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Anomaly Detection in IP Networks
Marina Thottan and Chuanyi Ji

Abstract—Network anomaly detection is a vibrant research
area. Researchers have approached this problem using various
techniques such as artificial intelligence, machine learning, and
state machine modeling. In this paper, we first review these
anomaly detection methods and then describe in detail a statistical
signal processing technique based on abrupt change detection. We
show that this signal processing technique is effective at detecting
several network anomalies. Case studies from real network data
that demonstrate the power of the signal processing approach
to network anomaly detection are presented. The application of
signal processing techniques to this area is still in its infancy, and
we believe that it has great potential to enhance the field, and
thereby improve the reliability of IP networks.

Index Terms—Adaptive signal processing, autoregressive pro-
cesses, eigenvalues and eigenfunctions, network performance, net-
work reliability.

I. INTRODUCTION

NETWORKS are complex interacting systems and are com-
prised of several individual entities such as routers and

switches. The behavior of the individual entities contribute to
the ensemble behavior of the network. The evolving nature of
internet protocol (IP) networks makes it difficult to fully un-
derstand the dynamics of the system. Internet traffic was first
shown to be composed of complex self-similar patterns by Le-
landet al. [1]. Multifractal scaling was discovered and reported
by Levy-Vehelet al. [2]. To obtain a basic understanding of
the performance and behavior of these complex networks, vast
amounts of information need to be collected and processed.
Often, network performance information is not directly avail-
able, and the information obtained must be synthesized to ob-
tain an understanding of the ensemble behavior. In this paper,
we review the use of signal processing techniques to address
the problem of measuring, analyzing, and synthesizing network
information to obtain normal network behavior. The normal net-
work behavior thus computed is then used to detect network
anomalies.

There are two main approaches to studying or characterizing
the ensemble behavior of the network: The first is the infer-
ence of the overall network behavior through the use of network
probes [3] and the second by understanding the behavior of the
individual entities or nodes. In the first approach, which is often
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referred to as network tomography [4], there is no assumption
made about the network, and through the use of probe measure-
ments, one can infer the characteristics of the network. This is a
useful approach when characterizing noncooperative networks
or networks that are not under direct administrative control. In
the case of a single administrative domain where knowledge of
the basic network characteristics such as topology are available,
an entity-based study would provide more useful information
to the network administrator. Using some basic knowledge of
the network layout as well as the traffic characteristics at the
individual nodes, it is possible to detect network anomalies and
performance bottlenecks. The detection of these events can then
be used to trigger alarms to the network management system,
which, in turn, trigger recovery mechanisms. The methods pre-
sented in this paper deal with entity-based measurements.

The approaches used to address the anomaly detection
problem are dependent on the nature of the data that is avail-
able for analysis. Network data can be obtained at multiple
levels of granularity such as end-user-based or network-based.
End-user-based information refers to the transmission control
protocol (TCP) and user datagram protocol (UDP) related data
that contains information that is specific to the end application.
Network-based data pertains to the functioning of the network
devices themselves and includes information gathered from
the router’s physical interfaces as well as from the router’s
forwarding engine. Traffic counts obtained from both types of
data can be used to generate a time series to which statistical
signal processing techniques can be applied [5], [6]. However,
in some cases, only descriptive information such as the number
of open TCP connections, source-destination address pairs, and
port numbers are available. In such situations, conventional
approaches of rule-based methods would be more useful [7].

The goal of this paper is to show the potential to apply signal
processing techniques to the problem of network anomaly
detection. Application of such techniques will provide better
insight for improving existing detection tools as well as provide
benchmarks to the detection schemes employed by these
tools. Rigorous statistical data analysis makes it possible to
quantify network behavior and, therefore, more accurately
describe network anomalies. The scope of this paper is to
describe the problem of IP network anomaly detection in a
single administrative domain along with the types and sources
of data available for analysis. Special emphasis is placed on
motivating the need for signal processing techniques to study
this problem. We describe areas in which advances in signal
detection theory have been useful. For example, there are no
accurate statistical models for normal network operation, and
this makes it difficult to characterize the statistical behavior of
abnormal traffic patterns. In this paper, we present a technique
based on abrupt change detection for addressing this challenge
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[8]. Furthermore, there is no single variable or metric that
captures all aspects of normal network function. This presents
the problem of synthesizing information from multiple metrics,
each of which have widely differing statistical properties.
To address this issue, we use an operator matrix to correlate
information from individual metrics [5]. The paper also iden-
tifies some of the challenges posed to the signal processing
community by this new application.

The paper is organized as follows: Section II describes the
characteristics of network anomalies along with some examples.
The different sources from which network data can be obtained
are described in Section III. Section IV surveys the commonly
used methods for anomaly detection. In Section V, we describe
a statistical technique to solve the same problem. We present an
evaluation criteria for the effectiveness of the signal processing
technique and summarize its performance in detecting various
network anomalies. We describe four in-depth case studies on
anomalous events in real networks as well as the performance
of the statistical approach in each of these cases. Section VI de-
scribes relevant issues in the application of signal processing
techniques to network data analysis. In Section VII, we discuss
some of the open issues that provide interesting avenues to ex-
plore for future work.

II. NETWORK ANOMALIES

Network anomalies typically refer to circumstances when
network operations deviate from normal network behavior.
Network anomalies can arise due to various causes such as
malfunctioning network devices, network overload, malicious
denial of service attacks, and network intrusions that disrupt the
normal delivery of network services. These anomalous events
will disrupt the normal behavior of some measurable network
data. In this paper, we present techniques that can be employed
to detect such types of anomalies.

The definition of normal network behavior for measured net-
work data is dependent on several network specific factors such
as the dynamics of the network being studied in terms of traffic
volume, the type of network data available, and types of appli-
cations running on the network. Accurate modeling of normal
network behavior is still an active field of research, especially
the online modeling of network traffic [9]. There exists parsi-
monious traffic models that accurately capture fractal and mul-
tifractal scaling properties, such as the self-similar models in-
troduced by Norros [10] and cascade models originally sug-
gested by Crousseet al.[11]. While Crouseet al.concentrate on
the signal processing issues and statistical matching to network
traffic, Gilbertet al.provide a more network centric description
of cascade-scaling [12]. Within these parsimonious modeling
frameworks, different approaches can be used to do anomaly
detection.

Today’s commercially available network management sys-
tems continuously monitor a set of measured indicators to detect
network anomalies. A human network manager observes the
alarm conditions or threshold violations generated by a group
of individual indicators to determine the status of the health of
the network. Such alarm conditions represent deviations from
normal network behavior and can occur before or during an
anomalous event. These deviations are often associated with

performance degradation in the network. Based on this intu-
itive model currently being used, we premise the following:
Network anomalies are characterized by correlated transient
changes in measured network data that occur prior to or during
an anomalous event. The termtransient changesrefers to abrupt
changes in the measured data that occurs in the same order as
the frequency of the measurement interval. The duration of these
abrupt changes varies with the nature of the triggering anoma-
lous event.

A. Examples of Network Anomalies

Network anomalies can be broadly classified into two
categories. The first category is related to network failures
and performance problems. Typical examples of network
performance anomalies are file server failures, paging across
the network, broadcast storms, babbling node, and transient
congestion [13], [14]. For example, file server failures, such as
a web server failure, could occur when there is an increase in
the number offtp requests to that server. Network paging errors
occur when an application program outgrows the memory
limitations of the work station and begins paging to a network
file server. This anomaly may not affect the individual user
but affects other users on the network by causing a shortage of
network bandwidth. Broadcast storms refer to situations where
broadcast packets are heavily used to the point of disabling the
network. A babbling node is a situation where a node sends
out small packets in an infinite loop in order to check for some
information such as status reports. Congestion at short time
scales occurs due to hot spots in the network that may be a
result of some link failure or excessive traffic load at that point
in the network. In some instances, software problems can also
manifest themselves as network anomalies, such as a protocol
implementation error that triggers increased or decreased traffic
load characteristics. For example, anacceptprotocol error in a
super server (inetd) results in reduced access to the network,
which, in turn, affects network traffic loads.

The second major category of network anomalies is secu-
rity-related problems. Denial of service attacks and network
intrusions are examples of such anomalies. Denial of service
attacks occur when the services offered by a network are
hijacked by some malicious entity. The offending party could
disable a vital service such as domain name server (DNS)
lookups and cause a virtual shutdown of the network [15], [16].
For this event, the anomaly may be characterized by very low
throughput. In case of network intrusions, the malicious entity
could hijack network bandwidth by flooding the network with
unnecessary traffic, thus starving other legitimate users [6],
[17]. This anomaly would result in heavy traffic volumes.

III. SOURCES OFNETWORK DATA

Obtaining the right type of network performance data is es-
sential for anomaly detection. The types of anomalies that can
be detected are dependent on the nature of the network data. In
this section, we review some possible sources of network data
along with their relevance for detecting network anomalies. For
the purpose of anomaly detection, we must characterize normal
traffic behavior. The more accurately the traffic behavior can be
modeled, the better the anomaly detection scheme will perform.
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A. Network Probes

Network probes are specialized tools such aspingandtracer-
oute[18] that can be used to obtain specific network parameters
such as end-to-end delay and packet loss. Probing tools provide
an instantaneous measure of network behavior. These methods
do not require the cooperation of the network service provider.
However, it is possible that the service providers could choose
not to allow ping traffic through their firewall. Furthermore, the
specialized IP packets used by these tools need not follow the
same trajectory or receive the same treatment by network de-
vices as do the regular IP packets. This method also assumes the
existence of symmetric paths between given source-destination
pairs. On the Internet, this assumption cannot be guaranteed.
Thus, performance metrics derived from such tools can provide
only a coarse grained view of the network. Therefore, the data
obtained from probing mechanisms may be of limited value for
the purpose of anomaly detection.

B. Packet Filtering for Flow-Based Statistics

In packet filtering, packet flows are sampled by capturing
the IP headers of a select set of packets at different points in
the network [19]. Information gathered from these IP headers
is then used to provide detailed network performance informa-
tion. For flow-based monitoring, a flow is identified by source-
destination addresses and source-destination port numbers. The
packet filtering approach requires sophisticated network sam-
pling techniques as well as specialized hardware at the network
devices to do IP packet lookup. Data obtained from this method
could be used to detect anomalous network flows. However, the
hardware requirements required for this measurement method
makes it difficult to use in practice.

C. Data From Routing Protocols

Information about network events can be obtained through
the use of routing peers. For example by using an open shortest
path first (OSPF) peer, it is possible to gather all routing table
updates that are sent by the routers [20]. The data collected can
be used to build the network topology and provides link status
updates. If the routers run OSPF with traffic engineering (TE)
extensions, it is possible to obtain link utilization levels [21].
Since routing updates occur at frequent intervals, any change in
link utilization will be updated in near real time. However, since
routing updates must be kept small, only limited information
pertaining to link statistics can be propagated through routing
updates.

D. Data From Network Management Protocols

Network management protocols provide information about
network traffic statistics. These protocols support variables that
correspond to traffic counts at the device level. This information
from the network devices can be passively monitored. The infor-
mation obtained may not directly provide a traffic performance
metric but could be used to characterize network behavior and,
therefore, can be used for network anomaly detection. Using
this type of information requires the cooperation of the service

provider’s network management software. However, these pro-
tocols provide a wealth of information that is available at very
fine granularity. The following subsection will describe this data
source in greater detail.

1) Simple Network Management Protocol (SNMP):SNMP
works in a client-server paradigm [22]. The protocol provides a
mechanism to communicate between the manager and the agent.
A single SNMP manager can monitor hundreds of SNMP agents
that are located on the network devices. SNMP is implemented
at the application layer and runs over the UDP. The SNMP man-
ager has the ability to collect management data that is provided
by the SNMP agent but does not have the ability to process this
data. The SNMP server maintains a database of management
variables called the management information base (MIB) vari-
ables [23]. These variables contain information pertaining to the
different functions performed by the network devices. Although
this is a valuable resource for network management, we are only
beginning to understand how this information can be used in
problems such as failure and anomaly detection.

Every network device has a set of MIB variables that are spe-
cific to its functionality. MIB variables are defined based on
the type of device as well as on the protocol level at which
it operates. For example, bridges that are data link-layer de-
vices contain variables that measure link-level traffic informa-
tion. Routers that are network-layer devices contain variables
that provide network-layer information. The advantage of using
SNMP is that it is a widely deployed protocol and has been
standardized for all different network devices. Due to the fine-
grained data available from SNMP, it is an ideal data source for
network anomaly detection.

2) SNMP—MIB Variables:The MIB variables [24] fall into
the following groups: system, interfaces (if), address translation
(at), internet protocol (ip), internet control message protocol
(icmp), transmission control protocol (tcp), user datagram pro-
tocol (udp), exterior gateway protocol (egp), and simple network
management protocol (snmp). Each group of variables describes
the functionality of a specific protocol of the network device.
Depending on the type of node monitored, an appropriate group
of variables can be considered. If the node being monitored is
a router, then theip group of variables are investigated. Theip
variables describe the traffic characteristics at the network layer.
MIB variables are implemented as counters. Time series data for
each MIB variable is obtained by differencing the MIB variables
at two subsequent time instances called the polling interval.

There is no single MIB variable that is capable of capturing
all network anomalies or all manifestations of the same network
anomaly. Therefore, the choice of MIB variables depends on
the perspective from which the anomalies are detected. For ex-
ample, in the case of a router, theip group of MIB is chosen,
whereas for a bridge, theif group is used.

IV. A NOMALY DETECTION METHODS

In this section, we review the most commonly used net-
work anomaly detection methods. The methods described are
rule-based approaches, finite state machine models, pattern
matching, and statistical analysis.
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A. Rule-Based Approaches

Early work in the area of fault or anomaly detection was based
on expert systems. In expert systems, an exhaustive database
containing the rules of behavior of the faulty system is used to
determine if a fault occurred [25], [26]. Rule-based systems are
too slow for real-time applications and are dependent on prior
knowledge about the fault conditions on the network [27]. The
identification of faults in this approach depends on symptoms
that are specific to a particular manifestation of a fault. Exam-
ples of these symptoms are excessive utilization of bandwidth,
number of open TCP connections, total throughput exceeded,
etc. These rule-based systems rely heavily on the expertise of
the network manager and do not adapt well to the evolving net-
work environment. Thus, it is possible that entirely new faults
may escape detection. In [25], the authors describe an expert
system model using fuzzy cognitive maps (FCMs) to overcome
this limitation. FCM can be used to obtain an intelligent mod-
eling of the propagation and interaction of network faults. FCMs
are constructed with the nodes of the FCM denoting managed
objects such as network nodes and the arcs denoting the fault
propagation model.

Case-based reasoning is an extension of rule-based systems
[26]. It differs from FCM in that, in addition to just rules, a pic-
ture of previous fault scenarios is used to make the decisions.
A picture here refers to the circumstances or events that led
to the fault. In order to adapt the case-based reasoning scheme
to the changing network environment, adaptive learning tech-
niques are used to obtain the functional dependence of relevant
criteria such as network load, collision rate, etc., to previous
trouble tickets [28]. The trouble ticketing system is used to per-
form two functions: Prepare for problem diagnostics through fil-
tering, and infer the root cause of the problem. Using case-based
reasoning for describing fault scenarios also suffers from heavy
dependence on past information. Furthermore, the identifica-
tion of relevant criteria for the different faults will, in turn, re-
quire a set of rules to be developed. In addition, using any func-
tional approximation scheme, such as back propagation, causes
an increase in computation time and complexity. The number of
functions to be learned also increases with the number of faults
studied.

B. Finite State Machines

Anomaly or fault detection using finite state machines model
alarm sequences that occur during and prior to fault events. A
probabilistic finite state machine model is built for a known net-
work fault using history data. State machines are designed with
the intention of not just detecting an anomaly but also possibly
identifying and diagnosing the problem. The sequence of alarms
obtained from the different points in the network are modeled
as the states of a finite state machine. The alarms are assumed
to contain information such as the device name as well as the
symptom and time of occurrence. The transitions between the
states are measured using prior events [29]–[31]. A given cluster
of alarms may have a number of explanations, and the objective
is to find the best explanation among them. The best explanation
is obtained by identifying a near-optimal set of nodes with min-

imum cardinality such that all entities in the set explain all the
alarms and at least one of the nodes in the set is the most likely
one to be in fault. In this approach, there is an underlying as-
sumption that the alarms obtained are true. No attempt is made
to generate the individual alarms themselves. A review of such
state machine techniques can be found in [32] and [33].

The difficulty encountered in using the finite state machine
method is that not all faults can be captured by a finite sequence
of alarms of reasonable length. This may cause the number of
states required to explode as a function of the number and com-
plexity of faults modeled. Furthermore, the number of param-
eters to be learned increases, and these parameters may not
remain constant as the network evolves. Accounting for this
variability would require extensive off-line learning before the
scheme can be deployed on the network.

C. Pattern Matching

A new approach proposed and implemented by Maxion and
others [34], [35] describes anomalies as deviations from normal
behavior. This approach attempts to deal with the variability in
the network environment. In this approach, online learning is
used to build a traffic profile for a given network. Traffic pro-
files are built using symptom-specific feature vectors such as
link utilization, packet loss, and number of collisions. These
profiles are then categorized by time of day, day of week, and
special days, such as weekends and holidays. When newly ac-
quired data fails to fit within some confidence interval of the
developed profiles then an anomaly is declared.

In [34], normal behavior of time series data is captured as
templates and tolerance limits are set based on different levels of
standard deviation. These limits were tested using extensive data
analysis. The authors also propose a pattern matching scheme
to detect address usage anomalies by tracking each address at
5-min intervals. A template of the mean and standard deviation
on the usage of each address is then used to detect anomalous
behavior. The anomaly vectors from any new data are checked
using the template feature vector for a given anomaly and if a
match occurs it is declared as indicating a fault. Similar tech-
niques have been used to study service anomalies [35]. Here,
the anomaly detector analyzes transaction records to produce
alarms corresponding to service performance anomalies.

The efficiency of this pattern matching approach depends on
the accuracy of the traffic profile generated. Given a new net-
work, it may be necessary to spend a considerable amount of
time building traffic profiles. In the face of evolving network
topologies and traffic conditions, this method may not scale
gracefully.

D. Statistical Analysis

As the network evolves, each of the methods described
above require significant recalibration or retraining. However,
using online learning and statistical approaches, it is possible
to continuously track the behavior of the network. Statistical
analysis has been used to detect both anomalies corresponding
to network failures [5], as well as network intrusions [6].
Interestingly, both of these cases make use of the standard
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Fig. 1. Schematic representation of the proposed model for network anomalies.

sequential change point detection approach. TheFlooding
Detection System, which was proposed by the authors in [6],
uses measured network data that describes TCP operations to
detect SYN1 flooding attacks. SYN flooding attacks capitalize
on the limitation that TCP servers maintain all half-open
connections. Once the queue limit is reached, future TCP
connection requests are denied. The sequential change point
detection employed here makes use of the nonparametric
cumulative sum (CUSUM) method. Using this approach on
trace-driven simulations, it has been shown that SYN flooding
attacks can be detected with high accuracy and reasonably
short detection times.

When detecting anomalies due to failures, we are confronted
with the problem of detecting a host of potential failure sce-
narios. Each of these failure scenarios differ in their manifes-
tations as well as their characteristics. Thus, it is necessary to
obtain a rich set of network information that could cover a wide
variety of network operations. The primary source for such in
depth information is in the SNMP MIB data. Designing a failure
detection system using MIB data necessitates the use of a gen-
eral method since MIB variables exhibit varying statistical char-
acteristics [5]. Furthermore, there is no accurate fault model
available. The following section describes such a general failure
detection approach from the perspective of a router.

V. ANOMALY DETECTION USING STATISTICAL

ANALYSIS OF SNMP MIB

MIB variables provide information that is specific to the in-
dividual network devices. Since this work is on detecting net-
work anomalies at the resolution of the device-level, this data
source is sufficient. Furthermore, the widespread deployment
and standardization of SNMP makes this data readily available
on network devices. In this section, a statistical analysis method
we developed using the theory of change detection is discussed
in greater detail, along with its advantages. We also provide a
detection theory-based performance criteria to evaluate the ef-
fectiveness of our approach. We present case studies of four
different performance anomalies and provide some intuitive ex-
planation on the usefulness of signal processing techniques to
detect such network anomalies.

1SYN means packets used to synchronize sequence numbers to initiate a con-
nenction.

A. Characterization of Network Anomalies

In statistical analysis, a network anomaly is modeled as cor-
related abrupt changes in network data. An abrupt change is de-
fined as any change in the parameters of a time series that occurs
on the order of the sampling period of the measurement. For ex-
ample, when the sampling period is 15 s, an abrupt change is de-
fined as a change that occurs in the period of approximately 15 s.
This approach models the intuition of network managers who
use hard threshold violations to generate alarms. The scheme
used by most commercial management tools is similar to ma-
jority voting. However, statistical signal processing techniques
reduce the number of false alarms as well as increase the proba-
bility of detection as compared with simple majority voting and
hard thresholds [5].

Abrupt changes in time series data can be modeled using an
auto-regressive (AR) process [8]. The assumption here is that
abrupt changes are correlated in time, yet are short-range de-
pendent. In our approach, we use an AR process of order
to model the data in a 5-min window. Intuitively, in the event
of an anomaly, these abrupt changes should propagate through
the network, and they can be traced as correlated events among
the different MIB variables. This correlation property helps dis-
tinguish the abrupt changes intrinsic to anomalous situations
from the random changes of the variables that are related to
the network’s normal function. Therefore, we propose that net-
work anomalies can be defined by their effect on network traffic
as follows:Network anomalies are characterized by traffic-re-
lated MIB variables undergoing abrupt changes in a correlated
fashion. A pictorial representation of this is provided in Fig. 1.

Using the above model for network anomalies, the anomaly
detection problem can be posed as follows:

Given a sequence of traffic-related MIB variables sampled
at a fixed interval, generate a network health function that can
be used to declare alarms corresponding to anomalous network
events.

To detect anomalies from the perspective of a router, we focus
on theip layer. Three MIB variables are chosen from theip MIB
group. These variables represent a cross section of the traffic
seen at the router. The variableipIR (which stands for In Re-
ceives), represents the total number of datagrams received from
all the interfaces of the router.ipIDe (which stands for In De-
livers), represents the number of datagrams correctly delivered
to the higher layers as this node was their final destination.ipOR
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Fig. 2. Contiguous piecewise stationary windowsL(t) : Learning windowS(t) : Test window.

(which stands for Out Requests) represents the number of data-
grams passed on from the higher layers of the node to be for-
warded by theip layer. The traffic associated with theipIDe
and ipOR variables comprise only a fraction of the entire net-
work traffic. However, in the event of an anomaly, these are
relevant variables since the router does some route table pro-
cessing, which would be reflected in these variables. The three
MIB variables chosen are not strictly independent. The average
cross correlation ofipIR with ipIDe is 0.08 and withipOR is
0.05. The average cross correlation betweenipORandipIDe is
0.32.

B. Abrupt Change Detection

In our statistical approach, the network health function is ob-
tained using a combination of abnormality indicators from the
individual MIB variables. The abnormality in the MIB data is
determined by detecting abrupt changes in their statistics. Since
the statistical distribution of the individual MIB variables are
significantly different it is difficult to do joint processing of
these variables. Therefore, the abrupt changes in each of the
MIB variables is first obtained. Change detection is done using a
hypothesis test based on the generalized likelihood ratio (GLR)
[36]. This test provides an abnormality indicator that is scaled
between 0 and 1.

Abrupt changes are detected by comparing the variance of
the residuals obtained from two adjacent windows of data that
are referred to as the learning and test windows,
as shown in Fig. 2. Residuals are obtained by imposing an AR
model on the time series data in each of the windows. The like-
lihood ratio for a single variable is obtained as shown in (1)

(1)

where and are the variance of the residual in the learning
window and the test window, respectively, ,
where is the order of the AR process, and is the length
of the learning window. Similarly, , where is
the length of the test window. is the pooled variance of the
learning and test windows. The abnormality indicators thus ob-
tained from the individual MIB variables are collected to form
an abnormality vector . The abnormality vector is a
measure of the abrupt changes in normal network behavior.

C. Combining the Abnormality Vectors:

The individual abnormality vectors must be combined to pro-
vide a health function. This network health function is obtained
by incorporating the spatial dependencies between the abrupt
changes in the individual MIB variables. This is accomplished
using a linear operator. Such operators are frequently used in
quantum mechanics [37]. The linear operator is designed based
on the correlation between the chosen MIB variables. In partic-
ular, the quadratic functional

(2)

is used to generate a continuous scalar indicator of network
health. This network health indicator is interpreted as a mea-
sure of abnormality in the network, as perceived by the specific
node. The network health indicator is bounded between 0 and
1 by an appropriate transformation of the operator[5]. In the
network health function, a value of 0 represents a healthy net-
work, and a value of 1 represents maximum abnormality in the
network.

The operator matrix is an matrix ( is the number
of MIB variables). In order to ensure orthogonal eigenvectors
that form a basis for and real eigenvalues, the matrixis
designed to be symmetric. Thus, it hasorthogonal eigenvec-
tors with real eigenvalues. A subset of these eigenvectors can
be identified to correspond to anomalous states in the network
[5]. If and are the minimum and maximum eigenvalues
that correspond to these anomalous states, the problem of de-
tecting network anomalies can then be expressed as

(3)

where is the earliest time at which the functional
exceeds . By virtue of the design of the operator matrix (dis-
cussed below), the function has an upper bound

(4)

Each time the condition expressed in (3) is satisfied, we have a
declaration of an anomalous condition.

Design of the Operator Matrix : The primary goal of the
operator matrix is to incorporate the correlation between the
individual components of the abnormality vector. The abnor-
mality vector is a vector with components

(5)



THOTTAN AND JI: ANOMALY DETECTION IN IP NETWORKS 2197

where each component of this vector corresponds to the abnor-
mality associated with the individual MIB variables, as obtained
from the likelihood ratio test. In order to complete the basis set
so that all possible states of the system are included, an addi-
tional component that corresponds to the normal func-
tioning of the network is added. The final component allows for
proper normalization of the input vector. The new input vector

(6)

is normalized with as the normalization constant
( ). By normalizing the input vectors the
expectation of the observable of the operator can be
constrained to lie between 0 and 1 [see (18)].

The appropriate operator matrix will therefore be
. We design the operator matrix to be Hermitian

in order to have an eigenvector basis. Taking the normal state
to be uncoupled to the abnormal states, we get a block diagonal
matrix with an upper block and a 1 1 lower
block, as in (7), shown at the bottom of the page.

The elements of the upper block of the operator matrix
are obtained as follows: When , we have

(8)

(9)

which is the the ensemble average of the two point spatial cross-
correlation of the abnormality vectors estimated over a time in-
terval [38]. For , we have

(10)

Using this transformation ensures that the maximum eigenvalue
of the matrix is 1.

The element indicates the contribution of the
healthy state to the indicator of abnormality for the network
node. Since the healthy state should not contribute to the abnor-
mality indicator, the component is assigned as,
which, in the limit, tends to 0. Therefore, for the purpose of de-
tecting faults, we only consider the upper block of the matrix

.
The entries of the matrix describe how the operator causes the

components of the input abnormality vector to mix with each
other. The matrix is symmetric, real, and the elements

are non-negative and, hence, the solution to the characteristic
equation

(11)

consists of orthogonal eigenvectors with eigenvalues
. The eigenvectors obtained are normalized to form an

orthonormal basis set. The first components of can
therefore be decomposed as a linear combination of the eigen-
vectors of , namely,

(12)

The th component of is present only for normaliza-
tion purposes and is therefore omitted in the subsequent calcu-
lation of network abnormality. Incorporating the spatial depen-
dencies through the operator transforms the abnormality vector

as

(13)

Here, measures the degree to which a given abnormality
vector falls along the th eigenvector. This value can be
interpreted as a probability amplitude andas the probability
of being in the th eigenstate.

A subset of the eigenvectors , where ,
is called the fault vector set and can be used to define a faulty re-
gion. The fault vectors are chosen based on the magnitude of the
components of the eigenvector. The eigenvector that has com-
ponents proportional to (since it is normalized) is identi-
fied as the most faulty vector since it corresponds to maximum
abnormality in all its components. Furthermore, based on our
fault model of correlated abrupt changes, the eigenvector pro-
portional to the vector signifies the maximum correlation
between all the abnormality indicators.

If a given input abnormality vector can be completely ex-
pressed as a linear combination of the fault vectors

(14)

then we say that the abnormality vector falls in the fault domain.
The extent to which any given abnormality vector lies in the
fault domain can be obtained in the following manner: Since

(7)
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any general abnormality vector is normalized, we have the
following condition:

(15)

As there are different values for , an average scalar measure
of the transformation in the input abnormality vector is obtained
by using the quadratic functional

(16)

Using (16) and the fact that the Kronecker delta,
we have

(17)

(18)

The measure is the indicator of the average abnormality
in the network as perceived by the node.

Now, consider an input abnormality vector that lies com-
pletely in the fault domain. Using the condition in (15), we
obtain a bound for as

(19)

where are the eigenvalues corresponding to the set of fault
vectors. Thus, using these bounds on the functional , an
alarm is declared when

(20)

Note that since the maximum eigenvalue of is 1,
. The maximum eigenvalue by design is associated with the

most faulty eigenvector.
1) Performance Evaluation of the Statistical Analysis

Method: The performance of the statistical algorithm is
expressed in terms of the prediction time and the mean
time between false alarms . Prediction time is the time
to the anomalous event from the nearest alarm preceding it.
A true anomaly prediction is identified by a declaration that
is correlated with an accurate fault label from an indepen-
dent source such assyslogmessages and/or trouble tickets.
Therefore, anomaly prediction implies two situations: a) In
the case of predictable anomalies such as file server failures
and network access problems, true prediction is possible by
observing the abnormalities in the MIB data, and b) in the case
of unpredictable anomalies such as protocol implementation
errors, early detection is possible as compared with the existing
mechanisms such assyslogmessages and trouble reports. Any
anomaly declaration that did not coincide with a label was
declared a false alarm. The quantities used in studying the
performance of the agent are depicted in Fig. 3.is the number
of lags used to incorporate the persistence criteria in order to
declare alarms corresponding to fault situations. Persistence
criteria implies that for an anomaly to be declared, the alarms
must persist for consecutive time lags.

Fig. 3. Quantities used in performance analysis.

TABLE I
SUMMARY OF RESULTSOBTAINED USING THESTATISTICAL TECHNIQUE

In some cases, alarms are obtained only after the anomaly has
occurred. In these instances, we only detect the problem. The
time for detection is measured as the time elapsed between
the occurrence of the anomaly and the declaration of the alarm.
There are also some instances where alarms were obtained both
preceding and after the anomaly. In these cases, the alarms that
follow are attributed to thehysteresis effectof the anomaly.

2) Application of the Statistical Approach to Network Data
From SNMP MIB: The statistical techniques described above
have been successfully used to detect eight out of nine file server
failures in the campus network and 14 out of 15 file server fail-
ures on the enterprise network. Interestingly, the same algorithm
with no modifications was able to detect all eight instances of
network access problems, one protocol implementation error,
and one run-away process on an enterprise network.2 Thus, we
see that the statistical techniques are able to easily generalize to
detect different types of network anomalies. Further evidence
of this is provided by using case studies from real network fail-
ures. A summary of the results obtained using the statistical
techniques is provided in Table I. It was observed that a plain
majority voting scheme on the variable level abnormality indi-
cators was able to detect only file server failures and not any of
the other three types of failures [13].

3) Case Studies:In this section, we present examples of net-
work failures obtained from two different production networks:
an enterprise network and a campus network. Both these net-
works were being actively monitored and were well designed to
meet customer requirements. The types of anomalies observed

2In the collected data set, there was only one instance each of protocol imple-
mentation error and runaway process
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Fig. 4. Case (1) file server failure. Average abnormality at the router.

were the following: file server failures, protocol implementa-
tion errors, network access problems, and runaway processes
[5]. Most of these anomalous events were due to abnormal user
activity, except for protocol implementation errors. However, all
of these cases did affect the normal characteristics of the MIB
data and impaired the functionality of the network. We show that
by using signal processing techniques, it is possible to detect the
presence of network anomalies prior to their being detected by
the existing alarm systems such assyslog3 messages and trouble
tickets.

Case Study (1): File Server Failure Due to Abnormal User
Behavior: In this case study, we describe a scenario corre-
sponding to a file server failure on one of the subnets of the
campus network. Twelve machines on the same subnet and 24
machines outside the subnet reported the problem viasyslog
messages. The duration of the failure was from 11:10 am to
11:17 am (7 min) on December 5, 1995, as determined by the
syslogmessages. The cause of the file server failure was an
unprecedented increase in user traffic (ftp requests) due to the
release of a new web-based software package.

This case study represents a predictable network problem
where the traffic related MIB variables show signs of abnor-
mality before the occurrence of the file server failure. The fault
was predicted 21 min before the server crash occurred. Figs. 4–7
show the output of the statistical algorithm at the router and in
the individualip layer variables. The fault period is shown by
vertical dotted lines. In Fig. 4, for router health, the “x” denotes
the alarms that correspond to input vectors that are abnormal.

The variable level indicators capture the trends in abnor-
mality. Note that there is a drop in the mean level of the traffic
in theipIR variable immediately prior to the failure. Among the
three variables considered, the variables ipOR and ipIDe are
the most well-behaved, i.e., not bursty, and the ipIR variable is
bursty. Because theipIDE and ipOR variables are less bursty,
they lend easily to conventional signal processing techniques
(see Figs. 6 and 7).

3Syslogmessages are system generated messages in response to some failure.

Fig. 5. Case (1) file server failure. Abnormality indicator ofipIR.

Fig. 6. Case (1) file server failure. Abnormality indicator ofipIDe.

Fig. 7. Case (1) file server failure. Abnormality indicator ofipOR.
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Fig. 8. Case (2) protocol error. Average abnormality at the router.

However, the combined information from all the three vari-
ables is able to capture the traffic behavior at the time of the
anomaly, as shown in Fig. 4. There are very few alarms at the
router level, and the mean time between false alarms in this case
was 1032 min (approx 17 h).

Case Study (2): Protocol Implementation Errors:This case
study is one where the fault itself is not predictable but the symp-
toms of the fault can be observed. Typically, a protocol imple-
mentation error is an undetected software problem that could get
triggered by a specific set of circumstances on the network. One
such fault detected on the enterprise network was that of a super
serverinetd protocol error. The super server is the server that
listens for incoming requests for various network servers, thus
serving as a single daemon that handles all server requests from
the clients. The existence of the fault was confirmed bysyslog
messages and trouble tickets.Syslogmessages reported aninetd
error. In addition, other faulty daemon process messages were
also reported during this time. Presumably, these faulty daemon
messages are related to the super server protocol error. During
the same time interval, trouble tickets also reported problems
such as the inability to connect to the web server, send mail,
or print on the network printer, as well as difficulty in logging
onto the network. The super server protocol problem is of con-
siderable interest since it affected the overall performance of the
network for an extended period of time.

The prediction time of this network failure relative to the
syslogmessages was 15 min. The existing trouble ticketing
scheme only responded to the fault situation and, hence,
detected the failure after its onset.

Figs. 8–11 show the alarms generated at the router and the
abnormality indicators at the individual variables. Again, the
combined information from all the three variables captures the
abnormal behavior leading up to the fault. Note that since this
problem was a network-wide failure, theipIRand theipIDevari-
ables show significant changes around the fault region. Since
there was a distinct change in behavior in two of the three vari-
ables, the combined abnormality at the router was less prone to
error. Thus, there were no false alarms reported in this data set,
but rather, persistent alarms were observed just before the fault.

Fig. 9. Case (2) protocol error. Abnormality indicator ofipIR.

Fig. 10. Case (2) protocol error. Abnormality indicator ofipIDe.

Fig. 11. Case (2) protocol error. Abnormality indicator ofipOR.
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Fig. 12. Case (3) network access. Average abnormality at the router.

Fig. 13. Case (3) network access. Abnormality indicator ofipIR.

Case Study (3): Network Access Problems:Network access
problems were reported primarily in the trouble tickets. These
faults were often not reported by thesyslogmessages. Due to the
inherent reactive nature of trouble tickets, it is hard to determine
the exact time when the problem occurred. The trouble reports
received ranged from the network being slow to inaccessibility
of an entire network domain. The prediction time was 6 min.
The mean time between false alarms was 286 min (4 h and 46
min). Figs. 12–15 show the alarms obtained at the router level
as well as the abnormality indicators at the variables. Note that
the ipIR variable shows a gradual increase in the baseline as it
nears the fault region.

Case Study (4): Runaway Processes:A runaway process is
an example of high network utilization by some culprit user
that affects network availability to other users on the network.
A runaway process is an example of an unpredictable fault but
whose symptoms can be used to detect an impending failure.
This is a commonly occurring problem in most computation-ori-
ented network environments. Runaway processes are known to

Fig. 14. Case (3) network access. Abnormality indicator ofipIDe.

Fig. 15. Case (3) network access. Abnormality indicator ofipOR.

be a security risk to the network. This fault was reported by the
trouble tickets but much after the network had run out of process
identification numbers. In spite of having a large number of
syslogmessages generated during this period, there was no clear
message indicating that a problem had occurred. The prediction
time was 1 min, and the mean time between false alarms was 235
min (about 4 h). Figs. 16–19 show the performance of the statis-
tical technique in the detection of the runaway process. In this
scenario, theipIR variable shows a noticeable change in mean
immediately prior to the fault being detected by conventional
schemes such assyslogand trouble tickets. However, the statis-
tical analysis method captures this anomalous behavior ahead
of thesyslogreports, as seen in theipIR variable, as well as in
the combined router indicator.

4) Effectiveness of Statistical Techniques:The effectiveness
of the statistical approach can be seen from its ability to dis-
tinguish between different failures. Once an alarm is obtained,
using the behavior of the abnormality indicators 1 h prior to the
anomaly time, we were able to identify the nature of the anomaly
[39]. Since network anomalies typically cause deviations from
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Fig. 16. Case (4) runaway process. Average abnormality at the router.

Fig. 17. Case (4) runaway process: Abnormality indicator ofipIR.

Fig. 18. Case (4) runaway process: Abnormality indicator ofipIDe.

Fig. 19. Case (4) runaway process. Abnormality indicator ofipOR.

Fig. 20. Classification of faults using the average (over 1 h) of the abnormality
vector. x: file server failures; o: network access problems;star: protocol error;
square: runaway process.

normal behavior in the measured data prior to the actual mani-
festation of the failure, it is possible to observe in advance the
failure signatures corresponding to the impending failure. The
average values of the abnormality indicators computed over this
period are used to locate the anomaly in the problem space de-
fined by the anomaly vectors. As shown in Fig. 20, the four
anomaly types are clustered in different areas of the problem
space. The Euclidean distance between the center vector of the
file server failures and the network access problems is approxi-
mately 1.16. The standard deviation for the network file server
cluster is 0.43, and that for the network access cluster is 0.07.
These results show that the two clusters do not overlap.

We have limited data on the other two types of anomalies, but
it is interesting to note that they are distinct from both file server
failures and network access problems. In the case of file server



THOTTAN AND JI: ANOMALY DETECTION IN IP NETWORKS 2203

failures (shown as “x” in Fig. 20), the abnormality in theipOR
andipIDe variables are much more significant than inipIR. On
the contrary, network access problems (shown as “o” in Fig. 20)
are expressed only in theipIR variable. The fact that these faults
were predicted or detected by the quadratic functional ,
which isolates a very narrow region of the problem space, sug-
gests thatthe abnormality in the feature vectors increases as the
fault event approaches.

D. More Related Work

In our early work, we used duration filter heuristics to obtain
real-time alarms for anomaly detection in conjunction with MIB
variables [40]. In [41] and [42], Bayesian Belief networks were
used together with MIB variables for nonreal time detection of
anomalies. Signal processing and statistical approaches are also
gaining more applications in detecting anomalies related to ma-
licious events [6] and network services such as VoIP [43].

VI. DISCUSSION

The statistical signal processing tools presented here are ver-
satile in their applicability to time series data obtained from
other sources of network information such as probing and packet
filtering techniques. In [5], the authors present the application
of the methods described above to theinterfacelayer variables.
The statistical techniques using the CUSUM approach [6] and
the likelihood ratio test have been shown to be applicable to two
sources of traffic traces and to two different network topologies,
respectively. In this section, we provide a discussion on some
issues relevant to using the statistical analysis methods on mea-
sured network data.

It was observed that the use of fine-grained data significantly
improves detection times since the confidence of statistical anal-
ysis techniques is only constrained by sample sizes. For ex-
ample, in the work presented here, using MIB variables, a sam-
pling frequency of 15 s was used. However, it would be pos-
sible to obtain a finer sampling frequency if the polling entities
were optimally located [44]. The primary limiting factor to in-
creasing the polling frequency in the case of MIB data is the
priority given to processing SNMP packets by the router being
polled. Independent of the load on the router, it was observed
that typically there is a 20-ms delay in poll responses.

In terms of time synchronization, there is a requirement that
the chosen feature variables are all of the same time granularity.
To the best of our knowledge, the problem of simultaneously
handling multiple feature variables with different time granular-
ities is still an open problem. Time synchronization issues also
arise from the difference in time stamps between the polled en-
tity and the polling node. This issue can be resolved using the
network time protocol (NTP) MIB, which provides a uniform
network-wide time stamp. There is also work done on designing
algorithms to adjust for clock skew [45].

The operator matrix described here can be easily applied to
any other system that can be described using time series data.
The number of feature variables define the eigenstates of the op-
erator matrix. Therefore, if a broader set of anomalies must be
detected, then additional feature vectors must be added. Thus,
the scope of the detector is primarily limited by the dimension-

ality of the operator matrix. The construction of the operator will
be similar to the methods described in this paper.

VII. CONCLUSION AND FUTURE DIRECTIONS

This paper provides a review of the area of network anomaly
detection. Based on the case studies presented, it is clear that
there is a significant advantage in using the wide array of signal
processing methods to solve the problem of anomaly detection.
A greater synergy between the networking and signal processing
areas will help develop better and more effective tools for de-
tecting network anomalies and performance problems. A few of
the open issues in the application of statistical analysis methods
to network data are discussed below.

The change detection approach presented in this paper makes
the assumption that the traffic variables are quasistationary.
However, it was observed that some of the MIB variables
exhibit nonstationary behavior. A method to quantify the bursty
behavior of the MIB variables could lead to using better models
for the traffic and improve the false alarm rates at the variable
level, thus increasing the optimality of statistical methods.
An accurate estimation of the Hurst parameter for the MIB
variables was difficult due to the lack of high-resolution data
[46]. Often, the alarms corresponding to anomalous events
have to check for a persistence criteria to reduce the number
of false alarms. The major reason for false alarms come from
the abnormality indicators obtained for the bursty variables
such asipIR. Increasing the order of the AR model may help
in reducing the false alarm rate, but there is a tradeoff since
the resolution in detection time would decrease. Another open
issue is that not all abrupt changes in MIB data correspond to
network anomalies. Thus, the accurate definition of the nature
of the abrupt changes corresponding to anomalous events is
essential for increased detection accuracy.

The SNMP protocol runs over the UDP transport mechanism
and, therefore, could result in lost SNMP queries and responses
from the devices. From the signal processing perspective, this
could result in missing samples, and it is necessary to design
efficient algorithms to deal with missing data.

From the study presented here, it is clear that signal pro-
cessing techniques can add significant advantage to existing net-
work management tools. By improving the capability of pre-
dicting impending network failures, it is possible to reduce net-
work downtime and increase network reliability. Rigorous sta-
tistical analysis can lead to better characterization of evolving
network behavior and eventually lead to more efficient methods
for both failure and intrusion detection.
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