Jong. 2000. Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolutionary computation 8,
1 (2000), 1–29. https://doi.org/10.1162/106365600568086

[36] A. Powell, D. Bates, C. Van Wyk, and D. de Abreu. 2019. A cross-comparison of feature selection algorithms on multiple cyber security data-sets. In
FAIR. 196–207. http://ceur-ws.org/Vol-2540/FAIR2019_paper_69.pdf

[37] A. N. M. B. Rashid. 2018. Access methods for Big Data: current status and future directions. EAI Endorsed Transactions on Scalable Information
Systems 4, 15 (2018). https://doi.org/10.4108/eai.28-12-2017.153520

[38] A. N. M. B. Rashid, M. Ahmed, L. F. Sikos, and P. Haskell-Dowland. 2020. Cooperative co-evolution for feature selection in Big Data with random
feature grouping. Journal of Big Data 7, 1 (2020), 1–42. https://doi.org/10.1186/s40537-020-00381-y

[39] A. N. M. B. Rashid, M. Ahmed, L. F. Sikos, and P. Haskell-Dowland. 2020. A novel penalty-based wrapper objective function for feature selection in
Big Data using cooperative co-evolution. IEEE Access 8 (2020), 150113–150129. https://doi.org/10.1109/ACCESS.2020.3016679

[40] A. N. M. B. Rashid and T. Choudhury. 2019. Knowledge management overview of feature selection problem in high-dimensional financial data:
Cooperative co-evolution and MapReduce perspectives. Problems and Perspectives in Management 17, 4 (2019), 340. https://doi.org/10.21511/ppm.
17(4).2019.28

[41] A. N. M. B. Rashid and T. Choudhury. 2021. Cooperative co-evolution and MapReduce: A review and new insights for large-scale optimization.
International Journal of Information Technology Project Management (IJITPM) 12, 1 (2021), 29–62. https://doi.org/10.4018/IJITPM.2021010102

[42] S. Sadik, M. Ahmed, L. F. Sikos, and A. K. M. N. Islam. 2020. Toward a sustainable cybersecurity ecosystem. Computers 9, 3 (2020), 74. https:
//doi.org/10.3390/computers9030074

[43] D. Schatz, R. Bashroush, and J. Wall. 2017. Towards a more representative definition of cyber security. Journal of Digital Forensics, Security and Law
12, 2 (2017), 53–74. https://doi.org/10.15394/jdfsl.2017.1476

[44] M. Shi and S. Gao. 2017. Reference sharing: a new collaboration model for cooperative coevolution. Journal of Heuristics 23, 1 (2017), 1–30.
https://doi.org/10.1007/s10732-016-9322-9

[45] L. F. Sikos. 2020. Packet analysis for network forensics: A comprehensive survey. Forensic science international: digital investigation 32 (2020), 200892.
https://doi.org/10.1016/j.fsidi.2019.200892

[46] L. F. Sikos, D. Philp, S. Voigt, C. Howard, M. Stumptner, and W. Mayer. 2018. Provenance-aware LOD datasets for detecting network inconsistencies.
In Joint Proceedings of the International Workshops on Contextualized Knowledge Graphs, and Semantic Statistics co-located with 17th International
Semantic Web Conference, S. Capadisli, F. Cotton, J. M. Giménez-García, A. Haller, E. Kalampokis, V. Nguyen, A. Sheth, and R. Troncy (Eds.). RWTH
Aachen University, Aachen. http://ceur-ws.org/Vol-2317/article-03.pdf

[47] L. F. Sikos, M. Stumptner, W. Mayer, C. Howard, S. Voigt, and D. Philp. 2018. Automated reasoning over provenance-aware communication network
knowledge in support of cyber-situational awareness. In Knowledge Science, Engineering and Management, W. Liu, F. Giunchiglia, and B. Yang (Eds.).
Springer, Cham, 132–143. https://doi.org/10.1007/978-3-319-99247-1_12

[48] L. F. Sikos, M. Stumptner, W. Mayer, C. Howard, S. Voigt, and D. Philp. 2018. Representing network knowledge using provenance-aware formalisms
for cyber-situational awareness. Procedia Computer Science 126 (2018), 29–38. https://doi.org/10.1016/j.procs.2018.07.206

39

https://doi.org/10.4218/etrij.2019-0109
https://doi.org/10.1007/s12065-018-0154-4
https://doi.org/10.1109/ICBDA49040.2020.9101213
https://doi.org/10.1016/j.jisa.2018.11.007
https://doi.org/10.1177/1548512916664032
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1007/978-3-642-14706-7_19
https://doi.org/10.1109/TEVC.2013.2281543
https://doi.org/10.1109/TEVC.2017.2694221
https://doi.org/10.1007/978-981-13-8311-3_29
https://doi.org/10.1007/3-540-58484-6_269
https://doi.org/10.1162/106365600568086
http://ceur-ws.org/Vol-2540/FAIR2019_paper_69.pdf
https://doi.org/10.4108/eai.28-12-2017.153520
https://doi.org/10.1186/s40537-020-00381-y
https://doi.org/10.1109/ACCESS.2020.3016679
https://doi.org/10.21511/ppm.17(4).2019.28
https://doi.org/10.21511/ppm.17(4).2019.28
https://doi.org/10.4018/IJITPM.2021010102
https://doi.org/10.3390/computers9030074
https://doi.org/10.3390/computers9030074
https://doi.org/10.15394/jdfsl.2017.1476
https://doi.org/10.1007/s10732-016-9322-9
https://doi.org/10.1016/j.fsidi.2019.200892
http://ceur-ws.org/Vol-2317/article-03.pdf
https://doi.org/10.1007/978-3-319-99247-1_12
https://doi.org/10.1016/j.procs.2018.07.206

TMIS, 2021, ACM, NY Rashid et al.

[49] R. Storn and K. Price. 1997. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global
Optimization 11, 4 (1997), 341–359. https://doi.org/10.1023/A:1008202821328

[50] S. Thudumu, P. Branch, J. Jin, and J. J. Singh. 2020. A comprehensive survey of anomaly detection techniques for high dimensional Big Data. Journal
of Big Data 7, 1 (2020), 1–30. https://doi.org/10.1186/s40537-020-00320-x

[51] G. A. Trunfio, P. Topa, and J. Wąs. 2016. A new algorithm for adapting the configuration of subcomponents in large-scale optimization with
cooperative coevolution. Information Sciences 372 (2016), 773–795. https://doi.org/10.1016/j.ins.2016.08.080

[52] A. Tundis, S. Ruppert, and M. Mühlhäuser. 2020. On the automated assessment of open-source cyber threat intelligence sources. In Computational
Science – ICCS 2020, V. V. Krzhizhanovskaya, Gábor Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, Sérgio Brissos, and João Teixeira (Eds.).
Springer International Publishing, Cham, 453–467. https://doi.org/10.1007/978-3-030-50417-5_34

[53] F. van den Bergh and A. P. Engelbrecht. 2004. A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation
8, 3 (2004), 225–239. https://doi.org/10.1109/TEVC.2004.826069

[54] R. P. Wiegand. 2003. An analysis of cooperative coevolutionary algorithms. Ph.D. Dissertation. George Mason University, VA, United States.
[55] J. M. T. Wu, G. Srivastava, J. C. W. Lin, Y. Djenouri, M. Wei, R. M. Parizi, and M. S. Khan. 2021. Mining of high-utility patterns in Big IoT-based

databases. Mobile Networks and Applications (2021), 1–18. https://doi.org/10.1007/s11036-020-01701-5
[56] J. M. T. Wu, G. Srivastava, M. Wei, U. Yun, and J. C. W. Lin. 2021. Fuzzy high-utility pattern mining in parallel and distributed Hadoop framework.

Information Sciences 553 (2021), 31–48. https://doi.org/10.1016/j.ins.2020.12.004
[57] Z. Yang, K. Tang, and X. Yao. 2008. Large scale evolutionary optimization using cooperative coevolution. Information Sciences 178, 15 (2008),

2985–2999. https://doi.org/10.1016/j.ins.2008.02.017

40

https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1186/s40537-020-00320-x
https://doi.org/10.1016/j.ins.2016.08.080
https://doi.org/10.1007/978-3-030-50417-5_34
https://doi.org/10.1109/TEVC.2004.826069
https://doi.org/10.1007/s11036-020-01701-5
https://doi.org/10.1016/j.ins.2020.12.004
https://doi.org/10.1016/j.ins.2008.02.017

	Anomaly detection in cybersecurity datasets via cooperative co-evolution-based feature selection
	Abstract
	1 Introduction
	1.1 Contribution to the Society

	2 Literature Review
	3 A Novel Anomaly Detection Approach
	3.1 Feature Selection
	3.2 Cooperative Co-Evolution
	3.3 Supervised and Unsupervised Anomaly Detection Techniques
	3.4 Methodology

	4 Results and Discussions
	4.1 Dataset Details
	4.2 Unsupervised Anomaly Detection Parameters
	4.3 The CC Parameters
	4.4 Experimental Results and Analysis
	4.5 Key Improvements
	4.6 Comparison with the State-of-the-Art Algorithms

	5 Conclusion and Future Work
	Acknowledgments
	References

