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Abstract—Tools of sensor-data-driven anomaly detection facil-
itate condition monitoring of dynamical systems especially if the
physics-based models are either inadequate or unavailable. Along
this line, symbolic dynamic filtering (SDF) has been reported in lit-
erature as a real-time data-driven tool of feature extraction for pat-
tern identification from sensor time series. However, an inherent
difficulty for a data-driven tool is that the quality of detection may
drastically suffer in the event of sensor degradation. This paper
proposes an anomaly detection algorithm for condition monitoring
of nuclear power plants, where symbolic feature extraction and the
associated pattern classification are optimized by appropriate par-
titioning of (possibly noise-contaminated) sensor time series. In this
process, the system anomaly signatures are identified by masking
the sensor degradation signatures. The proposed anomaly detec-
tion methodology is validated on the International Reactor Innova-
tive & Secure (IRIS) simulator of nuclear power plants, and its per-
formance is evaluated by comparison with that of principal com-
ponent analysis (PCA).

Index Terms—Data-driven fault detection, feature extraction,
pattern classification, symbolic dynamics, time series analysis.

I. INTRODUCTION

C
ONDITION monitoring and timely detection of incipient

faults are critical for operational safety and performance

enhancement of nuclear power plants. There are various sources

of anomalous behavior (i.e., deviation from the nominal condi-

tion) in plant operations, which could be the consequence of a

fault in a single component or simultaneous faults in multiple

components. Often it is difficult for the plant operator to detect

the anomaly and locate the associated anomalous component(s),

especially if the anomaly is small and evolve slowly. Upon oc-

currence of an anomalous event and subsequent pervasion of its

effects, the operator could be overwhelmed by the sheer volume

of information, generated simultaneously from various sources.
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Therefore, it would be beneficial to develop an automated con-

dition monitoring system to assist the plant operator to detect

the anomalies and isolate the anomalous components.

Condition monitoring algorithms are primarily divided into

two different categories, namely, model-based and data-driven.

Both model-based and data-driven techniques have been re-

ported in literature for condition monitoring of nuclear power

plants. Examples of model-based condition monitoring can be

found in [1], [2]. Among data-driven tools, neural networks

(NN) and principal component analysis (PCA)-based tools

[3]–[6] are most popular.

Although model-based techniques have their advantages in

terms of physical interpretation, their reliability and computa-

tional efficiency for condition monitoring often decrease as the

system complexity increases. On the other hand, data-driven

techniques are expected to remain largely reliable and compu-

tationally efficient in spite of increased system complexity if

the goal is to monitor the input-output information from an en-

semble of (appropriately calibrated) sensors while considering

the entire system as a black-box. However, unless the ensemble

of acquired information is systematically handled, data-driven

techniques may become computationally intensive and the per-

formance of condition monitoring may deteriorate due to sensor

degradation. Furthermore, data-driven techniques would require

high volume of training data (e.g., component malfunction data

in the present context).

A problem with handling time series data is its volume and

the associated computational complexity; therefore, the avail-

able information must be appropriately compressed via trans-

formation of high-dimensional data sets into low-dimensional

features with minimal loss of class separability. In our previous

work [7], we reported Symbolic Dynamic Filtering (SDF) for

detection of anomalies (i.e., deviations from the nominal con-

dition) in dynamical systems. The SDF method is shown to be

useful for feature extraction from time series and has been ex-

perimentally validated for real-time execution in different ap-

plications (e.g., electronic circuits [8] and fatigue damage mon-

itoring in polycrystalline alloys [9]).

A major challenge in any sensor-data-driven detection tool is

to identify the actual anomaly in the system in the presence of

sensor degradation (e.g., drift and noise) without succumbing

to a large number of false alarms or missed detections. The sit-

uation becomes even more critical if the control system uses

observations from the degraded sensors as feed-back signals

and thereby distorts the control inputs. Traditionally, redundant

sensors along with methods based on analytic redundancy have

been used for sensor anomaly identification [10], [11].
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The present paper proposes an alternative approach to the

above problem, where different class labels are assigned to data

sets that are generated from different plant health conditions.

The same class labels are assigned to similar health conditions

and the associated sensor data are subjected to different noise

variance at respective sensor degradation levels. To this end,

data-driven anomaly detection is posed as a multi-class pattern

classification problem, where the tasks of class assignment and

the SDF-based feature extraction are optimized in a supervised

manner to enhance the classification performance. A major step

in SDF-based feature extraction is partitioning of time-series

data to generate symbol blocks that are subsequently converted

to feature vectors by use of the probabilistic finite state automata

(PFSA) concept [7], [12]. In this context, the major contribu-

tions of this paper are delineated below.

• Application of symbolic dynamic filtering (SDF) and

probabilistic finite state automata (PFSA) concepts for

anomaly detection and condition monitoring in nuclear

power plants;

• Optimization of data partitioning in an SDF-based feature-

extraction setting;

• Construction of a data-driven anomaly detection method

at the component level and evaluation of its robustness to

sensor noise;

• Evaluation of the proposed SDF-based anomaly detection

algorithm relative to principal component analysis (PCA))

that is a commonly used tool for anomaly detection.

The paper is organized into seven sections including the

present one. Section II describes the International Reactor

Innovative & Secure (IRIS) test-bed of nuclear power plants on

which the problem of plant condition monitoring has been for-

mulated and validated. Section III poses data-driven anomaly

detection as a multi-class pattern classification problem. Sec-

tion IV presents the background and formulation of SDF-based

feature extraction for anomaly detection, and describes the

partitioning optimization methodology. Section V explains

how anomaly detection algorithms are constructed. Section VI

compares the results of the proposed method with those of a

PCA-based method on the IRIS test-bed. Section VII sum-

marizes the paper and makes major conclusions along with

recommendations for future research.

II. DESCRIPTION OF THE IRIS TEST-BED

The International Reactor Innovative & Secure (IRIS) nu-

clear power plants is based on the design of a next-generation

nuclear reactor. It is a modular pressurized water reactor

(PWR) with an integral configuration of all primary system

components. Fig. 1 shows the layout of the primary side of

the IRIS system that is offered in configurations of single or

multiple modules, each having a power rating of

(about ) [13]. The nominal reactor core inlet and

outlet temperatures are 557.6 (292 ) and 626 ( ),

respectively. The pressurizer, eight steam generators, and the

control rod mechanism are integrated into the pressure vessel

with the reactor core. There is no huge pipe used to connect

these components. This design avoids the large loss of coolant

accident (LOCA) [13]. The entire control rod mechanism is

Fig. 1. Layout of the primary side of the IRIS system [13].

mounted inside the pressure vessel to avoid the problem of

penetrating the the pressure vessel head by the control rod.

In order to develop an automated anomaly detection algo-

rithm, it is necessary to “teach” or “train” a pattern classifier

so that it captures the process dynamics and produces the de-

sired output for the given inputs. For systems where this cannot

be done experimentally, high-fidelity simulators should be con-

structed for developing anomaly detection algorithms. The IRIS

simulator, used in this paper, has been built by researchers at

North Carolina State University [14]–[16]. In the normal op-

erating range, reactor power is determined through a point ki-

netics model, with rod position controlled through a user-spec-

ified program. Feedwater control is based upon steam demand,

similar to control strategies employed in B&W once-through

steam generators [17]. In the very low power range, a constant

heat input is assumed to simulate decay heat, and the average

moderator temperature is allowed to float.

The test-bed is built using FORTRAN programming lan-

guage. This FORTRAN model includes a reactor core model,

a helical coil steam generator (HCSG) model. The test-bed

is implemented on a Quad Core 2.83 GHz CPU 8 GB RAM

Workstation in the laboratory of Penn State. The IRIS simulator

is operated in the integrated control mode through built-in

PID controllers, which operates all three subsystems (i.e.,

turbine, feedwater flow and control rods) to combine the rapid

response of a reactor-following system with the stability of a

turbine-following system [17].
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The IRIS test-bed is capable of simulating both normal condi-

tions at different operational modes (e.g., normal power maneu-

vers, reactor start-up, and turbine loading) [15]) and a variety of

anomalous scenarios that include:

• Actuator anomalies, e.g., feedwater pump trip, malfunc-

tions of reactor coolant pump and control rod mechanism;

• Sensor failures, e.g., malfunctions of temperature, pres-

sure, and flow-rate sensors;

• Internal anomalies, e.g., uncertainties in the fuel temper-

ature coefficient of reactivity, coolant heat capacity, and

feedwater heat capacity.

In the IRIS test-bed, sensor degradations are realized as in-

jected noise and disturbances. Depending on the location and

modality of a sensor, there could be several different degrada-

tion levels. For example, the degradation levels in a pressure

sensor have different characteristics from those of a temperature

sensor. Furthermore, depending on the location and operating

environment, even sensors of the same modality could have dif-

ferent degradation characteristics. In general, sensor degrada-

tion is categorized as the following [18]:

• Constant bias and drift (i.e., slowly-varying bias);

• Change in sensor response time due to aging; and

• Change in the variance of sensor noise (e.g., due to large

external electromagnetic radiation from electric motors).

Amongst the above sensor degradation types, only sensor degra-

dation due to changes in the noise variance are investigated in

this paper. The rationale is that the sensors are assumed to be pe-

riodically tested and calibrated; hence, sensor degradation due

to aging, bias, and drift is much less likely.

A case study has been presented in this paper to validate the

anomaly detection methodology, in which the reactor coolant

pump (RCP) is chosen to be the location of a component-level

degradation and the primary coolant temperature sensor

in the hot leg piping is chosen for anomaly detection in the RCP.

Since the plant controller receives feedback signals from

the sensor, any degradation in this sensor could pervade

through the plant, which will potentially affect the outputs of

the remaining components due to the inherent electro-mechan-

ical and control feedback. Component-level anomaly detection

under different sensor noise variance is posed as a multi-class

classification problem in the sequel.

III. DATA-DRIVEN ANOMALY DETECTION POSED AS A

MULTI-CLASS PATTERN CLASSIFICATION PROBLEM

Component-level anomaly detection in nuclear power plants

involves identification of the anomaly type and location & quan-

tification of the anomaly level. Although the model configu-

ration in the IRIS test-bed can be easily extended to simulta-

neous anomalies in multiple components, this paper deals with

a single component, namely, the reactor coolant pump (RCP),

where the task is to detect an anomaly and identify its level for

(possibly unknown) sensor noise variance. The RCP overspeed

percentage is chosen as a health parameter. Table I

shows the approximate ranges of under different anomaly

levels. Here, the low anomaly level indicate very minimal over-

speed in RCP and hence also includes the absolute nominal

TABLE I
ANOMALY TYPES IN REACTOR COOLANT PUMP (RCP)

TABLE II
NOISE LEVEL AND SNR IN THE � SENSOR

health condition . Similarly, depending on the

standard deviation of the noise in the hot-leg coolant tempera-

ture sensor , three sensor noise levels are selected. Table II

shows the ranges of signal-to-noise ratio (SNR) for different

noise levels of the hot-leg coolant temperature sensor .

The SNR in decibels (dB) is defined as

(1)

where is the power of the signal, is the power

of the noise, is the root mean square (RMS) amplitude

of the signal, and is the RMS value of the noise. Since

the responses are close to sine waves (as shown in Fig. 2),

, where is the peak to peak amplitude

and .

In the above context, classes of data sets are

chosen to define each class by an RCP anomaly level and a noise

level of the sensor. One hundred simulation runs are per-

formed on the IRIS system for each class to generate time series

data, among which 50 samples were chosen for training and the

remaining samples for testing. The parameters, RCP overspeed

percentage and standard deviation of are chosen

randomly from independent uniform distribution such that all of

the parameter values are within the prescribed ranges given in

Tables I and II. Fig. 3 plots the generated samples in the two-di-

mensional parameter space, where different classes of samples

are shown in different colors and are marked within the class

number. Note that the standard deviation in Fig. 3 shows

values of actual standard deviation, not as percents.

Often component degradations in nuclear plants occur on a

slow-time scale, i.e., the anomaly gradually evolves over a rela-

tively long time span. Sudden failures in plant components are

disastrous and may occur only if a component accumulates suf-

ficient amount of anomaly over a prolonged period and reaches

the critical point, which justify early detection of an anomaly

for enhancement of plant operational safety. However, compo-

nent anomaly at the early stages of a malfunction is usually very
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Fig. 2. Representative time series data for RCP anomaly and � degradation conditions.

Fig. 3. Original class labels for data collection.

small and is difficult to detect, especially under steady-state op-

erations. One way to “amplify” the anomaly signature is to per-

turb the plant by (quasi-)periodically perturbing the turbine load

such that the plant is in a transient state for a period that is suf-

ficiently long for anomaly detection and insignificant from the

perspectives of plant operation.

For each sample point in the parameter space, a time series is

collected for sensor under persistent excitation of turbine

load inputs that have truncated triangular profiles with the mean

value of 99% of nominal output power, fluctuations within

and frequency of 0.00125 Hz (period ). In other

words, the turbine load is fluctuating between nominal power

(i.e., 335 MW) and 98% of nominal power (i.e., 328.3 MW).

Fig. 4 shows the profile of turbine load and a typical example of

turbine output power as a result of fluctuation in turbine load.

Fig. 4. Profile of turbine load and turbine output response.

For each experiment, the sampling frequency for data collec-

tion is 1 Hz (i.e., the inter-sample time of 1 sec) and the length of

the perturbation time window is 2,400 seconds, which generate

2,400 data points. The total perturbation period for each exper-

iment is 3,000 seconds. In this paper, to eliminate the possible

transients, the data for the first 600 seconds have not been used

so that quasi-stationarirty is achieved. Fig. 2 shows representa-

tive examples of time series data from each of nine classes.

Reduction of the perturbation period needs to be investigated for

in-plant operations, which is a topic of future research.

With the objective of building a data-driven diagnostic algo-

rithm that is robust to sensor noise (within an allowable range),

a data class is defined to be only dependent on the RCP over-

speed parameters. Thus, the 9 original classes are reduced to 3

classes as shown in Fig. 5. This is the final class assignment for

the data set, where each class has training sam-

ples and test samples. Thus, the problem of
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Fig. 5. Revised class assignment for anomaly detection.

Fig. 6. Pictorial view of the two time scales: (i) Slow time scale of anomaly
evolution and (ii) Fast time instants of data acquisition.

component level anomaly detection is formulated in presence

of sensor noise as a multi-class classification problem; in the

present scenario, number of classes is 3.

IV. SYMBOLIC DYNAMIC FILTERING (SDF)-BASED FEATURE

EXTRACTION

This section briefly reviews the concepts of symbolic dy-

namic filtering (SDF) [7], [8] for feature extraction, followed

by optimization of partitioning.

A. Review of Symbolic Dynamic Filtering (SDF)

Symbolic feature extraction from time series data is posed

as a two-time-scale problem. The fast scale is related to the re-

sponse time of the process dynamics. Over the span of data ac-

quisition, dynamic behavior of the system is assumed to remain

invariant, i.e., the process is quasi-stationary at the fast scale.

On the other hand, the slow scale is related to the time span

over which non-stationary evolution of the system dynamics

may occur. It is expected that the features extracted from the

fast-scale data will depict statistical non-stationarity between

two different slow-scale epochs if the underlying system has un-

dergone a change. The concept of two time scales is illustrated

in Fig. 6.

The method of extracting features from stationary time series

data is comprised of the following steps:

• Sensor time series data, generated from a physical system

or its dynamical model, are collected at a slow-scale epoch

and let it be denoted as . A compact (i.e., closed and

Fig. 7. Illustration of classical partition schemes (alphabet size ��� � �).

bounded) region , where , within which

the stationary time series is circumscribed, is identified.

Let the space of time series data sets be represented as

, where is sufficiently large for conver-

gence of statistical properties within a specified threshold.

While represents the dimensionality of the time-series,

is the number of data points in the time series. Then,

denotes a time series at the slow-scale epoch of

data collection.

• Encoding of is accomplished by introducing a partition

consisting of mutually ex-

clusive (i.e., ), and exhaustive (i.e.,

) cells, where each cell is labeled by sym-

bols and is called the al-

phabet. This process of coarse graining can be executed by

uniform, maximum entropy [19], or any other scheme of

partitioning. Then, the time series data points that visit the

cell are denoted as . This

step enables transformation of the time series data to a

symbol sequence , consisting of the symbols in the

alphabet .

• A probabilistic finite state machine (PFSA) of the Markov

dynamical process, consisting of states, is constructed

and the symbol sequence is run through the PFSA.

The (irreducible stochastic) state transition matrix

is obtained at the slow-scale epoch. [Note:

is the transition probability from state to state of the

PFSA with and .] The state

probability vector , which is the left

eigenvector corresponding to the unique unity eigenvalue

of ], could be treated as the extracted feature vector that is

a low-dimensional representation of the dynamical system

at the slow-scale epoch.

For anomaly detection using SDF, the nominal time-series

is partitioned by one of the classical schemes (e.g., uniform

partitioning (UP) or maximum entropy partitioning (MEP)) [7],

[8], [20], as illustrated in Fig. 7(a) and 7(b), respectively. Then,

using the steps described earlier, a low-dimensional feature

vector is constructed from each data set.

Upon completion of feature extraction, a classifier is used

to distinguish the set of feature vectors of class , i.e.,

, from the feature vectors of the other classes, where

, and is total number of classes. There are

plenty of choices available for design of both parametric and
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non-parametric classifiers in literature [21], [22]. Among the

parametric type of classifiers, one of the most common tech-

niques is to consider up to two orders of statistics in the feature

space. In other words, the mean feature is calculated for every

class along with the variance of the feature space distribution in

the training set. Then, a test feature vector is classified by using

the Mahalanobis distance [23] or the Bhattacharya distance

[24] of the test vector from the mean feature vector of each

class. However, these methods lack in computational efficiency

if the feature space distribution cannot be described by second

order statistics (i.e., non-Gaussian in nature). In the present

context, Gaussian feature space distribution cannot be ensured

due to the nonlinear nature of the partitioning feature extraction

technique. Therefore, a non-parametric classifier, such as the

-NN classifier may a better candidate for this study [21],

[25]; however, in general, any other suitable classifier, such as

the support vector machines (SVM) or the Gaussian mixture

models (GMM) [22] may also be used.

B. Optimization of Partitioning

Properties and variations of transformation from the symbol

space to the feature space have been extensively studied in the

Mathematics, Computer Science and especially Data Mining

literature. Apparently, similar efforts have not been expended

to investigate partitioning of time series data to optimally gen-

erate symbol blocks for pattern classification and anomaly de-

tection. Symbolic false nearest neighbor partitioning (SFNNP)

[26] optimizes a generating partition by avoiding topological

degeneracy. However, a major shortcoming of SFNNP is that

it may become extremely computationally intensive if the di-

mension of the phase space of the underlying dynamical system

is large. Furthermore, if the time series data become noise-cor-

rupted, the states of SFNNP rapidly grow in number and thus

the partitioning may erroneously require a large number of sym-

bols to capture pertinent information on the system dynamics

[20]. This shortcoming could be largely alleviated by wavelet

space partitioning (WSP) that is particularly effective for noisy

data for large-dimensional dynamical systems [7]; maximum

entropy partitioning (MEP) was used by Rajagopalan and Ray

[8] to generate symbol blocks from time series data by WSP. Al-

though WSP is significantly computationally faster than SFNNP

and is suitable for real-time applications, WSP also has several

shortcomings such as, requirements of good understanding of

signal characteristics for selection of the wavelet basis, identifi-

cation of appropriate scales, and lossy & non-unique conversion

of the two-dimensional scale-shift domain into a single dimen-

sion. Subbu and Ray [20] introduced Hilbert-transform-based

analytic signal space partitioning (ASSP) as an alternative to

WSP, and Sarkar et al. [27] generalized ASSP for symbolic anal-

ysis of noisy signals.

The data partitioning techniques, described above, primarily

provide a symbolic representation of the underlying dynamical

system under a given quasi-stationary condition, rather than

capturing the data-evolution characteristics as a consequence

of an anomaly. Next we present a partitioning optimization

methodology that endeavors to overcome this shortcoming

to make SDF a robust data-driven feature extraction tool for

pattern classification and anomaly detection.

Optimization criteria that are reported for feature extraction

in multi-class classification problems are broadly classified as:

1) Filtering method that makes use of the information con-

tent feedback (e.g., Fisher criteria, statistical dependence,

and information-theoretic measures) as optimization cri-

teria for feature extraction.

2) Wrapper method that includes the classifier inside the op-

timization loop to maximize the predictive accuracy (e.g.,

classification rate using statistical re-sampling or cross-val-

idation [22]).

The wrapper method is adopted here to minimize the classi-

fication error on the training set. The rationale for this choice

is the non-binary nature of the problem at hand and the pos-

sible non-Gaussian distribution of training samples in the fea-

ture space.

In a multi-class problem, ideally one should jointly minimize

all the off-diagonal elements of the confusion matrix, while

maximizing the diagonal elements. However, in that case, the

dimension of the objective space blows up with increase in the

number of classes, which is obviously impractical. Therefore,

two cost functionals may be defined on the confusion matrix

by using another penalty weighting matrix, elements of which

denote the relative penalty values for different confusions in

the classification process. Formally, let there be

classes of labeled time-series data given as the training set. A

partitioning is employed to extract features from each sample

and a -NN classifier is used to classify them. After the classi-

fication process, the confusion matrix [28] is obtained, where

the value of its element denotes the frequency of data from

class being classified as data from class . Let be the

weighting matrix, where the value of its element denotes

the penalty incurred by the classification process for classifying

a data set from class as a data set from class . With these

definitions, the cost due to expected classification error,

is defined as:

(2)

where is the total number training samples including all

classes. The outer sum in the above equation sums the total

penalty values for misclassifying each class . Thus is

related to the expected classification error. Although, in the cur-

rent formulation, the total penalty values are equally weighted

for all classes, that can be changed based on prior knowledge

about the data and the user requirements.

It is implicitly assumed in many supervised learning algo-

rithms that the training data set is a statistically similar represen-

tation of the whole data set. However, this assumption may not

be very accurate in practice. A natural solution to this problem

is to choose a feature extractor that minimizes the worst-case
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Fig. 8. General framework for optimization of feature extraction.

classification error [29] as well. In the present setting, that cost

due to worst-case classification error, can be defined as:

(3)

where is the number of training samples in class . With

such construction, the dimension of the objective space is not a

function of the number of classes, which makes it convenient for

classification with large number classes. As described earlier,

classification needs to be performed on the training data set to

calculate the costs during optimization of the feature extractor,

i.e., the partitioning.

Fig. 8 depicts the general outline of the classification process.

Labeled time series data from the training set are partitioned and

the generated low-dimensional feature vectors (via symboliza-

tion and PFSA construction) are fed to the classifier.

After classification, the two training error costs defined as

above are computed and fed back to the feature extraction

block. During classification, the classifier may be tuned to

the obtain better classification rates. For example, for -NN

classifiers [25], choice of neighbor size or the distance metric

can be tuned. The partitioning is updated to reduce the cost

based on the feedback. The iteration is continued until the

set of optimal partitioning in a multi-objective scenario and

the correspondingly tuned classifier are obtained. Choice of

the optimal partitioning is done using the Neyman-Pearson

criterion [30] as described later. After the choice is made, the

optimal partitioning and the tuned classifier are used to classify

the test data set. Although this is the general framework that

is being proposed for the optimization methodology, tuning of

the classifier has not been performed in this paper as the main

focus here is to choose the optimal partitioning to minimize the

classification error related cost.

Similar to the classical partitioning cases, the Euclidean dis-

tance is chosen as the metric. For partitioning optimization, at

first, the number of cells of the partitioning is chosen to

be 4 in this case. For computation purpose, a suitably fine grid

Fig. 9. Flow chart for data-driven anomaly detection.

size depending on the data characteristics is then assumed. It

should be clear that each of the grid boundaries denote a pos-

sible position of a partitioning cell boundary. In this paper, the

data space region is divided into 40 grid cells, i.e., 39 grid

boundaries excluding the boundaries of and the alphabet size

is selected to be . That is, there are 4 partitioning cells

and 3 partitioning boundaries to choose. Hence, the number of

elements (i.e., 4-dimensional partitioning vectors) in the space

of all possible partitioning is: . Since the cardi-

nality of is computationally tractable in this example, a direct

search-based Pareto optimization procedure is followed in this

paper. If the partitioning space happens to be significantly

large such that usage of a direct search approach becomes in-

feasible for evaluation of all possible partitioning, then other

searching schemes (e.g., those based on genetic algorithms [31])

should be applied.

By searching the partition space , the positions of its

elements (i.e., the partitioning vectors) are located in the

(two-dimensional) - objective space. The re-

sulting Pareto front is generated by identifying the non-domi-

nated points [30] in the objective space. In the present case, a

non-dominated point (i.e., a partitioning vector) is such that no

other partitioning has lower values of both and .

Finally, the Neyman-Pearson criterion [30] is applied to choose

the optimal partitioning for minimization of the cost ,

while not allowing the cost to exceed the allowable

worst-case classification error. In other words, the optimal

partitioning is the solution to the following constrained

optimization problem:

(4)

where is the allowable worst-case classification error that is de-

noted by the (positive scalar) threshold determined by the user.

V. ANOMALY DETECTION ALGORITHM

This section describes how the anomaly detection algorithm

is formulated based on the concept of symbolic dynamic fil-

tering (SDF). For comparative evaluation, another anomaly

detection algorithm is constructed based on the principal

component analysis (PCA), also known as proper orthogonal

decomposition or Karhunen-Loève transformation [21], [22],

[32], which is a linear feature extraction technique and com-

putes the largest eigenvectors of the covariance matrix.

A flowchart of the anomaly detection algorithms is shown in

Fig. 9 and the following steps summarize the procedure.
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A. Symbolic Dynamic Filtering for Anomaly Detection

The following steps summarize the procedure of SDF for

anomaly detection.

• Time series data acquisition on the fast scale from sensors

and/or analytical measurements (i.e., outputs of a physics-

based or an empirical model). Data sets of different plant

and sensor conditions are collected at slow time epochs,

and divided into partitioning, training and testing sets.

• Partitioning the time series data. Each segment of the par-

titioning is assigned a particular symbol from the symbol

alphabet set . This step enables transformation of time

series data from the continuous domain to the symbolic

domain [33]. The partitioning is generated from the parti-

tioning data and remains fixed for subsequent training and

testing stage.

• Construction of probabilistic finite state automata from

each data set with alphabet size and window length .

Choices of and depend on the characteristics of the

data. In this paper, and are taken.

• Generation of state probability vectors. The state proba-

bility vectors are recursively computed as an approx-

imation of the natural invariant density of the dynamical

system. For each data set, a state probabilistic vector is

generated and serve as the feature vector in the subsequent

pattern classification tasks.

• Identification of the class information The low-di-

mensional state probability vectors are input to pattern

classifiers to identify the class labels. The classifier is

trained in a supervised manner with the training patterns.

The -nearest neighbors ( -NN) algorithm [21], [22] has

been used in this paper as the pattern classifier due to its

simplicity.

B. Principal Component Analysis for Anomaly Detection

The time series data sets are organized into an -di-

mensional data matrix, where is the number of data sets, is

the length of each (one dimensional) time-series data set. Let

be the centered version of the original data matrix. For

, it is numerically efficient [22] to analyze the

matrix that has the same nonzero eigenvalues

as the computed covariance matrix .

Let be the eigenvectors of the matrix corresponding

to the eigenvalues that are arranged in the decreasing order

of magnitude. The largest (real positive) eigenvalues, where

, are selected such that , where

is a real positive fraction close to 1. The corresponding normal-

ized eigenvectors in the original data space are calculated as

follows [22].

(5)

These eigenvectors obtained from (5) are then grouped to

form an projection matrix , where

. Thus, a new low-dimensional data matrix is

generated as the matrix , where

the training data set has the same structure as . Each

of the rows of is considered as a feature vector.

Following the above procedure, we obtain the projec-

tion matrix and the low-dimensional data matrix

from the training data matrix . Similarly, in the

testing stage, the low-dimensional data matrix is obtained as

.

In summary, to apply PCA to high-dimensional data, we first

evaluate and then find its eigenvectors and eigenvalues

and then compute the eigenvectors in the original data space

[22].

So far we have obtained a low-dimensional representation of

the original data matrix by using PCA as the feature extraction

tool; the next step is to use a pattern classifier to determine the

class labels of the testing data sets. For performance compar-

ison of SDF with PCA, the -NN algorithm is also used as the

pattern classifier for PCA. Rows of the matrices

and serve as the training patterns and testing patterns, re-

spectively. Other common pattern classifiers, namely, linear dis-

criminant analysis (LDA) and least squares algorithm (LS) [21],

[22] have also been used for comparative evaluation, as reported

later in the paper.

VI. RESULTS AND DISCUSSION

This section presents pertinent results for the case study of

anomaly detection in the reactor coolant pump (RCP) for com-

parative evaluation of the optimal partitioning-based SDF tool

with those based on classical methods of partitioning as well as

PCA.

At the beginning of the optimization procedure, a weighting

matrix needs to be defined to calculate the cost functionals

and from the confusion matrix for the training

data set. In this case study, is defined according to the adja-

cency properties of classes in the parameter space, i.e.,

, i.e., there is no penalty for correct classifica-

tion. The weights are selected as: ,

i.e., given that a data sample originally from is classified

as a member of , the penalty incurred by the classification

process increases with increase in the separation of and

in the parameter space. Then, it follows that:

The data space region is divided into 40 grid cells, i.e.,

39 grid boundaries excluding the boundaries of . Each parti-

tioning in the space is evaluated by calculating and

to identify the optimal partitioning. Fig. 10 shows a

relevant region of the (two-dimensional) - objec-

tive space, where the elements of the space are located. The

Pareto front is also generated from this evaluation. The threshold

, i.e., the maximum allowable is taken to be 0.041 in

this case and the optimal partitioning (OptP) is chosen by the

Neyman-Pearson criterion as discussed earlier. Thus, the user

has the option of choosing a classification operating point with

selected values of and . The Pareto front [30]
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Fig. 10. Two dimensional objective space for partitioning optimization.

Fig. 11. Feature space of the training set using optimal partitioning.

is generated after the threshold is chosen. Locations of the

classical partitioning (i.e., uniform (UP) and maximum entropy

(MEP)) are also plotted along with the elements of in the fig-

ures for comparative evaluation.

For SDF analysis, the alphabet size is taken to be

and the depth for constructing PFSA is taken to be . Fea-

tures are classified by a -NN classifier using the Euclidean dis-

tance metric. Fig. 11 shows locations of the training features in

the three-dimensional plot using first three linearly independent

elements of the feature vectors obtained by using the chosen

optimal partitioning, OptP. Note, only out of its

elements of a feature vector are linearly independent, because

a training feature vector, is also a probability vector, i.e., the

sum of its elements is constrained to be equal to 1. Levels of

RCP anomalies are represented in different symbols: blue in-

dicates low anomaly, red indicates medium anomaly, and

black indicates high anomaly. The class separability is re-

tained by the feature extraction (partitioning) process even after

compressing a time series (with 2,400 data points) into 3 num-

bers.

For comparison purpose, classical partitioning schemes, such

as, Uniform Partitioning (UP) and Maximum Entropy Parti-

tioning (MEP) are also used with the same alphabet size,

Fig. 12. Feature space of training set—uniform partitioning (UP).

Fig. 13. Feature space of training set—maximum entropy partitioning (MEP).

. Figs. 12 and 13 show the location of each training time se-

ries in the three dimensional (using first three linearly indepen-

dent elements of the feature vectors) feature space plot using UP

and MEP, respectively. It is observed that the class separation in

Fig. 12 is not as good as that in Fig. 11, especially the separa-

tion between low/medium anomaly samples and high anomaly

samples. The samples of the same class in Fig. 13 do not cluster

as close as that in Fig. 11; some of the low anomaly samples

(i.e., those with blue dots below the red cluster in Fig. 13) are

closer to the medium anomaly cluster than their own cluster.

Finally, the confusion matrices [28] for the SDF-based

methods (OptP, UP and MEP) with -NN on the test data

set are given by , and ,

respectively.
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In a confusion matrix, its elements denote the frequency

of data in the class being classified as data in class . The

diagonal elements represent the frequency of the data that

are correctly classified. If all data are classified correctly, then all

the off-diagonal elements of the confusion matrix must be zeros.

There are fewer off-diagonal elements in , which

implies that the expected classification error of using OptP is

smaller than those using MEP and UP. The minimum diagonal

element in is larger than those in and

, which implies that the worst case error of using

OptP is smaller than those using MEP and UP.

For comparative evaluation, the data sets are analyzed using

other common pattern recognition tools [21], [22]. In this case

study, principal component analysis (PCA) is used as the fea-

ture extraction tool, while -NN, linear discriminant analysis

(LDA) and least squares algorithm (LS) are used as the pat-

tern classifiers. For PCA anomaly detection, ,

, and by choosing , the corresponding number of

largest eigenvalues turns out to be , as explained in Sec-

tion V-B. The confusion matrices for PCA with -NN, LDA and

LS are given by , and , re-

spectively. An inspection of the confusion matrices reveals that

PCA-based anomaly detection algorithm yields similar perfor-

mance in identifying the low and high level anomalies as the

SDF-based algorithm, but the performance in identifying the

medium level anomaly is significantly worse.

Fig. 14 shows how the neighbor size in the -NN classifiers

affect the classification performance, and the performances of

OptP, MEP, UP and PCA with different neighbor size are

compared. Only odd values of neighbor size are shown because

when using an even value for , it might be necessary to break

a tie in the number of nearest neighbors by selecting a random

tiebreaker or using the nearest neighbor among the tied groups.

It is seen in Fig. 14 the classification performance of SDF-based

methods is consistently better than that of PCA-based method

and almost independent of the neighbor size, whereas the clas-

sification error of PCA increases with the number of neighbor

size. This results show that the feature vectors extracted by SDF

retain better separability among classes than those extracted by

PCA.

Table III presents the comparison of the classification error re-

lated costs for SDF-based methods and PCA-based methods on

the test data set. The observation made from these results indi-

cate that the classification performance of SDF-based methods

are superior to that of the PCA-based methods. The classifica-

tion performance of MEP and UP are close, and UP performs

Fig. 14. Classification error vs. neighbor size in �-NN classifiers.

TABLE III
COMPARISON OF CLASSIFICATION PERFORMANCES OF DIFFERENT METHODS

ON TEST-DATA SET (50� 9 SAMPLES)

slightly better in this case study. The costs due to worst-case

classification error and expected classification error are reduced

compared to that of the uniform partitioning scheme by opti-

mizing the partitioning process over a representative training

set.

It is noted that, for some problems, the classical partitioning

schemes may perform similar to the optimal one. Therefore, the

optimization procedure may also be used to evaluate the capa-

bility of any partitioning scheme towards achieving a better clas-

sification rate. The evaluation can be performed by using a part

of the labeled training data set as the validation set. Although

the construction of the cost functions allow solutions of prob-

lems with a large number of classes, its upper limit could be

constrained by the alphabet size used for data partitioning that

determines the dimension of the feature space.

VII. SUMMARY, CONCLUSIONS AND FUTURE WORK

This paper presents a data-driven method for detection of

component-level anomalies in nuclear power plants with sen-

sors that are subjected to different noise variance. The proposed

anomaly detection method is based on Symbolic Dynamic Fil-

tering (SDF) [7]–[9] that is recently reported in the literature

as a real-time data-driven pattern recognition tool. The task of

anomaly detection is viewed as a multi-class pattern classifi-

cation problem, where feature extraction is optimized to en-

hance the classification rate. The proposed methodology effi-

ciently (i.e., with low memory requirements and fast execution)

compresses a high-volume database to execute anomaly detec-

tion for a large number of classes. It has been shown that the

SDF-based anomaly detection algorithm has superior perfor-

mance compared with the PCA-based anomaly detection algo-

rithm.
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This proposed method is tested on the IRIS simulator for

the white Gaussian noise that is a common representation of

sensor uncertainties. If exact specifications of the sensor noise

are available, the anomaly detection algorithm should be trained

based on these specifications. In the absence of this information,

the best choice would be to use white Gaussian noise at different

levels of signal-to-noise ratio (SNR), which is done in this paper.

Scalability is a critical issue for data-driven supervised

methods of anomaly detection. A natural way to circumvent

this problem is to perform anomaly isolation before estimating

a particular anomaly level. Furthermore, although this paper has

shown application of the developed feature extraction method

to component anomaly detection problems, the technique is

general enough to be used for detecting sensor and actuator

anomalies under different architectures.

Potential applications of the proposed anomaly detection

method include real-time detection of component-level anom-

alies in nuclear power plants with low false alarm and missed

detection rates. While the training stage could be accomplished

in a nuclear power plant simulator with high fidelity (e.g.,

scaled experimental reactor [34] or computer simulator [35]),

the testing stage should be ideally performed in real time in an

operating nuclear power plant. However, based on the simula-

tion results only, it is found that the plant perturbation needed

to execute the proposed anomaly detection method require

small induced changes in the turbine load (e.g., less than 2%

nominal load) over a short period, which does not have any

significant adverse effects on stability and performance of the

plant operation.

While there are research issues in this field [36] that are re-

quire in-depth research, the following areas are recommended

for future research:

• Usage of other classifiers (e.g., Support Vector Machines

(SVM) and Gaussian Mixture Models (GMM)) for com-

parison with the proposed method’s performance;

• Inclusion of the step of tuning the classifier inside the opti-

mization loop as described in the general framework shown

in Fig. 8;

• Extension of the proposed anomaly detection method to

accommodate other types of sensor degradation (e.g., bias

and drifting);

• Investigation of anomalous situations with simultaneous

anomalies in multiple plant components, actuators, and

sensors;

• Reduction of the plant perturbation period for the testing

phase without any significant compromise of detection per-

formance.
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