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Abstract—A novel method for anomaly detection in hyperspec-
tral images (HSIs) is proposed based on low-rank and sparse
representation. The proposed method is based on the separation
of the background and the anomalies in the observed data. Since
each pixel in the background can be approximately represented by
a background dictionary and the representation coefficients of all
pixels form a low-rank matrix, a low-rank representation is used
to model the background part. To better characterize each pixel’s
local representation, a sparsity-inducing regularization term is
added to the representation coefficients. Moreover, a dictionary
construction strategy is adopted to make the dictionary more
stable and discriminative. Then, the anomalies are determined by
the response of the residual matrix. An important advantage of
the proposed algorithm is that it combines the global and local
structure in the HSI. Experimental results have been conducted
using both simulated and real data sets. These experiments indi-
cate that our algorithm achieves very promising anomaly detection
performance.

Index Terms—Anomaly detection, dictionary construction,
hyperspectral image (HSI) analysis, low-rank representation
(LRR), sparse representation.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) convey abundant in-

formation about the spectral characteristics of materials,

with hundreds or even thousands of bands covering specific

wavelengths [1]. The spectrum of each hyperspectral pixel

can be viewed as a vector with each entry representing the

radiance of reflectance value at each spectral band [2]. Since

different materials normally reflect electromagnetic energy at
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different and specific wavelengths, HSI data are suitable for

target detection, which have been of great interest in many

military and civilian applications for several years [2]–[5]. The

goal of target detection is to separate the specific target spectra

or anomalous properties. Anomaly detection can be seen as

target detection without any prior information about the target

signature.

In anomaly detection, pixels that have a significantly dif-

ferent spectral signature from their neighboring background

clutter pixels are defined as spectral anomalies. The well-known

Reed–Xiaoli (RX) algorithm [6] is based on the assumption

that the background follows a multivariate normal distribution.

Then, the RX detector uses the probability density functions of

the multivariate normal distribution to measure the probability

of the test pixel to be part of the background. The solution of

the resulting generalized likelihood ratio test turns out to be the

Mahalanobis distance between the spectral vectors of an input

test pixel and its surrounding neighbors. However, in a real

hyperspectral scene, a multivariate normal distribution is too

simple to describe the complicated background. Moreover,

due to the existence of noisy and other anomalous pixels, the

estimated covariance matrix and the mean vector as a form of

background representation may not be accurate. To overcome

this limitation, some improved methods have been proposed.

For example, the regularized-RX [7] regularizes the covariance

matrix estimated by all HSI pixels. The segmented-RX [8] is a

recently proposed method that uses a clustering of all image

pixels. The weighted-RX and linear-filter-based-RX methods

are introduced in [9], aiming at improving the background

information estimation. Moreover, kernel-based methods such

as kernel-RX [10], [11] and support vector data description

[12], [13] were proposed based on the kernel theory for ex-

tending the original space to a higher dimensional feature

space. These methods can deal with very high dimensional data.

Moreover, some non-RX-based methods have been proposed

recently. A random-selection-based anomaly detector was pre-

sented in [14]. By randomly selecting representative back-

ground pixels and employing a sufficient number of random

selections, the contamination of the background statistics was

reduced. The discriminative metric learning anomaly method is

described in [15]. It exploits a robust anomaly degree metric for

increasing the separability between anomaly pixels and other

background pixels using discriminative information. Subspace-

based methods are presented in [16] and [17]. To capture

local spectral variations, multiple-window anomaly detection is

developed in [18].
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In addition to the aforementioned methods, recently,

representation-based methods have gained much attention.

These methods assume that hyperspectral signatures can be rep-

resented by using a dictionary. With different constraints on the

representation coefficients, we can obtain different detectors.

The sparse-representation-based detector (SRD) is introduced

in supervised hyperspectral target detection [19], [20] and

assumes that each sample can be represented by a few atoms in

the dictionary. The collaborative-representation-based detector

is proposed in [21]. It is based on the concept that each pixel in

the background can be approximately represented by its spatial

neighborhoods, whereas anomalies cannot. The representation

is the linear combination of neighboring pixels, and the col-

laboration among these pixels is reinforced by the ℓ2-norm

minimization of the representation weight vector. However,

none of these methods takes the correlations of all the pixels

in the HSI into consideration; thus, the global information is

not accounted for in these methods.

In this paper, a novel anomaly detection method based on

low-rank and sparse representation (LRASR) is proposed. As

opposed to other representation-based methods, the proposed

method is built on the separation of the anomaly part and

background part, and the background information is contained

in the lowest rank representation of the HSI pixels. Low-

rank representation (LRR) [22], [23] can be used to find the

lowest rank representation of all the pixels jointly. Then, the

anomaly part can be obtained by the residual of the original

image and the recovered background part, using the lowest rank

representation. In this way, the relationship of all HSI pixels is

characterized from a global viewpoint. Then, the local structure

of each pixel’s coefficient is of great importance for better

representation. A sparsity criterion is designed to characterize

the local structure of the data set in the proposed LRASR,

which gives an accurate representation of the observed data.

Moreover, the background dictionary has a great impact on

the representation power. In anomaly detection, the dictionary

should consist of the background pixels and cover all the back-

ground classes. Thus, a novel dictionary construction strategy is

proposed in our method to make the representation more stable

and discriminative. The main contributions of this paper can be

therefore summarized as follows.

1) To the best of our knowledge, this is the first time that

the LRR is adopted for anomaly detection purposes in

HSI. The background information is characterized by the

low rankness of the representation coefficients, and the

anomaly information is contained in the residual.

2) To better describe the local structure of each pixel’s

representation, a sparsity-inducing regularizer is included

in the proposed model, resulting in a more accurate

representation.

3) The construction of the dictionary takes two factors into

consideration: One is the fact that the dictionary is com-

posed of the background pixels, and the other is that it

contains all the background classes.

The remainder of this paper is organized as follows.

Section II provides a detailed description of the proposed

LRASR detector. In Section III, both the simulated experiment

and real data experiments are described and analyzed, followed

by the conclusions in Section IV.

II. LRASR FOR ANOMALY DETECTION

A. LRR for Anomaly Detection

Consider that N pixels form a band HSI X = {xi}Ni=1 ∈
R

B×N . In HSI, an anomalous pixel should be different from

the background pixels. Moreover, there usually exists strong

correlation among the background pixels, i.e., the background

pixels can be represented by some of the other background

pixels. This means that the matrix X can be decomposed into a

background part and an anomalous part as follows:

X = DS+E (1)

where DS denotes the background part, D = [d1,d2, . . . ,dm]
is the background dictionary formed by the background pix-

els (m is the total number of atoms in the dictionary), S =
[s1, s2, . . . , sN ] denotes the representation coefficients, and

E = [e1, e2, . . . eN ] denotes the remaining part corresponding

to the anomalies. This means that the original data can be

reconstructed by the background dictionary.

There are many feasible solutions to problem (1). To address

this issue, we need some criteria for characterizing matrices

S and E. On the one hand, only a very small fraction of the

pixels belong to anomalies which means that matrixE is sparse.

On the other hand, the spectrum of each pixel corresponds

to one kind of material (which is called pure pixel) or to the

mixture of several materials (which is called mixed pixel). As

the spectrum of every material can be represented in a subspace,

all the spectra in the HSI can be drawn from multiple subspaces.

Thus, the coefficients matrix S should give the lowest-rank

representation of all spectra jointly. In summary, for matrix

X = [x1,x2, . . . ,xN ] with each xi representing the ith pixel,

it is appropriate to infer the anomalies by solving the following

LRR [22] problem:

min
S,E

rank(S) + λ‖E‖2,1

s.t X = DS+E (2)

where rank(·) denotes the rank function, parameter λ > 0 is

used to balance the effects of the two parts, and ‖ · ‖2,1 is the

ℓ2,1 norm defined as the sum of ℓ2 norm of the column of a

matrix

‖E‖2,1 =
N
∑

i=1

√

√

√

√

d
∑

j=1

([E]j,i)
2

(3)

where [E]j,i is the entry of E. The ℓ2,1 norm encourages the

columns of E to be zero, which assumes that the corruptions

are “sample specific,” i.e., some pixels are corrupted and the

others are clean. For a column vector corresponding to the

ith pixel, a larger magnitude implies that the pixel is more

anomalous. As a consequence, the matrix E naturally measures

the anomalies. Different from the method proposed in [24]
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which used robust principal component analysis (RPCA) [25]

to separate the original data to a low-rank part and the sparse

error part, we use LRR to separate the data. As pointed in [22],

RPCA relies on the assumption that the data lie in a single low-

rank subspace. However, due to the existence of mixed pixels,

the pixels of an HSI are drawn from multiple subspaces. Thus,

it may not be appropriate to use RPCA in this context. On

the contrary, by choosing an appropriate dictionary, the LRR

(which is regarded as a generalization of RPCA) can recover

the underlying multiple subspaces.

Algorithm 1 LADMAP Algorithm for LRASR

Input: data matrix X, parameters β > 0, λ > 0
Initialize: S0 = J0 = E0 = Y1,0 = Y2,0, μ0 = 0.01,

μmax = 1010, ρ0 = 1.1, ε1 = 10−6, ε2 = 10−2, η1 = ‖D‖22,

k = 0.

1: while ‖X−DS0 −E0‖F /‖X‖F ≥ ε1 or

μk max(
√
η1‖Sk−Sk−1‖F , ‖Jk−Jk−1‖F , ‖Ek−Ek−1‖F )/

‖X‖F ≥ ε2 do

2: Update variable Sk+1:

Sk+1=Θ(η1µk)−1

(

Sk +
[

D
T (X−DSk −Ek +Y1,k/μk)

− (Sk − Jk +Y2,k/μk)
]

/η1
)

3: Update variable Jk+1:

Jk+1 = Sβµ
−1

k

(Sk+1 +Y2,k/μk)

4: Update variable Ek+1:

Ek+1 = Ωλµ
−1

k

(X−DSk+1 +Y1,k/μk)

5: Update Lagrange multipliers as follows:

Y1,k+1 = Y1,k + μk(X−DSk+1 −Ek+1).

Y2,k+1 = Y2,k + μk(Sk+1 − Jk+1)

6: Update μ as follows:

μk+1=min(μmax, ρμk) where

ρ=

⎧

⎪

⎨

⎪

⎩

ρ0, if μk max
(√

η1‖Sk+1−Sk‖F , ‖Jk+1−Jk‖F ,
‖Ek+1 −Ek‖F

)

/‖X‖F ≤ ε2

1, otherwise

7: Update k : k ← k + 1.

8: end while

Output: an optimal solution (Sk,Jk,Ek).

However, solving problem (2) is NP-hard. Fortunately, it

was suggested by matrix completion methods [25] that the

following convex optimization provides a good surrogate for

problem (2):

min
S,E

‖S‖∗ + λ‖E‖2,1

s.t X = DS+E (4)

where ‖ · ‖∗ denotes the matrix nuclear norm (sum of the sin-

gular values of a matrix) [26]. Once the representation process

is finished, the anomalies for the ith spectrum T (xi) can be

determined by the response of the residual matrix E as follows:

T (xi) = ‖[E∗]:,i‖2 =

√

∑

j

([E∗]j,i)
2

(5)

where ‖[E∗]:,i‖2 denotes the ℓ2 norm of the ith column of E∗.
If it is larger than a threshold, then xi is claimed to be an

anomalous pixel.

B. Sparse Regularization for LRR

As seen in [22], the low rankness criterion is superior at

capturing the global structure of observed data X. However,

each spectrum has its own local structure. The more accurate

the description of the local structure, the more accurate the

representation of the observed data. The sparse signal represen-

tation has proven to be a powerful tool in many areas [27], [28].

This success is mainly due to the fact that most natural signals

can be sparsely represented by a few coefficients carrying the

most important information with respect to a certain dictionary

or basis set [28]. In HSI target detection, sparsity-based target

detection algorithms are widely used. The basic sparsity-based

detector uses a similar sparsity model proposed in [28] to

sparsely represent a test image by a few training samples,

including both target and background samples, and then, it

directly employs the reconstruction residuals to perform the

detection. In the anomaly detection stage, as most of the sam-

ples are background pixels, they have a sparse representation in

terms of the background dictionary. Therefore, the sparse nature

of the matrix allows us to describe the local structure. The

model with the sparse regularization can be written as follows:

min
S,E

‖S‖∗ + β‖S‖1 + λ‖E‖2,1

s.t X = DS+E (6)

where ‖ · ‖1 is the ℓ1 norm of a matrix, i.e., the sum of the

absolute value of all entries in the matrix; β > 0 is a parameter

to trade off low rankness and sparsity. The model (6) incor-

porates the global structure by the low-rank property and the

local structure by the sparsity property, which results in a more

accurate representation of the original data. Thus, the residual

matrix E provides a better description of the anomalies.

The LRASR problem (6) could be solved by the popular

alternating direction method [22], [29]. However, two auxiliary

variables need to be introduced when solving (6), and expensive

matrix inversions are required in each iteration. Thus, a newly

developed method called the linearized alternating direction

method with adaptive penalty (LADMAP) [30] is adopted to

solve (6).



XU et al.: ANOMALY DETECTION IN HSIS BASED ON LOW-RANK AND SPARSE REPRESENTATION 1993

Algorithm 2 Anomaly detection algorithm for HSI based on

LRASR

Input: data matrix X, parameters β > 0, λ > 0,K, P
1: Divide the data matrix X into K parts using K-means

algorithm, s.t.

X = ∪i=1,...,KX
i,Xi ∩X

j = ∅, i �= j, i, j = 1, . . .K ,

Denote Ni the number of pixels in X
i and D = ∅.

2: for i = 1 : K
2.1: If Ni < P
Skip and go to Step 2;

2.2: compute the mean vector µ and covariance matrix
∑

of

data {xj |xj ∈ X
i, j = 1 . . . .Ni}.

2.3: compute the pre-detection result:

PD(xj) = (xj − µ)T
∑−1(xj − µ) j = 1, 2, . . . , Ni

2.4: choose P pixels Di = [x1,x2, . . . ,xP ] in

{xj |xj ∈ X
i, j = 1 . . . .Ni}, s.t.

PD(xi) < PD(xj),xi ∈ Di,xj ∈ {xj |xj ∈ X
i, j =

1, . . . , Ni} \Di

2.5: D = D ∪Di

end

3: Solve the following problem using Algorithm 1,

min
S,E

‖S‖∗ + β‖S‖1 + λ‖E‖2,1

s.t X = DS+E

And obtain the optimal solution (S∗,E∗).

4: compute T (xi) = ‖[E∗]:,i‖2 =
√

∑

j ([E
∗]j,i)

2
,

i = 1, 2, . . . , N
Output: Anomaly detection map.

To make the objective function separable, we introduce an

auxiliary variable J which satisfies S = J; then, we can replace

the second term ‖S‖1 in the objective function with ‖J‖1.

Thus, the original problem (6) can be converted to the following

problem:

min
S,E

‖S‖∗ + β‖J‖1 + λ‖E‖2,1
s.t X = DS+E,S = J (7)

The augmented Lagrangian function of problem (7) is

L(S,J,E,Y1,Y2, μ)

= ‖S‖∗ + β‖J‖1 + λ‖E‖2,1 + 〈Y1,X−DS−E〉

+ 〈Y2,S− J〉+ μ

2

(

‖X−DS−E‖2F + ‖S− J‖2F
)

= ‖S‖∗ + β‖J‖1 + λ‖E‖2,1

+ f(S,J,E,Y1,Y2, μ)−
1

2μ

(

‖Y1‖2F + ‖Y2‖2F
)

(8)

where (Y1,Y2) are Lagrange multipliers, μ > 0 is the penalty

parameter, and

f(S,J,E,Y1,Y2, μ)

=
μ

2

(

‖X−DS−E+Y1/μ‖2F+‖S−J+Y2/μ‖2F
)

(9)

The LADMAP is a multiple-variable optimization problem,

which can be solved by updating one variable alternately by

minimizing L with the other variables fixed. Suppose that we

are in the kth iteration; the problem can be divided into the

following subproblems.

1) Fix J and E, and update S; the objective function can be

written as follows:

Sk+1 = argmin
S

‖S‖∗

+ 〈∇Sf (Sk,Jk,Ek,Y1,k,Y2,k, μk),S− Sk〉

+
η1μk

2
‖S− Sk‖2F

= argmin
S

‖S‖∗ +
η1μk

2

×
∥

∥S− Sk+
[

−D
T (X−DSk−Ek+Y1,k/μk)

+(Sk − Jk +Y2,k/μk)
]

/η1
∥

∥

2

F

(10)

where the quadratic term f is replaced by its first-order

approximation at previous iterations, and then adding a

proximal term [30], ∇Sf is the partial differential of f
with respect to S, and η1 = ‖D‖22.

2) Fix S and E, and update J; the objective function can be

written as follows:

Jk+1 = argmin
J

β‖J‖1 +
μk

2
‖Sk+1 − J+Y2,k/μk‖2F

(11)

3) Fix S and J, and update E; the objective function can be

written as follows:

Ek+1 = argmin
E

λ‖E‖2,1

+
μk

2
‖X−DSk+1 −E+Y1,k/μk‖2F (12)

The solution is outlined in Algorithm 1.

In Algorithm 1, Θ, S, and Ω are the singular value threshold-

ing [31], shrinkage [29], and ℓ2,1 minimization operator [22],

respectively. Here, the orders of updating S, J, and E can be

changed.

C. Construction of Dictionary D

In the aforementioned algorithm, the dictionary D plays an

important role in detecting anomalies. In sparse representation

for target detection problems, the dictionary is composed of

the background dictionary and the target dictionary, which

are supposed to be known. However, in the case of anomaly

detection, the dictionary is not known in advance and should

represent the background information as much as possible. One

way to construct the dictionary is to use the original data X

directly. Although the original data X contains anomalies, the

number of anomalous pixels is very small, which can be ignored

in the representation process. However, the computation burden
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Fig. 1. Simulated data set. (a) False color image of the whole scene, (b) false color image of the detection area, and (c) ground-truth map.

is very large since the algorithm involves a singular value

decomposition of a matrix with size M ×M , where M is the

number of atoms. Another way is to choose some of the pixels

from the HSI randomly to form the dictionary. In this way,

the atom number can be decreased. However, the dictionary

should cover all the ground material classes except for the

anomalies. Fortunately, in an HSI, most of the scene is covered

by a few kinds of major materials, so pixels are much more

likely to belong to these major materials than to others. If

we construct the dictionary by choosing pixels randomly, the

probability of choosing pixels belonging to major materials is

very high, so the constructed dictionary will be composed of

the major materials’ pixels, and some materials with other less

relevant samples will be ignored. As a result, the pixels which

correspond to the material with less representative samples will

be detected as anomalies.

In this paper, a new strategy for dictionary construction is

adopted. First, K-means is used to divide all the pixels into

K clusters X = {X1,X2, . . . ,XK}. The Euclidean distance

is used in the K-means algorithm. K should be larger than

the true number of ground material classes in order to make

sure that the K clusters cover all the ground materials. As

the atom should be a background pixel, a prepredictive strat-

egy is adopted in order to choose the background pixels in

each cluster. Similar to the RX algorithm, the square of the

Mahalanobis distance between the test pixel and the local

background mean in each cluster is calculated. The RX detector

assumes that the higher the value of the detection result, the

more likely the pixel will be anomalous. However, noisy pixels

or pixels corresponding to rare materials can be detected as

outliers because they are more uncommon in the HSI.

On the other hand, pixels with small prepredictive values are

background pixels with certainty. Therefore, the P pixels which

give the smallest Mahalanobis distance are chosen to generate

atoms in the dictionary. If the total number of pixels in the

Fig. 2. First real-world data set. (a) False color image of the detection area and
(b) ground-truth map.

cluster is smaller than P , this cluster can be skipped as we have

set K larger than the real number of ground material classes.

The anomaly detection algorithm for HSIs based on LRASR

using the clustered dictionary is summarized in Algorithm 2.

III. EXPERIMENTAL RESULTS

A. Data Set Description

In this paper, both simulated and real hyperspectral data

sets are used to evaluate our method. The simulated data

were generated based on a real HSI data set. It was collected

by the Airborne Visible/Infrared Imaging Spectrometer over

San Diego, CA, USA. The spatial resolution is 3.5 m per pixel.

The image has 224 spectral channels in wavelengths ranging

from 370 to 2510 nm. After removing the bands that correspond

to the water absorption regions, low SNR, and bad bands (1–6,

33–35, 94–97, 107–113, 153–166, and 221–224), 186 available

bands of the data are retained in the experiments. The whole

data set has a size of 400×400, as shown in Fig. 1(a). From this
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Fig. 3. Second real-world data set. (a) False color image of the whole image, (b) false color image of the detection area, and (c) ground-truth map.

Fig. 4. Two-dimensional plots of the detection results achieved by LRASR
using different dictionaries. A color nearer to red suggests that the pixels are
anomalous, while a color nearer to blue suggests that the pixels belong to the
background. The results are shown using (a) our dictionary and (b) a random
dictionary.

Fig. 5. ROC curves for the simulated data set using different dictionaries.

hyperspectral data set, a region with a size of 100×100 pixels is

selected to form the simulated data. The anomalous pixels are

simulated by the target implantation method [32]. Based on the

linear mixing model, a synthetic subpixel anomaly target with

Fig. 6. Plot of MSE versus the number of endmembers.

Fig. 7. ROC curves obtained for the simulated data set with different values
of P .
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Fig. 8. Two-dimensional plots of the detection results obtained by different methods for the simulated data set: (a) Global-RX, (b) SegRX, (c) SRD,
(d) RPCA-RX, and (e) LRASR.

Fig. 9. ROC curves obtained by different methods for the simulated data set.

TABLE I
AUC FOR THE DETECTORS REPORTED IN FIG. 7

spectrum z and a specified abundance fraction f is generated

by fractionally implanting a desired anomaly with spectrum t

in a given pixel of the background with spectrum b as follows

[33]:

z = f · t+ (1 − f) · b. (13)

In the image, 16 anomalous targets have been implanted.

These anomalies are distributed in four rows and four columns.

The abundance fractions f are 0.05, 0.1, 0.2, and 0.4 for differ-

ent rows, respectively, and remain unchanged for the anomalies

in the same row. The anomalous spectrum t is chosen outside

the selected scene in the whole image, and the same anomalous

spectrum t is applied to the 16 target pixels. It corresponds to

the plane in the middle left of the whole scene. The image scene

used in the simulated experiments is shown in Fig. 1(b), and the

ground-truth map of anomalies is illustrated in Fig. 1(c).

The first data used for real-world detection are also part of the

San Diego image. The up-left 100 × 100 of the scene is chosen

as the test image. The scene is mainly composed of buildings

with different roofs, parking aprons with different materials,

an airport runway, and a small quantity of vegetation. The air-

planes are the anomalies to be detected. The false color image

and the ground-truth map are shown in Fig. 2(a) and (b), respec-

tively. Fifty-seven pixels were selected as anomalies, composed

of full-pixel anomalies in the main body of the airplanes and

subpixel targets on the edges of the airplanes. In this scene, the

anomaly is big compared to that of the simulated data set.

The second data set used in real-world experiments is a

HYDICE hyperspectral data set obtained from an aircraft plat-

form. It covers an urban area that comprises a vegetation area,

a construction area, and several roads including some vehicles.

The image has a spectral resolution of 10 nm and a spatial reso-

lution of 1 m. The low-SNR and water vapor absorption bands

(1–4, 76, 87, 101–111, 136–153, and 198–210) are eliminated

so that 162 bands remain. The whole data set has a size of

307×307 pixels, as shown in Fig. 3(a). However, the ground

truth defines that the anomalous targets are the cars and roofs

embedded in the different backgrounds in the upper rightmost

area of the scene. Therefore, the considered subscene consists

of pixels covering this area. A color representation and the

ground-truth map are shown in Fig. 3(b) and (c), respectively.

The 21 anomalous target pixels are the vehicles with different

sizes in the urban scene.

B. Detection Performance

First, we illustrate the effects of the dictionary constructed by

our method. In our dictionary construction step, K and P are

set to 15 and 20, respectively. We compare our method with

another method using a different dictionary. In that method,

all the atoms in the dictionary are randomly chosen from the

whole image. For a fair comparison, the number of atoms

is set to 300. The 2-D plots illustrating the detection results

obtained by the two methods are shown in Fig. 4(a) and (b). The

anomalies are obvious in both maps. However, in the results of

the method using a random dictionary, many pixels on the lower

rightmost corner of the scene exhibit a high detection value

despite not being anomalous. This indicates that the random

dictionary cannot avoid the presence of noisy pixels or pixels

corresponding to rare materials being detected as anomalies.

For numerical comparison, the receiver operating characteristic

(ROC) curve is constructed, which acts as the classic com-

parison measurement for different detection methods [2], [34].

The target detection rate and false alarm rate are computed

by a certain segmentation threshold. For each target detector’s

results, the segmentation threshold can be changed to obtain

a group of target detection rate and false alarm rate for each

target detector, which can be used to plot the ROC curve. A

better detector would lie nearer the upper leftmost corner and

result in a larger area under the curve [2]. Fig. 5 shows the ROC
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Fig. 10. Two-dimensional plots of the detection results obtained by different methods for the real San Diego data set: (a) Global-RX, (b) SegRX, (c) SRD, (d)
RPCA-RX, and (e) LRASR.

Fig. 11. ROC curves obtained by different methods for the real San Diego
data set.

TABLE II
AUC FOR DETECTORS REPORTED IN FIG. 9

curves obtained after applying the two considered methods. It

can be seen that the method using our dictionary can achieve

better results, which is expected because our dictionary can

cover most of the background materials, thus providing more

robust and reliable results.

The number of clusters should be larger than the real number

of the ground materials, but this number is difficult to know

a priori. Thus, the HySime [35] algorithm is applied to estimate

the number of endmembers that can represent the real ground

materials. HySime estimates the signal and the noise correlation

matrices and then selects the subset of eigenvalues that best

represents the signal subspace in the minimum mean squared

error (MSE) sense. Fig. 6 shows the MSE versus the number of

endmembers of the three considered data sets. From Fig. 6, we

can see that, when the number of endmembers is larger than 10,

the MSE values are small for the three data sets. Thus, we set

K = 15 empirically in our experiments. Then, we compare the

impact of P as shown in Fig. 7. From Fig. 7, we can see that

the results obtained using different values of P are almost the

same. Thus, our method is robust to P . For simplicity, P is set

to 20 in our experiments.

Next, we evaluate the detection performance of our pro-

posed LRASR detector, comparing it with the conventional

global RX, segmentation-based-RX (SegRX) detector, SRD,

and RPCA-RX. For SegRX, the K-means clustering is first

applied on the whole data to divide the data into several clusters.

Then, the RX is used in each cluster to detect the anomalies.

The number of clusters in SegRX is set empirically. The regu-

larization parameters for RPCA-RX and SRD are optimized in

our experiments. The parameters of window size (wout, win)
are set to (15, 7) for SRD after extensive searching. The 2-D

plots of the detection results of all the compared algorithms

are shown in Fig. 8(a)–(e). From these figures, we can see

that all the methods (except SRD) can distinguish between the

background and anomalies in high abundance fraction pixels.

The proposed LRASR can also provide a clear discrimination

in the low abundance fraction pixels. Fig. 9 illustrates the ROC

curves obtained for the simulated data set. An important obser-

vation from Fig. 8 is that the SegRX outperforms the global RX

and RPCA-RX. Compared to the SegRX, the proposed LRASR

exhibits a slightly lower probability of detection for a low false

alarm rate (when the false alarm is 0.033 to 0.047). Compared

to SRD, it exhibits a lower probability of detection when the

false alarm is from 0.125 to 0.2; however, the proposed LRASR

is the best method in terms of the overall detection performance.

Furthermore, we have also computed the area under the ROC

curve (AUC) to evaluate the performance of these methods. The

results are shown in Table I. The proposed LRASR achieves

the highest score as expected. It is 0.03 higher than the second

highest score, which is achieved by SegRX. The improvement

over the other tested methods is due to the fact that our proposed

LRASR performs better at both noise pixel suppression and

weak anomaly detection.

For the real San Diego data set experiment, the 2-D plots for

the obtained detection results are illustrated in Fig. 10(a)–(e).

From this figure, it can be seen that the proposed LRASR gives

a map where the anomalies are obvious. The ROC curves of all

the methods are shown in Fig. 11 for illustrative purposes. The

proposed LRASR achieves the highest probability of detection

for all false alarm rate values. The AUC scores are provided

in Table II. The proposed LRASR achieves a score that is

0.04 higher than SegRX, which is an obvious improvement.

This confirms that the proposed method can outperform the

traditional detectors.

For the real urban data set, the 2-D plots of the obtained

detection results are shown in Fig. 12(a)–(e). The anomalies

in Fig. 12(e) are more obvious, and few nonanomalous pixels

have high detection values. The ROC curves and AUC scores

are also shown in Fig. 13 and Table III, respectively. Although

the representation-based SRD gains a higher probability of

detection when the false alarm rate ranges from 0.012 to 0.051,

the proposed LRASR achieves the highest AUC score among

all the detectors. Therefore, it can be concluded that LRASR
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Fig. 12. Two-dimensional plots of the detection results obtained by different methods for the real urban data set: (a) Global-RX, (b) SegRX, (c) SRD,
(d) RPCA-RX, and (e) LRASR.

Fig. 13. ROC curves obtained by different methods for the real urban data set.

TABLE III
AUC FOR DETECTORS REPORTED IN FIG. 11

TABLE IV
EXECUTION TIMES (IN SECONDS) FOR ALL EXPERIMENTS

Fig. 14. Joint consideration of β and λ for the simulated data set.

is a promising method for the detection of anomalous pixels

in HSIs.

The computation costs of all the aforementioned methods

have also been compared. Detailed results are presented in

Fig. 15. Joint consideration of β and λ for the real San Diego data set.

Fig. 16. Joint consideration of β and λ for the real urban data set.

Table IV. The algorithms are tested on a computer with a

64-b quad-core Intel Xeon CPU 3.33-GHz processor under

Windows 7. It reveals that our method does take more computa-

tion time than other methods. Due to the fact that our algorithm

requires hundreds of iterations to converge, the computational

cost of the proposed method is an important issue to be settled

in our future developments.

C. Sensitivity to the Regularization Parameters

The proposed method involves two regularization parame-

ters: β and λ. Normally, we can use a more robust method to



XU et al.: ANOMALY DETECTION IN HSIS BASED ON LOW-RANK AND SPARSE REPRESENTATION 1999

compute them by a maximum a posteriori (MAP) estimation

problem. To improve the computational efficiency, we do not

use a robust estimation method in this paper. Figs. 14–16 il-

lustrate the obtained performance when jointly taking the two

regularization parameters into consideration. β is chosen from

{0.001, 0.01, 0.1, 0.5, 1, 2, 3}, and λ is chosen from {0.001,

0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. It reveals that, for the San

Diego data set, LRASR is sensitive to β. For the simulated data

set and the second real-world data set, it achieves high AUC

when λ is larger than 0.001. From a general viewpoint, the

changes of AUC are not obvious when β, λ ∈ [0.01 0.1]. For

simplicity, in our experiments, we have empirically set β = 0.1
and λ = 0.1 for all the considered the data sets, achieving

satisfactory results in all cases.

IV. CONCLUSIONS AND FUTURE RESEARCH LINES

This paper has proposed a new anomaly detection method

based on LRASR. To estimate the background, each pixel is

represented via a linear combination of the background dic-

tionary’s atoms. The representation coefficient matrix, which

contains the background information, has a low-rank property.

A sparse constraint is added to achieve a more accurate descrip-

tion of the local structure of each sample. As the dictionary

represents the background information, a novel way to

construct the dictionary is proposed. By this way, the atoms

of the dictionary are more likely to belong to the background,

and the dictionary covers all the ground material classes in

the scene. The anomalies are calculated from the residual of

the LRASR. It is demonstrated that the proposed LRASR

provides better detection performance than other methods. An

important aspect deserving future research is the computational

complexity of the proposed method. In this regard, we are

currently developing efficient implementations using high per-

formance computing architectures such as commodity graphics

processing units.
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