

Anomaly Detection in SCADA Systems

A Network Based Approach

Rafael Ramos Regis Barbosa

Graduation committee:

Chairman: Prof. dr. ir. A. J. Mouthaan
Promoters: Prof. dr. ir. A. Pras

Prof. dr. ir. B. R. Haverkort

Members:
Prof. dr. G. Dreo Rodosek Universität der Bundeswehr München
Prof. dr. O. Festor University of Lorraine
Dr. R. Sadre Aalborg University
Prof. dr. S. Etalle University of Twente
Prof. dr. ir. L. J. M. Nieuwenhuis University of Twente

Funding sources:
Hermes, Castor and Midas projects Ministry of Interior and

Kingdom Relations
PROSECCO project University of Twente
IOP GenCom project SeQual Agentschap NL
Network of Excellence project Flamingo European Comission,

Seventh Framework Programme

CTIT Ph.D. - thesis series No. 14-300
Centre for Telematics and Information Technology
University of Twente
P.O. Box 217, NL – 7500 AE Enschede

ISSN 1381-3617
ISBN 978-90-365-3645-5

Typeset with LATEX. Printed by Ipskamp Drukkers B.V.

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License.
http://creativecommons.org/licenses/by-nc-sa/3.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/

ANOMALY DETECTION IN SCADA
SYSTEMS

A NETWORK BASED APPROACH

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties,
in het openbaar te verdedigen

op woensdag 02 April 2014 om 16.45 uur

door

Rafael Ramos Regis Barbosa

geboren op 19 november 1983
te Vila Velha-ES, Brazilië

Dit proefschrift is goedgekeurd door:
Prof. dr. ir. Aiko Pras (Promotor)
Prof. dr. ir. Boudewijn R. Haverkort (Promotor)

Acknowledgments

As one of my promoters and advisor, Aiko Pras, would often say to me: “you
should now to take a step back and look at the big picture, you always focus
too much on the details”. The big picture, or what I learned looking back at
these last four years, is that this thesis would probably not exist if I had worked
alone. The work presented here was only possible due to the efforts of many.

My promoters Aiko Pras and Boudewijn Haverkort provided indispensable
guidance during my Ph.D. program. Their input went beyond academic discus-
sions, helping me shape my post-Ph.D. life. I would also like to thank Ramin
Sadre for his constant advice. The weeks you received me in Aalborg, although
few, were incredible productive. Also, thanks to all members of the committee
for the providing interesting discussions and valuable feedback.

I would like to extend my thanks to my paranymphs Luiz Olavo, for the
(not always) serious advice, and Giovane, roommate at DACS and always good
company. I also grateful to all DACS colleagues, in particular to my other
roommates, Idilio and Anja, who made this journey feel much shorter than it
was, and to my M.Sc. thesis advisor, Pieter-Tjerk de Boer, with whom I kept
having numerous technical discussions during my Ph.D program.

This research would also not be possible without the support received from
several sources. The national Hermes, Castor and Midas projects provided
founding and the equally important collaboration with industry partners. This
collaboration facilitated the collection of network traffic at operational SCADA
systems, which is central to the analysis described in this thesis. This work
was also partially funded by the PROSECCO (Next Generation Protection and
Security of Content) project from the University of Twente, by the IOP GenCom
project SeQual from the Dutch agency Agentschap NL and by the Network
of Excellence project Flamingo (ICT-318488) from the European Commission
under its Seventh Framework Programme.

Leaving your home country is never easy, but it is certainly easier if you have
amazing people supporting you along the way. For that I would to thank my
family, specially my parents, Florencio and Angela: “Pais, obrigado por tudo!

vi

O constante apoio de vocês foi fundamental.” I also have to acknowledge that
moving abroad was not my idea: thanks Ramon for literally expanding my
horizons! My thanks also go to all my old friends in the new continent, but
especially for my new friends in the old continent; these last years were awesome!

Finally, I would like to thank this wonderful woman I met just after arriving
in Enschede, at this paradoxical place called Macandra. She had to poke a few
times in the head until I really noticed her. But it worked. We are now together
for 6 years, and I know many more to come. I love you Sanjka.

Abstract

Supervisory Control and Data Acquisition (SCADA) networks are commonly
deployed to aid the operation of large industrial facilities, such as water treat-
ment and distribution facilities, and electricity and gas providers. Historically,
SCADA networks were composed by special-purpose embedded devices com-
municating through proprietary protocols. However, three main trends can be
observed in modern deployments: (i) SCADA networks are becoming increas-
ingly interconnected, allowing communication with corporate networks, remote
access from engineers and system administrators, and even communication with
the Internet; (ii) the use of commercial off-the-shelf devices, such as Windows
desktops; and (iii) the adoption of the TCP/IP protocol stack. As a result,
these networks become vulnerable to cyber attacks, being exposed to the same
threats that plague traditional IT systems.

In our view, measurements play an essential role in validating results in
network research, and can sometimes lead to surprising insights. Therefore,
the first objective of this thesis is to understand how SCADA networks are
utilized in practice. To this end, we provide the first comprehensive analysis
of real-world SCADA traffic. We analyze five network packet traces collected
at four different critical infrastructures: two water treatment facilities, one gas
utility, and one (mixed) electricity and gas utility. We show exiting network
traffic models developed for traditional IT networks cannot be directly applied
to SCADA network traffic. In particular, SCADA networks do not present
daily patterns of activity and self-similarity. We also validate two commonly
held assumptions regarding SCADA traffic. First, we show that the SCADA
connectivity matrix is stable, that is, the list of “who is communicating with
whom” typically presents few and small changes. Second, we provide evidence
that a large number of SCADA hosts, in particular all Programmable Logic
Controllers (PLCs) in our datasets, generate traffic periodically.

Based on our analysis of real-world SCADA network traffic, the second ob-
jective of this thesis is to exploit the stable connection matrix and the traffic
periodicity to perform anomaly detection. In order to exploit the stable connec-

viii

tion matrix, we investigate the use of whitelists at the flow level. Despite the
high level of protection that can be achieved by whitelists, a common problem
with this approach is that maintaining a whitelist is burdensome to the user, as
whitelists are commonly large and require manual updates. However, as changes
in the connection matrix are rare, flow whitelisting becomes a promising solu-
tion for SCADA environments. We show that flow whitelists have a manageable
size, considering the number of hosts in the network, and that it is possible to
overcome the main sources of instability in the whitelists, therefore reducing the
need for updates. In order to exploit the traffic periodicity, we focus our atten-
tion to connections used to retrieve data from devices in the field network (e.g.,
PLCs). As data is typically retrieved using a polling mechanism, such connec-
tions display periodic patterns. We show that the traffic in these connections
can be modeled as a series of periodic requests and their responses, and propose
PeriodAnalyzer , an approach that uses deep packet inspection to automatically
identify the different requests belonging to each connection and the frequency
at which they are issued. Once such normal behavior is learned, PeriodAnalyzer
can be used to detect data injection and Denial of Service attacks.

Contents

1 Introduction 1
1.1 Background . 1
1.2 What is SCADA? . 4
1.3 Evolution and Vulnerabilities . 6
1.4 Intrusion Detection in SCADA 9
1.5 Goal, Research Questions and Approach 11
1.6 Thesis Outline . 12

2 Applicability of Traditional Traffic Models 17
2.1 Introduction . 17
2.2 Datasets . 19
2.3 Invariants . 22
2.4 Analysis Results . 29
2.5 Conclusions . 38

3 SCADA Traffic Characterization 41
3.1 Introduction . 41
3.2 Datasets . 43
3.3 Periodicity . 45
3.4 Connection Matrix . 56
3.5 Conclusions . 63

4 SCADA Security 65
4.1 Introduction . 65
4.2 Differences with Traditional IT 66
4.3 Documented Incidents . 68
4.4 Securing SCADA . 70
4.5 Summary . 79

x CONTENTS

5 Exploiting the Stable Connection Matrix 81
5.1 Introduction . 81
5.2 Flow Whitelisting . 83
5.3 Approach . 85
5.4 Evaluation . 90
5.5 Discussion . 101
5.6 Conclusions . 103

6 Exploiting the Traffic Periodicity 105
6.1 Attack Scenario and Research Questions 106
6.2 Communication Model . 107
6.3 Related Work . 110
6.4 PeriodAnalyser . 119
6.5 Evaluation . 128
6.6 Discussion . 143
6.7 Conclusions and Future Work . 147

7 Conclusions and Future Work 149
7.1 Summary . 149
7.2 Main Findings and Implications 151
7.3 Future Directions . 153

A SCADA Protocols 155
A.1 Modbus . 155
A.2 MMS . 157
A.3 IEC 60870-5 . 160

B Additional Results 165
B.1 Applicability of Traditional Traffic Models 165
B.2 SCADA Traffic Characterization 172

Bibliography 177

Acronyms 191

Index 193

About the author 193

CHAPTER 1

Introduction

1.1 Background

The operation of complex industrial processes, such as water distribution and
electricity generation, requires managing information regarding a number of
different components that compose an infrastructure, which potentially spread
over hundreds of kilometers. Early control systems required operators to stay
at, or to frequently visit, remote sites in order to ensure that the process is
performing properly. Data gathered from field devices was displayed on large
control panels, which also allowed operators to manually control the process [8].

With the advent of telemetry, it became possible to connect the devices used
in these infrastructures. The term Supervisory Control And Data Acquisition
(SCADA) refers to the technology that enables such infrastructures to be mon-
itored and controlled from a centralized control room. For instance, in a water
distribution facility, it can be used to: check the level in storage tanks and
wells; monitor flows and pressure in pipes; monitor quality characteristics, such
as acidity, turbidity and chlorine residual; control pumps and valves; and adjust
the addition of chemicals.

SCADA systems provide operators with a real-time view of the whole pro-
cess, by automating data collection from field devices in different remote sites.
They also provide an alarm system that enables the field devices to report fault
conditions. In addition, the system provides operators with means to react to
changes in the process, by sending commands to the field. Again, using the wa-
ter utility scenario as an example, such commands could be opening and closing
valves, or changing set points, such as the capacity of a water tank. Operators
are also able to change the algorithms that implement the control loops used in
the process, e.g., the method used to forecast water consumption. One of the
main advantages brought by SCADA systems was the reduction in the costs

2 1. Introduction

of operating the infrastructure, by increasing process efficiency and minimizing
the need of visits to remotes sites.

As industrial processes become more complex, with more devices and also
more information managed per device, so grows the importance of these systems.
Today, SCADA systems are considered a vital component of many nations’
critical infrastructures [104, 96]. In the US alone, it is estimated that the control
systems used by electric grid and oil and natural gas infrastructure represent
an investment of $3 to $4 billion. The energy sector invests over $200 million
each year for control system, network and related devices, and at least the
same amount in personnel costs [53]. The importance of these infrastructures is
enormous and failures can be catastrophic. Take for example the blackout that
happened in Ohio in 2003, caused by trees brushing high-voltage transmission
lines combined with a failure in the computer system responsible for generating
the alarms. The incident left 50 million people without electricity for up to two
days, contributed to at least 11 deaths and caused a damage estimated to be 6
billion US dollars [108].

Some recent incidents highlight the vulnerabilities of SCADA systems. The
breach in Maroochy water services in Australia [131] by a disgruntled employee
exposes the risk of insider attacks, the slammer worm infection at US Davis-
Besse nuclear plant [17] shows that critical infrastructures can be affected by
common Internet malware and the Stuxnet that attack targeted a specific in-
dustrial control system likely in Iran [55], demonstrated how much damage a
resourceful attacker can cause.

It is important to stress that these are not isolated events. A survey with 200
industry executives from electricity utilities in 14 countries performed by Baker
et al. [10] showed that 80% had faced a large-scale denial-of-service attack,
and 85% had experienced network infiltrations. In fact, security incidents on
industrial systems are on the rise. Data from the Industrial Security Incident
Database (ISID) [25] which contains incident information since 1982, shows that
73% of the incidents happened between 2002 and 2007. The number of attacks
reported to the United States’ Department of Homeland Security (DHS) grew
from 9 in 2009, to 198 in 2011 and 171 in 2012 [78].

Not surprisingly, the vulnerability of SCADA systems has received atten-
tion from both government and industry. World-wide, several industry sectors
are developing guidelines to raise awareness regarding potential threats and im-
prove their security practices. Examples of such efforts are the Dutch SCADA
Security Good Practices for the Drinking Water Sector [102], the Recommended
Guidelines for Information Security Baseline Requirements for Process Control,
Safety and Support ICT Systems [113] by the Norwegian Oil and Gas Associ-

1.1. Background 3

ation and the North American Electric Reliability Coorporation (NERC) relia-
bility standards on critical infrastructure protection [112]. Although a common
recommendation in these guidelines is the implementation of Intrusion Detection
Systems (IDSs), research in SCADA specific IDS is still in its infancy [137, 87].

This brings us to the main problem addressed in this thesis: intrusion de-
tection in SCADA networks. Given that intrusion detection in traditional IT
networks has remained a prolific research area since its inception in the late
80’s [48], one might question the need of new IDS solutions. Therefore, in
Chapter 2 of this thesis, we present an extensive characterization of network
traces collected in SCADA networks used in utility sector: water treatment and
distribution facilities, and gas and electricity providers. The data collection was
possible through the collaboration with industry partners, established in the
context of the national Hermes, Castor and Midas projects1. The goal of this
characterization is to expose the differences with traditional Information Tech-
nology (IT) networks, and thus motivate the need of new intrusion detection
solutions.

We note that despite the increasing number of scientific publications in
the area of SCADA networks, very little information is publicly available
about real-world SCADA traffic. In fact, many publications on SCADA net-
works do not rely on empirical data, as obtained from real-world measurement
(e.g., [37, 145, 126, 140]). We argue that a comprehensive analysis of real-world
measurements is necessary to fully understand SCADA networks. Research on
the field of traditional IT networks showed us that this type of analysis can lead
to surprising insights, like the self-similar nature of network traffic [98, 119].

Based on our characterization of SCADA traffic, in the second part of this
thesis we propose two complementary intrusion detection techniques that ex-
ploit regularities observed in the traffic to perform intrusion detection. More
specifically, in Chapter 5 we propose the use of flow whitelists to exploit the
stable connection matrix, and in Chapter 6 we propose an approach to model
the normal traffic and detect anomalies that exploit the traffic periodicity.

In the following, we provide an introduction to SCADA terminology in Sec-
tion 1.2. In Section 1.3, we then discuss how these systems evolved, becoming
more similar to traditional IT networks, and how this evolution impacted the
security of SCADA systems. In section 1.4, we introduce the problem of intru-
sion detection in SCADA networks and motivate high-level decisions made when
designing the intrusion detection mechanisms proposed in this thesis. We then
proceed to discuss the goal of this thesis, the tackled research questions and our

1https://zeus.tsl.utwente.nl/wiki/hcm/ProjectDescriptions

https://zeus.tsl.utwente.nl/wiki/hcm/ProjectDescriptions

4 1. Introduction

Figure 1.1: A generic traditional SCADA network architecture

approach to answer them (Section 1.5). Finally, in Section 1.6, we present the
outline of this thesis.

1.2 What is SCADA?

The details of SCADA system implementations can largely vary, but some com-
monly used building blocks can be identified. Figure 1.1 depicts a generic net-
work architecture for a traditional SCADA system. It can be divided into three
parts:

• Field network(s): Represent the remote locations to be controlled. For
instance, in the case of a electricity grid, a field network might be present
in each substation. The field devices are instrumented by means of sensors
and actuators. Remote Terminal Units (RTUs) provide a communication
interface to these instrumentation devices. In many environments, the role
of an RTU is played by a Programmable Logic Controller (PLC), a small
embedded device that, besides providing the communication interface, also
implements the control loop used in the process. In the power systems
domain, PLCs are commonly referred to as Intelligent Electronic Devices
(IEDs). In this thesis, we refer to these three equipments collective as field
devices.

1.2. What is SCADA? 5

• Control network: Represents the control room. Data is collected by the
Master Terminal Unit (MTU), which periodically polls the RTUs in the
field. Operators have access to this data via a Human-Machine Interface
(HMI), which commonly provides a graphical representation of the field
process. The HMI is also used to report alarms and to issue commands.
Additional servers that perform various tasks, such as storing data in
databases or forecasting water consumption, can also be present. Finally,
an engineering workstation is used to change the configuration of RTUs,
for instance, setting a new maximum level for a water tank.

• Communication link: Connects the control and field networks. Any
communication technology can be used, including wire, fiber optic, radio,
telephone line, microwave or satellite [8].

Traditionally, a distinction is made between SCADA and Distributed Control
System (DCS) systems [137, 8, 96, 102], depending on the distance covered by
the communication link. The term SCADA is commonly used in industrial
processes that are geographically distributed over long distances (e.g., a oil
pipeline). As a consequence, SCADA networks were designed to deal with
challenges imposed by Wide Area Network (WAN) communication, such as
high delays and error rates, and low bandwidth. In contrast, the term DCS
is used to refer to control processes within the same geographical area (e.g., a
oil refinery), connected via a high-speed and more reliable Local Area Network
(LAN) communications. This allowed a more tight integration between the DCS
and the closed control loop used in the process.

Boyer [22] suggested that once long-distance, continuous and high-
bandwidth connection between the control and field networks would be avail-
able, the system should no longer be referred to as SCADA, but as very large
DCS instead. As WAN technology advances, we are very close to this scenario.
Today, SCADA vendors offer powerful devices with functionalities that were
previously only found in DCS solutions. As a consequence, the differences be-
tween these two systems become increasingly blurred [102]. In fact, many recent
publications use the terms interchangeably (e.g., [2, 92, 145, 123]).

We note that, depending on the application, many other terms are used
to refer to industrial networks, including but not limited to: Process Control
System (PCS), Cyber-Physical System (CPS) [31], Process Control Network
(PCN) [120], Industrial Automation Control Network (IACS) [34] and Net-
worked Control System (NCS) [3]. Explaining the differences between these
terms is out of the scope of this thesis. In the remainder of this dissertation,

6 1. Introduction

with a slight abuse of terminology, we refer to any industrial network which fol-
lows the generic architecture shown in Figure 1.1 as a SCADA network, unless
a specific reference is made necessary.

1.3 Evolution and Vulnerabilities

Historically, SCADA components were special-purpose embedded devices con-
nected through a proprietary communication bus. Vendors would typically
offer turn key solutions, which would be incompatible with competitors’ sys-
tems [42]. Security was not a main concern in the design of these systems, in-
stead major concerns regarded real-time processing, jitter limitation and event-
notification [34].

Despite the lack of security features, SCADA vendors and operators believed
they could rely on two forms of protection. The first was the air gap, that is, the
fact that SCADA network would be physically isolated from any other networks,
thus making it harder for an attacker to gain access. Secondly, they relied on
security through obscurity, that is, vendors and operators believed that very
little, if any, information was publicly available about their environments, and
this lack of information made their systems secure. Security concerns focused on
restricting access to unmanned field networks and on preventing configuration
mistakes [120].

With the goal of reducing costs and increasing efficiency these systems are
changing. Three main trends can be identified in modern installations: (i) in-
creased interconnection, allowing communication with corporate networks, re-
mote access from engineers and system administrators, and even communication
with the Internet; (ii) the use of low cost Commercial Off-The-Shelf (COTS)
devices, such as Windows computers; and (iii) the adoption of the TCP/IP
protocol stack [87]. These changes have a deep impact on the security of these
systems. An example of a modern SCADA network architecture is shown on
Figure 1.2.

Despite the increasing interconnection, SCADA networks should still be (log-
ically) isolated, that is, all connections between the corporate and SCADA net-
works should traverse a firewall [137, 96], which is responsible for blocking unau-
thorized traffic. However, that this isolation does not always happen in practice.
In the end of 2012, the United States Industrial Control Systems Cyber Emer-
gency Response Team published in their trimestral report [78] the results of the
Project Shine, which included a list of approximately 7200 Industrial Control
System (ICS) devices directly reachable via the Internet (see Figure 1.3).

1.3. Evolution and Vulnerabilities 7

Even if we assume the air gap exists, it is not a reliable security measure,
as an attacker can use other vectors then the network for gaining access to the
system. For instance, the Stuxnet, probably the most well-known attack to an
industrial facility, used an infected USB stick as the attack vector; no direct
network access was required [55]. Similarly, at least two US power generation
facilities have been reported to be infected via USB sticks [65].

Relying on hiding systems details as a form of security is not a widely ac-
cepted form of security. Some argue that the opposite is true, that is, open
systems are inherently more secure than closed ones [75]. Nonetheless, security
through obscurity completely falls apart in SCADA networks, as special-purpose
hardware is replaced by COTS servers and proprietary communication proto-
cols by the TCP/IP stack. It is no longer reasonable to assume that the details
about SCADA components are, by any reasonable definition, a secret. But more
than only exposing details about components of SCADA systems, these changes
make these systems vulnerable to the same threats that plague traditional IT
systems. Consider, for instance, the slammer worm that exploited a vulnerabil-
ity on Microsoft’s SQL Server. In 2003, the worm infected at least 75000 hosts,
causing network outages and unforeseen consequences, such as canceled airline
flights, interference with elections, and ATM failures [110]. Another victim of
slammer was the Davis-Besse nuclear power plant. The infection overloaded the
plant’s network, causing a safety-related system to be unavailable for almost 5
hours [17].

Figure 1.2: A modern realization of a SCADA network

8 1. Introduction

Figure 1.3: Approximately 7200 Internet facing devices in the US [78].

In addition, information about SCADA systems is becoming more widely
available. Take for instance the work of Basnight et al. [15], which presents
a proof-of-concept attack on how legitimate firmware can be modified and up-
loaded to a specific PLC model. The firmware used by the authors was ob-
tained directly from the vendor’s website. In addition, a number of SCADA
protocols (running on top of the TCP/IP stack) are defined in open standards:
Modbus [109], DNP3 and IEC 60870.5 [42]. In fact, it is relatively easy to find
information even on SCADA-specific vulnerabilities, like exploits for the well-
known penetration test tool Metasploit2 or attacks signatures for Digital Bond’s
Quickdraw SCADA IDS3.

The critical nature of the infrastructures that employ SCADA systems makes
them a valuable target for criminal organizations, terrorists and nation states.
Stuxnet, the infamous attack that targeted control systems likely in Iran, showed
that groups with motivation, financial resources and skill to perform sophisti-
cated attacks to critical infrastructures exist. In this context, it should be evi-
dent that more advanced security practices are necessary in SCADA networks.

2http://www.metasploit.com/
3http://www.digitalbond.com/tools/quickdraw/

http://www.metasploit.com/
http://www.digitalbond.com/tools/quickdraw/

1.4. Intrusion Detection in SCADA 9

1.4 Intrusion Detection in SCADA

As noted by Lunt [103], fixing all flaws of a system is not technically feasible and
building one without vulnerabilities is virtually impossible. Current SCADA
systems lack basic security services such as authentication and access control,
and, although feasible, the costs of deploying such services will certainly delay
their adoption. Besides, even secure system might have vulnerabilities caused
by configuration errors or abuse by insiders. In order to deal with such limita-
tions, intrusion detection is proposed as an complementary approach to secure
systems. Mukherjee et al. [111] defines intrusion detection as the problem of
identifying individuals who are using a computer system without authorization
(i.e., “crackers”) and those who have legitimate access to the system but are
abusing their privileges (i.e., the “insider threat”).

Since the seminal work by Denning [48] in 1987, intrusion detection remained
an active area of research. An IDSs survey by Lunt [103] included around 20
approaches as early as 1993. As of 2007, a list compiled by Meier and Holz [106]
contained an impressive 132 IDSs. Not surprisingly, many taxonomies have been
proposed, from which the ones from Debar et al. [46, 47] and from Axelsson [5]
being the most commonly used.

One of the fundamental distinctions made by these taxonomies is based on
the source of audit data, namely host or network based detection. The first
relies on data collected in a host, such as system logs and system calls, and the
later on data collected in the network, commonly traffic measurements made in a
central monitoring location. The restricted resources and real-time requirements
of RTUs constitute an obstacle for host based detection. These devices simply
might not have the required resources to support the new functionality, while
still meeting the required time constraints. In addition, changes in these devices
might characterize a break in license agreements, as some vendors disallow third
party applications to be installed [137], or may require re-certification of the
entire system [94]. For these reasons, in this thesis we explore the network
based approaches.

Another important distinction made is between anomaly and signature de-
tection, with “the former relying on flagging all behaviour that is abnormal for
an entity, the latter flagging behaviour that is close to some previously defined
pattern signature of a known intrusion” [5]. In Debar’s convention [46, 47],
these are referred to as behaviour based and misuse based detection, respec-
tively. Anomaly detection methods have the advantage of (potentially) being
able to detect so called zero-day exploits, that is, previously unknown attacks,
while the high false-alarm rate is commonly cited as a major drawback (e.g.,

10 1. Introduction

[135]).

One of the causes attributed to the high false-alarm rate in traditional
anomaly detection methods is the enormous variability of network traffic [133].
As we will show in Chapter 2, SCADA traffic patterns are rather stable when
comparing to traditional IT networks. For example, take the two time series
representing the number of transmitted packets per second over the course of a
week displayed in Figure 1.4. The difference between time series representing
a measurement in a water distribution infrastructure (Figure 1.4(a)) and the
one representing a research institute (Figure 1.4(b)) is clear. In the SCADA,
the packet transmission rate is fairly stable over large periods of time, spanning
over days, while daily patterns of activity are clear in the traditional IT trace.
This stability is due to the fact that most of the traffic in SCADA networks is

✥

�✥✥

✁✥✥

✂✥✥

✄✥✥

☎✥✥

✆✥✥

❲✝✞ ❚✟✠ ❋✡☛ ❙☞✌ ❙✠✍ ▼✎✍ ❚✠✝ ❲✝✞

P
✏
✑
✒
✓
✔✕
✖✕

(a) Water distribution SCADA network

✥

�✥✥

✁✥✥

✂✥✥

✄✥✥

☎✥✥

✆✥✥

✝✥✥

✞✥✥

✟✥✥

❲✠✡ ❚☛☞ ❋✌✍ ❙✎✏ ❙☞✑ ▼✒✑ ❚☞✠ ❲✠✡

P
✓
✔
✕
✖
✗✘
✙✘

(b) Research institute IT network

Figure 1.4: Traffic variability

1.5. Goal, Research Questions and Approach 11

generated through an automated process, like the polling mechanism used by
SCADA servers to retrieve information from the field devices.

Furthermore, SCADA components have a lifetime of tens of years [137] and
changes in software are rare, if at all [34]. This should make SCADA networks
even more stable, potentially reducing the high false-alarm rates common to
anomaly detection methods developed for traditional IT system. For these rea-
sons, in this thesis we explore the anomaly based approaches.

1.5 Goal, Research Questions and Approach

Our goal is to exploit characteristics of SCADA networks and develop anomaly
detection techniques that are suited for these networks. First, we analyze mea-
surements made in real-world environments to understand how SCADA net-
works are utilized in practice. Then, building up on this study, we exploit
intrinsic characteristics of SCADA traffic to develop models that describe their
“normal” behavior. These models can then be used to detect traffic anomalies,
which represent potential security threats.

Given the large number of intrusion detection techniques in traditional IT
networks, one could ask why is it necessary to develop new solutions. To
motivate the need of specialized solutions, we first expose differences between
SCADA and traditional IT networks. In other words, we address the following
research question:

RQ 1: Does SCADA network traffic differ from the traditional IT network
traffic? If yes, what are these differences?

The first step we take to answer this question is to perform a literature study
on SCADA networks, including a discussion of commonly used architectures,
protocols, and security requirements. We then proceed to capture and analyse
traffic measurements from several real SCADA infrastructures, such as water
treatment and distribution facilities, as well as gas and electricity providers.
Given the virtually infinite number of features that can be used to compare
SCADA and traditional IT networks, we focus our analysis in a list of well-
known “invariants”, i.e., behaviours that are empirically shown to hold for a
wide range of environments, described in [58].

In addition, we validate common assumptions regarding SCADA traffic. The
first assumption we check is that changes in the network topology are rare [30,
37], that is, hosts and services are not frequently added to or removed from the
network. By tracking changes in the IP-level connectivity, we verify if SCADA

12 1. Introduction

networks have a stable connection matrix. Secondly, we verify the assumption
that the polling mechanism used to retrieve data from the devices in the field
network causes a large portion of the traffic to display periodic patterns [11, 145].
By means of a spectral analysis, we search for evidence of traffic periodicity.

The stable connection matrix and the traffic periodicity cause SCADA net-
work traffic to be remarkably well-behaved when compared to traditional IT
networks, which bring us to our second research question:

RQ 2: How to exploit SCADA traffic characteristics to perform Anomaly
Detection?

To answer this research question, we develop models for the normal traffic that
exploit both the stable connection matrix and the traffic matrix ; two character-
istics that cause SCADA traffic to be predictable. We then describe techniques
that detect deviations in these models (i.e., anomalies), which represent poten-
tial security threats. We also provide a discussion on how our models behave in
the presence of realistic attack scenarios.

The first model uses flow whitelists to exploit the stable connection matrix.
A flow whitelist is an exhaustive list of all connections which are allowed in the
network. To evaluate the feasibility of this approach, we use real-world traffic
measurements to verify if the size of such whitelists is manageable and verify
the potential sources of instability in the whitelist.

The second model exploits the traffic periodicity by automatically learning
which messages are sent in a periodical fashion. This method is able to deal
with periodical traffic generated in different forms, e.g., periodically established
connections or single connections with multiple periods. The proposed method
is used to detect data injection and Denial of Service (DoS) attacks. Finally, we
use real-world traffic to demonstrate the applicability of this approach.

1.6 Thesis Outline

The core topics discussed in this thesis are divided in two parts, which are
closely related to the two proposed research questions (see Figure 1.5). We
begin with the “Understanding SCADA” part, where the first research question
is addressed. In this part, we present an introduction to SCADA networks
and provide an extensive characterization of SCADA traffic. We focus on the
differences between SCADA and traditional IT networks. This discussion is
based on a literature study on different aspects of SCADA environments and
an analysis of traffic measurements collected at real-world SCADA networks.

1.6. Thesis Outline 13

In the second part, “Protecting SCADA”, we address the remaining re-
search question. In this part, we propose two complementary methods to model
the normal traffic and detect anomalies which represent potential intrusion at-
tempts. These models are based on two characteristics uncovered during the
our traffic analysis: stable connection matrix and traffic periodicity.

1. Introduction

2. Applicability of
Traditional Traffic

Models

3. SCADA Traffic
Characterization

5.Exploiting the Stable
Connection Matrix

6. Exploiting the Traffic
Periodicity

7. Conclusions and
Future Work

RQ. 2
Protecting
SCADA

RQ. 1
Understanding

SCADA

4. SCADA
Security

Figure 1.5: Thesis outline

The outline of this thesis is shown in Figure 1.5, which depicts how each of
the chapters presented in this thesis fit in this organization. In the following,
we present a short summary of each chapter, including the publication used as
basis for it:

• Chapter 2 - Appplicability of Traditional Traffic Models provides
an analysis of real-world datasets collected in SCADA networks operated

14 1. Introduction

by Dutch companies in the utility sector: water treatment and distribution
facilities, and gas and electricity providers. We verify whether SCADA
traffic differs from traditional IT network traffic. Our analysis is based a
list of “invariants”, i.e., behaviors that are empirically shown to hold for
a wide range of network environments, proposed in the well-known work
by Floyd and Paxson [58]. This chapter is an extended version of the
following conference publication, including a more detailed explanation of
the tests performed and the analysis of two additional datasets:

R. R. R. Barbosa, R. Sadre, and A. Pras. Difficulties in Modeling
SCADA Traffic: A Comparative Analysis. Passive and Active Mea-
surement: 13th International Conference, Pam 2012, Vienna, Aus-
tria, March 12-14, 2012.

• Chapter 3 - Characterization of SCADA traffic expands our analy-
sis of real-world SCADA datasets. We verify the validity of two commonly
held assumptions regarding SCADA traffic, namely, that traffic is gener-
ated in a periodic fashion and that the SCADA traffic connection is stable.
This chapter is an extended version of the following conference publica-
tion, including a more detailed explanation of the tests performed and the
analysis of two additional datasets:

R. R. R. Barbosa, R. Sadre, and A. Pras. A First Look into SCADA
Network Traffic. In 2012 IEEE Network Operations and Management
Symposium volume 17, pages 518–521. Springer, IEEE, Apr. 2012.

• Chapter 4 - SCADA security provides a literature study in security
aspects of SCADA networks. We discuss differences to traditional IT
network security, documented incidents, and industrial, governmental and
academic efforts to secure SCADA systems, including a survey of SCADA
intrusion detection mechanisms.

• Chapter 5 - Exploiting the Stable Connection Matrix discusses
the feasibility of using of flow-level whitelists to protect SCADA networks.
Our analysis focus on two aspects necessary for whitelists to be practical:
a manageable size and stable entries. This chapter is a more detailed
version of the following journal publication:

R. R. R. Barbosa, R. Sadre, and A. Pras. Flow Whitelisting in
SCADA Networks. International Journal of Critical Infrastructure
Protection 6(3-4):150–158, Dec. 2013.

1.6. Thesis Outline 15

• Chapter 6 - Exploiting the Traffic Periodicity presents
PeriodAnalyzer , an approach to model SCADA traffic that exploits the
periodicity generated by the polling mechanism used to retrieve data from
the field devices. PeriodAnalyzer automatically learns this periodic behav-
ior, and protects SCADA protocol traffic against data injection and DoS
attacks. This chapter builds up on the lessons learned from the analysis
discussed in the following conference publication:

R. R. R. Barbosa, R. Sadre, and A. Pras. Towards Periodicity Based
Anomaly Detection in SCADA Networks. In Proceedings of 2012
IEEE 17th International Conference on Emerging Technologies &
Factory Automation, pages 1–4. IEEE, Sept. 2012.

• Chapter 7 - Conclusions closes this thesis by summarizing our main
findings and suggesting future work directions.

16 1. Introduction

CHAPTER 2

Applicability of Traditional Traffic

Models

2.1 Introduction

Intuitively, we expect SCADA networks to present traffic patterns to be different
from traditional IT networks, for a number of reasons. First, SCADA networks
are expected to present a nearly fixed number of nodes, in the sense that new
nodes are not expected to join or leave the network frequently. Many SCADA
systems are designed to work continuously, with virtually no changes, for tens
of years [34]. In contrast, traditional IT components have a typical lifetime
of 3 to 5 years [137]. Secondly, while traditional networks usually support a
multitude of protocols, such as HTTP, instant messaging and Voice over IP, the
number of supported protocols in SCADA networks is expected to be rather
limited. Finally, most of the SCADA traffic is expected to be generated by
polling mechanisms, which gather data from field devices. As a consequence,
traffic patterns will not be as dependent on human activity, as it is the case in
traditional IT networks.

Apart from the assumptions given above, little is publicly known about the
behavior of SCADA traffic. This is partly caused by the sensitivity of the data.
In fact, publications on SCADA networks generally do not rely on empirical data
as obtained from real-world measurement [37, 95, 144]. In our view, however,
measurements play an essential role in validating results in network research,
and can sometimes lead to surprising insights.

As an example, consider the seminal work by Leland et al. [98] on the self-
similar nature of Ethernet traffic. Based on real-world measurements, they show
that Poisson processes and other models that were used to describe packet ar-
rivals are not valid, and formalized the idea of traffic being “bursty” at different
timescales. This finding resulted in models and tools that are today applied to

18 2. Applicability of Traditional Traffic Models

various tasks, such as the design and dimensioning of network equipment and
the parameterization of management algorithms.

Connected to this result, studies on the presence of long-range dependency
and heavy-tailed distributions [44, 50, 63, 101], contributed to a better under-
standing of the causes of self-similarity, and consequently a better understanding
of network traffic in general. Naturally, the question arises whether the existing
traffic models designed for traditional IT network, such as self-similarity, are
also valid for SCADA networks.

The goal of this chapter is therefore to verify whether SCADA traffic differs
from traditional IT network traffic. We achieve this by comparing traditional
IT traffic with real-world SCADA measurements. The first challenge we face is
that network behavior can be compared in a virtually infinite number of ways,
starting from the above mentioned characteristic of self-similarity to topological
properties [147] and application specific aspects [127, 14]. A second challenge
is the enormous diversity observed in traditional IT networks: different topolo-
gies, different protocols and different usage patterns. Besides that, network
traffic is continuously changing, and even a single network will exhibit differ-
ent characteristics in different years [38]. For example, the amount of traffic
tends to increase and the set of most utilized protocols tends to change. As
a consequence, defining characteristics that are representative of traditional IT
networks in general can be in itself a challenging task.

To cope with these problems, we base our analysis on a list of “invariants”,
i.e., behaviors that are empirically shown to hold for a wide range of network
environments, proposed in the well-known work by Floyd and Paxson [58]. This
list consists of seven invariants: diurnal patterns of activity, self-similarity, Pois-
son session arrivals, log-normal connection sizes, heavy-tailed distributions, in-
variant distribution for Telnet packet generation and invariant characteristics of
the global topology. We revise this proposed list of invariants and test the ones
applicable to our context.

The rest of this chapter is organized as follows. In Section 2.2, we describe
the used datasets. In Section 2.3, we provide a description of the invariants,
discussing the methods used to test their presence and motivating the reasons
why some of them are not addressed in this work. The results are presented in
Section 2.4. Finally, conclusions are given in Section 2.5.

2.2. Datasets 19

2.2 Datasets

One of the difficulties of performing research in SCADA networks is the difficulty
of obtaining real traffic measurements. For instance, all anomaly detection
approaches surveyed by Garitano et al. [60] have their validation limited to
either simulations or testbeds.

One of the contributions of this thesis is the use of datasets captured at
operational infrastructures in the utility domain. This was possible through the
collaboration with industry partners, established in the context of the national
Hermes, Castor and Midas projects1. One of the goals of these projects was to
devise new detection techniques, likely based on anomaly detection, which can
monitor proprietary protocols’ data and detect attacks.

The SCADA datasets that we analyze in this thesis consist of five network
packet traces in libpcap/tcpdump format2, collected at four different critical
infrastructures: two water treatment facilities, one gas utility and one (mixed)
electricity and gas utility. The networks used in these locations exhibit differ-
ent topologies. First we describe these topologies and then describe how each
dataset maps to these topologies.

These five critical infrastructures, besides covering different types of con-
trolled physical processes and architectures, also provide diversity in the used
SCADA protocols, three in total: Modbus, Manufacturing Message Specifica-
tion (MMS) and International Electrotechnical Commission (IEC) 60870-5-104
(in this thesis, refereed to as IEC-104). For more information about these pro-
tocols, the reader is referred to Appendix A.

SCADA networks might be connected to corporate networks, which in turn
are generally connected to the Internet. Although we include the corporate
network in our description of SCADA topologies, none of the measurements
performed in our work contains data collected in this segment of the network.
Despite the fact that the corporate network is a potential source of intrusions,
characterizing its traffic is out of the scope of this chapter, as it can be consid-
ered a traditional IT network. We discuss potential attack vectors in SCADA
networks in Chapter 4.3. Between our datasets, we distinguish three different
SCADA network topologies:

1. We refer to the simplest topology as two-layer. In this topology, the corpo-
rate network is separated from the SCADA network by a router/firewall.
However, the SCADA network itself is a single domain, meaning that any

1https://zeus.tsl.utwente.nl/wiki/hcm/ProjectDescriptions
2http://www.tcpdump.org

https://zeus.tsl.utwente.nl/wiki/hcm/ProjectDescriptions
http://www.tcpdump.org

20 2. Applicability of Traditional Traffic Models

Corporate

Network

PLC

Field Device

HMI
Control /

Field

Network

Router/

Firewall

SCADA

Server

R

Probe

Figure 2.1: A two-layer SCADA topology

host (e.g., an operator workstation) is directly reachable from any other
host (e.g., a PLC) in the network. This topology is depicted in Figure 2.1.

2. The second topology, referred to as three-layer, segregates the SCADA
network in two subnetworks, a control network and a field network. The
field network comprises the PLCs and RTUs that monitor (and potentially
issue commands to) the field devices. The control network contains several
servers for different purposes, such as automatically polling of field nodes
and performing the access control, and the HMIs. In this topology, the
communication between the control network and the field network passes
through a single node, the connectivity server. This topology is depicted
in Figure 2.2.

3. In the third and last topology, several field networks are controlled by a
single control network. This topology it is depicted in Figure 2.3.

One of the measured SCADA networks, is organized in the two-layer topol-
ogy. In this network, we only use a single probe connected to a router in the
network, allowing us to capture all traffic. We refer to this dataset resulting
from this measurement as SCADA1. This network uses Modbus as its SCADA
protocol.

The dataset we refer to as SCADA2 uses a three-layer topology. In order to
be able to capture all traffic in both (sub)networks, we use two probes to perform
simultaneous measurements, probe 1 collecting data from the control network

2.2. Datasets 21

Corporate

Network

Control

Network

Field

Network

Connectivity

Server

PLC

Field Device

HMI

Router/

Firewall

Switch

Probe 2

Probe 1

SCADA

Server

Figure 2.2: A three-layer SCADA topology

Coorporate

Control Field Networks

P

Probe

Figure 2.3: A three-layer SCADA topology with multiple field networks

and probe 2 from the field network (see Figure 2.1). Therefore, we produce two
datasets for this network, SCADA2-control and SCADA2-field. This network
uses MMS as its SCADA protocol.

The SCADA3 datasets is also organized in a three-layer topology and uses
MMS as its SCADA protocol. However, differently from SCADA2, only one
probe was used (probe 2 in Figure 2.3), covering only the traffic from the field
network.

The last dataset, SCADA4, is organized in the three-layer topology with mul-

22 2. Applicability of Traditional Traffic Models

Name # hosts Duration pkts/s KB/s Protocol Topo.
SCADA1 45 13 days 504.1 82.5 Modbus 2-L
SCADA2-control 14 10 days 28.7 5.1 MMS 3-L
SCADA2-field 31 10 days 75.7 28.2 MMS 3-L
SCADA3 11 1.5 days 137.8 24.0 MMS 3-L
SCADA4 215 86 days 245.6 547.8 IEC-104 M-L
IT 100 7.5 days 81.9 65.3 NA NA

Table 2.1: Datasets overview

tiple field networks, and uses the IEC-104 protocol. The probe was connected
to a switching element within the control network, allowing us to capture all
traffic internal to the control network, including the traffic exchanged between
the control network and five field networks.

Due to a non-disclosure agreement, we do not provide a map between the
datasets and the locations where they were captured.

In order to provide a comparison with a traditional IT environment, we
have selected a publicly available traffic trace from the network of an educa-
tional organization: Location 6 from the SimpleWeb Trace repository [12]. The
organization is relatively small, consisting of around 36 employees and 100 stu-
dents. Since the network at this location is comparable to the above SCADA
networks regarding the number of hosts and the average bandwidth use, it is
an adequate candidate for the analysis described in this chapter. We show in
Section 2.4 that the traffic in this network exhibits characteristics that are in
line with the proposed invariants for traditional IT networks. We refer to this
dataset as IT.

An overview of all six datasets is given in Table 2.1. For each dataset,
we present the number of hosts (# hosts), the approximate duration of the
measurement in days (Duration), the average number of packets per sec-
ond (pkts/s) and kilobytes per second (KB/s), the SCADA protocol used
(Protocol) and which of the described network topologies is used (Topo.):
two-layer (2-L), three-layer (3-L) or multi-layer (M-L). The last two items are
not applicable for the IT dataset.

2.3 Invariants

In this chapter, our goal is to investigate differences between SCADA network
traffic and traditional IT networks. Given the virtually infinite number of char-
acteristics that could be used to perform this comparison, the first step is to

2.3. Invariants 23

define a set of relevant characteristics.

In [58], Floyd and Paxson discuss difficulty in simulating and modeling In-
ternet traffic. The problems faced when performing these tasks include constant
changes in topologies, the large number of deployed protocols (exacerbated by
multiple implementations of a single protocol) and the lack of realistic traffic
generation models. In order to cope with these difficulties, one of the proposed
approaches is “the search for invariants”. In this context, invariants refer to
characteristics that are empirically shown to hold for a wide range of network
environments. Once these invariants are identified, they can be used to develop
more realistic simulation models for the Internet.

The starting point of our analysis is the list of seven invariants proposed
by Floyd and Paxson [58]. However, not all invariants are suitable for the
datasets considered in this thesis. In Sections 2.3.1 through 2.3.3, we provide
a description of the four invariants we test in our analysis, and explain the
approach we use to test them. In Section 2.3.4, we discuss the remaining three
invariants and explain the reasons why we do not consider them in our analysis.

2.3.1 Diurnal patterns of activity

Diurnal patterns of activity arise from the fact that network activity is strongly
correlated with human activity. It has been widely observed that network traf-
fic starts increasing around 8–9 AM local time, peaking around 11 AM. After a
lunchtime drop, it starts increasing again around 1 PM, peaking around 3–4 PM
and finally decreasing as business day ends at 5 PM. In addition, some measure-
ments present a peak of activity during the evening and/or night, commonly
attributed to home usage. Finally, traffic during the weekends and holidays
should present a considerable decrease in comparison to normal weekdays.

The authors also acknowledge that these diurnal patterns may vary depend-
ing on the network protocol under study, explicitly mentioning protocols used
in applications for which activity is not human-initiated. Such protocols are
common in SCADA environments. So, in order to verify whether diurnal pat-
terns of activity are also present in SCADA traffic, we study the time series
comprising one week of traffic for three different metrics: the number of active
connections, and the bandwidth measured in packets/sec and bytes/sec. Our
results are discussed in Section 2.4.1.

24 2. Applicability of Traditional Traffic Models

2.3.2 Self-similarity

Informally, self-similarity refers to the quality that the whole resembles its parts.
Mathematically, a self-similar time series is defined as follows [63, 117]. Let
X = X(i), i ≥ 1 be a stationary sequence and

Xm(k) =
1

m

km
∑

i=(k−1)m+1

x(i), k = 1, 2, 3, · · · ,

be a corresponding aggregated sequence where m is the aggregation level ob-
tained by aggregating non-overlapping segments of size m. If X is self-similar:

X
d
= m1−HX(m), for all m ∈ N,

where the equality
d
= means equality in the sense of finite dimensional distri-

butions and H is the Hurst parameter. We stress that self-similarity is only
defined for time series which are at least wide-sense stationary [98, 117], which
implies, among other properties, a constant mean over time.

In a second-order self-similar stationary sequence, m1−HX(m) has the same
variance and auto-correlation as X for all natural aggregation levels m.

Finally, the network traffic invariant proposed in [58] refers to asymptotically
second-order self-similarity. This means that m1−HX(m) has the same variance
and auto-correlation as X, as m → ∞. An asymptotically second-order self-
similar process can be also called a Long Range Dependent (LRD) process, and
these terms are often used interchangeably in the literature.

In practice this means that when observing network traffic time series, so-
called bursty periods, i.e., extended periods above the mean, are present at
different timescales, ranging from milliseconds to a few hours. This property
violates the assumptions of traditional Markovian modeling for network traffic
that predicts that long-term correlations are weak. Since the initial findings
in the early 1990’s [98, 119], self-similarity of network traffic has remained an
active field of research (see, for instance, [101]).

In Section 2.4.2, we employ the same three popular visual methods to test
for self-similarity used in [44, 98]: the R/S analysis, variance-time plots and
periodograms. The visual representation of their results allows estimating the
degree of self-similarity in the data.

All three methods start from a time series that represents the number of
packets (or bytes) crossing a certain network segment sampled at equally spaced
time intervals. The time series takes the form X = X(t), t = 1, · · · , N , where

2.3. Invariants 25

X(t) is the number of packets (or bytes) at time t and N denotes the size of
the time series. In the following we discuss the three tests in more detail. For
a more comprehensive discussion of these methods, see [18].

Rescaled adjusted range (R/S) analysis

Consider a subset of the time series X with starting point ti and size n. Let
X(ti, n) be the mean:

X(ti, n) =
1

n

ti+(n−1)
∑

i=ti

Xi,

and S(ti, n) the standard deviation:

S(ti, n) =

√

√

√

√

1

n

ti+(n−1)
∑

i=ti

(

Xi −X(ti, n)
)2
,

of a subset of X calculated over the interval [ti, ti + (n− 1)].

We now define the partial sum W (ti, n, u) as:

W (ti, n, u) =

ti+u
∑

j=ti

(

Xj −X(ti, n)
)

.

Finally, the rescaled adjusted range (R/S) statistic [100] is then defined as:

R/S(ti, n) = 1/S(ti, n)

[

max
0≤u<n

(

W (ti, n, u)
)

− min
0≤u<n

(

W (ti, n, u)
)

]

. (2.1)

The construction of the R/S plot (also known as the R/S pox diagram) for
a set of observations X with size N is outlined in Algorithm 1. First, one
should select logarithmically spaced values of n. For each value of n, X is
divided into K non-overlapping subsets of size n = N/K, with starting points
ti = [0, n+ 1, 2n+ 1, · · ·]. The R/S statistic is then calculated for each (ti, n).
Finally, the R/S plot is obtained by plotting log(R/S(ti, n)) versus log(n). The
Hurst parameter can be estimated as the slope of a line fitted to the resulting
curve using the least-square method.

26 2. Applicability of Traditional Traffic Models

Input : A set of observations X = X(t), t = 0, · · · , N
Output: R/S plot for X
select logarithmically spaced values of n;
foreach n do

slice X into K non-overlapping subsets of size n;
calculate the slice starting points ti;
foreach ti do

plot log(R/S(ti, n) versus log(n);
end

end

Algorithm 1: Generating the R/S plot

Variance-time plots

A self-similar time series does not become “smoother” at larger time scales,
i.e., the variance decreases only very slowly for increasing aggregation levels.
This characteristic can be visualized with the variance-time plot [98], defined as
follows.

For a given process X = X(t), t = 1, · · · , N , let X(m) be the aggregated process,
defined as

X(m)(t) =
1

m

t+(m−1)
∑

t=1

X(t).

The first step to construct the variance-time plot is to calculate the aggre-
gated process X(m)(t) for different aggregation levels (i.e., different values of
m). Then the plot is obtained by plotting the variance of each aggregated pro-
cess, S2(X(m)), versus the aggregation level m in a log-log scale. For a given
aggregated process, the variance is calculated as

S2(X(m)) =
1

N/m

N/m
∑

i=1

(

X
(m)
i −X(m)

)2

where the mean X(m) is defined as

X(m) =
1

N/m

N/m
∑

i=1

X
(m)
i .

2.3. Invariants 27

To obtain the Hurst parameter, a line is fitted to the resulting curve, utilizing
the least-squares method and ignoring small values of m. Estimates for the line
slope β between −1 and 0 suggest self-similarity. The Hurst parameter is then
estimated as H = 1 + β/2.

Periodograms

The Discrete Fourier Transform (DFT) is a sequence of complex numbers
Xk with k = 0, · · · , N − 1 such that:

Xk =

N−1
∑

n=0

xne
−i2πkn/N .

The DFT correspond to a linear combination of complex sinusoids, where each
coefficient represents the amplitude and phase of these sinusoids. Although a
näıve computation of the DFT using the definition above takes O(N2) oper-
ations, Fast Fourier Transform (FFT) algorithms are more efficient and can
calculate the same DFT in O(N logN) operations [43].

A periodogram is then defined as

P(Xk) = ‖Xk‖
2, with k = 0, 1, 2, · · · , ⌈(N − 1)/2⌉,

where‖Xk‖ denotes the “length” of the complex number Xk. Each value of
P(Xk) represents an estimate for the power at frequency k/N or at period
N/k. Note that, following the Nyquist theorem, the periodogram only contains
information about periods that are at least twice the sampling period.

The periodogram method to estimate the Hurst parameter, consists of plot-
ting P(X) against the frequency in a logarithmic scale, and then fitting a least-
squares line to the low-frequency portion of the periodogram, typically the lowest
10%. The Hurst parameter is then estimated as H = (1 − β)/2, with β being
the slope of the fitted line.

2.3.3 Log-normal connection sizes and heavy-tail distribu-
tions

In this section we present two distinct invariants. The first is that connection
sizes have a log-normal distribution, i.e., the logarithm of the connection sizes
obey a normal distributions. The second relates to the large number of network

28 2. Applicability of Traditional Traffic Models

related activities and objects that follow a heavy tail distribution, including sizes
of Unix files, compressed video frames; and bursts of Ethernet and FTP activity.

Since the original list of invariants was published, a debate started over which
of these models better describe connection size distributions. While the classical
works such as [119, 44] make the case for heavy-tail distributions, Downey [50]
argues that log-normal distributions provide better (or at least as good) fit to
the empirical observations.

Recently, Gong et al. [63] argued that there is never sufficient data to support
any analytical form summarizing the tail behavior; therefore the research efforts
should focus instead on studying the complex nature of traffic generation and
its implications.

In this thesis, we do not attempt to fit our measurements to theoretical dis-
tributions. We simply show, through widely used Complementary Cumulative
Distribution Functions (CCDFs) [50], that measurements from the IT dataset
generally match the results reported in the literature and point out the differ-
ences to the connection size distributions in SCADA networks. More precisely,
we use CCDFs to show that the connection size distribution is always positively
skewed, i.e, it has a body containing the majority of the values in the distribution
and a tail with extreme values in the right.

The CCDF of a random variable X can be defined as F̄ (X) = P (X ≥ x). A
CCDF plotted in a log-log scale for a Pareto-distributed random variable should
approximate a straight line with negative slope, while the slope of the CCDF
of a log-normal random variable increases along the x-axis (assuming a tail on
the right side).

In this chapter, we define a connection as a set of packets aggregated ac-
cording the traditional 5-tuple key consisting of protocol number, source and
destination IP addresses and port numbers. We consider a connection to end by
following the TCP state machine (i.e., after packets with RST or FIN flags have
been received) or after 300 s of inactivity. We calculate the size of connections
considering three metrics: duration (in seconds), number of packets and number
of bytes.

2.3.4 Invariants not addressed in this work

In addition to the above four invariants, [58] also defines three invariants that
are not considered in this chapter. In the following we described them and argue
why they are not applicable to our context.

2.4. Analysis Results 29

Poisson session arrivals

A “session” refers to the period of time a human uses the network for a specific
task. Examples of such activities are users starting a FTP transfer, remote
logins or web surfing. Strong evidence that the arrival process of such activities
can be modeled as a Poisson process is provided in [119] for FTP and Telnet
sessions; and in [56, 114] for HTTP traffic. Note that a Poisson process does not
provide a good fit for the arrival of individual connections within a session [119].

While the start and end of FTP and Telnet sessions can be easily inferred
from packet traces, this is not the case for all protocols. Since the concept session
is protocol dependent, it is hard to develop a general method to group network
packets into sessions. Therefore, the approaches for session identification gener-
ally rely on some kind of approximation. For instance, [56] approximates HTTP
sessions from modem calls, while [114] uses a fixed timeout for HTTP activity.
As acknowledged in [114], both methods might provide imprecise HTTP session
information.

Moreover, while the concept of a session closely relates to user activity, we
expect most of the traffic from the SCADA protocols observed in our datasets
to be machine-generated. For these reasons, we do not attempt to test this
invariant in this work.

Telnet packet generation

This invariant states that the interval between consecutive packets triggered by
keystrokes in a Telnet session, obey a Pareto distribution. Since this invariant
mostly concerns human behavior and a single specific protocol, we have not
considered it in this work.

Characteristics of the global topology

The last invariant relates to behavior that appears due to characteristics of the
Earth. For example, the delay in inter-continental connections is bounded by
the propagation delay. Obviously, this invariant is not useful for comparing
SCADA and traditional IT networks.

2.4 Analysis Results

In this section we discuss the results of our analysis regarding the four selected
invariants described in the previous section. In Section 2.4.1, we show the

30 2. Applicability of Traditional Traffic Models

time series used to verify the presence of diurnal patterns in our datasets. In
the sequence, in Section 2.4.2, we present the results for the three visual self-
similarity tests: the R/S analysis, the variance-time plots and the periodograms.
Finally, in Section 2.4.3, we show the CCDFs used to discuss distributional
aspects of connection sizes.

2.4.1 Diurnal patterns of activity

Diurnal patterns in network activity are widely reported in the literature [58].
In contrast, most of the traffic of a SCADA environment is expected to be
machine-generated, for instance by the polling mechanism used to retrieve data
from the field. As a consequence, we expect SCADA traffic to have a very
regular throughput. To verify this, we plot three different time series: packets/s,
bytes/s and number of active connections, calculated over 30-minute bins for our
six datasets. Figure 2.4 show the results for all datasets, with the exception of
SCADA3, as it is not long enough to reliably identify daily patterns. To ease
the comparison, we plot only one week of data for each dataset, aligning the
time series based on weekdays.

As expected, the IT dataset, shown in red, displays diurnal patterns of ac-
tivity, with lower throughput during the nights in comparison to days (note that
the y-axis is plotted using a logarithmic scale). We also observe less traffic dur-
ing the weekend. The pattern is particularly clear when observing the number
of active connections (Figure 2.4(c)). Another interesting pattern are the recur-
ring peaks seen daily in the early morning (around 5:25 AM) for the packet/s
(Figure 2.4(a)) and byte/s (Figure 2.4(b)) time series. After closer inspection,
we verify that these peaks are caused by a large reoccurring connection between
the same two hosts. We assume it to be related to some automated activity,
such as backup, but we did not attempt to verify which.

The figure also shows that SCADA traffic does not present day and night
patterns. Instead, for the SCADA datasets, the time series remain stable over
large periods of time, to which we refer as baselines. Note, however, that the
throughput is not always constant. Notably, datasets SCADA1 and SCADA2-
field present a considerable drop in the packet rate at around Friday noon and
Sunday noon respectively.

A closer inspection of the data reveals two major causes for the deviations
from the baseline: the start (or the end) of connections with large throughput,
and the increase (or decrease) in the number of variables polled by certain
connections. We speculate that these deviations are mostly caused by certain
changes in the physical process that the SCADA systems control, e.g., tanks

2.4. Analysis Results 31

✥�✥✁

✥�✁

✁

✁✥

✁✥✥

✁✥✥✥

❲✂✄ ❚☎✆ ❋✝✞ ❙✟✠ ❙✆✡ ▼☛✡ ❚✆✂ ❲✂✄

P
☞
✌
✍
✎
✏✑
✒✑

■❚

❙✓✔✕✔✁

❙✓✔✕✔✖✗✘☛✡✠✝☛✙

❙✓✔✕✔✖✗✚✞✂✙✄

❙✓✔✕✔✛

(a) Packets per second

✥

✥�

✥��

✥���

✥����

✥�����

✥✁✂�✄

❲✁☎ ❚✆✝ ❋✞✟ ❙✠✡ ❙✝☛ ▼☞☛ ❚✝✁ ❲✁☎

❇
✌
✍✎
✏
✑✏

■❚

❙✒✓✔✓✥

❙✒✓✔✓✕✖✗☞☛✡✞☞✘

❙✒✓✔✓✕✖✙✟✁✘☎

❙✒✓✔✓✚

(b) Bytes per second

✥

✥�

✥��

✥���

✥����

✥�����

✥✁✂�✄

❲✁☎ ❚✆✝ ❋✞✟ ❙✠✡ ❙✝☛ ▼☞☛ ❚✝✁ ❲✁☎

❆
✌
✍✎
✏
✑
✒
✓
✔
✔
✑
✌
✍✎
✓
✔
✕

■❚

❙✖✗✘✗✥

❙✖✗✘✗✙✚✛☞☛✡✞☞✜

❙✖✗✘✗✙✚✢✟✁✜☎

❙✖✗✘✗✣

(c) Active connections

Figure 2.4: Looking for diurnal traffic patterns

becoming full or an increase in the water demand. Another possible cause is
a manual access to the PLCs, for either retrieving data or uploading a new
configuration. Further research is necessary to establish if these changes can be
predicted from network traffic information.

In addition, the SCADA4 dataset has a slight increase in the amount of
traffic during the business hours. This behavior is best visualized in the pkts/s

32 2. Applicability of Traditional Traffic Models

time series shows on Thursday, Friday and Monday (Figure 2.4(a)). We argue
however, that the baseline behavior dominates the time series. Similar to the
IT dataset, SCADA4 also presents a visible pattern recurring daily, but around
midnight instead of around 5 AM. Again, we speculate this behavior is due to
some automated activity such as backup.

2.4.2 Self-similarity

One of the requirements for a time series to be self-similar is that it must
be wide-sense stationary [98, 117], which implies, among other properties, a
constant mean over time. A time series that presents seasonal trends or abrupt
changes in the mean, therefore, is not self-similar. For this reason, Internet
network traffic is not truly self-similar [63]. When observing sufficiently large
samples of network traffic the already discussed daily patterns of activity become
the dominating behavior. Following this reasoning, our traditional IT dataset
(IT) is not truly self-similar.

In Section 2.4.1, we showed that the time series for the SCADA datasets
have deviations from the baseline behavior, which we speculate to be caused by
changes in physical processes or maintenance operations. Due to these devia-
tions, these time series are also not stationary and, therefore, at a scale of days,
SCADA network traffic also does not present self-similarity.

However, network traffic self-similarity is only valid for measurements with
smaller durations, up to a few hours. In this section, we therefore verify whether
our datasets present self-similarity at this time scale, by extracting subsets with
the duration of approximately 1 hour from each of our datasets, and applying
the tests described in Section 2.3.2. For each subset, a time series for the number
of packets and bytes per second is calculated, using a 100-millisecond bin size.

Care has to be taken that the time series are stationary, as non-stationary
time series are, by definition, not self-similar. When considering the IT dataset,
we select a subset during a “busy” period (i.e., a period with higher throughput).
The motivation for this choice is that periods with low throughput are less likely
to present self-similarity, as observed by Crovella and Bestavros [44] when
studying the self-similarity of HTTP traffic. This approach is further supported
by the fact that “busy” traffic periods present a higher degree of self-similarity,
as estimated by the Hurst parameter, when compared to less busy periods [98].

This approach, however, is not applicable to our SCADA datasets, as the
baseline changes discussed above occur at seemingly arbitrary moments. We
then manually inspect the time series to identify stationary subsets, i.e., subsets
for which both packets and bytes time series do not present baseline changes.

2.4. Analysis Results 33

Figure 2.5 depicts the R/S pox diagram, the variance time plots and the
periodogram test for IT in the first column (Figures 2.5(a), 2.5(c) and 2.5(e)
respectively) and SCADA2-control in the second column (Figures 2.5(b), 2.5(d)
and 2.5(f) respectively). The results for the other SCADA datasets, with the
exception of SCADA4, are similar, and therefore omitted here. In addition, the
results for the bytes/s are similar to the ones from pkts/s and, therefore, are
also omitted here. The results omitted here are shown in Appendix B.1. The
SCADA4 presents a peculiar behavior, which is discussed separately.

The R/S pox diagram of a self-similar random variable should have an
asymptotic slope between 0.5 and 1. In the top row of Figure 2.5, these slopes
are represented by the black dotted lines. The slope is typically estimated by
the slope of a line fitted using the least-square method, in the figure represented
by the red dotted line. It should be clear from Figures 2.5(a) and 2.5(b) that
IT presents self-similar behavior, while SCADA2-control does not.

A comparable result is obtained with the variance-time plot. Remember
that, in a self-similar time series, the slope of the resulting curve should be
greater than −1. To aid visualization, we show a black dotted line in the
middle row of Figure 2.5 with a slope of −1. The results show that the variance
of the SCADA time series decays much faster than expected for a self-similar
process. In contrast, the IT dataset result is consistent with the traditional
network measurements results reported in the literature.

The same conclusion can be drawn from the periodogram. When applying
this method, we obtain an estimative of H = 0.79 for the IT dataset and of
H = 0.44 for SCADA2-control. Remember that the Hurst parameter of a self-
similar process lies in the interval H ∈ [0.5, 1).

We now discuss the results of our analysis for the SCADA4 dataset. Fig-
ure 2.6(a) shows the variance time plot for the packet time series of a subset of
this dataset. As the variance decays with a slope slightly higher than −1, the
plot suggests that the considered subset presents self-similarity. However, upon
close inspection of this subset, we observe that the reason for the slow decay of
the variance with increasing aggregation levels is not self-similarity.

In Figures 2.6(b), 2.6(c) and 2.6(d), we show the considered subset at dif-
ferent aggregation levels m = 1, m = 10 and m = 100 respectively. These
aggregation levels are equivalent to sampling the subset using bin sizes of 0.1s,
1s and 10s respectively. Upon close inspection of this subset at these different
aggregation levels, it is clear that the variance is dominated by the large peaks
of periodic activity, recurring every 10 minutes. The presence of these peaks at
every aggregation level is the reason why the variance decays so slowly, although
the time series is clearly not self-similar.

34 2. Applicability of Traditional Traffic Models

✥

✥�✁

✂

✂�✁

✄

✄�✁

☎

☎�✁

✆

✥ ✥�✁ ✂ ✂�✁ ✄ ✄�✁ ☎ ☎�✁ ✆

❧✝
✞
✶
✟
✭✠
✭✡
☛☞
✌
✭✡
☛☛

✍✎✏✑✒✓✔✕

(a) R/S diagram (IT trace)

✥

✥�✁

✂

✂�✁

✄

✄�✁

☎

☎�✁

✆

✆�✁

✥ ✥�✁ ✂ ✂�✁ ✄ ✄�✁ ☎ ☎�✁ ✆

❧✝
✞
✶
✟
✭✠
✭✡
☛☞
✌
✭✡
☛☛

✍✎✏✑✒✓✔✕

(b) R/S diagram (SCADA2-control trace)

✲�✁✂
✲�

✲✄✁✂
✲✄

✲☎✁✂
✲☎

✲✆✁✂
✲✆

✲✝✁✂
✝

✝ ✝✁✂ ✆ ✆✁✂ ☎ ☎✁✂ ✄ ✄✁✂ � �✁✂

❧✞
✟
✶
✠
✭✡
☛
☞✌

✍✎✏✑✒✓✔✕

(c) Variance-time (IT trace)

✲�
✲✁
✲✂
✲✄
✲☎
✲✆
✲✝
✲✞
✥

✥ ✥✟✄ ✞ ✞✟✄ ✝ ✝✟✄ ✆ ✆✟✄ ☎ ☎✟✄

❧✠
✡
✶
☛
✭☞
✌
✍✎

✏✑✒✓✔✕✖✗

(d) Variance-time (SCADA2-control trace)

✲�

✲✁

✥

✁

�

✂

✄

☎

✲✂✆☎ ✲✂ ✲�✆☎ ✲� ✲✁✆☎ ✲✁ ✲✥✆☎ ✥

❧✝
✞
✶
✟
✭✠
✝
✡
☛
☞✌

✍✎✏✑✒✓✔✕✖✗✘

(e) Periodogram (IT trace)

✲�
✲✁
✲✂
✲✄
✲☎
✲✆
✥
✆
☎
✄
✂

✲✄✝✁ ✲✄ ✲☎✝✁ ✲☎ ✲✆✝✁ ✲✆ ✲✥✝✁ ✥

❧✞
✟
✶
✠
✭✡
✞
☛
☞
✌✍

✎✏✑✒✓✔✕✖✗✘✙

(f) Periodogram (SCADA2-control trace)

Figure 2.5: Self-similarity tests on the IT trace and the SCADA2-control trace

2.4. Analysis Results 35

✲�

✲✁

✲✂

✲✄

✲☎

✲✆

✥

✥ ✥✝✁ ✆ ✆✝✁ ☎ ☎✝✁ ✄ ✄✝✁ ✂ ✂✝✁

❧✞
✟
✠
✡
☛☞
✌
✍✎

✏✑✒✆✥✓✔✕

(a) Variance-time

✥

�✥✥

✁✥✥

✂✥✥

✄✥✥

☎✥✥

✆✥✥

✥ ☎✥✥ �✥✥✥ �☎✥✥ ✁✥✥✥ ✁☎✥✥ ✂✥✥✥ ✂☎✥✥ ✄✥✥✥

P
✝
✞
✟
✠
✡☛
☞
✠
✌
✍
✎
✏✡
✑
✒
✡✏
✓
✠

❚✔✕✖

(b) Time series sampled at 0.1s

✥

�✥

✁✥✥

✁�✥

✂✥✥

✂�✥

✄✥✥

✄�✥

☎✥✥

☎�✥

✥ �✥✥ ✁✥✥✥ ✁�✥✥ ✂✥✥✥ ✂�✥✥ ✄✥✥✥ ✄�✥✥ ☎✥✥✥

P
✆
✝
✞
✟
✠✡
☛
✟
☞
✌
✍
✎✠
✏
✑
✠✎
✒
✟

❚✓✔✕

(c) Time series sampled at 1s

✥

�✥

✁✥

✂✥

✄✥

☎✥

✆✥

✝✥

✞✥

✟✥

✥ ☎✥✥ �✥✥✥ �☎✥✥ ✁✥✥✥ ✁☎✥✥ ✂✥✥✥ ✂☎✥✥ ✄✥✥✥

P
✠
✡
☛
☞
✌✍
✎
☞
✏
✑
✒
✓✌
✔
✕
✌✓
✖
☞

❚✗✘✙

(d) Time series sampled at 10s

Figure 2.6: Looking for self-similarity in the SCADA4 dataset

Table 2.2 summarizes the results of our self-similarity analysis, reporting the
estimates for the Hurst parameter from the R/S analysis (R/S), variance-time
plots (vartime) and periodograms (period). With the exception of SCADA4, all
estimates for the SCADA datasets indicate a non-self-similar behavior, however,
the estimates are not consistent between all tests. Although the SCADA4 esti-
mates for the Hurst parameter indicate self-similarity, we discard this hypothesis
for the reasons discussed above.

In contrast, the IT dataset shows a more consistent estimate of the Hurst
parameter, which is in agreement with a self-similar behavior. Note also that,
while the R/S analysis and periodograms yield a single estimate, the variance-
time plots produce a small range of estimates. This happens because for both
small and large aggregation levels m there is a considerable amount of variance
that should not be taken into account when performing the least-square fit. In
our analysis we remove from 0% up to 15% of either end of the variance-time

36 2. Applicability of Traditional Traffic Models

dataset
bytes/s pkts/s

R/S var-time period R/S var-time period
IT 0.73 0.72 0.79 0.75 [0.71-0.72] 0.79
SCADA1 0.17 [0.09,0.11] 0.13 0.17 [0.32,0.42] 0.22
SCADA2-control 0.38 [0.38,0.44] 0.43 0.39 [0.36,0.37] 0.44
SCADA2-field 0.02 [0.27,0.31] 0.29 0.44 [0.35,0.42] 0.04
SCADA3 0.15 [0.36,0.54] 0.24 0.20 [0.17,0.21] 0.26
SCADA4 0.64 [0.48,0.55] 0.74 0.62 [0.38,0.51] 0.69

Table 2.2: Hurst parameter estimates

plot to obtain the Hurst estimates.

2.4.3 Distributional aspects of connection sizes

In this section we study aspect of the connection size distribution of our datasets.
In Figure 2.7 we plot the CCDF for the size of the connections in number of
packets and bytes, and in seconds. As explained in Section 2.3.3, there is a
debate in the research community around which distribution best fits the tail
behavior of connections sizes: Pareto (a heavy-tail distribution) or log-normal.

The distribution that best fits the connection sizes for the IT dataset de-
pends on the used metric. In case of the number of packets and bytes per con-
nection, plotted in Figures 2.7(a) and 2.7(b), respectively, the CCDF presents
an almost constant slope (in a log-log scale), indicating that a Pareto model
might provide a good fit. In case of connection duration in seconds, plotted in
Figure 2.7(c), the behavior is closer to that of a log-normal distribution, with
an increasing slope when approaching extreme values in the tail.

For the SCADA datasets, neither Pareto nor log-normal distributions gener-
ally provide a good fit. First, lets consider again the connection size in packets
and bytes plotted in Figures 2.7(a) and 2.7(b). The tail for dataset SCADA1
could be modeled as Pareto, if one considers the tail to consist of values above
102 and 104 for size in packets and bytes, respectively. In the case of SCADA2-
control, the CCDF presents large variations and cannot be approximated by
either model. The remaining datasets present a higher concentration of values
in the head of the distribution, e.g., when considering the size in number of
packets, the probability rapidly falls below 10−2. The far CCDF tail of the
SCADA4 dataset, above 104 and 106, has a constant slope, thus also agreeing
with a Pareto distribution.

2.4. Analysis Results 37

✶�
✲✁

✶�
✲✂

✶�
✲✄

✶�
✲☎

✶�
✲✆

✶�
✲✝

✶�
✲✞

✶�
✲✟

✶�
✲✠

✶�
✵

✶�
✵

✶�
✠

✶�
✟

✶�
✞

✶�
✝

✶�
✆

✶�
☎

✶�
✄

✶�
✂

✶�
✁

P
✡☛
☞
✌
✍

❈✎✏✏✑✒✓✔✎✏ ✕✔✖✑ ✔✏ ✗✘✙✒✚✑✓✕

■✛

❙❈✜✢✜✶

❙❈✜✢✜✣✤✒✎✏✓✥✎✦

❙❈✜✢✜✣✤✧✔✑✦★

❙❈✜✢✜✩

❙❈✜✢✜✪

(a) Packets

✶�
✲✁

✶�
✲✂

✶�
✲✄

✶�
✲☎

✶�
✲✆

✶�
✲✝

✶�
✲✞

✶�
✲✟

✶�
✲✠

✶�
✵

✶�
✠

✶�
✟

✶�
✞

✶�
✝

✶�
✆

✶�
☎

✶�
✄

✶�
✂

✶�
✁

✶�
✠✵

✶�
✠✠

P
✡☛
☞
✌
✍

❈✎✏✏✑✒✓✔✎✏ ✕✔✖✑ ✔✏ ✗✘✙✓✑✕

■✚

❙❈✛✜✛✶

❙❈✛✜✛✢✣✒✎✏✓✤✎✥

❙❈✛✜✛✢✣✦✔✑✥✧

❙❈✛✜✛★

❙❈✛✜✛✩

(b) Bytes

✶�
✲✁

✶�
✲✂

✶�
✲✄

✶�
✲☎

✶�
✲✆

✶�
✲✝

✶�
✲✞

✶�
✲✟

✶�
✲✠

✶�
✵

✶�
✲☎

✶�
✲✝

✶�
✲✟

✶�
✵

✶�
✟

✶�
✝

✶�
☎

✶�
✂

P
✡☛
☞
✌
✍

❈✎✏✏✑✒✓✔✎✏ ✕✔✖✑ ✔✏ ✕✑✒✎✏✗✕

■✘

❙❈✙✚✙✶

❙❈✙✚✙✛✜✒✎✏✓✢✎✣

❙❈✙✚✙✛✜✤✔✑✣✗

❙❈✙✚✙✥

❙❈✙✚✙✦

(c) Duration

Figure 2.7: Connection size complementary cumulative distribution functions

When considering duration in seconds (Figure 2.7(c)), the dataset that closer
resembles the IT dataset is SCADA1. The increasing slope of the CCDF indi-

38 2. Applicability of Traditional Traffic Models

cates that log-normal might provide a good fit. For the remaining datasets, the
slope is relatively small up to 10 s, it sharply increases in the interval [10, 103]
after which it sharply decreases. In addition, the CCDF for these datasets
present different slopes at different duration ranges, with some large, nearly
vertical drops, indicating that some values are fairly common.

Irrespective of which is the best model to represent the connection size dis-
tribution, all datasets share a common characteristic: the connection size dis-
tribution is always positively skewed, i.e, it has a body containing the majority
of the values in the distribution and a tail with extreme values in the right. As
a consequence, the distribution of the connection sizes present a large disparity
between the mean, located in the tail, and the median, located in the head.
A final interesting observation is that all SCADA datasets contain at least one
connection that lasts almost the whole duration of the measurement.

2.5 Conclusions

The goal of this chapter was to verify whether models used to describe tradi-
tional network traffic can also be applied to SCADA traffic. To this end, we
have analyzed five SCADA traffic traces collected at four different critical in-
frastructures: two water treatment facilities, one (mixed) gas utility and one
electricity and gas utility. We compared characteristics of these networks with
those of traditional network traffic. Our analysis is based on a list of network
traffic invariants widely observed in network measurements.

We draw the following conclusions. First, SCADA networks do not present
the diurnal patterns of activity common to traditional IT networks. The main
reason for the absence of these daily patterns is that, in general, the generation of
traffic is not dependent on human activity. Instead, traffic is mostly generated
by automated processes, such as the polling used to retrieve data from field
devices.

In addition, we show that SCADA traffic does not present self-similarity.
The results from this chapter, combined with the periodicity analysis presented
in Chapter 3 suggest that simpler ON/OFF models might provide a good ap-
proximation for the pkts/s and bytes/s time series.

Finally, neither heavy-tail nor log-normal distributions seem to provide a
good fit for the connection sizes of SCADA traffic. However, as noted by Gong
et al. [63], there is a fundamental problem in attempting to fit models to tail
distributions based on finite amounts of data and it might be a better idea to
focus attention to the waist of the connection size distributions.

2.5. Conclusions 39

In summary, our results indicate that the existing traffic models cannot be
directly applied to SCADA traffic.

To our best knowledge, we provide the first study on real-world SCADA
traces in this thesis. Since existing publications on SCADA networks generally
do not rely on empirical data, we believe that our findings are a first step towards
constructing realistic SCADA traffic models to support future research in the
area. In future work, research should focus on improving the understanding
of SCADA traffic, including the characterization of the packets and connection
arrival processes.

40 2. Applicability of Traditional Traffic Models

CHAPTER 3

SCADA Traffic Characterization

3.1 Introduction

SCADA networks are implemented to coordinate and manage the actions of
industrial infrastructures, possibly comprising a high number of devices spread
over a large geographical area. HMIs provide human operators with real-time
information about the field process and might provide control capabilities. Au-
tomated processes ensure that the infrastructure operates correctly and safely,
by continuously polling field information and, possibly, sending control com-
mands. Alerts are generated in case of severe problems, so human operators
can intervene.

Much of the research in SCADA seems to be dedicated to security issues.
In [87], the authors identify general threats faced by SCADA environments and
provide a list of research challenges in the area. The lack of Intrusion Detec-
tion Systems (IDS) for SCADA is one of the challenges addressed [37, 144].
In [37], an IDS is proposed that is mainly based on the Modbus protocol spec-
ification [109], but also assumes regularity and stability in regard of topology,
communication and configuration. A different approach is used in [144], where
the communication patterns are the basis of the proposed IDS. A limitation
of these studies is that they assume certain patterns without having empirical
results to support them. We argue that measurements should be an essential
part of IDS SCADA research, as they allow the validation of the traffic models
used.

In the Chapter 2, we showed that SCADA traffic displays different patterns
than those of traditional IT networks, and models used to describe the latter
might not be directly applied to the former. The observed differences partially
arise from the way most traffic is generated in these networks. While traffic pat-
terns in traditional IT networks are strongly correlated with human activity, as

42 3. SCADA Traffic Characterization

reflected by the diurnal pattern of activities, SCADA traffic is mostly generated
by automated processes.

In this chapter, we extend our analysis of SCADA traffic by verifying two
commonly held assumptions regarding SCADA traffic. More specifically, based
on measurements done in SCADA infrastructures for water, gas and electricity
utilities we address two research questions:

RQ 3.1: Is SCADA traffic generated in a periodic fashion?

The first assumption is that traffic displays strong periodic patterns, because a
large portion of it is generated by automated processes, like the polling mech-
anism used to retrieve data from the field, [11, 145]. By means of time series
and spectral analysis, we search for evidence of periodicity.

RQ 3.2: Is the SCADA traffic connection matrix stable?

To answer this question we verify whether the assumption that changes in the
network topology are rare [30, 37], e.g., hosts are not frequently added to or
removed from the network. By studying changes in the IP-level connectivity,
we verify if SCADA networks have a stable connection matrix.

We acknowledge that a number of other tests could be performed, but we
argue that the analysis presented in this chapter provides an overview of two
important traffic characteristics. If valid, these two characteristics could be
exploited to create models for normal SCADA traffic, and subsequently be used
to detect anomalies.

Finally, SCADA operation seems very similar to management operations
found in traditional IT networks, such as the ones provided by the Simple
Network Management Protocol (SNMP) [32]. Probably the most widespread
network management protocol, SNMP is used by automated applications, such
as Cacti1 and MRTG [115], to provide network managers with real-time infor-
mation about the network. These applications ensure that the network infras-
tructure operates correctly, by continuously polling information from network
devices in the field. Alerts can also sent in case of problems, so that network
managers can intervene.

Given the usage similarities in the scenarios described above combined with
the fact that the SNMP is a widely used and well-known protocol, we propose
the following research question:

1http://www.cacti.net/

http://www.cacti.net/

3.2. Datasets 43

RQ 3.3: Is SCADA traffic similar to SNMP traffic?

This question is interesting since, real-world SCADA traffic captures are hard
to obtain, due of the critical nature of the infrastructures they control. On the
other hand, SNMP traffic traces might be more readily available for researchers
given its widespread adoption. In case they are similar, SNMP traces could be
used by researchers to emulate SCADA behavior. In this chapter, we investi-
gate this possibility by performing the same analysis used for testing SCADA
assumptions to a wide range of SNMP traffic traces.

The remainder of this chapter is organized as follows. In Section 3.2, we
describe the datasets used in this chapter and the preprocessing steps performed.
We then present our analysis of both assumptions, periodic traffic generation in
Section 3.3 (RQ 3.1) and stable connection matrix in Section 3.4 (RQ 3.2). The
tests are applied to both SCADA and SNMP traces, allowing us to compare
the traces characteristics, thus addressing RQ 3.3. Finally, in Section 3.5, we
present our conclusions.

3.2 Datasets

In this section we present our datasets. We provide some background informa-
tion about the measurement setup (Section 3.2.1) and describe the preprocessing
steps performed before our analysis (Section 3.2.2).

3.2.1 Data collection

In this study, we analyze eleven datasets: five SCADA and six SNMP network
traffic traces. All datasets were collected with tcpdump and stored using the
pcap format2.

The SCADA traces were collected at critical infrastructures: two water treat-
ment facilities, one gas utility and (mixed) one electricity and gas utility. The
datasets are numbered from SCADA1 to SCADA4, with dataset SCADA2 be-
ing split in two: SCADA2-control and SCADA2-field, containing traffic from the
control and field networks, respectively. A more detailed description of these
datasets is provided in Chapter 2.

The SNMP traces are the same as studied in the work by Schönwälder et al.
[129], and its extension [23]. As such, we adopt the same naming scheme: the
first number in the name identifies the location where the trace was collected

2http://www.tcpdump.org

http://www.tcpdump.org

44 3. SCADA Traffic Characterization

and the second number gives the trace number, e.g., the dataset l01t02 is the
second trace from location 1. The traces were collected at a number of locations,
ranging from a networking laboratory network to national research networks. A
summary of the description of the datasets is shown in Table 3.1.

trace description duration start

SCADA1 control and field network 13.6 days 2011/01/22
SCADA2-control control network 10.2 days 2010/10/18
SCADA2-field field network 10.2 days 2010/10/18
SCADA3 field network 1.5 days 2011/01/13
SCADA4 control network 86 days 2011/04/14

l01t02 national research network 3.1 days 2005/07/26
l05t01 regional network provider 15.4 days 2006/04/19
l11t01 networking laboratory network 25.6 days 2006/01/07
l15t04 national research network 7.7 days 2006/10/17
l17t01 university network 5.0 days 2007/06/20
l18t01 national research network 10.0 days 2007/06/22

Table 3.1: Overview of the datasets

3.2.2 Preprocessing

Some of the datasets contain large gaps, that is, periods without any traffic. For
these traces, we restrict our analysis to the longest continuous period without
any gaps. We believe that these gaps were caused by problems during the data
collection procedure, and, as such, do not represent the normal behavior of
the networks. Furthermore, even after removing the gaps, the traces are still
considerably long, with durations ranging from 1.5 days up to 86 days3.

The SCADA datasets contain packets generated by a number of basic ser-
vices that, although essential for the network operation, are not considered in
our analysis. Since the goal of the chapter is to characterize only the traffic
specific to the SCADA system, we removed the traffic of the following network
services, identified by their transport port numbers: 53 (DNS), 67-68 (DHCP), 123
(NTP), 137-139 (NetBIOS), 161-162 (SNMP), 546-547 (DHCP for IPv6). In addition,
all traffic at port 1010 in the dataset SCADA1 was also removed, as it contained
only single-packet rejected TCP connections. During the measurements, some
of the locations were performing tests with IPv6 traffic, which we also removed

3The duration presented in Table 3.1 is calculated after removing the gaps.

3.3. Periodicity 45

from the data. Furthermore, we restrict our analysis to the IP level and do not
attempt to decode application protocols.

Table 3.2 contains some general characteristics of the datasets after pre-
processing, including the average amount of packets and bytes per second, the
average packet size and the total number of active hosts (counted as the num-
ber of IP addresses that send at least 1 packet). Our SCADA traces generally
contain less hosts than the SNMP traces, but each host generates, on average,
more traffic.

dataset avg. pkts/s avg. bytes/s
avg. pkt size

#hosts
(bytes)

SCADA1 251.96 40798.59 162.74 30
SCADA2-control 19.30 3889.49 173.37 19
SCADA2-field 75.76 28236.90 372.30 14
SCADA3 132.54 29505.52 216.33 11
SCADA4 242.89 68059.13 265.05 262
l01t02 118.33 11788.16 99.62 176
l05t01 13.06 1167.25 89.40 56
l11t01 2.97 261.48 88.04 22
l15t04 13.43 2154.00 160.34 140
l17t01 2.47 731.63 296.43 35
l18t01 27.93 2795.61 100.08 83

Table 3.2: General dataset characteristics

3.3 Periodicity

If traffic is indeed generated in a periodic fashion, the time series representing
the number of transmitted packets should be fairly stable, assuming the bin
sizes are sufficiently large. In addition, due to the increasing interest in In-
trusion Detection Systems (IDS) for SCADA [145, 37], we consider time series
analysis to be of particular importance, as it is widely used in IDS developed
for traditional IT networks and the Internet [136]. In Section 3.3.1 we present
an analysis of the packets/s and bytes/s time series for our datasets.

Next, in Section 3.3.2 we address the periodicity directly, by means of a spec-
tral analysis. We generate and manually inspect periodograms for the packet
time series for all (preprocessed) traffic and also for each active traffic source in

46 3. SCADA Traffic Characterization

our datasets.

3.3.1 Time series

The expected periodicity for SNMP communications is 5 minutes (a typical
polling time used in SNMP-based applications [146]) and, from our interviews
with the operators, we expect SCADA polling periods to be in the order of a few
seconds. Using a time bin smaller then the periods commonly found in these
environments would result in a time series with periodic peaks. To reduce this
effect, we decide to use 15 min bins, i.e., in the time series generated in this
section, each point represents the total number of packets and bytes accumulated
over a 15 min interval.

The results for the SCADA datasets are shown in Figure 3.1, while the results
for the SNMP datasets are shown in Figure 3.2. In order to able to compare the
results, we normalize each plotted point according to it’s standard score, defined
as (x−µ)/σ, where x is the measured value, and µ and σ are respectively, mean
and standard deviation of the time series. The y-axis represents the number of
standard deviations the measured value differs from the mean.

The first observation we make is that the packets/s and bytes/s time series
are strongly correlated, which is a common characteristic of network measure-
ments (see for instance [135]). In general the time series are indeed fairly stable,
consistent with the assumption that traffic is generated in a periodic fashion.
Most datasets display long periods of nearly constant mean, to which we refer
to as baselines. Clear examples of such baselines are days 4 to 6 in SCADA2-
control and SCADA2-field (Figures 3.1(b) and 3.1(c), respectively) and days 20
to 25 in l11t01 (Figure 3.2(c)).

Note however that changes do occur. A notable feature in our results is
the change in the baseline, for example in SCADA1 between days 6 and 7 (in
Figure 3.1(a)). These baseline changes happen at seemingly arbitrary times,
with no apparent pattern. By manually inspecting the traffic, we verify that
the main cause for this phenomenon in the SCADA datasets is the start (or end)
of high throughput multiple connections. Another cause for baseline changes,
observed in SCADA2-field and SCADA3 is the momentary increase/decrease
in the amount of variables requested by the SCADA server and/or in the rate
at which variables are requested within a single connection.

In [129], it was observed that changes in the physical environment (e.g., fiber
cuts) can cause drastic changes in the regularity of the SNMP time series. We
speculate that the changes observed here are similar in nature, i.e., they are due
to changes in the infrastructure, such as water tanks becoming full and pipes

3.3. Periodicity 47

✲�✁✂

✲�

✲✄✁✂

✄

✄✁✂

�

�✁✂

✥

✄ ✥ ☎ ✆ ✝ �✄ �✥ �☎

★
✞
✟✠
✡
☛
✠
☞☛
✌
✍
✎
✏✠
✟✏
✑
✡
✒

❉✓✔✕

♣✖✗✕✘✕

❜✔✗✙✕✘✕

(a) SCADA1

✲�

✥

�

✁✥

✁�

✂✥

✂�

✥ ✂ ✄ ☎ ✆ ✁✥ ✁✂

★
✝
✞✟
✠
✡
✟
☛✡
☞
✌
✍
✎✟
✞✎
✏
✠
✑

❉✒✓✔

♣✕✖✔✗✔

❜✓✖✘✔✗✔

(b) SCADA2-control

✲�✁✂

✲�

✲✄✁✂

✲✄

✲☎✁✂

☎

☎✁✂

✄

✄✁✂

�

�✁✂

☎ � ✥ ✆ ✝ ✄☎ ✄�

★
✞
✟✠
✡
☛
✠
☞☛
✌
✍
✎
✏✠
✟✏
✑
✡
✒

❉✓✔✕

♣✖✗✕✘✕

❜✔✗✙✕✘✕

(c) SCADA2-Field

✲�

✲✁

✲✂

✥

✂

✁

�

✄

✥ ✥☎✁ ✥☎✄ ✥☎✆ ✥☎✝ ✂ ✂☎✁ ✂☎✄ ✂☎✆

★
✞
✟✠
✡
☛
✠
☞☛
✌
✍
✎
✏✠
✟✏
✑
✡
✒

❉✓✔✕

♣✖✗✕✘✕

❜✔✗✙✕✘✕

(d) SCADA3

✲�✁

✁

�✁

✥✁

✂✁

✄✁

☎✁

✆✁

✝✁

✞✁

✁ �✁ ✥✁ ✂✁ ✄✁ ☎✁ ✆✁ ✝✁ ✞✁ ✟✁

★
✠
✡☛
☞
✌
☛
✍✌
✎
✏
✑
✒☛
✡✒
✓
☞
✔

❉✕✖✗

♣✘✙✗✚✗

❜✖✙✛✗✚✗

(e) SCADA4

Figure 3.1: SCADA time series

being closed, which affect the traffic patterns.

Another common behavior is the presence of sharp peaks in the time series,
for instance, in dataset SCADA2-control at day 3 (Figure 3.1(b)) and in dataset
SCADA4 at day 15 (Figure 3.1(e)). In an earlier measurement, where both
tcpdump/pcap traces and SCADA activity logs (containing information such

48 3. SCADA Traffic Characterization

✲�

✲✁

✲✂

✥

✂

✁

�

✄

✥ ✥☎✆ ✝ ✝☎✆ ✂ ✂☎✆ ✞ ✞☎✆

★
✟
✠✡
☛
☞
✡
✌☞
✍
✎
✏
✑✡
✠✑
✒
☛
✓

❉✔✕✖

♣✗✘✖✙✖

❜✕✘✚✖✙✖

(a) l01t02

✲�✁

✲�✂

✲✄

✲☎

✲✆

✲✁

✂

✁

✂ ✁ ✆ ☎ ✄ �✂ �✁ �✆ �☎

★
✝
✞✟
✠
✡
✟
☛✡
☞
✌
✍
✎✟
✞✎
✏
✠
✑

❉✒✓✔

♣✕✖✔✗✔

❜✓✖✘✔✗✔

(b) l05t01

✲�✁

✲�✂

✲✁

✂

✁

�✂

✂ ✁ �✂ �✁ ✥✂ ✥✁ ✄✂

★
☎
✆✝
✞
✟
✝
✠✟
✡
☛
☞
✌✝
✆✌
✍
✞
✎

❉✏✑✒

♣✓✔✒✕✒

❜✑✔✖✒✕✒

(c) l11t01

✲�

✲✁

✥

✁

�

✂

✄

☎✥

☎✁

✥ ☎ ✁ ✆ � ✝ ✂ ✞ ✄

★
✟
✠✡
☛
☞
✡
✌☞
✍
✎
✏
✑✡
✠✑
✒
☛
✓

❉✔✕✖

♣✗✘✖✙✖

❜✕✘✚✖✙✖

(d) l15t04

✲�✁

✲✂

✁

✂

�✁

�✂

✁ ✁✥✂ � �✥✂ ✄ ✄✥✂ ☎ ☎✥✂ ✆ ✆✥✂ ✂

★
✝
✞✟
✠
✡
✟
☛✡
☞
✌
✍
✎✟
✞✎
✏
✠
✑

❉✒✓✔

♣✕✖✔✗✔

❜✓✖✘✔✗✔

(e) l17t01

✲�

✲✁

✥

✁

�

✂

✄

✥ ☎ ✁ ✆ � ✝ ✂ ✞ ✄ ✟ ☎✥

★
✠
✡☛
☞
✌
☛
✍✌
✎
✏
✑
✒☛
✡✒
✓
☞
✔

❉✕✖✗

♣✘✙

❜✖✙✚✗

(f) l18t01

Figure 3.2: SNMP time series

as user logins, application crashes and configuration changes) were available,
we observed that human-related activities, such as uploading a new software
configuration to the PLCs, caused a huge increase in traffic for a short moment.
We speculate that the observed peaks are similar in nature.

It is important to stress that the baseline is not a constant value. For

3.3. Periodicity 49

instance, dataset SCADA1 shows relatively high variation in the first 3 days
of measurement. Even if the traffic would be generated in a perfectly periodic
fashion, variation should be expected, as the number of periods observed in
consecutive bins in the time series is not necessarily constant. For instance,
consecutive bins will have a different number of periodic peaks if the bin size is
not a multiple of the of the traffic period. In practice, network delays also cause
variation.

In the case of SCADA4, the variance is high through the whole measure-
ment. In this case however, peaks seem to be caused by periodic activity. We
observe periodic peaks with a 10 min period (confirmed by the spectral analysis
presented in Section 3.3.2) and peaks with a longer 24 h period.

The SNMP traces present, in general, a similar behavior: time series with a
stable throughput, baseline changes and short-term peaks. The variation in the
SNMP datasets is generally within 2 standard deviations from the mean. Base-
line changes are particularly common in l11t01 (Figure 3.2(c)). Dataset l01t02
(Figure 3.2(a)) shows some regular peaks with the period of approximately 1
day. This pattern is discussed in Section 3.4.1.

Dataset l05t01 (Figure 3.2(b)), however, does not presents any clear base-
line, but is seems to be periodic in its unique way. Traffic slowly increases for
approximately four days, when it suddenly drops. The reason for the absence
of the baseline is unknown to us.

It is important to note that none of our datasets, SCADA nor SNMP, present
the diurnal patterns of activity discussed in Chapter 2, i.e., network traffic
increasing in the morning, peaks at noon and decreasing in the evening. Clearly,
human activity does not have a major impact on the analyzed datasets.

3.3.2 Spectral analysis

The results presented in the previous section support the assumption that traffic
is generated in a periodic fashion. But in order to examine it in more detail,
we carry out a spectral analysis that consists of the following steps. For each
dataset, we generate one time series per IP address. Each time series represents
the number of packets sent by that IP address. We also generate an aggregated
time series with the number of packets sent by all IP addresses. We then generate
a periodogram for each time series and manually inspect the periodograms for
high power spectrum components, which indicate periodicity.

The first step in calculating a periodogram is to obtain the DFT. Given a
time series x0, x1, · · · , xN−1 (typically called input signal), the DFT is defined
as:

50 3. SCADA Traffic Characterization

Xk =

N−1
∑

n=0

xne
−i2πkn/N , with k = 0, 1, 2, · · · , N − 1.

The DFT correspond to a linear combination of complex sinusoids, where each
coefficient represents the amplitude and phase of these sinusoids.

The DFT can be efficiently calculated by means of a FFT [43]. Before
applying the FFT, we subtract the mean value of the time series from each
entry in order to reduce the DC component (or “zero frequency”). Zero-padding
is used to adjust the length of the time series to a power of two to increase
performance.

The periodogram is defined as:

P(Xk) = ‖Xk‖
2, with k = 0, 1, 2, · · · , ⌈(N − 1)/2⌉,

where‖Xk‖ denotes the absolute value (i.e., the “length”) of the complex number
Xk. Each value of P(Xk) represents an estimate for the power at frequency k/N
or, equivalently, at period N/k. Note that, following the Nyquist theorem, the
periodogram only contains information about periods that are at least twice the
sampling period.

Finally, a figure is constructed by plotting ‖Xk‖
2 (or the “power compo-

nents”) versus the period, measured in seconds. In a periodogram, a high power
component indicates periodicity. Note, that the harmonics of the period will
also display a high power component. Harmonics are found at p/(n+1), where
p is the fundamental period and n is the harmonic index. For instance, an input
signal with 1 s period has its first harmonic at 0.5 s, second harmonic at 0.33 s,
third harmonic at 0.25 s, and so on.

An illustrative example

In Figure 3.3, we provide an example on how periodograms can be used to
detect periodicity. We start with perfectly periodic traffic: a burst of 10 packets
sent every 300 s. We sample this time series using 1 s bins. We show the effect
of three changes in this time series: delays, non-periodic traffic and multiple
signals.

Figure 3.3(a) shows the periodogram corresponding to the perfectly periodic
time series described above. The high power component at 300 s period is high-
lighted with a blue circle. As expected, peaks are also present at fundamental
period’s (300 s) harmonics, e.g., 150 s, 100 s and so on. Note also that the

3.3. Periodicity 51

(a) Perfectly periodic signal (b) Delayed signal

(c) Delayed signal and noise (d) Mulitple delayed signals and noise

Figure 3.3: Observing traffic periodicity with periodograms

power is not concentrated at a specific period. The power components adjacent
to the fundamental period and its harmonics are also high. This phenomenon is
called spectral leakage, and is can be caused several factors such as the sampling
frequency, the size of the sample and the “format” of the signal.

However, this example is not a realistic representation of network traffic,
where delays are common. We create a delayed periodic signal by either antici-
pating or postponing the burst of packets by 1 bin. That is, instead of having
a burst of 10 packets every 300s, we allow the period to vary in the range
[299, 301] s. Even such a small delay has a large impact on the periodogram, as
it can be seen on Figure 3.3(b). The most visible change is the reduced power at
the harmonics. The noise level, i.e., the power outside the fundamental period
and its harmonics, also slightly increases (although the effect is barely visible

52 3. SCADA Traffic Characterization

in the figure). The larger the delay, the less clear the periodic pattern will be
visible in the periodogram.

In Figure 3.3(c), we add a random signal, with amplitude uniformly dis-
tributed in the range [0, 5]. This simulates the presence of non-periodic traffic
in the time series. The periodic pattern is further deformed. The noise level is
greatly increased, and, in this case, the power at the first harmonic is actually
higher than at the fundamental period.

In our last example, shown in Figure 3.3(d), we show the effect of multiple
periodic sources. The time series given as input for the periodogram consist of
the random signal presented above and five delayed periodic signals. In addition,
the delayed signals are not synchronized, i.e., the instants at which the burst
occurs are different for each signal. Again, the power component at one of
the harmonics is higher that the one at the fundamental period, however, the
difference is even larger.

In summary, the presence of periodicity in a time series (or periodic traffic)
can be detected by the presence of peaks in the periodogram. We note, however,
that the largest power component does not necessarily represent the fundamen-
tal period of the input signal, as it could represent of its harmonics. To find
the fundamental frequency, one should identify the right-most peak. Noise and
spectral leakage further conceal the precise location of the fundamental period.

Real traffic data

An important parameter in a spectral analysis is the sampling frequency fs
used to create the time series, as it determines the maximum observable fre-
quency in the considered signal. According to the Nyquist-Shannon sampling
theorem, the sampling frequency must be at least twice the frequency of the
signal, so that no information is lost. Ideally then, one would use the highest
sampling frequency possible, as to avoid any aliasing artifacts. However, higher
sampling frequencies also incur more data points, and as a consequence, high
computational requirements.

Given this trade-off, we decided to perform the analysis selecting 1 h subsets
from our datasets and sample them using 10 ms bins (fs = 100 Hz). Theoret-
ically, this parameter allows us to observe evidence of periodicity ranging from
tens of milliseconds to several minutes, while keeping the required computa-
tion time and space acceptable. A limitation of using a 1 h subset to perform
our analysis is that not all IP address in our datasets are analyzed, as not all
addresses are active throughout the whole duration of the datasets.

The use of higher sampling frequencies would allow us to observe smaller

3.3. Periodicity 53

periods. However, considering that (i) the typical polling period for SNMP
applications is 300 seconds, (ii) from our interviews with the operators we expect
SCADA polling periods to be in the order of a few seconds, and (iii) our analysis
comprises more than 500 source hosts, the chosen sampling frequency appears
reasonable.

Our results are shown in Figure 3.4. To avoid repetition, we present six pe-
riodograms that are representative of the behavior we observe in our datasets.
We show the remaining periodograms for the aggregated time series in Ap-
pendix B.2. As expected, we find evidence that both SNMP and SCADA traces
exhibit periodical behavior, although at different scales.

SCADA1 (Figure 3.4(a)) and SCADA3 present a dominant period at 1s,
while SCADA2-field (Figure 3.4(b)) shows periodicity at 21s. In these datasets,
the PLCs are the largest source of traffic. They generate 71% of the traffic in
SCADA1, 91% in SCADA2-field and 92% in SCADA3. Not surprisingly, the
period observed in the aggregated time series is the same observed in PLCs’
time series.

In contrast, in SCADA2-control and SCADA4 most traffic is generated
within the control network. In the former, 54% of the traffic is exchanged
between the SCADA server and operator workstations (34%) and between the
SCADA server and a server related to authentication (20%). While in the latter
most of the traffic is exchanged between the two SCADA servers and the SCADA
servers and HMIs (70% combined). The periodogram of the aggregated traffic
reflects the periodicity exhibited by these connections. For instance, SCADA4
(Figure 3.4(c)) presents a strong component at 1s. The PLCs in this dataset
however, display periodicity at 21s and 600s, as it can be observed in Fig-
ure 3.4(d).

Most of the SNMP traces show periodicity at a larger period, 300s, consistent
with the typical polling interval of common applications, such as Cacti and
MRTG [115]. The typical SNMP behavior is exemplified with dataset l11t01,
in Figure 3.4(e), where a high power component can be observed at 300s. The
only SNMP datasets that exhibits a different behavior is l05t01. This dataset
shows a strong 20s period, as shown in Figure 3.4(f).

A summary of the periodicity analysis is presented in Table 3.3. The table
reports the main period of the aggregated traffic in seconds, the number of
IP addresses that generate traffic in periodic (#p) and non-periodic fashion
(#np). The last column (na) reports the number of not analyzed hosts. Given
that we analyze a 1 h subset of the datasets, we also analyze only a subset the
total number of hosts reported in Table 3.2. The dataset with the largest number
of not analyzed hosts is SCADA4. Note, however, that in this datasets many

54 3. SCADA Traffic Characterization

(a) SCADA1 all (b) SCADA2-field all

(c) SCADA4 all (d) SCADA4 PLC

(e) l11t01 all (f) l05t01 all

Figure 3.4: Periodograms

3.3. Periodicity 55

hosts have their IP address changed: 149 in total (of which 60 are present the
analyzed subset). These hosts are (logically) relocated to different subnetworks.
This relocation event is further discussed in Chapter 5.4.4.

dataset period (s) #p #np #na
SCADA1 1 7 0 14
SCADA2-control 1 12 1 6
SCADA2-field 21 16 0 7
SCADA3 1 12 0 0
SCADA4 1 83 0 279
l01t02 300 171 5 0
l05t01 60 54 2 0
l11t01 300 19 0 3
l15t04 300 55 21 64
l17t01 300 26 1 8
l18t01 300 60 10 13

Table 3.3: Summary of the periodicity analysis

From the results we conclude that not only the aggregated traffic displays
periodicity, but also many source addresses generate traffic in a periodic fash-
ion. Particularly, all PLCs in our SCADA datasets do. Among the analyzed ad-
dresses, there is only one non-periodic source in the SCADA traces, in SCADA2-
control. It corresponds to a server that stores user information and performs
access control. This server only needs to be accessed when an operator work-
station is in use, thus traffic patterns are dictated by human interaction, and
are not expected to be periodic. The unexpected behavior is that the operator
workstations in this dataset do generate periodic traffic, probably connected
to some automated function (e.g., collecting real-time information from the
infrastructure). The majority of the workstations present a strong 1s period
component.

When considering the SNMP datasets, only on l11t01 all IP addresses dis-
play a clearly periodic pattern. For the remaining datasets, at least one peri-
odogram does not display periodic behavior. After closer inspection, we observe
three main types of non-periodic traffic (at the time scales considered in our
analysis):

• Inactive hosts: Hosts that generate little traffic, or become inactive for

56 3. SCADA Traffic Characterization

extended periods of time. This is observed in datasets l01t01, l05t01,
l15t04 and l17t01.

• Erratic hosts: Host that generate traffic with no distinguishable pattern.
Observed in datasets l01t02 and l18t01

• Daily periods: Three hosts in l01t02 present recurring connections every
night. However, this period is excessively large to be captured by our
analysis.

3.3.3 Discussion

The results discussed in this section show that both SCADA and SNMP traf-
fic display periodicity. The stability in the throughput expected from sources
generating periodic traffic is confirmed in our time series analysis. However, it
is important to note that the throughput is not constant. The occurrence of
baseline changes, peaks and variation is common. These sources of instability
present a challenge for anomaly detection methods based on time series. For
instance, simply comparing the current packet load to historical values, as pro-
posed in [145], might generate a non-negligible number of (false) alarms. Further
research is necessary to establish the cause of sources of instability in the time
series, so they can be taken into account in the design of realistic models for
packet generation for these environments.

Stronger evidence for traffic periodicity is provided by the spectral analysis.
Strong power components are present in all datasets, implying traffic period-
icity. In particular, our analysis shows that all PLCs in our datasets present
this characteristic. Finally, SCADA and SNMP datasets present periodicity at
different time scales. While the former present dominating periods in the order
of a few seconds (typically 1 s or 21 s), the latter typically exhibit a 300s period.

The presence of periodicity suggests that SCADA traffic patterns should be
predictable. In Chapter 6, we exploit this characteristic to learn traffic patterns
generated by SCADA protocols, more specifically, Modbus and MMS, and to
detect anomalies in their behavior.

3.4 Connection Matrix

The objective of second research questions is to determine whether SCADA
traffic presents a stable connection matrix. In SCADA networks, nodes are not
expected to commonly leave or join the network as is the case in traditional IT

3.4. Connection Matrix 57

networks. For instance, while visitors connecting their laptops to the network
might be common in a traditional IT network, they are not expected to do so
in a SCADA network.

In order to answer this research question, we create an IP-level connection
matrix, which shows “who is connecting to whom”. In this context, we say
there is an active connection between host A and host B if a packet is sent from
one host to the other within the duration of a bin, regardless of the direction.
The goal of the tests presented in this section is to verify whether the set of
communicating hosts, or connections, remains stable over time.

We divide the datasets into non-overlapping bins of size n seconds, and
perform three different, albeit related, tests. First, in Section 3.4.1 we generate
time series for the number of active connections, which allows us to observe at
a glance if there are changes in the number of connections. In Section 3.4.2,
we present the second test, which quantifies the number of added and removed
connections, by comparing the connection matrix of consecutive bins. For the
last test, discussed in section 3.4.3, we monitor unique connections, i.e., we
create a time series where each connection is only counted once, in the bin at
which its first packet is exchanged.

3.4.1 Time series

For our first test, we build the time series of the total number of active IP-
level connections. As in the time series analysis in Section 3.3.1, we use bins
of 15 minutes. The time series allows us to observe at a glance whether the
number of connections stays constant over time. Figure 3.5 shows the results
for six datasets. To avoid repetition, we present the remaining time series in
Appendix B.2.

The results present some of the same characteristics from the time series for
the number of packets and bytes presented in Section 3.3.1. All SCADA datasets
present a stable number of active connections. Also, baselines changes and peaks
of activity are present. SCADA1 shows a baseline of 19 connections, with
frequent shifts to 20 connections, as shown in Figure 3.5(a). In SCADA2-field
(Figure 3.5(c)), the baseline of 6 active connections represents the connections
between the SCADA server and 5 PLCs, plus those between the SCADA server
and its backup. With exception of a few short-lived the peaks, the time series
for this dataset is remarkably stable. In Figure 3.5(e) we show the results
for SCADA4. This dataset presents two large changes responsible for most
peaks and baseline changes in the time series: the relocation of hosts and the
use of a redundant SCADA server. These events are described in details in

58 3. SCADA Traffic Characterization

✥

�

✁✥

✁�

✂✥

✥ ✁ ✂ ✄ ☎ � ✆ ✝ ✞ ✟ ✁✥ ✁✁ ✁✂ ✁✄ ✁☎

❆
✠
✡☛
☞
✌
✍
✎
✏
✏
✌
✠
✡☛
✎
✏
✑

❚✒✓✔ ✕✒✖✗✔ ✕✘✙✚✘ ✛✜ ✢✙✘✙✕✔✘ ✣✢✙✤✕✦

(a) SCADA1

✥

�✥

✁✥✥

✁�✥

✂✥✥

✂�✥

✄✥✥

✥ ✁ ✂ ✄

❆
☎
✆✝
✞
✟
✠
✡
☛
☛
✟
☎
✆✝
✡
☛
☞

❚✌✍✎ ✏✌✑✒✎ ✏✓✔✕✓ ✖✗ ✘✔✓✔✏✎✓ ✙✘✔✚✏✛

(b) l01t02

✥

�

✁

✂

✄

☎✥

☎�

✥ ☎ � ✆ ✁ ✝ ✂ ✞ ✄ ✟ ☎✥ ☎☎

❆
✠
✡☛
☞
✌
✍
✎
✏
✏
✌
✠
✡☛
✎
✏
✑

❚✒✓✔ ✕✒✖✗✔ ✕✘✙✚✘ ✛✜ ✢✙✘✙✕✔✘ ✣✢✙✤✕✦

(c) SCADA2-field

✥

�✥

✁✥

✂✥

✄✥

☎✥

✆✥

✥ � ✁ ✂ ✄ ☎ ✆ ✝ ✞ ✟ �✥ ��

❆
✠
✡☛
☞
✌
✍
✎
✏
✏
✌
✠
✡☛
✎
✏
✑

❚✒✓✔ ✕✒✖✗✔ ✕✘✙✚✘ ✛✜ ✢✙✘✙✕✔✘ ✣✢✙✤✕✦

(d) l05t01

✥

�✥

✁✥✥

✁�✥

✂✥✥

✂�✥

✥ ✁✥ ✂✥ ✄✥ ☎✥ �✥ ✆✥ ✝✥ ✞✥ ✟✥

❆
✠
✡☛
☞
✌
✍
✎
✏
✏
✌
✠
✡☛
✎
✏
✑

❚✒✓✔ ✕✒✖✗✔ ✕✘✙✚✘ ✛✜ ✢✙✘✙✕✔✘ ✣✢✙✤✕✦

(e) SCADA4

✥

�✥

✁✥

✂✥

✄✥

☎✥✥

☎�✥

✥ ☎ � ✆ ✁ ✝ ✂ ✞ ✄

❆
✟
✠✡
☛
☞
✌
✍
✎
✎
☞
✟
✠✡
✍
✎
✏

❚✑✒✓ ✔✑✕✖✓ ✔✗✘✙✗ ✚✛ ✜✘✗✘✔✓✗ ✢✜✘✣✔✤

(f) l15t04

Figure 3.5: Current IP connections

Chapter 5.4.4. This dataset also shows a gradual increase in the number of
connections, as new nodes are added to the network. Some of the large peaks
represent nodes having their IP address changed, or the backup SCADA server
taking over tasks from the SCADA server.

The results for this test divide the SNMP datasets in two groups. The
first group, formed by l01t02, l05t01 and l11t01, have a behavior much closer
to that of SCADA, i.e., long stable periods with a few peaks and sporadic

3.4. Connection Matrix 59

baseline changes. While the second group, l15t04, l17t01 and l18t01, present
considerably more variation.

During the time series and periodicity analysis, we observed that l01t02
contains traffic with a strong daily pattern. We observe the same pattern in
Figure 3.5(b). Apart from the clear baseline, l01t02 presents periodic peaks.
After closer inspection, we verified that one of the monitors is only active during
three moments, around 11 h, 22 h and 23 h every day, causing the peaks in the
number of connections. Dataset l05t04 presents a very clear baseline of around
50 connections, as can be observed in Figure 3.5(d). Interestingly, the unusual
behavior observed in the packet and byte time series (Figure 3.2(b)), where
traffic slowly increases for a few days then suddenly drops is not observed here.
Therefore this variations the throughput of existing connections, and not by
new connections.

Although the datasets in the second group present more variation, a baseline
can still be seen. The result for dataset l15t04 is shown as an example, in
Figure 3.5(f). It presents a baseline of approximately 93 connections, but with
high variation in the range [73− 120]. Note once again that diurnal patterns of
activity are not present.

3.4.2 Connection matrix changes

The time series does not provide much insight on how the changes in the con-
nection matrix occur. To study this characteristic a second test is proposed.
First, we build a list of connections that are active in each bin. We then com-
pare consecutive bins, creating two lists: one containing added connections,
i.e., connections present in the latter bin but not in the former; and the other
containing removed connections, i.e., connections present in the former bin but
not in the latter. Finally, we study the size of these lists over time. We note
that when using small bin sizes, such as 15 min used in the previous section,
we observed many intermittent connections, i.e., connections were removed in a
bin and added in the following one. Therefore, for this analysis we use bins of
1 hour, as our objectives here is to study the long-term stability the connection
matrix.

The results for this test are summarized in Table 3.4. The column total
contains the total number of connections in a dataset. We present the mean,
standard deviation (std) and maximum (max) for the number of added and
removed connections. The last column, changed, contains the percentage of
bins with at least 1 change (either added or removed). We use < 1% to denote
a percentage that is below 1% but not 0. Finally, we use the traditional IT

60 3. SCADA Traffic Characterization

dataset (IT), presented in Chapter 2 to put our results into perspective.

dataset total
added removed

changed
mean std max mean std max

SCADA1 32 1% 2% 10% 1% 2% 10% 31%
SCADA2-control 31 1% 4% 29% 1% 4% 29% 15%
SCADA2-field 17 1% 5% 40% 1% 4% 40% 11%
SCADA3 10 0% 0% 0% 0% 0% 0% 0%
SCADA4 507 < 1% 3% 46% < 1% 3% 45% 15%
l01t02 305 4% 11% 43% 4% 12% 44% 26%
l05t01 92 1% 1% 11% 1% 1% 9% 28%
l11t01 21 < 1% 1% 33% < 1% 1% 33% 2%
l15t04 497 17% 13% 47% 17% 13% 47% 97%
l17t01 35 3% 3% 14% 3% 3% 15% 87%
l18t01 126 3% 3% 17% 3% 3% 17% 94%
IT 23292 73% 8% 96% 73% 8% 92% 100%

Table 3.4: Connection matrix changes

As expected, our results show that the connection matrix for the SCADA
datasets present small changes over time. On average, not more than 5% of
IP-level connections are added or removed. In general, the standard deviation
is also small. Despite the low mean, with exception of SCADA3, all SCADA
datasets present a large maximum change, ranging from 10% to 46%. A sur-
prising behavior is that, in spite of the small number of changes in each bin,
the occurrence of changes is not rare, i.e., the percentage of bins with at least 1
change is not negligible.

Among the SCADA datasets, only SCADA3 presents no changes at all; the
remaining datasets present at least 11% of bins with at least one change. The
occurrence of changes is more common in SCADA1, where a surprisingly 31% of
bins contain at least one change. Both datasets collected at SCADA2 present a
very similar distribution. The 40% maximum of added and removed connections
in SCADA2-field can be explained by the small amount of active connections
in the network. The maximum of 40% represents an increase (or decrease) of
only 4 connections. Dataset SCADA3 is the only dataset that does not present
any change, however, it should be noted that the duration of this dataset is also
very small, only 1.5 days. While in SCADA4, large maximum is caused by the
(logical) relocation of many hosts, which we later discuss in Chapter 5.4.4.

The two SNMP groups identified in the time series analysis are also visible
here. While the first group presents a maximum of 28% of changes, the second
group, presents a minimum of 87% of changes. In l01t02 the high standard

3.4. Connection Matrix 61

deviation, and maximum can be explained by the periodical peaks at 11 h, 22 h
and 23 h, as discussed in the previous section.

When comparing the results to IT, the connection matrices of our SCADA
datasets presents a small number of changes over time. The IT dataset presents
by far the highest mean and maximum of added (and removed) connections.
Also, in this datasets every bin presents at least 1 change.

3.4.3 Unique connections

The last characteristic of the connection matrix we study is when a given con-
nection is observed for the first time. The idea behind this test is to verify if the
changes observed in the previous test are mostly caused by previously unseen
connections, or if the set of connections is stable. To that end, we construct a
time series of unique connections, that is, each connection is only counted once,
in the bin at which its first packet is exchanged.

We present the results for six datasets in Figure 3.6. Each plot in the figure
shows two curves: the full red line shows number of connections first observed
in a given bin, and the dashed green line shows the percentage of the total
number of connections that have been observed up to that bin. For ease of
visualization, we count the amount of unique connections introduced in each
1 h bin. In this test the use of smaller bin sizes simply increases the resolution
of the x-axis. Again, we make use of the IT dataset for comparison. The results
for the remaining datasets can be found in Appendix B.2.

For both SCADA and SNMP datasets, a significant number of connections
is observed within the first day of the dataset. In fact, all connections are
observed within the first day for SCADA3 and l01t02, Figures 3.6(b) and 3.6(d)
respectively. After the first day, new connections tend to appear in isolated
peaks.

Many of the large variations observed in the previous tests are not observed
here. For instance, the majority of small peaks in the number of active con-
nections observed in SCADA1 (Figure 3.5(a)) are not present in Figure 3.6(a).
Also, and the daily peaks of active connection observed in l01t02 (Figure 3.2(a))
are not present in Figure 3.6(d). This means that these variations are caused
by previously observed connections.

In SCADA4 (Figure 3.6(c)) the peaks of new connections are considerably
larger than in the other SCADA datasets; the larger peak (at day 12) consists
of more than 60 new connections. The high number of connections in this
dataset is attributed to two events that occur in the network: hosts having
their IP address changed and a redundant server taking over the activity of a

62 3. SCADA Traffic Characterization

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time since start of dataset (days)

0

20

40

60

80

100

Ob
se

rv
ed

 fl
ow

s
(%

)

0

5

10

15

20

Nu
m

be
r o

f n
ew

 fl
ow

s

(a) SCADA1

0 1
Time since start of dataset (days)

0

20

40

60

80

100

Ob
se

rv
ed

 fl
ow

s
(%

)

0

2

4

6

8

10

Nu
m

be
r o

f n
ew

 fl
ow

s

(b) SCADA3

0 10 20 30 40 50 60 70 80 90
Time since start of dataset (days)

0

20

40

60

80

100

Ob
se

rv
ed

 fl
ow

s
(%

)

0

20

40

60

80
Nu

m
be

r o
f n

ew
 fl

ow
s

(c) SCADA4

0 1 2 3
Time since start of dataset (days)

0

20

40

60

80

100

Ob
se

rv
ed

 fl
ow

s
(%

)

0
20
40
60
80
100
120
140
160

Nu
m

be
r o

f n
ew

 fl
ow

s

(d) l01t02

0 1 2 3 4 5 6 7 8
Time since start of dataset (days)

0

20

40

60

80

100

Ob
se

rv
ed

 fl
ow

s
(%

)

0
10
20
30
40
50
60
70
80

Nu
m

be
r o

f n
ew

 fl
ow

s

(e) l15t04

0 1 2 3 4 5 6 7 8
Time since start of dataset (days)

0

20

40

60

80

100

Ob
se

rv
ed

 fl
ow

s
(%

)

0
100
200
300
400
500
600
700
800

Nu
m

be
r o

f n
ew

 fl
ow

s

(f) IT

Figure 3.6: Number of new IP connections over time as absolute number (right
scale) and relative percentage (left scale)

main server in the network. These events will be discussed in more detail in
Chapter 5.

The results for dataset l15t04, depicted in Figure 3.6(e), show that connec-
tions are continuously introduced until the end of the second day. A large peak
is also present on the sixth day of measurement, however, these connections are

3.5. Conclusions 63

not long-lived (Figure 3.5(f)), thus probably relate to some manual activity.
Finally, we note that IT, shown in Figure 3.6(f), presents a very different

pattern. Unique connections appear following a diurnal pattern, rather then in
isolated peaks. Even after a week of measurements, new unique connections are
still common.

3.4.4 Discussion

From the analysis presented in this section, we can conclude that changes in
the connection matrix are not rare. This observation needs to be incorporated
in models that describe SCADA operation. For instance, the IDS proposed
in [144] generates alarms for each newly observed (transport-level) connection,
reporting it as an anomaly. The underlying assumption is that new connections
are a rare event. If this IDS solution was to be deployed in the SCADA networks
considered in our analysis, a considerable number of (false) alarms would be
generated, as changes in the connection matrix, although small, are common.

Half of our SNMP traces present the same behavior as SCADA traces: a
connection matrix with a small number of changes. However, the other half
display a rather unstable connection matrix, where the occurrence of changes is
the rule rather than exception.

Finally, our SCADA datasets display a considerably more stable connection
matrix than that of a traditional IT environment. The time series for the number
of active connections show clear baselines, changes in the connection matrix are
generally small, and a significant number of connections is observed within the
first day of our measurements. This relative stability suggests that keeping track
of connections over time might be a useful approach to detect unauthorized
activity in SCADA environments. This topic is further explored in Chapter 5,
where we investigate how the connection matrix stability can be exploited for
anomaly detection.

3.5 Conclusions

In this chapter we continued our characterization of SCADA traffic, and per-
formed a comparison with SNMP, a widely used protocol from the (traditional)
IT world. In RQ 3.1 we address the question whether the SCADA traffic is
periodic, as it is mostly generated by automated processes. In Section 3.3 we
used time series and spectral analysis to confirm that traffic indeed presents
strong periodic patterns. The packets and bytes time series present clear base-

64 3. SCADA Traffic Characterization

lines, and the periodograms reveal that a large number of hosts, in particular all
PLCs in our datasets, generate traffic periodically. However, one should observe
that changes do occur. Time series present baseline changes at seemingly arbi-
trary time intervals and some of the hosts do not generate traffic in a periodical
fashion.

In RQ 3.2 we investigate the stability of the connection matrix. In Sec-
tion 3.4, we find that the time series for the number of active connections is
very stable, and changes tend to be small. However, the occurrence of changes
is not rare. Most of our datasets contain a significant number of changes over
time.

Finally, in RQ 3.3 we investigate the possibility of using SNMP traffic traces
to emulate SCADA behavior. Despite the fact that our SCADA and SNMP
traces share some characteristics, there are also important differences. SNMP
typically displays periodicity at larger time intervals (typically 300 s) when
compared to SCADA traffic (1 s or 21 s). Furthermore, half of our SNMP
traces display a rather unstable connection matrix, where the occurrence of
changes is the rule rather than exception. Therefore, we do not recommend
emulating SCADA behavior using SNMP traffic traces.

Although our analysis showed interesting results, more research is needed to
fully understand the particularities of SCADA traffic. Nonetheless, the results
presented in this chapter are the motivation of the two anomaly detection ap-
proaches proposed in this thesis. In Chapter 5, we use whitelists to exploit the
connection matrix stability, and, in Chapter 6, we propose PeriodAnalyzer , an
approach that automatically learns traffic patterns generated by SCADA pro-
tocols and detects anomalies in their behavior, by exploiting traffic periodicity.

CHAPTER 4

SCADA Security

4.1 Introduction

SCADA systems were originally developed using special-purpose embedded de-
vices, which communicated using proprietary protocols. These systems were
designed to operate in isolation from other systems, so vendors and operators
believed they could rely on the air gap for protection. That is, as the SCADA
network would be physically isolated from any other networks, attackers could
not gain access to it. Also, vendors and operators relied on security through
obscurity, that is, the belief that the lack of publicly available information re-
garding SCADA system made them secure.

However, in modern SCADA deployments we observe that interconnection
with other systems is becoming commonplace. SCADA networks can be ac-
cessed from corporate networks, engineers have remote access via Virtual Pri-
vate Networks (VPNs) and even access from the Internet is possible in some in-
stances. In addition, the special-purpose embedded devices are being replaced
with COTS devices and the proprietary communication technology with the
TCP/IP stack. These changes have a deep impact in the security of SCADA
networks [87].

In this chapter, we review the literature of SCADA security. First, in Sec-
tion 4.2, we discuss the differences with traditional IT security. Next, in Sec-
tion 4.3, we discuss documented security incidents in SCADA. In Section 4.4,
we provide a review of industry standards and academic research on the topic.
Finally, in section 4.5, we summarize our findings.

66 4. SCADA Security

4.2 Differences with Traditional IT

The security requirements for traditional IT networks are commonly summa-
rized as the triple: Confidentiality, Integrity and Availability (CIA) [139]. In
fact, for a typical business enterprise these requirements are ordered in impor-
tance:

1. Confidentiality: the property of a computer system whereby its infor-
mation is disclosed only to authorized parties, has the highest priority;

2. Integrity: the characteristic that alterations to a system’s assets can be
made only in a authorized way, follows as second priority;

3. Availability: the property that a system is ready to be used immediately,
has the lowest priority.

Safety has the highest priority in a SCADA environment. While in a tradi-
tional IT environment outages typically cause only monetary losses, in SCADA
systems, a system outage can also bring risk to human and public safety, and
damages to equipment. Therefore, the priority order is reversed: availability has
the highest priority; integrity comes as close second, as safe operation depends
on the correctness of the data; and confidentiality has the lowest priority, as
data has to be analyzed within context to have any value [82].

In addition to different priorities, there are several other key differences between
these environments, including:

• Constrained resources: SCADA equipment typically has constrained
resources making it a challenge to implement traditional cryptographic
algorithms developed for traditional IT environments. This problem is
exacerbated by the real-time requirements of SCADA applications.

• Information vs. assets: Traditional IT environments have as priority
protecting the information during storage, transmission and computation.
However, in SCADA environments the focus lies on protecting the devices
in the field network, e.g., PLCs and RTUs, as those are responsible for
controlling the physical process. Protecting the SCADA server is also
important, as it can influence the edge devices.

• Patching problem: Applying security patches is one of the primary
mechanisms to prevent the exploitation of vulnerabilities in traditional IT

4.2. Differences with Traditional IT 67

environments. However, this practice is not common in SCADA environ-
ments, as every change in the systems requires comprehensive testing. In
extreme cases, changes in the environment might require renewed certifi-
cation [94].

• Component Lifetime: The lifetime of SCADA components is typically
much longer then that of traditional IT systems components. Changes in
IT are fast paced, in the order of 2 to 5 years, due to constant innovation.
In contrast, changes in SCADA are slower, in the order of 15 to 20 years, as
solutions are developed for specific scenarios. Connected to the patching
problem, this long lifetime commonly results in legacy components that
are operational but no longer maintained by vendors.

A summary of the differences between the environments is shown in Ta-
ble 4.1 (adapted from [34]). For a detailed description of the differences be-
tween SCADA and traditional IT environments, the interested reader is referred
to [137].

System Characteristics SCADA Traditional IT
Number of users low high
Multi-vendor limited common

Lifetime (years) 15 to 20 3 to 5
Outage tolerance low/none medium/high
Delay tolerance low (real-time) medium/high

Maintenance and Upgrade
Patching rare common

Unsupported soft/hardware common rare
Soft-/hardware releases rare (small changes) frequent (extensive changes)

Frequency soft/hardware update very low medium/high
Security Practices
Security awareness low (but rising) high/very high

Availability of security expertise low high/very high
Adoption of security audits rare frequent
Real-time security checks rare/unavailable common

Security Countermeasures
Use of Antivirus rare/unavailable common
Physical security difficult in remote sites high

Use of firewalls and IDSs rare/unavailable common

Table 4.1: Differences between SCADA and traditional IT (based on [34])

68 4. SCADA Security

4.3 Documented Incidents

A survey with 200 industry executives from electricity utilities in 14 countries
performed by Baker et al. [10] showed that 80% had faced a large-scale denial-
of-service attack, and 85% had experienced network infiltrations. According to
a report from the American DHS, the number of attacks to SCADA networks
grew from 9 in 2009, to 198 in 2011 and 171 in 2012 [78].

While most of these attacks are not published, some cases are well-
documented. In this section, we review some of these cases, with the intent
of showing how fragile the ideas of the air gap and security through obscurity
are.

4.3.1 Maarochy water breach

In March 2000, the Maarochy Water Services on Queensland’s Sunshine Coast
in Australia was hacked by a former contractor, after his job application for
the local council was rejected. The attacker managed to gain access to the
field network, successfully taking control of 150 sewage pumping stations. The
attacker proceeded to spill over one million liters of untreated sewage into local
parks, rivers and private properties [131].

During a period of three months, communications sent by radio links to
wastewater pumping stations were lost, pumps were not working properly, and
alarms put in place to alert the staff of faults were not going off. Only after
an engineer started monitoring all network traffic, the attack was discovered.
The attacker was later discovered to have gained access to the network via
wireless communications. This attack shows that the air gap might not exist in
practice, and demonstrated a typical threat for security through obscurity: an
insider attacker might know the details of the system, even if such details have
never been made public.

4.3.2 Slammer at Davis-Besse

In 2003, the slammer worm infected at least 75000 hosts, exploiting a vulnera-
bility on Microsoft’s SQL Server. The worm caused numerous network outages
and a series of unforeseen consequences, such as canceled airline flights, inter-
ference with elections, and ATM failures [110].

One of the victims of slammer was the Davis-Besse nuclear power plant in
Ohio, United States. The infection overloaded the plant’s network, causing a
safety-related system to be unavailable for almost 5 hours, while a plant process

4.3. Documented Incidents 69

computer remained unavailable for over 6 hours. Fortunately, the impact of the
worm was limited, and operators did not loose control over the infrastructure.
The attack vector was a link between the corporate and the SCADA networks
which bypassed the existing firewall [17]. The slammer infection at Davis-Besse
shows that SCADA networks might be vulnerable to the same threats of tradi-
tional IT networks, and specialized knowledge is not necessary to attack then,
exposing another problem with security through obscurity.

4.3.3 Blaster at CSX Corp

Also in 2003, the blaster worm infected over 100000 systems exploiting a vul-
nerability on Window’s Remote Procedure Call (RPC) interface. A surprising
characteristic of the blaster infection was its persistence, i.e., a large number of
hosts remained infected after 1 year since the initial outbreak; despite clean up
efforts [9].

In August 2003, CSX Corp, the third-largest railroad company in North
America, reported an outage caused by the blaster worm. At about 1:15 AM,
a variant of the blaster virus was found to be interfering with a train signaling
system. According to reports, the systems were “substantially restored” (what-
ever that may be) to normal by about 9 AM. Several freight and passenger
trains faced delays of 40 minutes to several hours due to this incident [68, 73].
Like the slammer infection at Davis-Besse, the blaster infection at CSX Corp is
an example of an attack without specialized knowledge regarding the SCADA
system.

4.3.4 Stuxnet

Stuxnet is considered the most advanced attack to SCADA environments to
date, and one of the most complex ever created. The attack components in-
cluded four zero-day exploits1, the first known PLC rootkit2, antivirus evasion
techniques, peer-to-peer updates and stolen certificates from trusted Certifi-
cation Authorities (CAs) [55]. It has been speculated that the objective of
the attack was to damage centrifuges used in the Iranian uranium enrichment
project [16, 36, 57].

After the initial infection, probably via an infected USB drive, the stuxnet
worm started to propagate itself looking for its initial target: engineering work-

1A zero-day exploit is an exploit that makes use of a previously unknown vulnerability.
2A rootkit is a software that exploit some vulnerability with the goal of obtaining privileged

access to a system.

70 4. SCADA Security

stations used to program PLCs. The propagation was performed by exploiting
vulnerabilities in other computers connected to the same LAN as the infected
host. The worm also copied itself to removable USB drives, as the target might
be located in a different, “air gapped” LAN. Both LAN and USB propagation
techniques made use of zero-day exploits. The attack payload was only extracted
when the target workstation was identified. Once this happened, Stuxnet in-
fected the software used to program PLCs. The malware then waited for some
specific PLC models to be connected. It then uploaded malicious code to these
PLCs, effectively leaving them under the attacker’s control.

During the whole process, Stuxnet used different mechanisms to evade detec-
tion. The malicious binaries were signed with valid certificates. Once infected,
the binary used a rootkit to hide itself. A similar approach was taken to hide
the modified code on the PLCs. Finally, the malware sent modified messages to
the SCADA server emulating the “normal” PLC behavior, with the objective
of hiding the effects of the attack from operators.

In the report describing the attack, Symantec claims that to develop Stuxnet
it would be necessary to construct a large test infrastructure that “mirrored”
the target environment, a very costly and time consuming effort [55]. The com-
plexity of this attack has led to speculation that only a nation-state would have
the capabilities to develop it [16, 36, 57]. In June 2012, the New York Time
published an article claiming Stuxnet was developed by the United States gov-
ernment, with help from the Israeli government, as part of a larger cyberattack
operation named “Olympic Games” [128]. Stuxnet shows that, even if the air
gap exists, techniques can be used to circumvented it. The attack also exposes
the ineffectiveness of security through obscurity against a resourceful attack.

4.4 Securing SCADA

In this section, we review standards and recommendation documents proposed
by the industry to secure SCADA systems in Section 4.4.1. We then proceed to
discuss the academic research in the area, in Section 4.4.2, we discuss general
aspects of SCADA security, followed by Section 4.4.3, in which we focus on
intrusion detection approaches.

4.4.1 Standards and recommendations

The International Organization for Standardization (ISO) has created two
widely used standards concerning computer security: ISO/IEC 15408 [90], com-

4.4. Securing SCADA 71

monly referred to as “common criteria”, and the ISO 27000 series [91]. Although
developed for the traditional IT domain, some of the concepts discussed in these
documents can be applied to the SCADA domain. In fact, a draft document
from the ISO 27000 series, ISO 279019, has the descriptive title: “Information
security management guidelines based on ISO/IEC 27002 for process control
systems specific to the energy utility industry”.

International Electrotechnical Commission (IEC) has applied the common
criteria standard to the context of power substation communications. The re-
sults of this study are published as IEC 62210 [80]. This document was later
made obsolete by the IEC 62351 series [83], which describe several aspects of
confidentiality, integrity and authentication in the power substation context.
This series addresses the security of different protocols, such as TCP/IP, MMS
and IEC 60870-5, describing topics such as attack scenarios, key distribution
and mitigation.

Together with IEC, the International Society of Automation (ISA) addresses
security of SCADA environments in two equivalent series of standards, ISA 99
and IEC 62443 [82]. The topics discussed in these series include compliance met-
rics, establishing and operating security programs, patching, security controls
and specific requirements for equipment.

The Institute of Electrical and Electronics Engineers (IEEE) has also pub-
lished three standards relating to SCADA security. IEEE 1402 [84] provides a
guide to security issues related to both physical and cyber intrusions at power
substations. The two remaining standards deal with very specific problems.
IEEE 1686 [86] describes detailed functions and definitions for Intelligent Elec-
tronic Devices (IEDs) and IEEE 1711 [85] describes a retrofit cryptographic
protocol for communications between RTUs and SCADA servers.

Worldwide, several national organizations also have developed guidelines and
best-practices documents. Examples of such efforts are the Dutch SCADA Se-
curity Good Practices for the Drinking Water Sector [102], the Recommended
Guidelines for Information Security Baseline Requirements for Process Con-
trol, Safety and Support ICT Systems [113] by the Norwegian Oil and Gas
Association, and the NERC reliability standards on critical infrastructure pro-
tection [112].

4.4.2 General aspects

Several aspects of SCADA security are also being addressed by the (academic)
research community. For instance, attack taxonomies have been proposed for
two popular SCADA protocols, Modbus [77] and DPN3 [52]. The problem of

72 4. SCADA Security

threat analysis, that is, evaluating the impact that attacks and failures have in
the controlled infrastructures, has been studied in [6, 7, 31, 140]. In addition to
threat analysis, Baiardi et al. [7] also discuss mitigation strategies. Ten et al.
[140] proposes an even more complete solution, including monitoring, detection,
threat analysis and mitigation. A similar approach is presented in [31], how-
ever, in their paper the authors focus on the behavior of the physical process
controlled by the system.

Another interesting area of research is how to implement security services,
such as authentication, integrity and confidentiality for SCADA systems [33].
Given the limited resources of devices in the field network, a challenging task is
to address the conflict between the real-time requirements of these systems and
the additional delay caused by encryption algorithms [149, 150, 143, 121, 39].
A common solution to circumvent this limitation is to encrypt the communi-
cation link between the field and control networks using a “Bump-In-The-Wire
(BITW)” [149, 150, 143]. The solution, depicted in Figure 4.1, consists of adding
a BITW gateway in both field and control networks, which is responsible to en-
crypt all data traversing it.

Figure 4.1: The “bump-in-the-wire” approach

A related problem deals with the management of cryptographic keys. Some
of the challenges in this area are discussed by Pi and Sitbon [121]. Choi et al.
[39] provide a SCADA specific solution that supports message broadcasting and
secure communications.

4.4. Securing SCADA 73

4.4.3 SCADA IDS

In Figure 4.2 we show the four dimensions used to classify the existing ap-
proaches towards SCADA IDS: source of audit data, detection method, validation
method and process-aware detection. The first two dimensions are commonly
used [5, 47], and the last two provide practical information regarding the sur-
veyed SCADA IDS.

Intrusion
Detection
System

Source of
audit
data

Detection
method

Validation
method

Process-
aware

Detection

Network Host Anomaly Signature

Measurement Testbed Simulation None Aware Unaware

Figure 4.2: SCADA IDS classification dimensions

Regarding the source of audit data, an IDS use be either host or network-
based detection [5, 47]. The first relies on data collected in a host, such as
system logs and system calls, and the latter on data collected on the network,
commonly traffic measurements made at a central monitoring location. As dis-
cussed in the previous section, devices in the field network typically have limited
resources, therefore, host-based detection is challenging. Most devices simply
do not have the resources necessary for supporting new functionality. Also, such
new functionality could imply additional delay to the tasks performed, which is
undesirable given the real-time requirements of a SCADA system.

Regarding the detection method, an IDS system can be either signature-
based, or anomaly-based [5, 47]3, with “the former relying on flagging all be-
havior that is abnormal for an entity, the latter flagging behavior that is close

3In Debar’s convention [47], signature and anomaly methods are referred to misuse and
behavior methods, respectively.

74 4. SCADA Security

to some previously defined pattern signature of a known intrusion”. In tradi-
tional IT environments, anomaly detection techniques tend to display a large
number of false-alarms due to the enormous variability of network traffic [133].
On the other hand, SCADA traffic is expected to be more well-behaved, due to
characteristics such as the traffic periodicity and a stable connection matrix (dis-
cussed in Chapter 3), making anomaly-based methods particularly attractive.
Not surprisingly, network anomaly-based approaches dominate the SCADA lit-
erature. Among the 25 surveyed papers, only two present a host-based tech-
nique [70, 152], and a single one presents a signature-based approach [122].

Regarding the validation method, we observe four possibilities among the
surveyed approaches. The first is the use of real-world audit data, that is, data
collected in a operational SCADA environment. The second is the use of a
testbed environment, which typically emulates a simplified version of a real sys-
tem. Third, is the use of simulation. Typically this approach is used to study
the physical process itself, while the infrastructure (e.g., PLCs, servers and net-
work) are abstracted. Finally, some papers limit themselves to the description
of the detection mechanism, without any validation whatsoever.

One of the fundamental differences between traditional IT and SCADA en-
vironments is that the latter is closely related to a physical process. This opens
a new possibility: the detection of intrusions based on process information. If a
mathematical model of the process is available (or can be created), one can the-
oretically evaluate the impact of commands issued in the SCADA system on the
controlled process. Alarms can be raised if a command causes a system to reach
an undesirable state. Note that the use of process information is not related to
the source of audit data. The information can be both directly polled from hosts
(e.g., SCADA server and PLCs) or extracted from network data. Incidentally,
all surveyed process-aware approaches also happen to be network-based.

A summary of our survey is presented in Table 4.2. In the following subsec-
tions, we describe each of the surveyed approaches in more detail.

Host/Anomaly based

In [70], an anomaly detection approach based on log information collected from
SCADA servers is proposed. These logs contain timestamped information, such
as configuration changes in a PLC. The proposed system requires domain knowl-
edge to assign weights (relating to risks) to the logged events. This information
is used by a pattern matching algorithm, which order the logs according to
their “severity”. The system is validated using 2 weeks of data from a real
water treatment facility. The data was captured in the context of the Hermes,

4.4. Securing SCADA 75

Reference
Source
of audit
data

Detection
method

Validation
method

Process-
aware

detection
Bigham et al. [20] network anomaly testbed aware

Carcano et al. [28, 29, 59] network anomaly simulation aware

Cárdenas et al. [31] network anomaly simulation aware

Cheung et al. [37] network anomaly testbed unaware

D’Antonio et al. [45] network anomaly none unaware

Di Santo et al. [49] network anomaly simulation aware

Düssel et al. [51] network anomaly measurement unaware

Goldenberg and Wool [62] network anomaly measurement unaware

Gonzalez and Papa [64] network anomaly testbed unaware

Hadeli et al. [69] network anomaly testbed unaware

Hadiosmanovic et al. [70] host anomaly measurement unaware

Hoeve [76] network anomaly testbed unaware

Linda et al. [99] network anomaly testbed unaware

McEvoy and Wolthusen [105] network anomaly simulation aware

Oman and Phillips [116] network anomaly none unaware

Premaratne et al. [122] network signature testbed unaware

Rrushi et al. [125, 126] network anomaly none aware

Valdes and Cheung [145] network anomaly testbed unaware

Xiao et al. [151] network anomaly none aware

Yang et al. [152] host anomaly testbed unaware

Table 4.2: Overview of surveyed IDS approaches

Castor and Midas projects 4, which also supported the work described in this
thesis.

In the work by Yang et al. [152], an anomaly detection mechanism based on
host level information such as CPU and I/O utilization is presented. The ap-
proach assumes all computation is related to the control activities, therefore an
unusual load represents a security threat. A statistical method is used to verify
if the current measurements deviates from historical observations. Alarms are
raised if the deviation is exceeds a certain threshold. Using a testbed composed
of COTS devices simulating a SCADA environment, the authors show that DoS
attacks and insider attacks (simulated by running an “unusual process” in the
servers) can be detected using the proposed approach.

4https://zeus.tsl.utwente.nl/wiki/hcm/ProjectDescriptions

https://zeus.tsl.utwente.nl/wiki/hcm/ProjectDescriptions

76 4. SCADA Security

Network/Signature based

Premaratne et al. [122] proposes, to the best of our knowledge, the only
signature-based approach focused on SCADA environments. By observing traf-
fic generated by real and simulated IEDs, the authors manually derive rules
characterizing attack behavior (e.g., ICMP packets larger than 100 bytes in-
dicate a Ping DoS). However, the authors do not present a methodology to
generate signatures nor discuss how the method could be extended to other
scenarios.

Network/Anomaly based

D’Antonio et al. [45] propose the use of flow-level information (e.g., IPFIX [41])
to detect anomalies using a “context extraction algorithm”. However, only
the general architecture is described and details about the context extraction
algorithm are not given.

Similar methods, based only on TCP/IP header fields, are proposed in [99]
and [145]. In [99] features, such as the number of IP addresses and the number
of packets, are calculated over a sequence of N packets, which is referred to
as a window. A neural network is proposed to learn the normal contents of
such window. Results from experiments performed in a testbed achieve 100%
detection without a single false positive. However, the used testbed consisted
of a single PLC, and only a small window of N = 20 packets was used during
the tests, so it is unclear whether the solution would scale to a larger SCADA
network.

In the approach described in [145], flow-level metrics extracted from network
traffic are compared to historical values. If the difference between current and
historical values is too large, the flow is marked as anomalous. In addition,
alarms are also defined for “new” flows, i.e., flows for which no historical data
is known, and “missing” flows, i.e., flows not observed after a certain time. The
approach is implemented in a testbed environment.

The approach proposed in [37] is based on a model of valid Modbus in-
teractions. For instance, although Modbus allows for 256 different function
codes, only a subset is used in a real deployment. The authors proposed to
create models characterizing the allowed Modbus interactions, and raise alarms
when disallowed interactions are observed. The authors also propose to create a
whitelist of hosts that are allowed to communicate. An offline implementation
is tested using data collected in a testbed environment.

Oman and Phillips [116] propose a hybrid of an IDS and a configuration tool.

4.4. Securing SCADA 77

The IDS internally uses models representing the allowed traffic patterns (e.g.,
which hosts are allowed to communicate, which commands can be sent, etc.).
The authors propose the use of the telnet protocol to both test connectivity to
devices in the field network and to configure them. The configuration of these
devices is periodically retrieved and stored, so it can later be restored in case of
operator errors or to recover from attacks. The authors motivate the use of telnet
because of its widespread adoption in SCADA environments. A proof-of-concept
is implemented and deployed in a testbed environment. However, as telnet
does not provide any security features (all commands, including authentication
related, are sent over plain text) the resulting solution is not secure.

Another anomaly detection approach based on allowed connections is pro-
posed in [69]. In this case, the normal behavior is received as input through a
configuration file augmented by “implicit information” obtained from a system
expert. Besides allowed connections, these files also contain additional infor-
mation, such as the rate at which specific request commands are issued. The
approach consists of parsing such configuration file to generate a communica-
tion model and monitor network traffic for violations. A proof of concept is
implemented in a testbed environment.

While [37, 116, 69] assume the allowed traffic patterns are known a priori,
the idea of learning these patterns by passively monitoring traffic is introduced
in [64]. However, no specific mechanism for learning is proposed in this work.
In [62], an automated learning approach that exploits periodicity of Modbus
traffic is proposed. Modbus traffic is modeled as a Deterministic Finite Au-
tomaton (DFA) representing a series of requests and replies sent periodically.
The authors propose a method to automatically learn the DFA from traffic
measurements. The viability of the approach is shown using data captured at
a university campus power grid. This approach will be discussed in more detail
in Section 6.3.

A number of classical machine learning methods are tested in [51]. The basic
approach consists of extracting traffic information using Bro [118], then applying
a different combination of feature extraction methods, similarity measures and
anomaly detection methods. Despite extensive experiments, using HTTP and
RPC traffic, the best combination is scenario dependent and the authors do
not provide a methodology to select a combination for deployment. We also
note that it is not made clear whether the measurements are performed in a
real-world deployment or in a testbed.

All approaches described so far assume that traffic is transmitted unen-
crypted or that the decryption keys are available to the IDS. Hoeve [76] studies
the feasibility of detecting anomalous activity from encrypted traffic in the smart

78 4. SCADA Security

metering domain. The proposed approach learns normal traffic patters based
only on packet sizes and timestamps. The approach is tested using Modbus and
IEC 60870-5-104 traffic captured in a laboratory environment.

Process-aware approaches

To the best of our knowledge, Bigham et al. [20] was the first work to suggest
the use of process level information in the context of intrusion detection. This
work describes two methods to detect anomalies based on network measure-
ments. Both methods process power flow data to create a model for the normal
behavior. The first method learns and monitors measurement traffic using a
customized n-grams algorithm capable of processing floating-point data. The
second method is based on invariant reduction, which verifies if mathematical
relations between different power flow measurements remain constant. For in-
stance, the authors observe that some of the measurements (P1 and P2) have
a linear relationship, i.e., are in the form P1 = kP2 + C, where k and C are
constants learned from measurements. More complex relationships are not dis-
cussed in the paper. The methods are evaluated using a “load flow program,
real and reactive power flow measurements”, which we assume to be collected
in a testbed environment.

In a series of works, [28, 59, 29] Carcano et al. propose the idea of detecting
critical states, defined as “the set of system configurations which might cause
system stops, damages etc.”. The approach is based on an accurate simula-
tion model and a set of critical states for the physical process controlled by
the SCADA network. The IDS consists of identifying commands sent over the
network and feed these commands to the simulation model. The system then
calculates the distance between the current state of the simulated model and
the set of critical states, raising an alarm if the distance falls below a certain
threshold. A proof of concept is described in [28], a prototype capable of parsing
Modbus and DNP3 traffic is described in [59], and the results of experiments in
a testbed simulating a boiling water reactor are presented in [29].

Xiao et al. [151] describe the idea of workflows, which are responsible for
evaluating all commands issued in the SCADA system. All commands sent to
the SCADA system are first routed to the workflow, which contains a simulation
model for the physical process where the impact of commands can be evaluated.
If the workflow deems the command malicious, it will not be executed.

Di Santo et al. [49] describe an IDS for the power system domain, in which
the system is mathematically modeled. The IDS then monitors traffic to be able
to compute the current state of the physical process, predict if contingencies are

4.5. Summary 79

likely to occur and determine their impact on the overall system. The authors
acknowledge that the proposed system is computationally intensive and parallel
processing is necessary to evaluate the models fast enough. In the simulated
power system tested, the model takes several minutes to be evaluated by a
cluster of 12 workstations. However, it is not made clear whether this processing
time is acceptable in a real system.

Process-aware approaches have also been proposed for nuclear power
plants [125] (later tested in a simulated advanced boiling water reactor [126]),
for a pasteurization process in McEvoy and Wolthusen [105] and for a chemical
process known as Tenesse-Eastman process in [31]. An interesting aspect of [31]
is the evaluation of the impact of different realistic attack scenarios and the
discussion of responses to these attacks.

Cárdenas et al. [31] also identifies the major challenges for realistic IDS
based on process information. Although some models of physical processes are
available, for the majority of process control systems the development of such
models is difficult and hard to justify economically. Finally, some models might
even be impossible to be evaluated in reasonable time, due to the complex nature
of many systems and process.

4.5 Summary

SCADA environments are moving from special-purpose embedded devices com-
municating through proprietary protocols to COTS devices communicating
through standard network protocols (such as TCP/IP), as such, SCADA en-
vironments start adopting the same devices and protocols as used in traditional
IT environments. Despite these similarities, in Section 4.2, we showed that
the security requirements for SCADA environments are considerably different.
For instance, while confidentiality plays a central role in traditional IT envi-
ronments, it is of lesser importance in SCADA environments, where availability
and integrity have precedence due their impact on safety.

In Section 4.3, we described a number of recent incidents showing that
threats to SCADA networks are real. These incidents expose the problem of
relying on the air gap for security. The air gap might not actually exist, as
in the Maroochy Water breach or might be circumvented, as in the Stuxnet
incident. These incidents also demonstrate problems with security through ob-
scurity. The worm infections in the Davis-Besse nuclear power plant and CSX
Corp train signaling system show that these networks are exposed to some of
the same threats that plague traditional IT networks, and no specialized knowl-

80 4. SCADA Security

edge is necessary to attack them. Finally, Stuxnet exposes the ineffectiveness
of security through obscurity against a resourceful attack.

Attention from industry and research community to SCADA security issues
has increased over the last 10 years. In Section 4.4 we review industry and
academic efforts in the area. Our survey shows that very little research is
supported by empirical data obtained from measurements at real-world SCADA
networks.

CHAPTER 5

Exploiting the Stable Connection

Matrix

5.1 Introduction

In Chapter 3, we confirmed the assumption that the connection matrix of
SCADA networks does not change considerably over time. In that chapter,
we defined the connection matrix as the pairs of communicating hosts, which
are identified by their IP addresses, and study how it changes over time. Our
results show that the connection matrix is stable, i.e., it does not present any
change over periods of time longer than a day, and changes tend to be small. In
this chapter, we investigate how this characteristic can be exploited to detect
potentially malicious activity in SCADA networks.

A straightforward method to detect malicious activity is to define an access
control list that determines which entities may access which resources. An entry
on such a list represents an entity that is allowed to access a specific resource,
or conversely, an entity that should be denied access to the resource. The first
approach is commonly referred to as a whitelist, and the latter as a blacklist [141].

The flow whitelist is a list that describes all legitimate traffic patterns in the
network based only on information extracted from packet headers (as opposed
to their contents). The main motivation for the use of whitelists is that a large
portion of SCADA network traffic is generated by automated processes, like
the periodic polling of field devices. Besides that, SCADA networks are closed,
with very limited external access, if any. Finally, changes in SCADA systems
are rare, that is, hosts and services are not expected to be frequently added to
or removed from the network.

In fact, the idea of whitelisting can be commonly found in recommendations
for SCADA security. For instance, the Norwegian Oil and Gas Association sug-
gests that “all access requests shall be denied unless explicitly granted” [113].

82 5. Exploiting the Stable Connection Matrix

The American National Institute of Standards and Technology (NIST) recom-
mends to “block all communications with the exception of specifically enabled
communications” [137]. However, to the best of our knowledge, the feasibility of
flow whitelists was never studied in real-world SCADA environments. It should
be noted that, although flow-level whitelists are not commonly used in tradi-
tional IP networks because the number of legitimate connections is too large to
be manageable, whitelisting has been proposed to some specific domains, such
as reducing SPAM [27], avoiding phishing [54], guaranteeing access to important
customers during DDoS attacks [153], and preventing certain attacks in VoIP
infrastructures [35].

In this chapter, we investigate the use of flow-level whitelists to protect
SCADA networks. Given the connection matrix stability, it should be possible
to define the allowed behavior (“who can communicate to whom”). We discuss
the feasibility of implementing a flow-level whitelisting approach in SCADA
environments to assist the network administrator in the task of detecting ille-
gitimate network traffic. The first problem we investigate is how flow whitelists
can be created and maintained.

After that, we study its feasibility. To be feasible the whitelist should present
two characteristics. First, its size should be manageable. A very large list
with millions of entries, as it would occur in traditional IT networks, would
make the approach hard to implement and to manage. Second, the whitelist
should be stable. If the list is unstable, i.e., it changes frequently, it either
requires continuous updating by the network administrator or it results in a
large number of false alerts, therefore becoming an unpractical solution. We
evaluate our approach using real-world traffic measurements.

In summary, we address the following research questions:

RQ 5.1: How can we perform flow whitelisting at the network level?

RQ 5.2: Is the size of a flow whitelist for a SCADA network manageable?

RQ 5.3: What are the sources of instability in SCADA flow whitelists?

The remainder of this chapter is organized as follows. To address research
question 5.1, we first motivate the flow whitelist entry format in Section 5.2, and
then describe our flow whitelisting approach in Section 5.3. In order to answer
research questions 2 and 3, we apply our approach to real-world traffic traces.
The results of this feasibility evaluation is presented in Section 5.4. Section 5.5
discusses four different aspects toward a real-world deployment of our approach:

5.2. Flow Whitelisting 83

dynamic port allocation, attack scenarios, automatically blocking traffic, as well
as limitations of the proposed learning phase. Finally, in Section 5.6 we present
our conclusions.

5.2 Flow Whitelisting

Whitelists (and blacklists) can be defined based on different information.
Broadly speaking, when utilizing network data, one could perform Deep Packet
Inspection (DPI), i.e., parsing the application data, or use flow-level informa-
tion only, i.e., not parsing the application data. One of the drawbacks of using
DPI is that individual parsers are necessary for each protocol in use in the net-
work (e.g., Modbus, MMS, IEC 60870-5-104 and etc.). In contrast, flow-level
information might not be sufficient to detect invalid commands (i.e., application
data), such as an HMI that commonly only issues “read” commands, suddenly
attempting to re-write a PLC configuration.

As an intrusion detection system, flow whitelisting presents several advan-
tages over deep packet inspection [37] and host level [71] IDS. The most obvious
advantages are simplicity and efficiency [21]. In addition, by not depending on
the packet payload, flow whitelisting should be able to handle proprietary pro-
tocols. Furthermore, it only employs passive network measurements, that is, it
does not add, remove or change traffic and it does not require that additional
software is installed in the existing hosts. The only necessary modification in
the network is the addition of a monitoring host with access to all traffic, for
instance a host connected to an existing switch or router, in which the measure-
ments and analysis will take place. This also overcomes a common resistance of
SCADA operators to make changes in their environment.

A main design decision made in this chapter is not to parse application data,
that is, we only decode protocol information up to the transport layer. There-
fore, we are limited to information that can be obtained from link, network and
transport layers. In our discussion we assume that the protocols are Ethernet
in the link, IP in the network and TCP or UDP in the transport layer. The
motivation for this choice is that these protocols are extensively used, particu-
larly, representing most of the data in our datasets. Furthermore, our approach
should be easily extensible to other protocols, as they should contain informa-
tion similar to that used in these protocols.

We choose not to consider the Ethernet addresses as they can typically
be directly mapped to network addresses. Multiple Ethernet addresses being
mapped to the same IP address could indicate a spoofing attempt, however, we

84 5. Exploiting the Stable Connection Matrix

consider this situation out of the scope of this chapter.

When studying the connection matrix stability in Chapter 2, we investigated
the changes at the IP level connectivity over time. We observed that the pairs
of communicating hosts (servers and clients) do not present many changes over
time. Based on this information, we could create a whitelist where each entry
is a pair of hosts which is allowed to communicate. Any connection attempt
between host pairs not present in the whitelist would raise an alarm.

However, this aggregation level is to coarse for the task of identifying illegiti-
mate connection attempts. The reason for this is that a client might be allowed
to access a specific service provided by a server, but no other. For example,
an operator workstation might be allowed to gather information directly from
a certain PLC using the Modbus protocol, however, remote logins to the same
PLC (e.g., Telnet or SSH) are only allowed from an engineering workstation.
If we construct our whitelist based solely on host pair information, we would
not be able to make this distinction and generate an alarm when a remote login
session is set up.

Therefore, in order to obtain a fine grain view on the traffic, we propose to
add the service information. A service can be identified by using the protocol
field in the IP header and the server side transport port1. More specifically, we
propose each whitelist entry to contain the following information:

(Server Address, IP Protocol, Server Port, Client Address).

These fields are inferred from packet headers. The server and client addresses
are IP addresses, the IP protocol is a field in the IP header and the server port
is a field in the TCP or UDP header.

Such 4-tuple is akin to an access control list at the flow level. It describes,
for each server, which services are available for each client, where the server and
client are identified by their IP address and the service by the pair: Server Port
and IP Protocol. We refer to this 4-tuple as a flow aggregation key. A flow is
defined as the set of packets that have the same key information.

It is important to note that the information regarding which of the hosts
represents the server (or client) in a connection is not explicitly available from
a packet header, as it contains only source and destination addresses. Conse-
quently, to match a given packet to a flow it is necessary to infer the server
(and client) side information. We present an approach to perform this task in
Section 5.3.1.

1In contrast, the client side port should change in every connection attempt.

5.3. Approach 85

Packets Connections
Whitelist

Flow
Creation

Learning

Detection

Connection
Creation

Flows

Alarms

Figure 5.1: Outline of the flow whitelisting approach

Finally, we note that flow whitelists could be defined based on different
information. For instance, the network administrator might decided to accept
only non-fragmented IP packets (e.g., [155]). Alternatively, one could raise
alarms in case a certain TCP option is observed, when it is known it is not
supported by the communicating hosts. In this chapter, rather than proposing
the definitive whitelist format, we are interested in studying the feasibility of
flow-level whitelists, or, more precisely, whether flow whitelists present both
manageable size and stability.

5.3 Approach

Our approach to flow whitelisting is outlined in Figure 5.1. First, the traffic
in the SCADA network is captured, aggregated in bi-directional connections,
and finally aggregated to flows. These phases are described in Section 5.3.1. In
theory, flow whitelists could be (manually) defined by network administrators
or even by the SCADA system vendor, however, we assume this information is
not known. Accordingly, in Section 5.3.2, we propose a learning phase, where
the flows observed over a certain period of time are used to create an initial flow
whitelist. After the whitelist is created, flows are analyzed in the detection phase
(see Section 5.3.3). All network traffic matching a whitelist entry is considered
legitimate. Every flow not matching an entry generates an alarm, that, in case
of a false-positive, can be added by the network manager to the whitelist.

86 5. Exploiting the Stable Connection Matrix

5.3.1 Connection and flow creation

Since our approach relies on information from the IP packet header, packet head-
ers have to be captured in the (sub)networks to be monitored by the whitelist.
The connection creation consists in aggregating the captured packets to connec-
tions. We define a connection as all packets with the same source and destination
IP addresses, source and destination transport port numbers and IP protocol
field, regardless of direction. For instance, consider a UDP connection between
endpoint A (IP address IP1 at transport port P1) and endpoint B (IP address
IP2 at transport port P2). All UDP packets sent from A to B and from B to
A are part of the same connection.

The end of a connection is determined either using the TCP state machine or
an inactivity timeout of 300s. In our experiments (see Section 5.4), we perform
this task with the open source tool argus2.

The flow creation phase identifies the client and server sides of the connec-
tions and further aggregates the connections according to our 4-tuple key defined
in Section 5.3. The pseudo-code for this procedure is outlined in Algorithm 2.
It consists of sequentially applying four rules to identify the server side:

• Rule 1 applies to all TCP connections for which we observe the 3-way
handshake. The server is set to be the host which received the SYN
packet or sent the SYN/ACK packet. The use of TCP handshake to infer
the server and client sides of a connection is a common practice, used for
instance in tools such as BRO [118], TCP-REDUCE3 and argus.

• Rule 2 is applied if a well-known port (below 1024) is observed: the host
using such port is set as the server. The use of well-known ports is also a
common practice, used for instance in [132].

• Rule 3 is a heuristic. If the same protocol and port is re-used by a host
in multiple connections, this host is set as the server and we use this
protocol/port combination to identify the service. For instance, if a host
A establishes two (or more) UDP connections to host B at port P, host B
is set as the server. Host B would also be set as server, if the connections
are originated from distinct hosts but using the same port.

We argue that Rule 3 is useful to infer the server side of high-numbered
port UDP (above 1024) connections and TCP connections for which the

2http://www.qosient.com/argus/
3http://ita.ee.lbl.gov/html/contrib/tcp-reduce.html

http://www.qosient.com/argus/
http://ita.ee.lbl.gov/html/contrib/tcp-reduce.html

5.3. Approach 87

3-way handshake was not observed. These connections are particularly
common in the beginning of the measurement. We rely on the fact that
client ports normally vary with each connection, and are less likely to be
repeated. This rule makes it necessary to keep information about every
connection not classified by rules 1 or 2 in memory until a second connec-
tion with a repeated host address, protocol and port is observed, poten-
tially indefinitely delaying the analysis. For an online implementation, we
would recommend the use of a timeout, after which the connection should
be classified according to Rule 4. In this work, we have implemented an
offline analysis with an infinite timeout, i.e., Rule 4 is only triggered once
we process every connection in a dataset.

• Finally, for flows which do not match any of the previous rules, Rule 4
sets the server to be the destination of the first packet observed in the
connection.

There are two exceptions to our rules. First, in the case of Active FTP, the
data connection is initiated by the server, so we invert our decision. That is, if
any of the hosts uses port 20 (ftp-data) as source port, we set this host to be
the server. Second, in some protocols such as NTP, both hosts use the same
(well-known) port, making rule 2 inapplicable. In this cases, we use either rule
1 or 4 for classification.

Using Netflow/IPFIX records

The flow creation described above can be easily modified to deal with flow-level
records, such as generated by Netflow [40] or IPFIX [41] exporters, instead of
connections generated in the connection creation phase. In this context, a flow is
defined as a set of IP packets passing an observation point in the network during
a certain time interval, that share a certain set of common properties (e.g.,
fields in the packet header), termed flow key. Flow records contain measured
information about a specific flow (e.g., total number of packets) [41].

Typically, a distinction is made between unidirectional, i.e., one record for
each connection direction (e.g., traffic from client to server and from server to
client), or bidirectional flows, i.e., a single record for both directions. Bidirec-
tional exporter implementations might identify the server side of a connection,
by using the direction field [142]. argus is an example of a flow exporter that
performs this task. In such cases, the exporter effectively implements Rule 1
from Algorithm 2. When the export fails to identify the connection direction,

88 5. Exploiting the Stable Connection Matrix

Input : A connection
Output: A flow
srcAddr, srcPort, dstAddr, dstPort, proto = parse(connection);
/* Active FTP exception */

if one host uses port 20 (ftp-data) :
Host is the server

/* rule 1 */

if 3-way handshake (partially) seen :
SYN destination or to SYN/ACK source is the server

/* rule 2 */

if only one host uses a well-known port :
Host is the server; /* if both well-known use rule 4 */

/* rule 3 */

if one host uses a port seen before :
Host host is the server;

/* rule 4 */

Destination of first packet in the connection is the server;

Algorithm 2: Pseudo-code implementation for determining connection
server side from packet headers

e.g., the 3-way handshake is not observed, one can still apply the remaining
rules.

In the cases where unidirectional records are exported, Rule 1 cannot be
applied, as flow records do not contain enough information to identify which
endpoint initiated the connection according to the 3-way handshake. For these
cases, we propose Algorithm 3, a slight variation of the technique described
in [132] to reconstruct TCP connections from NetFlow version 5 records. The
client side (termed originator in [132]), and, as a consequence, the server side
and the service port of a connection are determined by this technique.

5.3. Approach 89

if (SYNs from both hosts and
SYNs in earliest record of both hosts and
hosts’ earliest packets differ) :
Host with earliest record is the client

if (SYN only from one host and
SYN is in connection’s earliest record) :
Host is the client

if one host uses port 20 (ftp-data) :
Host is the server

if only one host uses a well-known port :
Host is the server

if one host uses a port seen before :
Host is the server

if start of hosts’ first packets differ :
Host with earliest record is the client

Arbitrarily choose server

Algorithm 3: Pseudo-code implementation for client and server-side
identification from unidirectional flow records (based on [132])

5.3.2 The learning phase

Ideally, the network administrator knows all services deployed in the network
and the clients that commonly access them. Therefore, a flow whitelist could
be constructed based on this knowledge. In practice, however, complete infor-
mation is rarely available, partly due to the involved proprietary protocols.

The goal of the learning phase is to automatically create an initial whitelist
from a given period of traffic, the learning time. This whitelist contains the
entries for all flows observed during the learning period. We make two assump-
tions: (i) all flows in the learning period are legitimate, and (ii) most legitimate
flows can be observed in the learning period. We argue that the first assump-
tion will usually be valid as anomalous or malicious events are much rarer in
SCADA networks than in traditional IT networks. In fact, no attacks were re-

90 5. Exploiting the Stable Connection Matrix

ported during the capture of our datasets. The second assumption is based on
the expectation that most of the traffic in SCADA networks is automated, thus
flows should be repeated fairly often. We discuss how to set the duration of the
learning phase in Section 5.4.3.

We stress that we do not expect to see all legitimate flows in the learning
phase, but only creating an initial whitelist. For example, manual changes in
the configuration of PLCs could, depending on the setup, only happen rarely,
hence flows related to this activity will probably not be present in the whitelist.
Hence, the whitelist can be extended by the network administrator during the
detection phase.

5.3.3 The detection phase

The whitelist created by the learning phase is used in the detection phase to iden-
tify anomalous flows, e.g., flows without a corresponding entry in the whitelist.
If the flow is whitelisted, then nothing happens, otherwise an alarm is raised. In
a real-world deployment, an administrator would have either to add the flow that
caused the alarm to the whitelist (in case of a false positive) or to block future
occurrences (in case of a true positive). Note that, differently from traditional
IT networks, where hosts are commonly put in quarantine in case of malicious
activities, an automatic blocking is not advised for SCADA environments, as
blocking legitimate traffic could have severe consequences, such as preventing
legitimate commands to be sent during an emergency situation [31, 69]. This
topic will be discussed further in Section 5.5.

5.4 Evaluation

In this section, we propose four tests to evaluate the feasibility of flow whitelists
in SCADA networks. As discussed in Section 5.3.3, the network administrator
needs to make a decision when a connection triggers an alarm, either recognizing
the connection attempt as a false-alarm (i.e., a legitimate connection without a
corresponding whitelist entry) or blocking future occurrences. In our feasibility
evaluation we need to simulate the administrator’s intervention. As our goal is
to understand the sources of instabilities in our datasets, rather then to detect
anomalous flows (remember that no attacks were reported during the capture of
our datasets), we do this by always adding the flow which caused the alarm back
to the whitelist, and at the same time storing the alarm for post processing. This
means that an alarm is never repeated, which allows us to focus our analysis on

5.4. Evaluation 91

the nature of alarms, rather than their absolute number.

Before discussing these tests, we present our datasets, in Section 5.4.1. In the
first test, discussed in Section 5.4.2, we discuss whether the size of the whitelist
is manageable by comparing the size of the complete whitelist with the number
of hosts and communicating pairs in a network. Our discussion regarding the
stability of the whitelists is divided in three parts. In Section 5.4.3, we determine
the ideal learning time to be used in the learning phase of our approach. Then,
in Section 5.4.4, we present the classification method used to discuss the nature
of the alarms, i.e., the potential sources of instability in a flow whitelist. Finally,
in Section 5.4.5, we apply the classification method to provide an overview of
the distribution of the number of alarms over the classes for our datasets.

5.4.1 Datasets

We use four packet tcpdump/libpcap4 traces collected at three different SCADA
environments: SCADA1, SCADA2-control, SCADA2-field and SCADA4. These
datasets are discussed in more detail in Chapter 2. For comparison, we use
two additional traditional IT networks datasets. One is a publicly available
tcpdump/libpcap trace captured at an educational organization: “Location 6”
(referred to as IT) from [11]. The last dataset consists of 15 days of NetFlow5

records collected at an internal router in a university campus, referred to as
UNI. An overview of the datasets is presented in Table 5.1, where we show the
size of each dataset according to four different metrics: duration and number of
packets, bytes and connections.

Table 5.1: Datasets overview

Name Hosts Duration Packets Bytes Conn.

SCADA1 45 13 days 591M 96GB 76K
SCADA2-control 14 10 days 26M 4GB 131K
SCADA2-field 31 10 days 67M 24GB 215K
SCADA4 388 86 days 2G 511GB 179M

IT 93 7.5 days 53M 53GB 264K
UNI 22685 15 days 161G 126TB 1G

4www.tcpdump.org
5www.cisco.com/go/netflow

92 5. Exploiting the Stable Connection Matrix

5.4.2 Whitelist size

The first characteristic we study is whether the whitelist size is manageable. In
other words, we verify if the connection matrix is sparse, i.e., the number of
acceptable flows should be small in comparison to the number of possible flows.

We test this characteristic by setting the learning time to the full duration of
each trace and count the number of flows observed. This allows us to estimate
the size of a trace’s complete whitelist, assuming no attacks are present in
the dataset. While no attacks were reported during the capture of our SCADA
datasets, malicious activities such as network scans are so common in traditional
IT networks that they are most probably present in the IT and UNI datasets.
We attempt to reduce this bias by only considering flows for which traffic is
observed in both directions, thus greatly reducing the number of observed flows
caused by network scans and other types of network anomalies.

Table 5.2 shows the results. The column internal hosts gives the number of
observed hosts located inside the monitored networks. In the column whitelist,
we show the number of entries in the whitelist and in the column host pairs,
the number of communicating host pairs. In order to make the different traces
comparable, we express these metrics both as absolute values and as a ratio to
the number of internal hosts (in parenthesis).

For most cases, the whitelist size for the SCADA datasets is in the same order
of magnitude as the number of internal hosts, suggesting that flow whitelisting
might be feasible in these environments. In comparison, the traditional IT
counterparts present a whitelist orders of magnitude larger than the number of
internal hosts, illustrating why the approach does not scale in these environ-
ments. Due to the excessively large size of the whitelist for the traditional IT
datasets, we do not consider them in the tests performed in the remainder of
this section.

Another observation is that, for the SCADA datasets, the difference between
the host pairs and the whitelist ratios is not very large, meaning that on average
we have one or two services per server. This means that a whitelist without the
service information, which is less restrictive and, thus, less secure, would not
greatly reduce the size of the whitelist.

The only exception to the results presented here is the dataset SCADA2-
control, in which the whitelist size is one order of magnitude larger than the
number of communicating host pairs. However, we show in Section 5.4.4 that
this difference is mostly caused by a traffic anomaly.

5.4. Evaluation 93

Table 5.2: Whitelist size ratios

Dataset Internal Hosts Host Pairs Whitelist

SCADA1 51 58 (1.1) 81 (1.6)
SCADA2-control 22 40 (1.8) 542 (24.6)
SCADA2-field 14 20 (1.4) 23 (1.6)
SCADA4 388 542 (1.4) 1188 (3.1)

IT 93 23 322 (250.8) 26 759 (287.7)
UNI 22 685 56 425 836 (2487.4) 141 744 206 (6248.4)

5.4.3 Training set size

In the following we study the influence of the learning phase duration on the
size of the learned whitelist. Figures 5.2 to 5.5 show the size of the learned
whitelist as the percentage of the total number of flows as function of the learning
time. For the datasets SCADA1 and SCADA2-field, over 50% of the flows are
observed within the first hour of traffic, with a few other additions during the
first day. This percentage is much lower for datasets SCADA2-control and
SCADA4, around 10% and 15%, respectively. The SCADA2-control dataset
shows a significant jump in the list size after around 7 days. The whitelist for
the SCADA4 dataset grows steadily from day 10 to day 40. The reasons for
this behavior are explained in the next section.

Despite the relatively high number of flows observed within the first hour,
commonly a few connections are still added in the course of the first day of
the measurements. Due to this observation, we set the learning time to 1 day
in the following experiments. As expected, not all flows will be observed in
the learning time, however there would be little improvement in extending this
period for a few more days. We also note that selecting any day other than the
first would yield similar results, with exception of days with large amount of
anomalies, such as day 6 at dataset SCADA1.

5.4.4 Nature of alarms

In this section, we present our post-processing analysis of the alarms. Its goal
is to determine the sources of instability in the whitelists, that is, the nature of
the flows not observed during the learning phase.

During our analysis we identified four main alarm classes:

94 5. Exploiting the Stable Connection Matrix

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time since start of dataset (days)

0

20

40

60

80

100

O
b
se

rv
e
d
 f

lo
w

s
(%

)

Figure 5.2: Number of learned flows over time: SCADA1

0 1 2 3 4 5 6 7 8 9 10 11 12
Time since start of dataset (days)

0

20

40

60

80

100

O
b
se

rv
e
d
 f

lo
w

s
(%

)

Figure 5.3: Number of learned flows over time: SCADA2-control

1. Dynamic Port Allocation (DPA) Anomaly: Our flow definition implicitly
assumes that every transport port and IP Protocol combination used by a
server uniquely identifies a service in the SCADA network. This definition
turned out to be particularly problematic with network services that use
Dynamic Port Allocation (DPA), such as Microsoft’s Active Directory. In
this service, high ports (above 1024) are dynamically allocated for Remote
Procedure Calls [107].

We did not attempt to uncover all services using dynamic ports, but we
identified anomalies which are most likely triggered by it. The datasets
SCADA2-control and SCADA4 present moments in which several sequen-
tial TCP connections are made by the same hosts in short time interval,

5.4. Evaluation 95

0 1 2 3 4 5 6 7 8 9 10 11 12
Time since start of dataset (days)

0

20

40

60

80

100

O
b
se

rv
e
d
 f

lo
w

s
(%

)

Figure 5.4: Number of learned flows over time: SCADA2-field

0 10 20 30 40 50 60 70 80 90
Time since start of dataset (days)

0

20

40

60

80

100

O
b
se

rv
e
d
 f

lo
w

s
(%

)

Figure 5.5: Number of learned flows over time: SCADA4

with transport port numbers monotonically increasing on both client and
server side. Table 5.3 shows an excerpt of such moment.

Table 5.3: DPA anomaly example

StartTime Proto Sport Dport Pkts State

09:26:50.944328 tcp 3714 1178 16 FIN
09:26:50.960961 tcp 3715 1178 2 RST
09:26:50.976884 tcp 3716 1180 16 FIN
09:26:50.990740 tcp 3717 1180 2 RST
09:26:51.007886 tcp 3718 1183 16 FIN
09:26:51.021606 tcp 3719 1183 2 RST

96 5. Exploiting the Stable Connection Matrix

2. Manual Activity: This class consists of human triggered flows. All flows
which used the following services, identified by IP protocol and trans-
port port number, fall in this class: telnet (TCP-22), ssh (TCP-23),
http (TCP-80), https (TCP-443), shell (TCP-514), kshell (TCP-544), rdp
(TCP-3389), vnc (TCP-5800 and TCP-5900) and x11 (TCP-6000 to TCP-
6007).

In addition, for datasets SCADA1 and SCADA2, we have a list of operator
workstations. If the client side of a flow is on this list, such flow is also
classified as manual.

3. New Host: This class contains all flows for which at least one host (either
server or client) did not communicate during the training period and,
obviously, can not be present on the whitelist.

4. Other: A catchall class for all flows that do not fit any of the other classes.

We map each flow to a single class, and the membership of a class is tested
in the same order presented here. For instance, consider an alarm for a flow
where the client is not present in the whitelist and where the service is ssh. In
this case, the flow is classified as manual activity, as this class has precedence
over the new host class.

When analyzing the SCADA4 dataset, we observed two events that deserve
to be studied separately. In SCADA networks, it is very common for most
functions in the network to be replicated, including duplicating servers, in order
to increase reliability.

The first event consists of a single redundant host taking over tasks of one of
the main servers in the network, the SCADA server responsible for polling the
field devices. Just before the change occurs, we observe telnet traffic to some
of the PLCs, issuing a reboot command. We do not observe telnet to all PLCs,
however, as all changes occur in a relatively small time interval, we presume they
are related. Besides the flows involving the PLCs several other long-lived flows
present the same behavior, for example, ssh, x11 and some high port services.
We discussed this behavior with the operators responsible for this network and
they informed us that changes like this one are routinely performed in order
to verify if the redundant hosts work properly. In our analysis, we adopt the
following procedure to identify flows belonging to this event. If one of the hosts
in the flow is the SCADA server, we look for another flow with a similar key,
where only the SCADA server address is changed to its backup or vice-versa.

The second event consists of the relocation of many hosts in the network,
mostly PLCs. At times, a continuous range of IP addresses have their address

5.4. Evaluation 97

Table 5.4: Alarm breakdown

Dataset DPA Anomaly Manual New Host Other

SCADA1 0 14 (47%) 15 (50%) 1 (3%)
SCADA2-control 437 (91%) 16 (3%) 6 (1%) 19 (4%)
SCADA2-field 0 5 (45%) 6 (55%) 0
SCADA4 358 (35%) 269 (26%) 274 (26%) 136 (13%)

redundant 0 13 (5%) 16 (6%) 75 (56%)
relocation 0 14 (5%) 148 (54%) 1 (0%)
remaining 358 (100%) 242 (90%) 110 (40%) 60 (44%)

changed to (logically) separated subnetworks. For example, all hosts in the IP
address range X.Y.Z.61 to X.Y.Z.71 have their addresses changed to the range
X.Y.A.61 to X.Y.A.71. We observe telnet commands being issued to perform the
address change, but not to all hosts. Again, the small time interval between the
changes, suggests that they are related. The operators confirmed the behavior.
A large subnetwork was split in several smaller ones. After the change, the
logical address better represent the geographical location of the hosts.

We identify flows belonging to this this event simply by verifying if either
host in the flow (client or server) is part of one of the newly created networks.
Its important to note that we do not classify the telnet access to these hosts
leading to these events as part of them. telnet connections are always classified
as manual activity.

5.4.5 Frequency of alarms

We apply our alarm classification method to all SCADA datasets to provide an
overview of how frequent each class of alarm is. As discussed in Section 5.4.3,
the learning time is set to be the first day of the dataset. The results of the clas-
sification are presented in Table 5.4. This table presents the number of alarms
and approximate percentages for each class. We present additional results for
the dataset SCADA4, by breaking down the alarms using the redundant and re-
location events identified in the previous section. To illustrate how these alarms
are distributed over time, Figures 5.6 to 5.9 show time series for the number of
alarms observed daily, also divided by class.

In the SCADA1 dataset, the new host alarms consist of a few short snmp
connections, likely due to testing; one ntp connection that seems to repeat once
a week; and one real anomaly: several single packet TCP connection attempts
at port 1010. The single other flow seems to be caused by DPA; a few moments

98 5. Exploiting the Stable Connection Matrix

before it starts, a flow involving the same hosts, but different server port, ends.
Finally, a few http(s) and x11 connections and a connection originated from a
operator’s workstation compose the manual activity alarm class. A time series
representing the number of alarms per class over time is shown in Figure 5.6.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time since start of dataset (days)

0

2

4

6

8

10

N
u
m

b
e
r

o
f

a
la

rm
s

other

new

manual

Figure 5.6: Nature of alarms: SCADA1

The leading cause of alarms in the SCADA2-control dataset is a DPA
anomaly, being responsible for around 91% of the alarms. This anomaly is
responsible for the majority of the flows which compose the jump present in
Figure 5.3. In fact, if we remove the flows generated by this anomaly, over 60%
of the flows would be present in the whitelist (i.e., be observed in the training
period), much like in the other water datasets. In addition, the ratio between
the size of the whitelist and the number of internal hosts would be considerably
smaller, 4.7 instead of 24.6, i.e., in the same order of magnitude as the other
SCADA datasets.

In the SCADA2-control and SCADA2-field datasets, most new and other
alarms involve a server which, according to the network administrator, relates to
user authentication and thus, probably are generated due to manual activity. An
unexpected behavior is that some connections are made from this authentication
server, which is in the control network, directly to PLCs, which are in the field
network. According to the network administrator, this type of connection should
not be allowed. All connections from the control network to the field should
pass through the SCADA server. The remaining alarms involve hosts foreign
to the control and field networks where the data collection was performed. It is
not clear if these connections should be allowed. Figures 5.7 and 5.8 show the

5.4. Evaluation 99

time series for the number of alarms over time for datasets SCADA2-control and
SCADA2-field, respectively. Note that the former graph presents a discontinuity
in the y-axis, as the number of alarms caused by the DPA anomaly is extremely
high in comparison to a typical day.

430
435
440
445
450
455

other

new

manual

dynamic

0 1 2 3 4 5 6 7 8 9 10 11
Time since start of dataset (days)

0
5

10
15
20
25

N
u
m

b
e
r

o
f

a
la

rm
s

Figure 5.7: Nature of alarms: SCADA2-control

0 1 2 3 4 5 6 7 8 9 10
Time since start of dataset (days)

0

1

2

3

4

5

6

N
u
m

b
e
r

o
f

a
la

rm
s

other

new

manual

Figure 5.8: Nature of alarms: SCADA2-field

In comparison to the other datasets, the SCADA4 dataset contains a consid-
erably larger number of alarms: 1037 of the flows are not observed in the training
period. Like SCADA2-control, the largest class is DPA anomalies, accounting

100 5. Exploiting the Stable Connection Matrix

for 35% of the total. The redundant and relocation events are responsible for
over half of the other and new alarms, respectively.

In Figure 5.9, we consider the redundant and relocation examples as two
additional classes. They contain all alarms pertaining to each of these events,
regardless of class. DPA connection bursts happen at 4 distinct times, account-
ing for the largest peaks. The redundant event happens at day 15, and a portion
of the manual activity alarms present at the same day represent the telnet con-
nections used to reboot the PLCs. Interestingly, a larger peak classified as
redundant appears before, at day 11. All flows in this peak represent single
packet connections, sent by the redundant host to several PLCs. We speculate
that this was a test or was caused by a configuration error.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Time since start of dataset (days)

0

50

100

150

200

N
u
m

b
e
r

o
f

a
la

rm
s

other

new

manual

redundant

relocation

dynamic

Figure 5.9: Nature of alarms: SCADA4

Large peaks of manual activity happen at days 20, 25 and 29. At each
of these days a large portion of the address space is sequentially accessed via
telnet, probably for maintenance reasons. For instance, some connections are
configuring hosts for the first time, which appear later as new, around days
35 and 40. More importantly, the majority of the connections causing these
alarms involve hosts in the subnetwork that is later split, suggesting a relation
with the relocation event. Most of the hosts are relocated around day 55 and
61. Note that no peak of manual activity happens around theses days. The
telnet connection used to change the hosts’ addresses were accounted for in the
previous peaks of manual activity (alarms for the same flow are not repeated).

The alarms discussed so far account for the majority of alarms in the dataset.
The remaining alarms consist mostly of some manual ssh, x11 and http connec-

5.5. Discussion 101

tions; a few samba related ports (e.g., TCP/UDP 137-139 and 445); and several
high port flows, which might be caused by DPA.

5.5 Discussion

In the following we discuss practical issues network administrators will face
when implementing flow whitelists in real-world environments: dynamic port
allocation, real-world attack scenarios, automatically blocking traffic, and the
limitations of the learning phase.

5.5.1 Dynamic port allocation (DPA)

By far, the largest class of alarms identified in our analysis is due to DPA, and
we only identified bursts in the change of ports. In practice, there are more
services using DPA in our datasets. For a flow-level whitelisting approach to
work with this type of service it is necessary to whitelist the whole range of
transport ports that might be used by the service. This is not an ideal solution,
as it makes the whitelist more permissive.

One of the main advantages that security experts have in protecting SCADA
environments is that traffic patterns are rather predictable, when comparing to
traditional IT environments. DPA reduces this predictability. We argue that
SCADA systems should be designed without making use of DPA or, at least,
DPA should be restricted to a non-critical segment of the network.

5.5.2 Dealing with real-world attack scenarios

Since our datasets contained no attack data, we could not test the efficacy
of whitelisting against realistic attack scenarios. Based on a list of real-world
attack types presented in a previous work [13], we motivate below how these
attacks can be detected by our approach.

The first type is formed by information gathering attacks, such as network
scans. These are normally performed by injecting several requests into the net-
work, with the objective of discovering which services and/or hosts are available.
At the flow level, these attacks resemble the DPA anomalies identified before,
and as such, should be easily identified by our approach, as non-whitelisted con-
nections are likely to be made. The other three types of attacks are: denial of
service attacks which prevent a legitimate user to access a service or reduce its
performance, network attacks used to manipulate the network protocols, and

102 5. Exploiting the Stable Connection Matrix

buffer overflow attacks which attempt to gain control over a process or crash
it by overflowing its buffer. These would only be observed if attempted from a
host which is not allowed to access a given server/service or if attempted to a
server/service not existent in the network.

In general, an attack will only remain undetected if either the whitelist is
incorrectly constructed (i.e., it contains entries representing illegitimate traffic),
or if the attack misuses whitelisted traffic (e.g., an operator machine that is
normally used to access a PLC sets an invalid parameter). In the latter case,
the connection itself is legitimate, but its contents are not. Note that a malicious
host masqueraded as such HMI, by spoofing its IP address, could perform the
same attack. Interested readers are referred to [1] for a discussion of mechanisms
that can protect against such attacks.

5.5.3 Blocking or flagging

In a traditional IT environment it is a common practice to take a host offline
in case it is suspected to be under attack [156, 130]. This is done to limit the
impact of the attack, and prevent a possible spread. Taking a SCADA server
offline might have dire consequences, as critical infrastructures might depend
on it.

The same reasoning can be applied to blocking traffic, the cost of false pos-
itives might be too large. Whitelists, as any other system can suffer from con-
figuration problems. In our analysis, we observed a number of alarms due to
rare activities, such as manual access to PLCs and hosts switching to backup
servers (or being accessed by backup clients), which might be overlooked while
building a whitelist. We recommend that, when whitelists are first deployed in
a real world scenario, flows that are not present in the whitelist should only be
flagged (raise an alarm). The network administrator should then decide if it is
an real anomaly or if it was a flow overlooked during configuration. Only after
administrators are confident that the configuration mistakes are solved, they
should consider using the whitelist to block traffic.

5.5.4 Limitation of the learning phase

Many of the observed alarms are the effect of a limitation of the technique used
for learning the initial whitelist, for example, the ones generated by manual
activities. These are connections which do not happen regularly, and it would
be impractical to extend the learning time in order to include them. The larger

5.6. Conclusions 103

the learning time, the larger is the chance of including an anomalous flow to the
whitelist.

In addition, some alarms were caused by the presence of new hosts, not ob-
served in the learning phase. Although changes in the topology are not common,
they should be taken into consideration when deploying our approach. Every
change in the network incurs an extra task of updating the whitelist accordingly,
either manually or by triggering a new learning phase. Note, however, that this
problem is not exclusive to our approach. Most, if not all, anomaly-based in-
trusion detection systems would require a similar update after a change in the
network, as the “normal” behavior has changed.

The limitation of the learning phase shows that network administrator’s
(and/or SCADA vendor’s) knowledge is necessary to build a complete flow
whitelist. However, relying only on this knowledge can also be dangerous, as
mistakes are likely to happen. For instance, the addition of flows representing
backup server connections or infrequent ssh connections might be overlooked.
Presenting a list of flows learned from network measurements as proposed in the
learning phase, would help administrators in identifying all acceptable flows.

5.6 Conclusions

An important contribution of this chapter, is the use real-world measurements to
study the feasibility of flow whitelists to detect potentially malicious connections
in SCADA networks.

Our first research question focused on how can we perform flow whitelisting
at the network level. We proposed the use of a “natural” flow aggregation key
that consists of the server and client IP address and a service, identified by the
IP protocol field and transport port number. The whitelist then resembles an
access control list at the network level. An entry on the list allows a certain
client to access a specific service running in a given server. In addition, we
proposed an approach to aid operators in creating an initial whitelist from a
given period of traffic. The goal of this learning phase is to aid operators to
identify all legitimate flows.

In RQ 5.2, we investigate whether flow whitelist sizes are manageable in
SCADA networks. We showed that differently from traditional IT networks,
where the number of legitimate connections is too large for the flow whitelisting
approach to be feasible, the connection matrix in SCADA networks is rather
sparse. After discarding the DPA anomalies, the size of the whitelists for the
analyzed datasets is manageable, considering the number of internal hosts.

104 5. Exploiting the Stable Connection Matrix

In RQ 5.3, we investigated the sources of instability in SCADA flow
whitelists. Undoubtedly, services using dynamic port allocation were the main
source of alarms in our analysis. These alarms can be eliminated by adding
to the whitelist the complete range of ports that could be allocated by these
services. However, we argue that a better solution would be removing them
altogether from these networks. These services reduce predictability of traf-
fic patterns, which can potentially be exploited to identify intrusion attempts.
Most of the remaining alarms are caused by a limitation the approach used to
construct whitelists, which, in real-world implementations, would be overcome
by using the knowledge of network administrators and system vendors when
creating them.

In summary, we have shown that our approach is a practical solution to
increase the security of SCADA networks. However, there is still room for
improvement. For instance, the flow definition could be extended using time
intervals. Remote sessions to PLCs could be further restricted, by allowing these
only during business hours. In addition, whitelisted flows could be monitored
based on the contents of their packets. An operator workstation might be only
allowed to issue read commands to PLCs and not write commands. In fact, the
approach we propose to detect anomalies in the periodic behavior in Chapter 6
implicitly defines a whitelist for the type of queries each client is allowed to
issue.

CHAPTER 6

Exploiting the Traffic Periodicity

SCADA networks are deployed to monitor and control devices in a field network.
To accomplish this goal, data is continuously retrieved from these devices, so
that a real time view of the infrastructure’s processes can be established. Typi-
cally, data is retrieved through an automated polling process, in which requests
are sent by the SCADA server(s) every predetermined interval, triggering re-
sponses from the field devices. Moreover, manual interventions, such as sending
commands to field devices, are rare. In Chapter 3, we have confirmed that
SCADA traffic exhibits a strong periodic pattern. In particular, all PLCs in our
datasets generate traffic in a periodic fashion.

In Chapter 5, we have shown that it is possible to exploit the connection
matrix stability to detect illegitimate connections in a SCADA environment.
However, the methods described in that chapter do not protect against attacks
that send malicious commands over legitimate connections. In this chapter, we
exploit the periodicity of SCADA traffic to also protect against such attacks.
The idea is to complement the flow whitelisting approach by monitoring the
contents of whitelisted connections, and, as a consequence, detecting attacks
such as the one described above.

The main contribution of this chapter is PeriodAnalyzer , an approach that
is able to learn periodic patterns in SCADA traffic. The learned model can be
used to protect SCADA protocol traffic against data injection and DoS attacks.
Although we focus on two protocols present in our datasets, Modbus [109] and
MMS [89], the principles presented here are applicable to other protocols as
well.

The remainder of this chapter is organized as follows. First, we present
the attack scenario and research questions addressed in this chapter in Sec-
tion 6.1. In Section 6.2, we discuss the communication model used to describe
the periodic traffic patterns and present the SCADA protocols considered in
our analysis. In section 6.3, we review literature with the objective of inves-

106 6. Exploiting the Traffic Periodicity

tigating whether existing approaches are applicable to learning periodic traffic
patterns. In Section 6.4, we discuss PeriodAnalyzer , a novel approach to learn
and detect changes in periodic traffic. Next, in Section 6.5, we evaluate the
proposed approach using real-world traffic measurements. In Section 6.6, we
discuss practical aspects of PeriodAnalyzer : how it can be used as real-time
IDS, how real-world attacks could be detected and how to optimize it. Finally,
in Section 6.7 we present our conclusions and discuss future work.

6.1 Attack Scenario and Research Questions

Consider the following scenario. An attacker gains control over (or manages
to impersonate) the SCADA server that is responsible for polling data from a
certain PLC in the field. The goal of the attacker is to send malicious commands
to the PLC over a Modbus connection. For instance, consider the diagnostic
register reset attack described in [77]. This attack consists of sending a message
with a specific function code, causing the target to clear all counters and its
diagnostic register, potentially causing the target to misbehave. When observing
this attack attempt from a flow perspective, all that is observed is a client
(i.e., the SCADA server) establishing a connection to a server (i.e., the PLC)
over Modbus. The flow-whitelisting approach discussed in Chapter 5 is not
able to detect this attack, since this connection has the same “signature” as a
whitelisted connection.

Leveraging this observation, we focus our attention to the connections used
to retrieve data from field devices. Based on the assumption that these periodic
request-responses form the majority of the data exchanged between SCADA
server and field devices, our goal is to learn the periodic patterns generated
by these connections, and then detect changes in the periodic behavior, which
represent potential security threats. To achieve our goals, we tackle the following
research questions:

RQ 6.1: How can periodic traffic patterns be learned?

We review the existing scientific literature for methods that can be used to learn
periodic patterns in time series. We show that they are not directly applicable
to our problem, and therefore, a new approach is required.

RQ 6.2: What fraction of the SCADA protocol traffic displays periodic
patterns?

6.2. Communication Model 107

Despite the fact that connections used to retrieve data from field devices exhibit
periodic patterns, it would be naive to expect that all traffic in these connections
is perfectly periodic. For instance, an operator might manually retrieve data in a
non-periodic fashion, causing new connections to be established. The objective
of this research question is to establish if a considerable fraction of connections
can be accurately modeled as periodic request-response exchanges, and, as a
consequence, verify if our approach is viable.

RQ 6.3: How can changes in the periodic pattern be detected?

Once we establish a method to learn periodic patterns and determine which
portion of traffic can be modeled, we investigate how changes in the periodic
behavior can be detected. We note that some changes might not be relevant from
a security perspective. For instance, packet loss can cause retransmissions, thus
breaking periodicity, however, packet loss and retransmissions are not a security
concern. Therefore, in addition to detecting changes in the periodic behavior,
we need to define which changes are relevant from a security perspective.

6.2 Communication Model

In this section, we describe a generic SCADA protocol communication model
used to motivate the requirements for an algorithm that can be used to learn
the periodic patterns generated by SCADA protocols. We also shortly describe
Modbus and MMS SCADA protocols, focusing on the aspects that are important
for our analysis.

6.2.1 SCADA protocol communication model

Arguably, the most important function of a SCADA system is to give operators
a real-time view of a remote physical process. This task is typically done by
periodically polling the PLCs in the field. Each polling instance basically con-
sists of a series of requests for different services performed by a PLC. Example of
such services are read and write commands for values monitored by these PLCs,
for instance, the pressure in pipes, the level of tanks, the pH of a solution and
the status of a valve (e.g., open or closed).

Our starting assumption is that the vast majority of the packets sent to
and from the PLCs will consist of a series of requests sent at regular intervals
and their respective responses. When observing the connections involving the
PLCs, such periodic patterns should be clearly observable. Note that we do

108 6. Exploiting the Traffic Periodicity

not expect that all network connections will necessarily show periodic patterns.
Some protocols define more complex services such as file operations, starting or
stopping programs and defining new data types, which are likely to be manually
triggered by operators, thus generated in a non-periodic fashion.

In order to motivate the requirements for an algorithm that can learn the
periodic behavior generated by SCADA protocols, we consider how an applica-
tion that generates this behavior can be implemented. When implementing the
application used to retrieve data from PLCs, a developer can make a number
of different choices, e.g., opening a connection each time a requests is sent or
sending all requests over a long lived connection, and these choices dictate how
periodicity is generated.

The application defines one or more cycles. Each cycle consists of all requests
that are sent with the same period. For instance, consider that requests R1,
R2, R3 and R4 are generated respectively at every 1 s, 1 s, 1 s and 2 s. In the
application, R1, R2 and R3 form cycle C1, which has a 1 s period, and R4 forms
cycle C2, which has a 2 s period.

Let us now consider now how these the messages that form such cycles are
sent over the network. The application can either establish a new connection
each time a new cycle iteration starts, or open a single connection and use
it for all iterations. In other words, when monitoring the traffic sent by this
application, one can either observe a set of “short-lived” connections being made
at periodic intervals, or a single “long-lived” connection in which requests are
sent periodically. It is also possible that the same connection is used to send
requests pertaining to multiple cycles, e.g., C1 and C2 being sent over the same
connection.

The order at which requests are sent in a cycle iteration is not necessarily
fixed. For example, consider again C1. In the first iteration the application
might generate requests in the following order: [R1, R2, R3]. However, in the
second iteration it might generate [R3, R1, R2]. This lack of order can be caused,
for instance, by a multithread implementation. In the most extreme case, the
program defines one thread for each request. In each iteration, multiple threads
will then compete for the open connection, and whichever thread gains access
will send its requests first.

Regardless of how the application is implemented, small variations in the
measured period of a cycle should be expected. Delays and jitter can be either
introduced by the network [154] or by the server generating the requests, for in-
stance the application can be preempted if the load on the server is high. Besides
delays, packets can be lost, either by the network (e.g., due to electromagnetic
interference) or by the measurement equipment.

6.2. Communication Model 109

In summary, the algorithm should be able to deal with the following character-
istics:

• Multiple cycles: sets of requests can be sent at different intervals.

• Periodicity at different aggregation levels: periodic patterns can be
observed as periodically made “short-lived” connections or “long-lived”
connections with requests sent periodically.

• Request reordering: multi-threading might cause requests within a cy-
cle to be reordered.

• Timing variations: variations in the measured period can be caused by
the network and application, and scheduler implementation.

6.2.2 Modbus and MMS

Modbus is a simple master-slave protocol originally designed to use serial lines.
The Modbus over TCP (or Modbus/TCP) standard [109] defines how Modbus
messages can be used on top of the TCP/IP stack. This is the version considered
in our work, and in this work we refer to it simply as Modbus.

In Modbus, the master always starts the communication by issuing requests
to slaves for read or write operations. Each request is processed and replied
independently by the slave, that is, Modbus has no concept of a session.

MMS [89] is a more complex protocol than Modbus, offering several capabil-
ities such as file operations, starting and stopping programs, and defining new
data types. In addition to these more advanced operations, MMS also defines
application-level sessions. Finally, MMS is not a master-slave protocol: message
exchanges can be initiated by either of the communicating hosts.

The MMS standard defines fourteen PDU types. Here we focus on the seven
PDU types that we observed in periodic traffic exchanges: confirmed request,
confirmed response, initiate request, initiate response, unconfirmed
request, conclude request and conclude response. The remaining PDU
types, such as, cancel request and error, should only be used in case of
abnormal situations, and should not be exchanged periodically.

A typical MMS message exchange is shown in Figure 6.1. Arrows from the
client to server represent request messages, while arrows in the opposite direction
represent response messages. After a TCP connection is established (not shown
in the figure), the initiate type messages are exchanged to establish an MMS
session. After the MMS session is established, confirmed and unconfirmed

110 6. Exploiting the Traffic Periodicity

service messages are exchanged. Confirmed service implies a request-response
exchange, while unconfirmed service does not trigger a response (e.g., reporting
an alarm condition). Once all requests are issued, the session is torn-down with
the conclude exchange.

Client

Server

...

session
setup

data exchange
session

tear-down

intiate

confirmed

unconfirmed

conclude

PDUs:

Figure 6.1: Typical MMS message exchange

In case the application sets up a new connection for each cycle iteration (see
Section 6.2.1), all messages are exchanged periodically including the initiate and
conclude. In contrast, in the case of a single connection for all iterations, the
initiate and conclude exchange should only happen once, possibly outside the
interval in which data is being captured.

The interested reader is referred to Appendix A for more detailed information
regarding Modbus and MMS protocols.

6.3 Related Work

In this section, we discuss why the approaches described in the literature cannot
be directly applied to our particular problem. We limit our survey to approaches
that are able to learn periodic patterns automatically.

6.3.1 Spectral analysis

Spectral analysis has been used to uncover periodicity in network traffic (e.g.,
[4, 24, 66, 67]). In this section we describe the lessons learned from a previous
work [13], in which we investigated the idea of detecting anomalies in the peri-
odic behavior of SCADA traffic based on well-known mathematical tools such
as the DFT and the Autocorrelation Function (ACF).

In the approach proposed in [13], the first step consists of generating a time
series representing the packets sent by a host, aggregated by transport port.

6.3. Related Work 111

The time series is then taken as the input signal for a spectral analysis, which
has as objective detecting the dominant frequencies at which packets are sent.
Subsequently, in the anomaly detection step, we track changes, such as new
cycles, missed iterations and increased noise level, which indicates increased
non-periodic activity.

In [13], we propose the use of AUTOPERIOD approach [148] to learn the
periodic behavior. AUTOPERIOD automates periodicity detection using the
periodogram and ACF of the input signal. The periodogram is used to extract
periodicity hints, i.e., periods for which the power component of a certain fre-
quency is above a certain threshold. The ACF is then used to either discard or
confirm these hints, and also provide a more precise estimate of the period.

Alternatively, the periodic patterns could be learned using the method pro-
posed by Argon et al. [4]. This method iteratively partitions the peaks observed
in the ACF, and returns the set of (P̂ , ξ), where P̂ is the inferred period and
ξ is a confidence value that quantifies the probability that the signal is indeed
periodic with the inferred period. Besides the input signal, the method takes
three input parameters: max slices, the maximum number of periods the algo-
rithm will attempt to find; min peaks, the minimum period of peaks in a slice
for testing for periodicity; and min prob, a threshold for peak identification.

The next step in the approach described in [13] is to study changes in the
learned periodic behavior. For this task, we propose the use of the discrete-time
Short-Term Fourier Transform (STFT), i.e., applying a sliding window to the
input signal and performing a FFT on each window. A spectrogram can be
created by plotting time on the x-axis, frequency on the y-axis and the squared
magnitude of the FFT (i.e., the “power”) is encoded using a gray or color scale.

Such spectrogram provides a visualization of how the energy content of the
different frequency bands vary over time, making it possible to observe: (1)
changes in the set of high energy frequency bands, indicating changes in periodic
burst intervals; (2) changes in the amount of energy in the same set, indicating
changes in the periodic burst size; and (3) increases in the amount of noise,
indicating increased non-periodic traffic.

The use of a sliding window introduces two parameters: window size and
step. The window size determines the number of samples within a window. The
choice of this parameter is a trade-off between frequency and time localization.
In an FFT, the number of samples given as input is the same as the number
of the discernible frequency bands in the output. Also, the spectrogram has a
single data point on the time axis per FFT. Therefore, the use of large windows
results in good frequency localization (high number of discernible bands), but
bad time localization (small number of data points in the time domain).

112 6. Exploiting the Traffic Periodicity

The step size parameter determines the number of samples the window moves
per FFT. By using small steps one can cope with large windows, as it increases
the number of data points in the time domain. Note however, that small steps
also mean that the time series for two consecutive FFTs are very similar, as
they will have a large overlap.

To understand how the spectrogram can be used to track changes in periodic
behavior, consider the following polling scenario. A client runs a process that
periodically requests some data from a server. A time series is constructed by
recording the number of packets flowing from server to client. The spectrogram
for this time series is shown in Figure 6.2.

0 10000 20000 30000 40000 50000 60000
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

Fr
e
q
u
e
n
cy

 (
H

z)

Low

High

P
o
w

e
r

Figure 6.2: Observing changes in periodic behavior through a STFT

For the first fourth of the time series, a single polling period of 3 seconds is
used. The corresponding frequency component is present at 1

3 Hz, which can
be observed as a horizontal red line in the spectrogram. After some time, a
second polling series starts, with a period of 5 seconds. In the spectrogram,
the corresponding frequency (0.2 Hz) and its first harmonic (0.4 Hz) become
apparent, as red horizontal lines. In the second half, the amount of responses
produced by the second polling instance is doubled, which can be observed as a

6.3. Related Work 113

(a) Timeseries - service 1

(b) Spectrogram - service 1

Figure 6.3: Detecting anomalies in service 1

darker shade of red in the corresponding frequencies. A large burst of packets
happens around 40000 s, which can be observed as a short increased amount
of energy across the whole frequency spectrum (note the yellow vertical line).
Finally, the amount of non-periodic data in the link is increased for the last
fourth of the sample. This can be observed by an increase in energy in all
frequencies (note the change from green to yellow across the y-axis range).

In Figure 6.3 and 6.4, we show the results of applying the approach to two
time series generated from real traffic traces. These figures use the same “power”
scale as in Figure 6.2. The time series represent all packets sent by a client to
a specific service. Two different services are considered. In this test, we use
a 10 Hz sampling frequency (1 sample per 0.1 s), as it seems a good trade-off
between processing time and accuracy.

114 6. Exploiting the Traffic Periodicity

Figure 6.3(a) shows the time series for the traffic sent to service 1. A few
peaks are present in the time series. These peaks in the time domain cause, as
any other non-periodic activity, an increase in noise in the frequency domain,
as the energy is spread over the whole frequency spectrum. The effects of these
peaks are clearly visible in the spectrogram for this time series as red and orange
vertical lines in Figure 6.3(b). Another interesting behavior is the intermittent
activity at around 0.95 Hz. The spectrogram suggests a periodic burst of packets
at this frequency, but not for the whole duration of the sample. We are not
certain of the causes of this behavior. This intermittent activity exemplifies the
first major shortcoming of detecting changes in the periodic behavior using this
method: there is a semantic gap between the behavior that can be observed
in the spectrogram and what causes it. Approaches based on the FFT and
ACF, like the one discussed in this section, simply identify the presence of
periodic activity, however they do not provide any insight which traffic causes
this periodicity. These techniques treat the time-series as an inseparable flow of
values [72]. In other words, these tools do not identify which packets contribute
to the periodic pattern and which do not.

To elaborate on this point, consider the example of a signal composed by
one pulse (e.g., one packet) every second. Now consider how this behavior can
be generated. It could consist of a single request being issued every second.
Alternatively, it could be a set of 4 different requests, each being sent every 4
seconds. In fact, any set of n requests being sent every n seconds could generate
the same signal, as long as they are equally spaced. Regardless of the value of
n, the period (correctly) identified by either the periodogram or by the ACF
is 1 s. In summary, there is no fixed relation between the period identified by
these techniques and the period of a cycle.

Figure 6.4 shows the “better behaved” traffic sent for a different service 2.
The spectrogram shows two main frequencies at 0.2 Hz (and its integer multiples,
or harmonics) and 0.5 Hz, visible as red horizontal lines. An increase in the noise
level can be identified after 15:00. Note the increased energy across the whole
frequency spectrum at this point (overall, the figure becomes less green and more
orange). A closer inspection of the data reveals that this increase is due to small
variations in the periodic burst interval. While before 15:00 the bursts have a
period very closed to 5 s, after 15:00 the period presents increased variation in
the range [4.8, 5.1] s. Note that this is an expected variation when considering
the fact that small network delays are common. This high sensibility to small
period variations constitutes the second major shortcoming of spectral analysis
methods.

6.3. Related Work 115

(a) Timeseries - service 2

(b) Spectrogram - service 2

Figure 6.4: Detecting anomalies in service 2

6.3.2 Automata

Based on the observation that the traffic exchanged between an HMI and a
PLC consists of requests for the same values being sent periodically, Golden-
berg and Wool [62] proposed to model Modbus traffic by means of DFA. In
their approach, the automaton captures the order at which requests and their
respective responses are normally exchanged and triggers alarms when an un-
expected transition, i.e., an unexpected sequence of two messages, is observed.
The proposed approach is able to automatically learn the automaton given a
training set. The authors validate their approach using two datasets captured
at a system used to monitor the campus power grid at Tel Aviv University.

In the proposed approach, each channel representing the communication

116 6. Exploiting the Traffic Periodicity

between an HMI and a PLC is described in a separate automaton. A channel
is identified by tuple (Master IP address, Slave IP address), except in cases
where the PLC serves as gateway chaining one or multiple PLCs. In this case,
a channel is identified by the 3-tuple (Master IP address, Slave IP address, Unit
Identifier)1. In the automaton, transitions are triggered by the observation of
a new message (either request or response), and each state is labeled with the
identifier of the last message received.

Formally, a DFA is defined as a five tuple (S,Σ, δ, s0, F), where S is a finite
set of states, Σ is a finite set of input symbols referred to as alphabet, δ : S×Σ →
S is a transition function, s0 ∈ S is start state and F ⊆ S is set of accept states.

In Figure 6.5, we show an example of the automaton used in their work. The
state space is composed by the different requests and responses observed by the
learning module. In the figure, each of the four states s1 to s4 are labeled either
as Qn or Rn, where Q denotes a request, R denotes a response, and n denotes
the order at which the messages were observed, i.e., Q1 is the first observed
request.

The alphabet is composed by four fields in the Modbus header,
specifically the 3-tuple (function code, starting address, quantity of

registers/coils). Requests are identified by this 3-tuple, and responses are
matched to requests using the transaction identifier field.

Similarly to the states, transitions are labeled either as qn or rn. Four types
of transitions are defined:

• Normal transitions represent the occurrence of the next expected symbol
in the periodic pattern;

• Retransmission is the recurrence of a symbol;

• Miss is the occurrence of a symbol out of the expected order, and;

• Unknown is the occurrence of a previously unknown symbol.

The start state is defined as the first request observed and no accept states
are defined, meaning the automaton continuously monitor a data stream.

Despite the low number of false alarms when testing the approach using
120 h of Modbus traffic, the approach presents the following two shortcomings.

First, even if a channel contains cycles with multiple periods, a single au-
tomaton will be used to model it. For instance, consider the case observed by

1For more information about Modbus features, such as PLC chaining, the reader is referred
to Appendix A.

6.3. Related Work 117

Q1
(S1)

R1
(S2)

Q2
(S3)

R2
(S4)

Normal
Miss

Retransmission
Unknown

Legend:

r1 r2
q1

q2

q1
r1

q2 r2

q2 r2

unknownunknownunknown

r2

q1 r1 q2

unknown

q1 r1

Figure 6.5: A 2-request Modbus automaton [62]

the authors for one of the monitored PLCs. Requests were issued for this PLC
at three different rates: a low frequency pattern with 24 h period, a mid fre-
quency pattern with 15 min period and a high frequency pattern, for which the
authors do not present the exact period. Modeling the traffic to this PLC in a
single DFA resulted in a very large chain of approximately 9.6 million states.
The authors acknowledge that such automaton would be difficult to learn, as a
large amount of “clean traffic” (i.e., traffic without the occurrence of anomalies)
is necessary. In addition, the resulting automaton would be inaccurate, as the
relative order at which messages are sent does not necessarily remain the same.
When a different order is observed, either miss or unknown transitions will be
taken.

To address this problem, the authors propose an extension that deals with
multiple periods by chaining multiple automata. However, the number of au-
tomata has to be manually defined, therefore the learning is no longer completely
automated. The authors describe a two-level approach, able to deal with the
mid and high frequency patterns described above. In the reported experiment
with the two-level approach, spurious alarms are still generated for the low
frequency pattern.

A second limitation is that the model does not directly capture timing as-
pects, that is, the automata capture only the order at which message are ex-
changed, but not the time between them. This limitation can be exploited

118 6. Exploiting the Traffic Periodicity

to perform an attack. For instance, an attacker could rapidly inject a valid se-
quence of requests in an attempt to overload the PLC. No alarm would be raised
in response to such attack since the sequence of messages would be identical to
the one learned.

6.3.3 Data mining

The problem of periodicity detection in time series also has been addressed by
the data mining community [97]. In this context, a time series is a sequence
of equally spaced time intervals in the form Di, where D is a symbol from a
certain alphabet and i is a time index. Therefore, a time series S takes the form
S = D1, D2, D3, · · · , Dn, which is commonly represented as a text string, e.g.,
abcdabyz.

Han and Yin [72] address the problem of mining partial periodic patterns in
symbolic time series. In their paper, the authors propose a method that searches
for imperfect and partial periodic patterns. In a perfect periodic pattern, the
pattern reoccurs in every cycle, rather than in most cycles, as is the case of the
imperfect counterpart. In a full periodic pattern, every symbol (approximately)
contributes for the periodic behavior, while in partial periodic pattern, only a
subset of the symbols contribute for the periodic behavior. In practice, partial
means that patterns are allowed to contain one or more “don’t care” symbols,
which represent any symbol in the alphabet. For example, the partial pattern
ab**, where * is the “don’t care” symbol, is perfectly periodic in the sequence
abcdabdeabxbabab.

Given a time series, a period and a confidence threshold (which quantifies
how imperfect the pattern is allowed to be), the approach proposed by Han
and Yin [72] searches for all periodic patterns present in the time series. The
limitation of having the periods to be known in advanced is addressed in more
recent works [19, 26].

Berberidis et al. [19] extend the approach by adding a pre-processing filter
step, where the ACF is used to estimate a set of possible periods for each symbol
in the alphabet. The algorithm proposed by Han and Yin [72] is then applied
to each of these periods.

Cao et al. [26] proposes an alternative approach centered on a novel data
structure called Abbreviated List Table (ALT). The ALT maintains occurrence
counts for all symbols in the input sequence and its design allows it to be
efficiently mined for partial periodic patterns using an algorithm proposed by
the authors.

6.4. PeriodAnalyser 119

We argue that the data mining algorithms discussed are not directly appli-
cable to the problem of learning periodicity in network traffic data. The typical
approach used to transform network traffic into the time series format presented
above is necessary to sample traffic at equally sized intervals. The first issue
then is defining what the time series represent. One possible approach is to
count the number of packet observed in an interval, as in the spectral analysis
approach discussed in Section 6.3.1. However, this choice would lead to the
same semantic gap problem discussed in that section.

Alternatively, one could label each interval with the message observed in
it, as in the automata approach discussed in Section 6.2.2. Intervals without
messages could be labeled with an extra “no message” symbol. However, this
choice would lead to scalability issues. Since the time series should have a single
symbol per interval, the sampling interval would need to be relatively small in
order to avoid multiple packets falling in the same interval. As a consequence,
the periodic patterns would likely contain a very large number of “no message”
symbols. For instance, using this approach, a request being issued at 15 min,
observed in a time series sampled at 1 ms, would generate a pattern of 900000
symbols.

We note, however, that even using 1 µs intervals cannot guarantee the re-
quirement of one symbol per time interval. TCP is allowed to merge multiple
application Protocol Data Units (PDUs) in a single segment, causing these
PDUs (e.g., requests) to be observed in a single interval [138].

A third possibility is to ignore time information and model traffic as a se-
quence of messages m1,m2,m3, · · · ,mn. However, this approach would have
the same limitation as [62] (Section 6.3.2). The lack of timing information can
be exploited, for instance, by rapidly injecting a valid sequence of messages in
attempt to overload a PLC.

More generally, the algorithms discussed in this section assume that the
periodic patterns are “hidden” and need to be “mined”. The problem we address
in this chapter, however, assumes that most of the sequence is periodic, and we
are ultimately interested finding changes in the periodic patterns and other
non-periodic events.

6.4 PeriodAnalyser

Given the limitation of existing approaches, in this section we describe
PeriodAnalyzer , a novel approach to learn periodic traffic patterns and detect
anomalies. The starting point of our approach is the DFA method [62] discussed

120 6. Exploiting the Traffic Periodicity

in Section 6.3.2. As in that work, we model communication to and from PLCs
as a series of requests, which are identified through deep packet inspection.

PeriodAnalyzer is composed by four modules: the Multiplexer, the Tok-
enizer, the Learner and the Monitor. Its basic architecture is shown in Fig-
ure 6.6. In this section, we describe an offline approach used to analyze our
traffic datasets. We elaborate on the necessary changes to design an IDS based
on PeriodAnalyzer in Section 6.6.2.

The Multiplexer, discussed in Section 6.4.1, receives the packets captured
from the network, and discards all packets that are not relevant for the analysis.
It then multiplexes the remaining packets based on an aggregation key composed
by the IP addresses and transport port numbers of server and client. We refer
to the group of packets with the same key as a flow.

Flows

Testing Set

Tokenizer

Monitor

Learner
Training Set

Alarms

CyclesMultiplexerPackets

Figure 6.6: Our approach

The Tokenizer, discussed in Section 6.4.2, then processes each flow indepen-
dently. The objective of this module is to reduce the amount of information
that needs to be processed by subsequent modules, by keeping only the neces-
sary information to identify the different requests and responses based on their
contents. The basic idea here is that traffic exchanged by PLCs consists of
requests for the same values (e.g., the pressure in a pump) repeated at fixed
intervals and their respective responses. The Tokenizer identifies the different
requests and keeps the information necessary to pair them to responses. In
this chapter, we focus on two protocols used to communicate with PLCs in our
datasets: Modbus and MMS. Therefore, the description of the Tokenizer is also
tailored to these two protocols.

The Learner processes a training set with the goal of finding all cycles, i.e.,
requests that are sent with the same frequency. Note that some (possibly all)
requests in a flow might not be sent in a periodic fashion, so the cycles learned
might contain only a subset of the requests present in a flow. In addition,

6.4. PeriodAnalyser 121

note that although we do not include the responses in the cycle definition, it is
still possible to detect anomalies caused by missing responses. The Learner is
presented in more detail in Section 6.4.3.

We acknowledge that the SCADA system operators might know the cycle
information or, alternatively, it could be extracted from configuration files [69].
Consequently, one could make use of this information instead of learning it from
the network traffic, eliminating the need for the Learner module. However, in
our experience with real-world utilities, this information is not readily available
or might be incomplete.

Finally, in Section 6.4.4 we discuss the Monitor. Once the training time is
over, all learned cycles are forwarded to the Monitor. The task of this module is
then to verify whether the testing set presents anomalies in its periodic behavior.
In particular, the Monitor generates alarms for the following events:

• New Request: generated when a request not previously processed by
the Learner is observed.

• Incomplete Cycle: generated when the end of a cycle iteration is de-
tected, but not all requests belonging to the cycle are observed.

• Long Iteration: generated when the time between the first request of
two consecutive cycle instances is larger than the learned period for the
cycle.

• Repeated Request: generated when the time between the recurrence of
a request is less than the learned period for the cycle.

• Unmatched Requests and Responses: generated when the Monitor
observes responses for which no requests were issued, and vice-versa.

6.4.1 Multiplexer

The objective of this module is to filter the SCADA protocol packets, discarding
the remaining traffic, and to multiplex the packets into different flows.

The filtering task is performed by identifying all packets that contain a
Modbus or MMS application header. Both protocols use TCP as transport
layer, and our filter choice means we discard all packets that do not carry appli-
cation data, such as the ones exchanged in the 3-way handshake and connection
teardown, and TCP ACK packets.

122 6. Exploiting the Traffic Periodicity

In Section 6.2.1, we discussed that applications can either generate multi-
ple connections periodically or use a single connections for all requests. As a
consequence, we create flows based on two keys covering both cases.

We call cases in which a new connection is set up when requests need to be sent
as short-lived flows. We used the following 4-tuple key for such flows:

(Server Address, IP Protocol, Server Port, Client Address)

We define long-lived flows for the cases in which a single connection carries all
periodic requests. We add the client port information, thus using the following
5-tuple key:

(Server Address, IP Protocol, Server Port, Client Address, Client Port)

All elements of these aggregation keys can be directly mapped to fields in the
TCP/IP header: server and client addresses are IP addresses, IP protocol is a
field in the IP header and server and client port are the transport port field.
Similarly to the Connection and Flow Creation module discussed of the flow
whitelisting approach presented in Chapter 5, the aggregation keys used here
require the identification of server and client. However, instead of using Algo-
rithm 2 (see Chapter 5), we can use a much simpler method. Both Modbus and
MMS use well-known TCP ports, 502 and 102 respectively; therefore we set the
server side to whichever side uses these ports.

The distinction between short- and long-lived allows for a fine-grained view
of the traffic. One of the advantages is that if some connections are later shown
not to carry periodic data, such as in the case of data being retrieved manually
or alarm conditions being reported by the PLCs, these can be separately consid-
ered, avoiding false alarms. In practice, we separate short and long flows based
on their duration. In our datasets, short flows typically have their duration
below a second.

The filtering task and the server side identification are the only parts that
need to be updated in the Multiplexer to support new protocols.

6.4.2 Tokenizer

The goal of this module is to transform the packets from different protocols
to a common format, which is later used by the Trainer and Monitor. Instead
of processing the full-packet information, the Tokenizer identifies the different
requests and keeps the information necessary to pair them to responses. As a

6.4. PeriodAnalyser 123

consequence, the Tokenizer is the only module that needs to be considerably
adapted in order to support new protocols. The filter in the Multiplexer also
needs to be updated, but we consider this to be a minor change.

For each received packet, the Tokenizer outputs a tuple formed by its time
stamp and a token. In a request the token consists of two parts: a message
identifier, used to identify the message and a pair identifier, used to pair re-
quest and response messages. In a response, the token consists only of the pair
identifier. Remember that whereas we expect the same requests to be period-
ically repeated (e.g., what is the pump pressure?), the contents of its response
are likely to change.

The token is based on application header fields, therefore its generation is
protocol dependent. In this work, we consider two protocols used in SCADA
environments: Modbus and MMS. We now described which fields are used by
the Tokenizer to generate tokens.

We generate the message identifier for Modbus requests based on the fol-
lowing fields: (length field, unit identifier, function code, data), and
we use the value present in the transaction ID field as pair identifier for both
requests and responses.

As discussed in Section 6.2.2, we focus on seven MMS PDU types that
we observed in periodic traffic exchanges: confirmed request, confirmed

response, initiate request, initiate response, unconfirmed request,
conclude request and conclude response. We generated the tokens based
on the following fields.

• Confirmed requests are composed of four fields. The invokeID field is used
as pair identifier. All remaining fields are used as message identifier: the
confirmedServiceRequest field, which contains details about the request
(e.g., a read request for a specific variable); and two optional fields.

• For unconfirmed requests all fields are used as message
identifier: unconfirmedService, which is analogous to the
confirmedServiceRequest, and one optional field. Note that con-
firmed requests do not trigger responses, so the pair identifier is not
applicable.

• There must not be multiple pending initiate and conclude requests [89]
between two end hosts, thus it is sufficient to use the string with the PDU
type name (i.e., “initiate” and “conclude”) as message and pair identifier.

Finally, we note that the optional fields of confirmed and unconfirmed requests

124 6. Exploiting the Traffic Periodicity

are not observed in our datasets, therefore, not actually used in practice. Also,
we note that adding new PDU types to the Tokenizer is a straightforward task.

Table 6.1 summarizes the information extracted from Modbus and MMS PDUs
to generate the message identifier and pair identifier that form a token.

Protocol PDU Message Identifier Pair Identifier

Modbus

request length field, unit

identifier, function code,

data

transaction ID

response None transaction ID

MMS

confirmed request confirmedServiceRequest and
optional fields

invokeID

confirmed response None invokeID

unconfirmed request unconfirmedService and
optional field

None

initiate request “initiate” “initiate”
initiate response None “initiate”
conclude request “conclude” “conclude”
conclude response None “conclude”

Table 6.1: Mapping Modbus and MMS PDUs to tokens

6.4.3 Learner

The objective of the Learner is to process each tokenized flow in a training set
with duration T , and learn its cycles and non-periodic requests.

A fundamental part of our algorithm is identifying potential cycles, which
we refer to as candidates. Remember that we do not assume that requests
are sent in a fixed sequence, so we cannot rely on the order requests are sent
to identify candidates. Instead, we make use of repeating requests to delimit
candidates; once a repeated request is observed a new candidate is created. If
two consecutive candidates do not have the same requests, we discard all but the
last candidate. The search for candidates is over when we identify N identical
candidates, where N is a manually set parameter.

For instance, consider a multi-threaded application sending four requests
abcd periodically. The following sequence is observed by the Learner: abcd

cdba dcba abcd. Using repeated symbols we are able to isolate the four itera-
tions. The symbol c is repeated at the 5th position, delimiting the first iteration.
Similarly, d at the 9th and a at the 13th positions delimit respectively the second
and third iterations.

6.4. PeriodAnalyser 125

Note also, that if we started to capture traffic at a later moment, say, at the
first d, the Learner would eventually synchronize to the periodic activity. The
first candidate would be dc, as d repeats at the 6th position (considering the
original sequence). Similarly, the second candidate would be dba, as d repeats
at the 9th position. After failing in these two attempts, the Learner would
then correctly synchronize to the periodic behavior, by identifying the third
and fourth candidates, respectively as dcba and abcd.

Using symbol repetition to delimit candidates also allows us to deal with
non-periodic requests, as long as they do not happen too often. More precisely,
the Learner can identify periodicity if N cycle iterations are observed without
the occurrence of a non-periodic request.

Once we identify a group of N candidates, we verify if they are indeed
periodic, as the grouping my have occurred by chance. For that, we calculate
the duration of each candidate. The duration of a candidate is defined as the
time between its first request and the first request in the following candidate.
We then verify if the difference between the maximum and minimum duration
of the tested candidates is within a threshold θ. If the candidates are periodic,
but their durations present a high standard deviation, setting θ to a low value
might cause the test to fail. In contrast, setting θ to high values might cause
the test to accept non-periodic candidates. In our tests, we set θ to 1 s.

If the sequence we are observing contains multiple periods, or too many
non-periodic messages, the algorithm will not be able to identify N identical
candidates. To address this limitation, we propose a preprocessing step, where
we group requests that are likely to belong to the same group. The requests
are grouped according to their number of occurrence in the training set. The
idea is that requests sent with the same frequency will occur roughly the same
number of times in the training set. In case multiple cycles are present in a
flow, they should have different numbers of occurrences and, thus, be separated
at this step.

Note, however, that even messages in the same cycle might have a different
number of occurrence, for instance, if the duration of the training set T is not
a multiple of the cycle duration(s) present in the training set, or if requests are
lost. We introduce a tolerance ǫ to deal with this issue. Requests with the same
number of occurrences, more or less ǫ, belong to the same group. In our tests,
we set ǫ to 1.

Algorithm 4 shows the pseudo-code for the Learner. The algorithm can be split
into 3 steps:

126 6. Exploiting the Traffic Periodicity

1. Group Requests. Count the number of occurrences of each request, and
form groups of requests with the same number of occurrences, considering
the tolerance ǫ.

2. Find Candidates. Explore each group searching for cycle candidates. A
candidate starts as an empty set. Requests are added to the candidate,
until a request is repeated, triggering the creation of a new candidate. If
N identical candidates are found, proceed to step 3. If it fails, iteratively
test all subset combinations of requests in the group. Requests failing
all subsets are reported as non-periodic. We stress that the order of the
messages is irrelevant, e.g., a candidate abc is identical to cab.

3. Test candidates. Extract the minimum (durmin) and maximum
(durmax) duration of all candidates, and verify if the difference is above

Input : A tokenized flow and parameters N, ǫ, θ

Output: A list of tuples (request set, durmin , durmax , durstd)
/* Step 1: group requests */

count request occurrences ;
group requests with same counter ±ǫ ;
for each group do

for each subset in group do

/* Step 2: find candidates */

for each request in subset do

candidates← N repeating cycles;
/* Step 3: test candidates */

durmin , durmax ← minimum and maximum candidate duration;
if durmax − durmin < θ

durstd ← cycle duration standard deviation;
store request set, durmin , durmax , durstd ;
continue to next subset;

else

reset candidates;

end

store remaining subset requests as non-periodic
end

end

Algorithm 4: The Learner algorithm

6.4. PeriodAnalyser 127

a threshold θ. If the test succeeds, return the requests in the candidate,
durmin , durmax and the standard deviation of the duration durstd . If it
fails, go back to step 2 and find another candidate set.

The algorithm implicitly assumes that one request does not appear in mul-
tiple cycles. As the request sent with faster frequency makes the information
retrieved by the one sent with lower frequency redundant, issuing the same
requests with different frequencies is inefficient and should not happen in prac-
tice. Alternatively, one could re-write the polling application, removing the low
frequency request without loss of information.

The time complexity of the algorithm is exponential with the number of
messages of the largest group identified in the first step of the algorithm, as all
subset combinations are tested. Suppose n is the size of the largest group. In
the worst-case, where all requests are not periodic, the algorithm has to test
(

n
n

)

+
(

n
n−1

)

+
(

n
n−2

)

+ · · ·+
(

n
1

)

= 2n−1 combinations. For instance, if the group
consists of messages 10 messages, in the worst-case, 1023 combinations need to
be tested.

Note, however, that we do not test all requests combinations blindly. In
step 1, initial groups are formed by the grouping requests with roughly the same
number of occurrences. Furthermore, non-periodic requests might be discarded
when searching for candidates in step 2. Keep in mind that we assume that
periodic request-response pairs represent the majority of the traffic, therefore,
we do not consider the case where flows have a high number of non-periodic
requests. As we will show in Section 6.6.3, in practice we always found the
Learner to finish after a relatively small time in comparison with the training
set size T .

Finally, as discussed in Section 6.2.1 small timing variations are expected,
therefore, in order to avoid false-positives when monitoring a cycle, we relax
the learned thresholds durmin and durmax based on the calculated durstd and
manually set parameters minthr and maxthr . Each threshold is updated as
follows:

durmin = durmin −max(minthr , 2× durstd),

durmax = durmax +max(maxthr , 2× durstd).
(6.1)

As we show in Section 6.5.3, setting minthr and maxthr can reduce the number
of alarms caused by (normal) timing variations.

128 6. Exploiting the Traffic Periodicity

6.4.4 Monitor

The goal of the Monitor is to watch the periodic flows uncovered by the Learner,
and report anomalies in the periodic behavior. Each cycle within a flow is
monitored independently.

The Monitor algorithm is depicted in Figure 6.7 as a flowchart. In the
flowchart, diamonds represent decision points, squares represent actions and
hexagons represent alarms. When a request is sent to the Monitor, it first
checks whether it was learned. If not, a New Request alarm is generated. If
yes, the request is forwarded to the corresponding cycle monitor.

Each cycle monitor has one state variable, termed IDLE, and one timer.
IDLE is true if all cycle requests are already observed in the current iteration,
and false otherwise. The timer is used to keep track of the duration of the
current iteration, by comparing it to the minimum and maximum learned cycle
durations, durmin and durmax , respectively. The timer is restarted every time
a new iteration starts. Initially, IDLE is false, and the timer starts with the
arrival of the first request.

When monitoring a cycle, we use a combination of the IDLE state and timer
to define where iterations start. There are three possibilities:

• In the normal behavior, a new iteration starts when IDLE is true, and a
request is received after the timer exceeds durmin , but not durmax .

• A Long Iteration alarm is generated when IDLE is true, but the next
request only arrives after the timer exceeds durmax .

• An Incomplete Iteration alarm is generated when IDLE is false, and a
request is received after the timer exceeds durmax .

If a request is received more then once in an iteration, aRepeated Request
alarm is generated. Finally, we also keep track of Unmatched Requests and
Unmatched Responses, i.e., a request for which no response is observed and
vice-versa.

6.5 Evaluation

In this section, we the evaluation of PeriodAnalyzer feasibility. We first present
the datasets used in the analysis in Section 6.5.1. The evaluation consists of two
tests. In the first test, we verify whether our assumption regarding connections

6.5. Evaluation 129

Cycle Monitor(s)

Token

Forward to
corresponding
Cycle Monitor

duration >
durmax?

New?

Idle?

duration >
durmax?

In this
Iteration?

duration <
durmin?

Complete?

IDLE = True IDLE = False

New Iteration

New Request!

Incomplete!

Repeated!

Long!

Repeated!Add to Iteration

Yes

No Yes

No Yes Yes No

YesNoYes
No

Yes No

No

Request?
Unmatched

Reply!

Yes

No NoMatching
Request?

Do nothing

Yes

Figure 6.7: Monitor diagram

to field devices is valid, that is, if the flows present in our dataset consist only of a
series of periodic requests and their responses. This is the topic of Section 6.5.2.

In the second test, discussed in Section 6.5.3, we monitor the learned cycles

130 6. Exploiting the Traffic Periodicity

for time-related anomalies. Our objective is to establish whether it is possible to
learn reliable duration thresholds from the training set, and avoid false-positives
caused by normal delays in network traffic.

6.5.1 Datasets

We start our discussion of the evaluation by presenting the used datasets. For
our analysis, we use SCADA measurements collected at three locations, previ-
ously discussed in Chapter 2. One location uses Modbus and two use MMS.

Table 6.2 shows the number of flows encountered by the Multiplexer in each
dataset.

Dataset # short flows # long flows
Modbus 0 20
MMS 1 2 20
MMS 2 11 14

Table 6.2: Short and long flows counters

We split each flow in the datasets in two parts: a training and a testing set.
In our datasets, short flows typically have their duration below a second, while
long flows last for approximately the whole dataset duration. Unless stated
otherwise, the training set consists of the first 30 min of a flow, and the testing
set is the remainder of the traffic. Considering that all datasets contain more
than one day of data (up to 13 days), and that the periods we observed in the
analysis presented in Chapter 3.3.2 for the SCADA datasets are in the order of
a few seconds, this choice is a good compromise between a sufficient number of
samples and the length of the datasets.

6.5.2 Validating the communication model

In this first analysis we evaluate whether our assumption that SCADA flows
consist of a series of periodic requests, and their responses, is valid. The ob-
jective of this analysis is two-fold. First, we study the number of flows that
can be modeled by our approach. In addition to describing the learned periodic
patterns, we manually inspect the flows to verify if they agree with the SCADA
protocol communication model described in Section 6.2.

6.5. Evaluation 131

We classify each periodic flow in our dataset according to three characteris-
tics: single or multi cycle, single or multi request (per cycle), and single or multi
connection (per flow). For a flow to be considered multi request, it is sufficient
that one cycle contains more than one request.

Second, we test whether the learned cycles are representative of the flow
behavior, or if new requests are observed in the testing set. We use the Monitor
and study the number of new request events in our testing sets.

In this part of the analysis we are not interested in time-related anomalies,
such as long iteration. Therefore, we do not aim at generating an accurate
estimative of the cycle duration thresholds durmin and durmax , setting then
initially to 0.1 s, and use only two candidates for learning (N = 2). Considering
that the periods observed for PLC traffic in Chapter 3 are at most 21 s, we
create a training set using the first 30 min of each dataset (i.e., T = 30 min),
which should be sufficiently large to contain 2 full cycles without the occurrence
of non-periodic requests. The impact of N , durmin and durmax on the number
of generated events by the Monitor is studied in Section 6.5.3.

In the plots presented in this section, each point represents a request. The
x-axis shows the time since the first displayed request, and the y-axis shows a
unique request identifier. For ease of visualization, the first request shown in
the figure is always a request that starts a cycle iteration. As a consequence,
often the first displayed request is not the first request observed in the training
set. Finally, responses are not shown in the figure.

Modbus dataset

In the Modbus dataset, 19 out of 20 flows are reported as periodic. We identify
four different periodic patterns in this dataset.

Single cycle/single request/single connection: The first and simplest
pattern is a single request issued every second. We exemplify this pattern in
Figure 6.8. In this dataset, 15 flows are fully described by this pattern, i.e., no
new request is observed in the testing set.

Single cycle/multi request/single connection: The second pattern is
shown in Figure 6.9. Like in the first case, the period is 1 second. However, the
number of requests is much larger, 20 in the example. Of the three flows that
present this pattern, two have 20 requests in a cycle, and 22 in the remaining
one.

132 6. Exploiting the Traffic Periodicity

Figure 6.8: Single cycle, single request flow in the Modbus dataset

Figure 6.9: Single cycle, multiple requests flow in the Modbus dataset

Interestingly, the order between the requests is not fixed. In the figure,
three different orders can be observed. For instance, see the iterations starting
at seconds 0, 1 and 5. The lack of order could have been caused by a multi-
threaded application, as anticipated in Section 6.2.1. Note that such periodic
pattern cannot be correctly modeled by the approach proposed in [62], as it
assumes that the order at which requests are issued is fixed.

One of these flows consists only of the learned requests, however this is not
the case for the other two flows. In the testing set, one exhibits two new requests,
generating a total of 44 alarms, while the remaining flow has three new requests,
generating a total of 12 alarms. All requests are reading commands and their
occurrence is restricted to small portions of the testing set, therefore we assume
this non-periodic activity is related to manual data retrieval.

6.5. Evaluation 133

Clock-like pattern: Two flows display the third pattern shown in Fig-
ure 6.10. Considering the initially used training set of 30 minutes (Fig-
ure 6.10(a)), these flows are (correctly) classified as non-periodic. Each flow
presents 30 different requests in the training set.

However, when we increase the training set size T , a periodic pattern arises.
In Figure 6.10(b), we show approximately the first 25 hours of the same flow.
It becomes clear that a group of 60 requests are exchanged hourly. Note also
there is indication of requests being exchanged daily (requests with ID from 61
to 87).

Upon closer inspection, we verify that all requests are for write operations.
The hourly requests, are sequentially writing values from 0 to 59, while most
of the daily requests are writing values from 0 to 24. In the iteration starting
at hour 22, marked red in the figure, two additional requests are made. We
speculate that these messages are a clock synchronization messages: minutes
being repeated hourly and hours daily.

To confirm our assumption, we redefine the training set time T as the first
25 h of the dataset for these two flows, and require a single candidate for training
(N = 1). Although the pattern has a 24 h period, the Learner algorithm requires
one additional hour to detect a repeated request, which delimits the end of a
candidate.

Indeed the hourly and daily patterns are repeated throughout the testing
set, but 69 new request alarms are also generated. Some alarms are caused by
previously unclear weekly pattern: requests writing values from 0 to 7. For in-
stance, in Figure 6.10(c) it is possible to observe that the extra requests marked
in red in Figure 6.10(b) are repeated after a week. In addition, some new re-
quests (marked in green) repeat after 9 days, suggesting an even longer cycle.
Finally, 10 new requests are observed at the iteration starting at day 13, which
are not periodic in this dataset.

The clock-like pattern can be seen as special case of the multi cycle/multi
request/single connection pattern.

Non-periodic pattern: The last observed pattern consists of write requests,
as in the clock-like pattern. However, even extending the training set for periods
longer than a day, not clear periodicity appears. We show the first 25 h of this
flow in Figure 6.11.

134 6. Exploiting the Traffic Periodicity

(a) Original training set

(b) Extended training set

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (days)

70

80

90

100

110

120

M
e
ss

a
g
e
 I
D

(c) Training set plus testing set

Figure 6.10: Clock synchronization flow in the Modbus dataset

MMS 1 dataset

In the MMS 1 dataset, 9 out of 23 flows are reported as periodic. All periodic
flows are fully described by our model, i.e., no new requests are observed in the

6.5. Evaluation 135

Figure 6.11: Non-periodic flow in the Modbus dataset

testing set. We observe four different patterns in the dataset. We start our
discussion with Figure 6.12, which shows two similar periodic patterns.

Single cycle/multi request/single connection: Figure 6.12(a) represents
a flow where two read messages are sent every 5 s. Two flows present this
behavior.

Single cycle/multi request/multi connection: Figure 6.12(b) represents
a flow that consists of a series of periodic connections made every 21 s. Each con-
nection consists of two requests, one initiate request followed by a confirmed

service request, and their responses. Interestingly, no conclude request PDUs
are observed in these connections. Five flows present this behavior.

Single cycle/single request/single connection: The two remaining peri-
odic flows have a single cycle with a single message over a single connection, as
previously depicted in Figure 6.8.

Non-periodic patterns: Five flows are reported as periodic by the Learner,
however, the Monitor reports over a million new request events for each of these
flows. One of these flows is shown in Figure 6.13. The learned cycle is shown
in Figure 6.13(a): three different cycles at 0.5 s, 10 s and 30 s.

However, after approximately 30 min new requests start being observed. In
Figure 6.13(b), we show the first day of this flow. A remarkable aspect of these
flows is the long periods of “well-behaved periodicity”, for instance, between

136 6. Exploiting the Traffic Periodicity

(a) Single connection with periodic re-
quests

(b) Periodic connections

Figure 6.12: MMS flow cycles examples in the MMS 1 dataset

hours 10 and 15. Such periods are common in the remainder of the trace, and
applying the Learner (and later the Monitor) to these periods reveals perfectly
periodic patterns.

When investigating this pattern in more detail, we observed that the
learned requests are confirmed requests issuing reading commands to an
unconstrained address. The new requests are also reading commands, but
to a slightly modified address. For instance, in some cases the newly requested
address is the previously requested address with some additional bytes.

We speculate that these new requests simply replace the old ones without
breaking the periodic pattern. Unfortunately, the meaning of this address is
not defined by the standard, and its interpretation is implementation specific.
Therefore, changing the Tokenizer to verify this assumption is not a trivial task,
which is left as future work.

Of the nine remaining flows, four are single connection flows issuing only
unconfirmed requests without any apparent pattern and five are single con-
nection flows consisting of several different confirmed request, including
get program invocation attributes, take control and initiate upload

segment. Given that the client-side of these flows is a configuration database
and the sessions are reasonably small (in the order of minutes) we speculate
these flows are human-generated.

6.5. Evaluation 137

0 10 20 30 40 50 60 70 80
Time (seconds)

0

1

2

3

4

5

6

7

M
e
ss

a
g
e
 I
D

(a) Seeming periodic flow

(b) New requests

Figure 6.13: Flow cycles examples from MMS 1 dataset

MMS 2 dataset

In the MMS 2 dataset, 16 out of 20 flows are reported as periodic. As in the
previous section, we start with the periodic patterns.

Single cycle/multi request/multi connection: Two flows consist of peri-
odically made connections, identical to the pattern encountered in the MMS 1
dataset (Figure 6.12(b)).

Single cycle/single request/single connection: Four flows consist of a
single request sent every second, a pattern previously encountered in the Modbus
dataset (Figure 6.8).

138 6. Exploiting the Traffic Periodicity

Multi cycle/multi request/single connection: The last periodic pattern
observed in this dataset is shown in Figure 6.14. In the figure, two cycles can be
observed: request 1 to 4 are sent every second, while request 5 is sent every 5 s.
Nine flows present this pattern, however the cycles vary in number of requests
and period.

Figure 6.14: Multiple period, multiple request flow in the MMS 2 dataset

Unexpected periodic pattern: One flow, shown in Figure 6.15, presents an
unexpected periodic pattern. Using the three cycles for training (N = 3), the
Learner detects that request 1 has a 0.5 s period, and request 2 is not periodic.
However, when manually inspecting this flow, we observe that every 10th request
1 is missing. Request 2 is reported as not periodic, although it can be seen as
a group of 2 requests being repeated every 2.5 s.

Our Learner algorithm fails to learn these patterns because they violate
the basic assumption that the same request cannot be repeated multiple times
within a cycle. As both requests observed in this flow are read commands, it is
not clear why such unusual pattern is used to retrieve data.

Non-periodic pattern: The four remaining non-periodic flows present pat-
terns previously observed in dataset MMS 1. Two flows are single connections
consisting of unconfirmed requests and two flows are initially periodic but
present a massive number of new requests, similarly to the one shown in Fig-
ure 6.13.

6.5. Evaluation 139

Figure 6.15: Non-periodic flow cycle example in MMS 2 dataset

Summary

In Table 6.3, we show a summary of our first test. Although we defined 8 classes
based on the number of cycles, requests and connections, only 4 are observed
in our datasets. Between the periodic flows the most common classes are the
single cycle, single request and single connection, with 21 occurrences, followed
by the multi cycle, multi request and single connection, with eleven occurrences.

Cycle Request Connection Modbus MMS 1 MMS 2
Single Single Single 14 2 4
Single Multi Single 3 2 0
Single Multi Multi 0 5 2
Multi Multi Single 2 0 9
Non-periodic 1 14 5
Total 20 23 20
#Periodic flows w/ new requests 4 0 0

Table 6.3: Number of flows per type

Most periodic flows observed in our datasets fit the assumption that the traf-
fic consists of a series of periodic requests and their responses. In the Modbus
dataset, five flows present new requests: two are likely to be caused by man-
ual activity and two are clock synchronization flows, which could not be fully
learned. A single flow is reported as non-periodic.

In the combined MMS datasets, 25 out of 43 flows are periodic. The high

140 6. Exploiting the Traffic Periodicity

number of non-periodic flows could be expected given the more advanced con-
trols supported by MMS, in comparison to Modbus. This difference reflects the
scenarios at which these protocols were designed to be used. Modbus is a typical
SCADA protocol, supporting only simple supervisory commands, while MMS
is a typical DCS protocol supporting more advanced commands, which enable
a more tight integration with closed control loop used in the process. Still, over
half of the flows consist only of a series of periodic requests.

In the MMS data we observed two patterns that are not captured by our
approach, but might still be modeled as periodic traffic. The first of these pat-
terns violates our assumptions that the same request is not repeated within one
cycle. In the second case, although requests seem to be exchanged at periodic
intervals, their content changes over time. However, if these changes could be
predicted, these flows might still be modeled as periodic data.

6.5.3 The impact of N

In the section we evaluate whether the cycle duration thresholds (durmin and
durmax) can be learned reliably. We first investigate the impact of the number of
candidatesN in the number of alarms generated by the Monitor. We expect that
the higher N , the better is the estimate for the duration of a cycle. However,
large values of N also increase the chances of learning some anomalous pattern
as normal behavior.

The analysis is performed as follows. For a given value of N , we plot the
number of alarms a in the x-axis and in the y-axis, the number of flows that
generate a or less alarms. This plot is similar to an empirical Cumulative
Distribution Function (cdf), however we use the absolute number of alarms,
instead of the cumulative probability in the y-axis. We vary N from 2 to 30
in increments of 2. We typically see no improvements for N > 20. For ease of
visualization, we show only results from 4 to 24 in increments of 4.

In this analysis we consider only alarms that are time-based. More precisely,
the total number of alarms reported in this section is the sum of the following
alarms: long iteration, incomplete iteration and repeated requests. The remain-
ing alarms are invariant with respect to N .

Modbus dataset

Figure 6.16 shows the results for the Modbus dataset. The lines for every value
of N overlap, i.e., the number of time related anomalies is the same regardless
the value of N .

6.5. Evaluation 141

Most flows generate no alarm, or a single one. Only three flows present
more than 10 alarms, which are caused by an “extra” iteration that does not fit
the periodic behavior. Repeated request alarms are generated for every request
sent in this “extra” iteration. In addition, these requests cause the Monitor
to become out of synchronization with the periodic pattern, which, in turn,
causes the Monitor to generate a few (false) alarms until it synchronizes to the
periodic pattern again. We speculate that this “extra” iteration is triggered by
a manual update. In a real-world deployment, these alarms could be suppressed
or aggregated in a single alarm. As we will discuss in Section 6.6.2, from a
security perspective, we are only interested in a high number of repeated request
alarms as that would be an indicative of a DoS attack.

Figure 6.16: Effect of N in the Modbus dataset

We do not consider the flows with a clock-like pattern (see the Modbus results
in Section 6.5.2) in this graph. Even when considering a single candidate for
learning (N = 1), the only observed alarms are the ones previously discussed in
Section 6.5.2.

MMS 1 dataset

N has a large impact on the number alarms in the MMS 1 dataset, as it can be
observed in Figure 6.17. For N = 4 and N = 8 (lines overlap), five flows present
more than 104 alarms. The number of alarms is reduces as N increases, until
N = 20. At this point, most flows present 10 or less alarms. No improvements
are observed using N > 20 (note that the lines representing N = 20 and N = 24
overlap).

Two of the flows still present more than 20 alarms with N = 20. In both

142 6. Exploiting the Traffic Periodicity

Figure 6.17: Effect of N in the MMS 1 dataset

flows, most alarms follow the repeat request to long iteration pattern exemplified
in Figure 6.18. In this example, a pair of requests are sent every 21 s. However,
the second iteration has a slightly lower duration, that is, the request starting the
third iteration is observed 20.4 s after the request starting the second iteration.
As a consequence, the Monitor fails to start a new iteration when observing
the 5th request. Instead the 5th and 6th requests (marked in red) trigger repeat
requests alarms. The Monitor starts a new iteration upon the arrival of the 7th

request (also marked in red), however, a long iteration alarm is triggered as the
measured duration of the iteration is 41.4 s. By manually adjusting minthr and
maxthr to 1 s, it is possible to eliminate these alarms.

Client

Server

21s 20.4s 21s

21s 41.4s
Measured

duration

Real

duration

Figure 6.18: Repeat request to long iteration alarm pattern

6.6. Discussion 143

MMS 2 dataset

Like in MMS 1, the number of candidates have a clear effect on the number
of generated alarms. Figure 6.19 shows that increasing N continuously reduces
the number of alarms, until N = 20 and no improvements are observed using
N > 20 (note that the lines representing N = 20 and N = 24 again overlap).

Figure 6.19: Effect of N in the MMS 2 dataset

Even with N = 20, four flows present a very high number of alarms, up
to 104. The repeat request to long iteration pattern is very common in these
flows. These alarms are caused by very large variations in the iteration duration;
the average duration is approximately 1 s, however, durations of 0.5 s are also
common in these flows. Given these large variations, it would be necessary to
manually set minthr to at least 0.7 s to completely remove these alarms.

Together these flows contain hundreds of TCP retransmissions, and the
largest number of unmatched request and unmatched responses in our datasets.
This suggests that the high number of alarms is caused by a bad link quality.

6.6 Discussion

In this section we discuss practical aspects of PeriodAnalyzer . In Section 6.6.1,
we discuss how real-world attacks can be detected using our approach. In the se-
quence, in Section 6.6.2, present how PeriodAnalyzer can be adapted to perform
real-time detection. Finally, in Section 6.6.3, we propose some optimizations.

144 6. Exploiting the Traffic Periodicity

6.6.1 Dealing with real-world attack scenarios

In this section, we describe attacks from some of the different categories pro-
posed in [74] and discuss how they can be detected with PeriodAnalyzer . Our
examples are taken from an open access list of real-world SCADA attacks sig-
natures used in the Quickdraw Intrusion Detection System2. The list includes
signatures to protect Modbus TCP3 and DNP34, two well-know standards for
SCADA communication.

Information Gathering attacks may precede other attacks and are an at-
tempt by the attacker to gather as much knowledge as possible of the target
system. A typical way to acquire this information is through scans, like the
Modbus TCP, Function Code Scan. In Modbus, function codes represent differ-
ent services, such as reading and writing single or multiple registers. Requesting
a non-implemented or disabled function code should trigger an error message,
allowing the attacker to map which services are available.

In general, attacks of this type require a large number of parameters (ad-
dresses, ports, function codes, etc.) to be tested. Therefore, they are likely to
make use of requests not observed during the learning phase, triggering new re-
quest alarms. Even if it is possible to craft an attack using the learned periodic
requests, the scan would still be identified as repeated requests.

Denial of Service attacks prevent a legitimate user to access a service or
reduce its performance. For example, the DNP3 - Unsolicited Response Storm
attempts to overload a DNP3 server by sending a number of unsolicited response
packets, normally used to report alarms. Again, if the attack uses new requests,
they will be immediately identified. The attacker could attempt to repeat the
messages from a cycle rapidly, but that would also generate a large number of
repeated requests.

Network attacks manipulate the network protocols. For instance, the
Modbus TCP - Clear Counters and Diagnostic Registers attack uses a single
packet with a specific code function to clear counters and diagnostics registers
in a SCADA server, in an attempt to avoid detection. The Modbus TCP - Slave
Device Busy Exception Code Delay attack consists of answering every request

2http://www.digitalbond.com/tools/quickdraw/
3http://www.modbus.org/
4http://www.dnp.org/

http://www.digitalbond.com/tools/quickdraw/
http://www.modbus.org/
http://www.dnp.org/

6.6. Discussion 145

with the “device is busy” message preventing a response timeout. Such attacks
rely on the use of uncommon requests, which would readily be identified as new
requests.

Buffer Overflow attacks try to gain control over a process or crash it by
overflowing its buffer. For example, the Modbus TCP - Illegal Packet Size,
Possible DoS attack sends a single packet with an illegal packet size, exploiting
a bug in the implementation of the protocol stack. This class of attacks relies
on forging invalid packets, which are by definition not commonly used, thus also
generating new request alarms.

In summary, a powerful line of defense created by our approach is the pro-
tection against data injection: only requests commonly used during normal be-
havior might be used to perform attacks. Furthermore, if attacks can be created
with such requests, they still need to be sent in a way that does not considerably
differs from normal periodic behavior, otherwise they will be detected.

It is important to stress that our goal is the detection of anomalies, i.e.,
deviations from the normal periodic behavior of the traffic. Such deviations are
not necessarily malicious. For example, a manual access to a PLC for testing
purposes would seem as an anomalous behavior and trigger alarms.

6.6.2 PeriodAnalyser as a real-time IDS

We identify three aspects that need to be changed in order to transform the
offline approach proposed in PeriodAnalyzer into a real-time IDS.

First, PeriodAnalyzer does not consider the dynamic nature of network flows.
In our offline analysis we consider that flows are unrelated, but that is not the
case in practice. For instance, two (long) flows in the MMS 1 dataset are inter-
rupted at a certain point. After a few minutes, we observe two new connections,
between the same end hosts, issuing the same requests as the previous connec-
tions. In our analysis we considered these four distinct flows, however, they are
clearly related and a real-time IDS should be able to cope with this situation.

To deal with this situation, we propose the following changes to the Monitor.
When initializing the Monitor, all learned flows, short- or long-lived, are associ-
ated with the same 4-tuple key (see Section 6.4.2). The Monitor then matches
incoming flows, raising alarms if non-learned flows are observed. Associating
the periodic requests of long-lived flow with the 4-tuple key allows the Monitor
to cope with the interruption problem described above, as both the interrupted
and new flows have the same key information.

146 6. Exploiting the Traffic Periodicity

Second, to better deal with non-periodic requests, we propose adding them
to a whitelist, possibly after approval from a network administrator. After
this change, requests observed by the Monitor would fall under one of three
categories: whitelisted requests, periodic requests and new requests.

The last aspect is that not all variations in the periodic behavior are relevant
from a security perspective. While detecting new request alarms are a powerful
protection against data injection attacks, the time related alarms might only
indicate performance issues, not security threats. For instance, most of the
alarms observed in MMS 1 are cause by large variations in the duration of an
iteration, which are possibly caused by normal network delays.

Considering only security aspects, repeated requests alarms become an in-
dicator for DoS attempts. While a small number of repeated requests do not
pose a security threat, a large number indicates a possible attempt to overload
the receiver, by rapidly repeating requests from a cycle. Long iteration alarms
indicate the senders has become inactive. However, SCADA applications are
designed to deal with delays [8], therefore accepting delays larger than those
learned from the data might be acceptable, or, even desirable. Finally, while
a low number of unmatched requests is not a serious threat, a high number
indicates that the receiver has become inactive.

6.6.3 Optimizing the learner

The algorithm used by the Learner to identify the cycles has a high run-time
complexity. In the worst-case scenario it has to test 2n− 1 combinations, where
n is the number of requests with approximately the same occurrence in the
training set (see Section 6.4.3).

In our datasets, this high complexity did not result in any practical problems.
We performed the tests with a standard desktop computer with a 2.66 GHz
Intel Core 2 Duo processor and 4 GB of RAM. When analyzing the flows in
our training sets, corresponding to 30 min of traffic, the Learner finishes after
a few milliseconds for most cases, and takes only approximately 100 ms in the
worst-case. These results are orders of magnitude higher than simply reading
the same flows from the disk (always in the order of a few microseconds), but
hardly a practical problem.

Finally, PeriodAnalyzer does not assume ordered requests and idle periods
between cycles. However, the candidate test operation can be optimized in
the case these assumptions hold. If the requests are always sent in a specific
order, the algorithm can immediately discard not-ordered candidates. If we can
assume a period of inactivity between cycles, i.e., the algorithm could use such

6.7. Conclusions and Future Work 147

“idle” periods to synchronize to the start of a cycle, by identifying the longest
inter-request time in a candidate.

6.7 Conclusions and Future Work

In this chapter we propose PeriodAnalyzer , an approach to learn and detect
anomalies in periodic network flows, common in SCADA environments. We
evaluate PeriodAnalyzer using three real-world traffic traces, covering two pro-
tocols: Modbus and MMS. Our results show that most flows of SCADA pro-
tocols such as Modbus can be accurately modeled by our approach. Although
more variation is encountered in DCS protocols, such as MMS, still a large
number of flows consist only of periodic requests, which can also be accurately
modeled by PeriodAnalyzer .

Our novel approach to learn periodic patterns in network traffic addresses
the limitations of existing approaches. We avoid the “semantic gap” of spectral
analysis by identifying which messages generate the periodic behavior. Also, we
directly capture timing information, making it possible to identify and monitor
the frequency at which messages are exchanged. Finally, our approach is able
to automatically learn multiple periods.

Our main contribution is an anomaly detection method that provides two layers
of protection:

1. Data Injection: The periodic patterns in SCADA protocol traffic are
generated by a polling mechanism that causes the commands sent towards
devices in the field network to be highly repetitive. These requests are the
source of the periodic behavior. Therefore, by learning which requests are
normally sent, we can effectively detect data injection attempts, and issue
alarms. In other words, we create a whitelist for the possible requests in
a flow.

2. DoS: The attacker might still be able to overload the PLC by sending
more (whitelisted) requests than the PLC is able to process, performing
a DoS attack. To detect this type of attack, we learn how often requests
are sent, and then issue an alarm if this number deviates too far from
the learned behavior. This approach also allow us to identify whether
a specific request (or a set of requests) is not sent after a long period of
time, for instance, in case the process responsible for issuing the request(s)
becomes inactive.

148 6. Exploiting the Traffic Periodicity

Further research efforts are required to enhance our offline approach in order to
create a real-time IDS. We also plan to improve the Learner and Monitor, by
testing if certain assumptions can be made about the periodic request cycles,
for instance checking if requests are sent in a fixed order. Also, the approach
should be extended to deal with other SCADA protocols, such as DPN3 [93]
and IEC 60870-5-104 [81].

Finally, we plan to investigate the use of PeriodAnalyzer for the generation
of synthetic traffic traces. By gathering more information regarding the cycle,
such as the distributions of inter-request time and cycle iteration duration, we
should be able to produce realistic traffic patterns.

CHAPTER 7

Conclusions and Future Work

7.1 Summary

Supervisory Control and Data Acquisition (SCADA) networks are commonly
deployed to aid the operation of large critical infrastructures, including some
that are considered to be essential for our society, such as water treatment and
power generation facilities. In the past, these networks were completely iso-
lated and relied on special-purpose hardware and software. However, under
pressure to increase productivity and cut costs these networks are becoming
increasingly interconnected to corporate networks, and even the Internet, thus
bringing new security threats. As incidents become more common, the vulner-
ability of SCADA networks has received the attention of industry, government
and academia.

In this thesis, we addressed the problem of intrusion detection of SCADA
networks. Despite the increasing attention on the topic, our review of the lit-
erature revealed that publications on SCADA networks generally do not rely
on empirical data as obtained from real-world measurement. In our view, how-
ever, measurements must play an essential role in validating results in network
research, and can sometimes lead to surprising insights.

To the best of our knowledge, this thesis provides the first extensive anal-
ysis of real-world SCADA network traffic traces. We monitored and analyzed
traffic captured at SCADA networks used in the utility domain: two water
treatment facilities, one gas utility and one (mixed) electricity and gas utility.
We addressed two research questions:

RQ 1: Does SCADA network traffic differ from the traditional IT network
traffic? If yes, what are these differences?

We showed that SCADA network traffic is relatively “well-behaved” in compar-
ison to traditional IT network traffic. In Chapter 2, we showed that traditional

150 7. Conclusions and Future Work

traffic models are ill suited to describe SCADA traffic. For instance, the di-
urnal patterns of activity commonly observed in traditional IT networks are
not present in SCADA networks. The main reason for this difference is that
while in most of traditional IT networks traffic is triggered by human behavior,
in SCADA networks, most traffic is generated automatically, for example, by
the polling mechanism used to retrieve data from devices in the field network,
such as Remote Terminal Units (RTUs) and Programmable Logic Controllers
(PLCs).

In addition to the lack of diurnal patterns, we showed that, differently from
traditional IT networks, SCADA traffic does not present self-similar behavior
and that neither heavy tail nor lognormal distribution provide a good fit for the
distribution of connection sizes.

In Chapter 3, we provided empirical evidence for two commonly held assump-
tions regarding SCADA traffic. We confirmed that SCADA networks present a
stable connection matrix, that is, we showed that, when comparing to its tra-
ditional IT counterpart, the connection matrix of SCADA networks presents
considerably less and smaller changes over time. We also confirmed the pres-
ence of traffic periodicity in SCADA networks. Periodic patterns are particularly
common in connections involving PLCs, due to the polling mechanism used to
retrieve data from the field.

In summary, we showed that SCADA traffic is considerably different from
traditional IT traffic. These differences characteristics, combined with the se-
curity requirements discussed in Chapter 4, are the motivation for specialized
anomaly detection solutions for the SCADA domain. Which brings us to the
second research question:

RQ 2: How to exploit SCADA traffic characteristics to perform Anomaly
Detection?

To address this research question, we proposed anomaly detection methods that
are able to exploit the SCADA traffic characteristics studied in Chapter 3: the
stable connection matrix and traffic periodicity.

To exploit the stable connection matrix, we revisited a well-known intrusion
detection technique: whitelisting. In Chapter 5, we proposed a flow whitelist-
ing approach that resembles an access control list at the network level. We
showed that our approach is viable, as flow whitelists have a manageable size,
considering the number of hosts in the network.

In Chapter 6, we proposed PeriodAnalyzer , a novel approach that exploits
the traffic periodicity to detect traffic anomalies. We observed that SCADA

7.2. Main Findings and Implications 151

protocol connections consist of a sequence of periodic requests and replies. Our
approach uses deep packet inspection to automatically identify the different
requests belonging to each connection and the frequency at which they are
issued. Once such normal behavior is learned, PeriodAnalyzer can be used to
detect data injection and Denial of Service attacks.

7.2 Main Findings and Implications

In this section we discuss the main findings of this thesis and their implications.

7.2.1 SCADA network traffic show simpler patterns than
traditional IT traffic

The investigation of differences between SCADA and traditional IT network
traffic, proposed in Research Question 1, revealed that the former present sim-
pler patterns than the latter. Our results showed, for example, that SCADA
traffic displays periodic traffic patters, does not present self-similar behavior,
and its connection matrix is considerably more stable than that of traditional
IT traffic.

One of the main causes of the high rate of false alarms in anomaly detection
methods developed for traditional IT networks is the enormous variability of
network traffic [133]. Given that SCADA traffic present simpler traffic patterns,
our results indicate that anomaly detection methods are particularly promising
for SCADA networks.

7.2.2 Despite the high regularities, changes in SCADA
network traffic do occur

Given the stability of the connection matrix and the displayed traffic periodicity,
one could expect that SCADA traffic is easily predictable. However, our results
indicate that this is not the case.

In Chapter 3, we showed that, small changes in the connection matrix are
common. Also not all traffic is periodic. For instance, when modeling traffic
periodicity in Chapter 6, we observe that some connections between SCADA
servers and PLCs are not periodic. Such irregularities need to be incorporated
in the models that describe SCADA operation. For instance, an intrusion de-
tection system that generates alarms for each newly observed connection, as
proposed in [144], would generate a considerable number of false alarms. The

152 7. Conclusions and Future Work

finding of these irregularities support our earlier statement that measurements
are essential to network research.

7.2.3 Whitelisting is a promising approach for detecting
intrusions in SCADA networks

Whitelisting consists of explicitly enumerating which entities may access which
resources. Any access attempt not described in the whitelist should be denied.
Despite the high level of protection that can be achieved if correctly config-
ured, a common problem with this approach is that maintaining whitelists is
burdensome for the user, due to the large number of changes [54]. For exam-
ple, constructing a list of all legitimate connections in a traditional IT network
will not be a practical solution. There are simply too many possible legitimate
connections, thus the size of such a list would be unmanageable. However, in
Chapter 5, we showed that this approach is feasible in SCADA networks.

Nonetheless, as noted before, changes in the connection matrix do occur in
SCADA networks. Therefore, in Chapter 5, we discussed practical issues when
deploying a flow-level whitelist in a SCADA network. We identified two main
sources of instability in the connection matrix: manual access and dynamic
port allocation services. As blocking legitimate connections can cause severe
disturbances in SCADA networks, we suggested only generating alarms until
the network administrators are convinced that all configuration mistakes in the
whitelist are solved.

We also noted that the traffic model created by PeriodAnalyzer in Chap-
ter 6 can be considered as a form of whitelisting. The model generated by
PeriodAnalyzer determines which messages can be exchanged between the
SCADA server and a PLC, i.e, a whitelist where the entities are the SCADA
servers, and the resources are the messages these servers are allowed to send to
PLCs.

7.2.4 Periodicity of SCADA traffic can be exploited to
detect anomalies

The periodicity of SCADA protocol traffic suggests that SCADA traffic is pre-
dictable. However, in Chapter 6, we argued that existing methods are not
suitable for learning periodic patterns observed in SCADA traffic. We therefore
proposed a new approach, called PeriodAnalyzer , which is capable of automat-
ically learning communication patterns generated by SCADA protocols.

7.3. Future Directions 153

The proposed approach provides two layers of protection. First,
PeriodAnalyzer provides protection against data injection by generating a
whitelist of regularly sent requests. However, an attack could still be performed
with whitelisted requests. The attacker can perform an Denial of Service attack
by issuing requests faster than the target can process them. By learning the
frequency at which requests are normally exchanged, the proposed approach
provides a second layer of protection against this type of attacks.

7.3 Future Directions

An intrinsic characteristic of SCADA systems is their close relationship with a
physical process (e.g., water treatment or electricity generation). An interesting
research topic not investigated in this thesis is to model the physical process
controlled by the SCADA system. Traffic exchanged in SCADA networks can
have an immediate impact in the physical systems, so a model that combines
network traffic and physical process information might provide a fruitful source
of information for anomaly detection.

Understanding the relationships between SCADA traffic and the physical
process is fundamental in assessing the impact that attacks have on the phys-
ical process. For instance, in Chapter 6 we propose to generate alarms when
requests are not observed after a certain period. However, making a precise
estimation of the maximum period that the system can operate without these
messages requires knowledge regarding the physical process. Therefore, besides
supporting anomaly detection, examining the relationships between the SCADA
system and the physical process can aid the development of realistic risk assess-
ments. A first step in this direction is proposed by Cárdenas et al. [31]. In
this work, the authors propose an anomaly detection mechanism that is capable
of predicting the physical process response to control inputs received via the
network.

In addition to protecting the SCADA system, it is important to address
the security of industrial systems as a whole. An interesting challenge in this
area is to understand the interdependencies between the various sectors that
deploy SCADA technologies. An evident example is the dependency that vari-
ous systems have in the power grid. Without electricity gas pipelines, refineries,
irrigation, telecommunications, banking and other systems will halt [137]. De-
pendencies can also be also found within a single domain. For instance, failures
in one power substation can have a cascading effect, bringing the whole power
grid down [124]. The dependencies between the various components of waste

154 7. Conclusions and Future Work

water a treatment facility have been studied in [61]. In this work, Hybrid Petri
nets with a single general one-shot transition have been used to analyze the
survivability of the system under a number of scenarios, such as heavy rainfall
and under the failure of components (which could be cause by an attack). [61]
is the first work capable of predicting the impact of failures in such a system in
a quantitative way. Such analysis can provide useful insight in which security
issues should be addressed with priority.

The anomaly detection approaches described in this thesis could also benefit
from further research. For instance, the flow-whitelisting approach discussed
in Chapter 5 could be extended to include time. For instance, traffic related
to human activity might unlikely outside business hours. Also, PeriodAnalyzer
has been tested using only two SCADA protocols, Modbus and MMS. Future
research should include validating the concepts proposed in this thesis to other
protocols, such as DPN3 [93] and IEC 60870-5-104 [81].

APPENDIX A

SCADA Protocols

A.1 Modbus

Initially designed by Modicon in the late 70’s, Modbus [109] is a serial commu-
nication protocol used to connect industrial devices. It later became an open
standard, managed by the Modbus Organization1. It’s simplicity contributed
to it’s widespread adoption becoming particularly predominant in the gas and
oil sectors [77].

Modbus is a master/slave protocol, that is, only one of the communicating
hosts, termed master, can initiate message exchanges. For each request made
by the master, the slave answers with either a normal response or an exception,
indicating some error has occurred. A slave never sends a message, unless
requested by its master.

More recently, Modbus has been extended to support the TCP/IP stack
(Modbus TCP). Note that, even in its TCP/IP flavor, Modbus still is a mas-
ter/slave protocol. In this case, the slave is termed “server”. The server contin-
uously listen for incoming TCP connections on port 502. The master is termed
“client”, which actively opens TCP connections. In a given TCP connection the
master and slave roles are fixed, however they can be reverse in other connection
between the same hosts.

The Modbus TCP header is shown in Figure A.1. It consists in the following
fields:

• transaction identifier is used to match replies to queries.

• protocol identifier is always set to 0 for Modbus messages, and other
values are reserved for future extensions.

1http://www.modbus.org/

http://www.modbus.org/

156 A. SCADA Protocols

Transaction
Identifier

Protocol
Identifier

Length
Field

Unit
Identifier

Function
Code

Data

2 Bytes 2 Bytes 2 Bytes 1 Byte 1 Byte 252 Bytes
(Maximum)

Figure A.1: Modbus protocol data unit

• length field is the size in bytes of all fields to its right, namely unit

identifier, function code and data.

• unit identifier is typically used when for communicating with multi-
ple serial (i.e., not TCP/IP compatible) slaves via a TCP/IP gateway.
Each, so-called, “chained” slave can be addressed via its unique unit

identifier. In case this feature is not used, the field should be set to 0.

• function code identifies different operations, such as read and write. The
standard defines three types of function codes: (i) public function codes
have their meaning defined in the standard, (ii) user-defined function codes
can be used by vendors for non-standard operations, and (iii) reserved
function codes are kept for legacy operations.

• data carries the content of the message and its specific format and size
are dependent on the function code. For instance, a request to read a
coil (function code 1) code implies a data field composed by a starting
address field and a quantity of coils field, each of 2 bytes. The re-
sponse for the same function code contains a byte count field of 1 byte
and a coil status containing 1 byte for requested coil.

Most public function codes relate to read and write operations on the different
data types defined in the standard, and to diagnostic functions. The only ex-
ception is function code 43, which relates to encapsulating other protocols over
Modbus.

Modbus defines only four basic data types (Table A.1): discrete inputs, coils,
input registers and holding registers. The two “input” types are read-only, while
the remaining two can also be written by the client. The two “register” types
are 16 bits long, while the remaining two are a single bit.

Each data type is addressed separately by a 16-bit field, allowing 65536
entries for each data type. Different function codes operate on different data

A.2. MMS 157

name access length

discrete input read-only 1 bit
coil read-write 1 bit

input register read-only 16 bits
holding register read-write 16 bits

Table A.1: Modbus data types

types. For instance, function code 1 reads coils and function code 2 read discrete
inputs. Read operations are defined over a contiguous sequence of values (up
to 2000 for 1-bit types or 125 for 16-bit types). To read a value, the client
determines the starting address and the quantity of values that should be read.
Writing multiple values is also possible, but in this case, different function types
are used. For instance, function code 5 writes a single coil and function code
15 writes multiple coils. Note that the address mapping is completely vendor
dependent.

Finally, we note that Modbus does not provide any security feature. Mes-
sages are exchanged in “plain text” and no authentication is performed; requests
from any source will be accepted by a Modbus server.

A.2 MMS

The Manufacturing Message Specification (MMS) protocol [89] was initially de-
veloped by General Motors, as part of its Manufacturing Automating Protocol
(MAP) project. ISO Technical Comitee (TC) 187 adopted the MMS specifi-
cation as part of its efforts in creating a non-industry specific communication
protocol, which resulted in the standard ISO/IEC 9506. This standard consists
of six documents:

• Part 1: Services

• Part 2: Protocols

• Part 3: Companion standard for robots

• Part 4: Companion standard for numeric control

• Part 5: Companion standard for programmable logic controllers

158 A. SCADA Protocols

• Part 6: Companion standard for process control

Part 1: Services describes the Virtual Manufacturing Device (VMD) and the
messages (or services) that can be exchanged between hosts. Part 2: Proto-
cols describes the communication rules, i.e., the order at which messages are
exchanged and their encoding, and the interfaces with the other protocol layers.
The companion standards (Parts 3 to 6) define domain specific information.

One of the central concepts of MMS is the VMD model, depicted in Fig-
ure A.2. The VMD determines how a client (e.g., a SCADA server) can interact
with a server (e.g., a PLC). The VMD can be seen as an abstract description
of a real industrial device, which is described by means of objects and services.
The standard defines 15 objects, such as variables, variable type definitions,
programs, files and journals (historical data); and over 80 services, including
creating and deleting of objects, reading and writing variables, uploading and
downloading files, and starting and stopping programs.

Modbus
Client

VMD

Object

Object

Object

Field
Device

Field
Device

Field
Device

Field
Device MMS

Server
Network

Services

Figure A.2: MMS Communication Model

To perform these services, MMS defines fourteen basic PDUs, which can be
grouped as follows:

• Confirmed : are messages used to start confirmed services, such as reading
and writing variables and starting programs. A confirmed request implies
either a response or an error as response.

• Unconfirmed : are services that do not require a response.

• Reject : are used in response to invalid messages. For instance, in the case
a message exceeds the agreed maximum PDU size.

• Cancel : are used to abort previously sent messages.

A.2. MMS 159

• Initiate: are used to establish a MMS session between to hosts. During the
initiate message exchange, the hosts can negotiate the parameters used in
the connection according to their capabilities.

• Conclude: are used to tear-down a previously established MMS session.

With exception of unconfirmed and reject, each of these groups contain three
types of PDUs: request, response and error. Like Modbus, request messages
can be replied with either a response or an error message. However, differently
from Modbus, MMS is not a master/slave protocol, as both sides are allowed to
initiate a message exchange.

MMS uses the Abstract Syntax Notation One (ASN.1) [88] for defining its
objects and services. It defines 13 basic data types, including boolean, integer
and two types of floating point data. To access an object, MMS distinguishes
between named and unnamed objects. The standard define three types of named
objects:

• VMD specific: These object names are unique, they are always the same
regardless of the client accessing then.

• Domain specific: A domain is an association of objects (e.g., variables,
programs, files, etc. . .), and a VMD might contain multiple domains. A
domain specific variable have a unique name within a domain, but the
same name might represent another object in a different domain.

• Application association specific: A connection between a client and a
server is termed a application association. Application association specific
objects are only valid within such a connection.

Unnamed objects are accessed by an address. The specification defines three
types of address:

• Numeric: represented by an integer (unsigned32).

• Symbolic: represented by a character string (VisibleString).

• Unconstrained: represented by a (“untyped”) byte string (OCTET
STRING).

We note that the distinction between named and unnamed refers to how an
object is accessed, and not to the object itself. For example, a measurement
value (e.g., the pressure of a pump) can have a numeric address (e.g., 125) and

160 A. SCADA Protocols

a domain specific name (e.g., “Tank2$Pump3$Presure”). A basic difference
between these types is that named objects can be manipulated, i.e., defined and
deleted, while the address used by a unnamed object is fixed.

MMS defines access methods for objects, but these offer little security, if
any. The access method is managed by a special object called access control
list. When a named object is defined, it should contain an access method field.
If this field contains the value public it is accessible, and if it contains any other
value, it is not accessible. However, no mechanism is in place to prevent the
creation of a new named object, which replicates all attributes of a non-public
object, but changes the access method to public. Furthermore, unnamed objects
always have their access method set to public. Finally, the implementation of
the access control list object is optional, and it does not seem to be commonly
implemented [134].

Besides the access method, MMS does not have any security service. The
standard suggest that if security is a concern, it should be implemented by other
layers of the protocol stack.

A.3 IEC 60870-5

The IEC standard series 60870, elaborated by TC 57, specifies SCADA systems
for the electrical engineering and power systems domain. Within TC 57, working
group 3 have designed the 60870-5 series [79], called “Telecontrol equipment and
systems”, which originally consisted of 6 documents:

• 60870-5-1: Transmission Frame Formats

• 60870-5-2: Data Link Transmission Services

• 60870-5-3: General Structure of Application Data

• 60870-5-4: Definition and Coding of Information Elements

• 60870-5-5: Basic Application Functions

• 60870-5-6: Guidelines for conformance testing for the IEC 60870-5 com-
panion standards

These standards provide definitions for both link and application layers of the
OSI model. The companion standard IEC 60870-5-101, describes the usage of
the 60870-5 series for communications with an RTU over a serial link connec-
tion, and the companion standard IEC 60870-5-104, extends the application

A.3. IEC 60870-5 161

Start byte

2
0

2
7

Length of APDU

0

0

Send sequence number

Receivce sequence number

Send sequence number

Receivce sequence number

(a) I-Format

Start byte

2
0

2
7

Length of APDU

0

100

0Receivce sequence number

Receivce sequence number

(b) S-Format

Start byte

2
02

7

Length of APDU

0

0

0

TESTFR STOPDT STARTDT

con act con act con act
1 1

(c) U-Format

Figure A.3: The three APCI formats

layer described in IEC 60870-5-101 allowing communications over a TCP/IP
connection.

The PDU defined in IEC 60870-5-104 can be divided in two parts: the
Application Protocol Control Information (APCI) and the Application Service
Data Unit (ASDU). An APCI have three possible formats, shown in Figure A.3.
The types are distinguished by the first and second bits at the third byte (termed
control octet 1) of the APCI.

• Information (I-format): Contains an ASDU, which is used to send
application data, and sequence numbers for both sent and received data,
which are used for confirmed transmission. I-format frames are identified
by “0” in the first bit of the control octet 1.

• Supervisory (S-format): Contains only a sequence number for the re-
ceived data. Used for acknowledging the receipt of I-format frames. S-
format frames are identified by the sequence “10” in the first two bits of
the control octet 1.

• Unumberd (U-format): Are used for 3 types of connection management
functions. STARDT is used to initiate a data transmission and STOPDT
to end it. TESTFR is used to check if the communicating hosts is respond-
ing. The act bit represents a request and the con a (positive) response.
U-format frames are identified by the sequence “11” in the first two bits
of the control octet 1.

Application data is sent according to the ASDU format defined in IEC 60870-
5-101 (Figure A.4). It consists of the following fields:

162 A. SCADA Protocols

• Type identification: The type of the information object sent. All
information objects sent in the same ASDU (up to 127) have the same
format. Of the 256 possible values, 127 are reserved for “private” use, 59
are defined in the standard and the remainder is left for future extensions.

• Variable structure qualifier: Contains information regarding the
number of information objects sent in the ASDU and if they refer to a
single information element or a sequence of information elements.

• Cause of transmission: Contains information indicating the data ac-
quisition method in use. E.g.: cyclic/periodic, spontaneous and requested.

• Originator address: Used in case a host is used as “concentrator” re-
laying messages from other hosts. In this case, the originator address is
used to identify the original sender. The field is set to 0 otherwise.

• Common address of ASDU: Contains the “station address” of the sender.
The field can also be set to 0, meaning the address is not used, or to 65535,
meaning the broadcast address.

• Information object address: Identify the address of the requested ob-
ject.

• Set of information elements: Contains the actual data. Its size de-
pends on the type identification. For instance, the type identification

1 has a single byte, type identification 2 has 4 bytes, and the type

identification 30 has 8 bytes. All these type identification request a
single-point information (1 byte), but using different time tags.

A time tag is a timestamp used to guarantee that the information object sent
is up-to-date. The original IEC 60870-5 series defines 3-byte time time tags,
encoding hour, minute and second information. IEC 60870-5-101 introduces
more precise, 7-byte time tags, encoding information from years to milliseconds.

An interesting aspect of IEC 60870-5 series is the different data acquisition
methods, identified by the cause of transmission field. Besides the general
request/response method used by Modbus and MMS, which in IEC 60870-5 is
termed polling, two other methods for acquiring general measurement data are
defined: cyclic data transmission and acquisition of events. In the former, the
RTUs are configured in a way that the measurement data is sent periodically,
without the need of requests by the SCADA server. The latter, defines that cer-
tain data (termed events) should be sent if some condition is met; again, without

A.3. IEC 60870-5 163

Maximum
127 objects

Information
object 1

Type identification

2
02

7

Variable structure qualifer

Common address of ASDU
(2 bytes)

Information object address
(3 bytes)

Set of information elements
(Variable)

Originator address
(2 bytes)

Figure A.4: ASDU format

the need of requests by the SCADA server. Special data acquisition methods
are also defined for clock synchronization, integrated totals (i.e., counter-like
data), file transfer and others.

As it is the case of Modbus and MMS protocols, no security mechanisms are
defined in the IEC 60870-5 standards.

164 A. SCADA Protocols

APPENDIX B

Additional Results

B.1 Applicability of Traditional Traffic Models

In this section, we present the results for the visual self-similarity tests omit-
ted from Chapter 2.4.2. Figures B.1 and B.2 show the omitted R/S statistic
plots, Figures B.3 and B.4 show the omitted variance-time plots, and Figure B.5
and B.6 show the omitted periodograms. The odd-numbered figures show the
results for the pkts/s time series, while the even-numbered figures show the
results for the bytes/s time series.

166 B. Additional Results

(a) SCADA1 (b) SCADA2-control

(c) SCADA2-field (d) SCADA3

Figure B.1: R/S statistic diagrams for packet time series

B.1. Applicability of Traditional Traffic Models 167

(a) SCADA1 trace) (b) SCADA2-control

(c) SCADA2-field (d) SCADA3

Figure B.2: R/S statistic diagrams for bytes time series

168 B. Additional Results

(a) SCADA1 (b) SCADA2-control

(c) SCADA2-field (d) SCADA3

Figure B.3: Variance-time plots for packets time series

B.1. Applicability of Traditional Traffic Models 169

(a) SCADA1 (b) SCADA2-control

(c) SCADA2-field (d) SCADA3

Figure B.4: Variance-time plots for bytes time series

170 B. Additional Results

(a) SCADA1 (b) SCADA2-control

(c) SCADA2-field (d) SCADA3

Figure B.5: Periodograms for packets time series

B.1. Applicability of Traditional Traffic Models 171

(a) SCADA1 (b) SCADA2-control

(c) SCADA2-field (d) SCADA3

Figure B.6: Periodograms for bytes time series

172 B. Additional Results

B.2 SCADA Traffic Characterization

In this section, we present the periodograms omitted from the spectral analy-
sis, presented in Chapter 3.3.2. Figure B.7 shows the results for the omitted
datasets.

In Figure B.8, we show periodograms constructed using different parame-
ters. The first row shows the periodogram from all traffic in l05t01 in both
linear (Figure B.8(a)) and logarithmic scale (Figure B.8(b)). Note that the
logarithmic scale reveals a possible periodicity at 60 s, not visible at the linear
scale. The second row shows a subset of 24 h from dataset l11t01 sampled every
second (Figure B.8(d)) in addition two the 1 h subset sampled using 10 ms bins
(Figure B.8(c)). Note that the 300 s periodicity becomes clearer when using a
larger, 24 h sample. These results further illustrate the difficulties in identify-
ing traffic periodicities using spectral analysis methods, previously discussed in
Chapter 6.

In Figure B.9 and B.10 we show the results omitted in Chapter 3.4. The
former shows the current IP connections time series discussed in Chapter 3.4.1,
while the later shows the number of new IP connections discussed in Chap-
ter 3.4.3.

B.2. SCADA Traffic Characterization 173

(a) SCADA2-control (b) SCADA3

(c) l01t02 (d) l15t04

(e) l17t01 (f) l18t01

Figure B.7: Additional periodograms

174 B. Additional Results

(a) l05t01 linear (b) l05t01 log

(c) l11t01 1 h (d) l11t01 24 h

Figure B.8: The effect of the periodogram parameters

B.2. SCADA Traffic Characterization 175

✥

�

✁✥

✁�

✂✥

✥ ✁ ✂ ✄ ☎ � ✆ ✝ ✞ ✟ ✁✥ ✁✁

❆
✠
✡☛
☞
✌
✍
✎
✏
✏
✌
✠
✡☛
✎
✏
✑

❚✒✓✔ ✕✒✖✗✔ ✕✘✙✚✘ ✛✜ ✢✙✘✙✕✔✘ ✣✢✙✤✕✦

(a) SCADA2-control

✥

�

✁

✂

✄

☎✥

☎�

✥ ☎ �

❆
✆
✝✞
✟
✠
✡
☛
☞
☞
✠
✆
✝✞
☛
☞
✌

❚✍✎✏ ✑✍✒✓✏ ✑✔✕✖✔ ✗✘ ✙✕✔✕✑✏✔ ✚✙✕✛✑✜

(b) SCADA3

✥

�

✁✥

✁�

✂✥

✥ ✁ ✂ ✄ ☎ � ✆ ✝ ✞ ✟ ✁✥✁✁✁✂✁✄✁☎✁�✁✆✁✝✁✞✁✟✂✥✂✁✂✂✂✄✂☎✂�✂✆

❆
✠
✡☛
☞
✌
✍
✎
✏
✏
✌
✠
✡☛
✎
✏
✑

❚✒✓✔ ✕✒✖✗✔ ✕✘✙✚✘ ✛✜ ✢✙✘✙✕✔✘ ✣✢✙✤✕✦

(c) l11t01

✥

�

✁✥

✁�

✂✥

✂�

✄✥

✥ ✁ ✂ ✄ ☎ �

❆
✆
✝✞
✟
✠
✡
☛
☞
☞
✠
✆
✝✞
☛
☞
✌

❚✍✎✏ ✑✍✒✓✏ ✑✔✕✖✔ ✗✘ ✙✕✔✕✑✏✔ ✚✙✕✛✑✜

(d) l17t01

✥

�✥

✁✥

✂✥

✄✥

☎✥✥

✥ ☎ � ✆ ✁ ✝ ✂ ✞ ✄ ✟ ☎✥ ☎☎

❆
✠
✡☛
☞
✌
✍
✎
✏
✏
✌
✠
✡☛
✎
✏
✑

❚✒✓✔ ✕✒✖✗✔ ✕✘✙✚✘ ✛✜ ✢✙✘✙✕✔✘ ✣✢✙✤✕✦

(e) l18t01

✥

�✥✥

✁✥✥

✂✥✥

✄✥✥

☎✥✥

✆✥✥

✝✥✥

✞✥✥

✟✥✥

✥ � ✁ ✂ ✄ ☎ ✆ ✝ ✞

❆
✠
✡☛
☞
✌
✍
✎
✏
✏
✌
✠
✡☛
✎
✏
✑

❚✒✓✔ ✕✒✖✗✔ ✕✘✙✚✘ ✛✜ ✢✙✘✙✕✔✘ ✣✢✙✤✕✦

(f) IT

Figure B.9: Current IP connections

176 B. Additional Results

0 1 2 3 4 5 6 7 8 9 10 11 12
Time since start of dataset (days)

0

20

40

60

80

100

Ob
se

rv
ed

 fl
ow

s
(%

)

0
1
2
3
4
5
6

Nu
m

be
r o

f n
ew

 fl
ow

s

(a) SCADA2-field

0 1 2 3 4 5 6 7 8 9 10 11 12
Time since start of dataset (days)

0

20

40

60

80

100

Ob
se

rv
ed

 fl
ow

s
(%

)
0
2
4
6
8
10
12

Nu
m

be
r o

f n
ew

 fl
ow

s

(b) SCADA2-control

0 1 2 3 4 5 6 7 8 9 10 11 12
Time since start of dataset (days)

0

20

40

60

80

100

O
b
se

rv
e
d
 f

lo
w

s
(%

)

0

10

20

30

40

50

N
u
m

b
e
r

o
f

n
e
w

 f
lo

w
s

(c) l05t01

0 5 10 15 20 25 30
Time since start of dataset (days)

0

20

40

60

80

100

O
b
se

rv
e
d
 f

lo
w

s
(%

)

0
2
4
6
8
10
12
14
16

N
u
m

b
e
r

o
f

n
e
w

 f
lo

w
s

(d) l11t01

0 1 2 3 4 5
Time since start of dataset (days)

0

20

40

60

80

100

O
b
se

rv
e
d
 f

lo
w

s
(%

)

0

5

10

15

20

N
u
m

b
e
r

o
f

n
e
w

 f
lo

w
s

(e) l17t01

0 1 2 3 4 5 6 7 8 9 10 11 12
Time since start of dataset (days)

0

20

40

60

80

100

Ob
se

rv
ed

 fl
ow

s
(%

)

0
10
20
30
40
50
60
70
80

Nu
m

be
r o

f n
ew

 fl
ow

s

(f) l18t01

Figure B.10: Number of new IP connections over time

Bibliography

[1] C. L. Abad and R. I. Bonilla. An Analysis on the Schemes for Detecting and
Preventing ARP Cache Poisoning Attacks. In 27th International Conference on
Distributed Computing Systems Workshops (ICDCSW’07), pages 60–60. IEEE,
2007.

[2] C. Alcaraz, G. Fernandez, and F. Carvajal. Security Aspects of SCADA and
DCS Environments. In Springer-Verlag, editor, Critical Infrastructure Protection
VI, pages 120–149, Berlin, Heidelberg, 2012.

[3] S. Amin, X. Litrico, S. Sastry, and A. M. Bayen. Cyber Security of Water
SCADA Systems - Part I: Analysis and Experimentation of Stealthy Deception
Attacks. IEEE Transactions on Control Systems Technology, 21(5):1963–1970,
Sept. 2013.

[4] O. Argon, Y. Shavitt, and U. Weinsberg. Inferring the Periodicity in Large-
Scale Internet Measurements. In INFOCOM, 2013 Proceedings IEEE, pages
1–9. IEEE, 2013.

[5] S. Axelsson. Intrusion Detection Systems: A Survey and Taxonomy. Technical
report, Chalmers University of Technology, 2000.

[6] E. Babeshko, V. Kharchenko, and A. Gorbenko. Applying F(I)MEA-Technique
for SCADA-Based Industrial Control Systems Dependability Assessment and
Ensuring. In 2008 Third International Conference on Dependability of Computer
Systems DepCoS-RELCOMEX, pages 309–315. IEEE, 2008.

[7] F. Baiardi, C. Telmon, and D. Sgandurra. Hierarchical, Model-Based Risk Man-
agement of Critical Infrastructures. Reliability Engineering & System Safety, 94
(9):1403–1415, Sept. 2009.

[8] D. Bailey and E. Wright. Practical SCADA for Industry. Newnes, 2003.

[9] M. Bailey, E. Cooke, F. Jahanian, D. Watson, and J. Nazario. The Blaster
Worm: Then and Now. IEEE Security and Privacy Magazine, 3(4):26–31, July
2005.

178 BIBLIOGRAPHY

[10] S. Baker, N. Filipiak, and K. Timlin. In the Dark: Crucial Industries Confront
Cyberattacks. Technical report, McAfee, 2011.

[11] R. R. R. Barbosa and A. Pras. Intrusion Detection in SCADA Networks. In Pro-
ceedings of the Mechanisms for autonomous management of networks and ser-
vices, and 4th international conference on Autonomous infrastructure, manage-
ment and security, AIMS’10, pages 163–166, Berlin, Heidelberg, 2010. Springer-
Verlag.

[12] R. R. R. Barbosa, R. Sadre, A. Pras, and R. van de Meent. Simpleweb/University
of Twente Traffic Traces Data Repository. Technical report, Centre for Telem-
atics and Information Technology, University of Twente, Apr. 2010.

[13] R. R. R. Barbosa, R. Sadre, and A. Pras. Towards Periodicity Based Anomaly
Detection in SCADA Networks. In Proceedings of 2012 IEEE 17th International
Conference on Emerging Technologies & Factory Automation (ETFA 2012),
pages 1–4. IEEE, Sept. 2012.

[14] N. Basher, A. Mahanti, A. Mahanti, C. Williamson, and M. Arlitt. A Com-
parative Analysis of Web and Peer-to-Peer Traffic. In Proceeding of the 17th
international conference on World Wide Web - WWW ’08, page 287, New York,
New York, USA, 2008. ACM Press.

[15] Z. Basnight, J. Butts, J. Lopez, and T. Dube. Firmware Modification Attacks on
Programmable Logic Controllers. International Journal of Critical Infrastructure
Protection, 6(2):76–84, June 2013.

[16] C. Beaumont. Stuxnet Virus: Worm ’Could be Aimed at High-Profile Ira-
nian Targets’. http://www.telegraph.co.uk/technology/news/8021102/

Stuxnet-virus-worm-could-be-aimed-at-high-profile-Iranian-targets.

html, 2010. accessed: 2013-12-12.

[17] W. D. Beckner. NRC Information Notice 2003-14: Potential Vulnerability of
Plant Computer Network to Worm Infection. Technical report, United States
Nuclear Regulatory Commission, Washington DC, 2003.

[18] J. Beran. Statistics for Long-Memory Processes. Chapman & Hall/CRC Mono-
graphs on Statistics & Applied Probability. Taylor & Francis, 1994.

[19] C. Berberidis, I. P. Vlahavas, W. G. Aref, M. J. Atallah, and A. K. Elmagarmid.
On the Discovery of Weak Periodicities in Large Time Series. In Proceedings
of the 6th European Conference on Principles of Data Mining and Knowledge
Discovery, PKDD ’02, pages 51–61, London, UK, UK, 2002. Springer-Verlag.

http://www.telegraph.co.uk/technology/news/8021102/Stuxnet-virus-worm-could-be-aimed-at-high-profile-Iranian-targets.html
http://www.telegraph.co.uk/technology/news/8021102/Stuxnet-virus-worm-could-be-aimed-at-high-profile-Iranian-targets.html
http://www.telegraph.co.uk/technology/news/8021102/Stuxnet-virus-worm-could-be-aimed-at-high-profile-Iranian-targets.html

BIBLIOGRAPHY 179

[20] J. Bigham, D. Gamez, and N. Lu. Safeguarding SCADA Systems with Anomaly
Detection. In Second International Workshop on Mathematical Methods, Models,
and Architectures for Computer Network Security, MMM-ACNS 2003, pages
171–182, 2003.

[21] I. F. Bo Lang. A Multipolicy Authorization Framework for Grid Security. In
Fifth IEEE International Symposium on Network Computing and Applications
(NCA’06), pages 269–272. IEEE, 2006.

[22] S. A. Boyer. SCADA: Supervisory Control and Data Acquisition. ISA: The
Instrumentation, Systems, and Automation Society, 4th edition, 2009.

[23] G. Broek, S. Hoeve, G. M. Moura, and A. Pras. SNMP Trace Analysis: Results
of Extra Traces. Technical report, University of Twente, 2009.

[24] A. Broido and E. Nemeth. Spectroscopy of Private DNS Update Sources. In
Proceedings the Third IEEE Workshop on Internet Applications. WIAPP 2003,
pages 19–29. IEEE Comput. Soc, 2003.

[25] E. Byres, D. Leversage, and N. Kube. Security Incidents and Trends in SCADA
and Process Industries. The Industrial Ethernet Book, 39(May):12—-20, 2007.

[26] H. Cao, D. Cheung, and N. Mamoulis. Discovering Partial Periodic Patterns
in Discrete Data Sequences. In H. Dai, R. Srikant, and C. Zhang, editors,
Advances in Knowledge Discovery and Data Mining, volume 3056 of Lecture
Notes in Computer Science, pages 653–658. Springer Berlin Heidelberg, 2004.

[27] Y. Cao, W. Han, and Y. Le. Anti-Phishing Based on Automated Individual
White-List. In Proceedings of the 4th ACM workshop on Digital identity man-
agement - DIM ’08, DIM ’08, page 51, New York, New York, USA, 2008. ACM
Press.

[28] A. Carcano and I. Fovino. State-Based Network Intrusion Detection Systems
for SCADA Protocols: A Proof of Concept. In 4th International Workshop on
Critical Information Infrastructures Security (CRITIS’09), pages 138–150, 2009.

[29] A. Carcano, A. Coletta, M. Guglielmi, M. Masera, I. Nai Fovino, and A. Trom-
betta. A Multidimensional Critical State Analysis for Detecting Intrusions in
SCADA Systems. IEEE Transactions on Industrial Informatics, 7(2):179–186,
May 2011.

[30] A. Cárdenas, S. Amin, S. Sastry, and A. A. C. Research Challenges for the
Security of Control Systems. In Proceedings of 3rd USENIX workshop on Hot
Topics in Security (HotSec), 2008.

180 BIBLIOGRAPHY

[31] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and S. Sastry.
Attacks Against Process Control Systems: Risk Assessment, Detection, and
Response. In Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security - ASIACCS ’11, page 355, New York, New York,
USA, 2011. ACM Press.

[32] J. Case, M. Fedor, M. Schoffstall, and J. Davin. RFC 1157: Simple Network
Management Protocol (SNMP), 1990.

[33] R. Chandia, J. Gonzalez, and T. Kilpatrick. Security Strategies for SCADA
Networks. In Critical Infrastructure Protection III, volume 253, pages 117–131,
2007.

[34] M. Cheminod, L. Durante, and A. Valenzano. Review of Security Issues in
Industrial Networks. IEEE Transactions on Industrial Informatics, 9(1):277–
293, Feb. 2013.

[35] E. Y. Chen and M. Itoh. A Whitelist Approach to Protect SIP Servers from
Flooding Attacks. In 2010 IEEE International Workshop Technical Committee
on Communications Quality and Reliability (CQR 2010), pages 1–6. IEEE, June
2010.

[36] S. Cherry. How Stuxnet is Rewriting the Cyberterrorism Play-
book. http://spectrum.ieee.org/podcast/telecom/security/

how-stuxnet-is-rewriting-the-cyberterrorism-playbook, 2010. accessed:
2013-12-12.

[37] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and A. Valdes.
Using Model-Based Intrusion Detection for SCADA Networks. In Proceedings of
the SCADA Security Scientific Symposium, volume 46, pages 1—-12. Citeseer,
2007.

[38] K. Cho, K. Fukuda, H. Esaki, and A. Kato. The Impact and Implications of
the Growth in Residential User-to-User Traffic. ACM SIGCOMM Computer
Communication Review, 36(4):207, Aug. 2006.

[39] D. Choi, S. Member, H. Kim, D. Won, S. Kim, and A. Supervisory. Advanced
Key-Management Architecture for Secure SCADA Communications. IEEE
Transactions on Power Delivery, 24(3):1154–1163, July 2009.

[40] Cisco Systems. IOS Flexible NetFlow Overview. http://www.cisco.com/

en/US/docs/ios/fnetflow/configuration/guide/fnetflow_overview.html,
2006. Accessed: 2013-12-12.

http://spectrum.ieee.org/podcast/telecom/security/how-stuxnet-is-rewriting-the-cyberterrorism-playbook
http://spectrum.ieee.org/podcast/telecom/security/how-stuxnet-is-rewriting-the-cyberterrorism-playbook
http://www.cisco.com/en/US/docs/ios/fnetflow/configuration/guide/fnetflow_overview.html
http://www.cisco.com/en/US/docs/ios/fnetflow/configuration/guide/fnetflow_overview.html

BIBLIOGRAPHY 181

[41] B. Claise. Specification of the IP Flow Information Export (IPFIX) Protocol for
the Exchange of IP Traffic Flow Information. RFC 5101 (Proposed Standard),
Jan. 2008. URL http://www.ietf.org/rfc/rfc5101.txt.

[42] G. Clarke, D. Reynders, and E. Wright. Practical Modern SCADA protocols.
Newnes, 2004.

[43] J. W. Cooley and J. W. Tukey. An Algorithm for the Machine Calculation of
Complex Fourier Series. Mathematics of computation, 19(90):297–301, 1965.

[44] M. Crovella and A. Bestavros. Self-Similarity in World Wide Web Traffic: Ev-
idence and Possible Causes. IEEE/ACM Transactions on Networking, 5(6):
835–846, 1997.

[45] S. D’Antonio, F. Oliviero, and R. Setola. High-Speed Intrusion Detection in
Support of Critical Infrastructure Protection. In First International Workshop
on Critical Information Infrastructures Security (CRITIS’06), pages 222–234,
2006.

[46] H. Debar, M. Dacier, and A. Wespi. Towards a Taxonomy of Intrusion-Detection
Systems. Computer Networks, 31(8):805–822, Apr. 1999.

[47] H. Debar, M. Dacier, and A. Wespi. A Revised Taxonomy for Intrusion-Detection
Systems. Annales des télécommunications, 55(7-8):361–378, 2000.

[48] D. Denning. An Intrusion-Detection Model. IEEE Transactions on Software
Engineering, SE-13(2):222–232, Feb. 1987.

[49] M. Di Santo, A. Vaccaro, D. Villacci, and E. Zimeo. A Distributed Architecture
for Online Power Systems Security Analysis. IEEE Transactions on Industrial
Electronics, 51(6):1238–1248, Dec. 2004.

[50] A. B. Downey. Lognormal and Pareto Distributions in the Internet. Computer
Communications, 28(7):790–801, May 2005.

[51] P. Düssel, C. Gehl, and P. Laskov. Cyber-Critical Infrastructure Protection Us-
ing Real-Time Payload-Based Anomaly Detection. In 4th International Work-
shop on Critical Information Infrastructures Security (CRITIS’09), pages 85–97,
2010.

[52] S. East, J. Butts, M. Papa, and S. Shenoi. A Taxonomy of Attacks on the DNP3
Protocol. In Critical Infrastructure Protection III, pages 67–81, 2009.

[53] J. Eisenhauer, P. Donnelly, M. Ellis, and M. O’ Brien. Roadmap to Secure
Control Systems in the Energy Sector. Technical report, U.S. Department of
Energy, 2006.

http://www.ietf.org/rfc/rfc5101.txt

182 BIBLIOGRAPHY

[54] D. Erickson, M. Casado, and N. McKeown. The Effectiveness of Whitelisting:
a User-Study. In The Fifth Conference on Email and Anti-Spam - CEAS ’08,
page 10, Mountain View, California, USA, Aug. 2008.

[55] N. Falliere, L. O. Murchu, and E. Chien. W32. Stuxnet Dossier. Technical
report, Symantic Security Response, 2011.

[56] A. Feldmann, A. C. Gilbert, W. Willinger, and T. G. Kurtz. The Changing
Nature of Network Traffic. ACM SIGCOMM Computer Communication Review,
28(2):5–29, Apr. 1998.

[57] J. Fildes. Stuxnet Worm ’Targeted High-Value Iranian Assets’. http://www.

bbc.co.uk/news/technology-11388018, 2010. accessed: 2013-12-12.

[58] S. Floyd and V. Paxson. Difficulties in Simulating the Internet. IEEE/ACM
Transactions on Networking, 9(4):392–403, 2001.

[59] I. N. Fovino, A. Carcano, T. D. L. Murel, A. Trombetta, and M. Masera.
Modbus/DNP3 State-Based Intrusion Detection System. In 2010 24th IEEE In-
ternational Conference on Advanced Information Networking and Applications,
pages 729–736. IEEE, 2010.

[60] I. n. Garitano, R. Uribeetxeberria, and U. Zurutuza. A Review of SCADA
Anomaly Detection. In Soft Computing Models in Industrial and Environmen-
tal Applications, 6th International Conference SOCO, pages 357–366. Springer
Berlin Heidelberg, 2011.

[61] H. Ghasemieh, A. Remke, and B. R. Haverkort. Analysis of a Sewage Treatment
Facility Using Hybrid Petri Nets. In 7th International ICST Conference on
Performance Evaluation Methodologies and Tools, Torino, Italy, December 10-
12, 2013, VALUETOOLS, pages 1–10, 2013.

[62] N. Goldenberg and A. Wool. Accurate Modeling of Modbus/TCP for Intrusion
Detection in SCADA Systems. International Journal of Critical Infrastructure
Protection, 6(2):63–75, June 2013.

[63] W.-b. Gong, Y. Liu, V. Misra, and D. Towsley. Self-Similarity and Long Range
Dependence on the Internet: a Second Look at the Evidence, Origins and Im-
plications. Computer Networks, 48(3):377–399, June 2005.

[64] J. Gonzalez and M. Papa. Passive Scanning in Modbus Networks. In Critical
Infrastructure Protection, volume 253, pages 175–187, 2007.

[65] D. Goodin. Two US Power Plants Infected with Malware Spread
via USB Drive. http://arstechnica.com/security/2013/01/

two-us-power-plants-infected-with-malware-spread-via-usb-drive/,
2013.

http://www.bbc.co.uk/news/technology-11388018
http://www.bbc.co.uk/news/technology-11388018
http://arstechnica.com/security/2013/01/two-us-power-plants-infected-with-malware-spread-via-usb-drive/
http://arstechnica.com/security/2013/01/two-us-power-plants-infected-with-malware-spread-via-usb-drive/

BIBLIOGRAPHY 183

[66] I. Grondman. Identifying Short-Term Periodicities in Internet Traffic. Master’s
thesis, University of Twente, 2006.

[67] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting Botnet Command and
Control Channels in Network Traffic. In Proceedings of the 15th Annual Network
and Distributed System Security Symposium (NDSS’08), pages 1–18, San Diego,
California, USA, 2008.

[68] R. A. Guth and D. Machalaba. Computer Viruses Disrupt Railroad and
Air Traffic. http://online.wsj.com/news/articles/SB106140797740336000,
2003. Accessed: 2013-12-07.

[69] H. Hadeli, R. Schierholz, M. Braendle, and C. Tuduce. Leveraging Determinism
in Industrial Control Systems for Advanced Anomaly Detection and Reliable
Security Configuration. In 2009 IEEE Conference on Emerging Technologies &
Factory Automation, pages 1–8. IEEE, Sept. 2009.

[70] D. Hadiosmanovic, D. Bolzoni, P. Hartel, and S. Etalle. MELISSA: Towards
Automated Detection of Undesirable User Actions in Critical Infrastructures.
In 2011 Seventh European Conference on Computer Network Defense, pages
41–48. IEEE, Sept. 2011.

[71] D. Hadžiosmanović, D. Bolzoni, and P. H. Hartel. A Log Mining Approach for
Process Monitoring in SCADA. International Journal of Information Security,
11(4):231–251, Apr. 2012.

[72] J. Han and Y. Yin. Efficient Mining of Partial Periodic Patterns in Time Series
Database. In Proceedings 15th International Conference on Data Engineering
(Cat. No.99CB36337), pages 106–115. IEEE, 1999.

[73] D. Hancock. Virus Disrupts Train Signals. http://www.cbsnews.com/news/

virus-disrupts-train-signals/, 2003. Accessed: 2013-12-07.

[74] S. Hansman and R. Hunt. A Taxonomy of Network and Computer Attacks.
Computers & Security, 24(1):31–43, Feb. 2005.

[75] J.-H. Hoepman and B. Jacobs. Increased Security Through Open Source. Com-
munications of the ACM, 50(1):79–83, Jan. 2007.

[76] M. Hoeve. Detecting Intrusions in Encrypted Control Traffic. In Proceedings of
the first ACM workshop on Smart energy grid security - SEGS ’13, pages 23–28,
New York, New York, USA, 2013. ACM Press.

[77] P. Huitsing, R. Chandia, M. Papa, and S. Shenoi. Attack Taxonomies for the
Modbus Protocols. International Journal of Critical Infrastructure Protection,
1(C):37–44, Dec. 2008.

http://online.wsj.com/news/articles/SB106140797740336000
http://www.cbsnews.com/news/virus-disrupts-train-signals/
http://www.cbsnews.com/news/virus-disrupts-train-signals/

184 BIBLIOGRAPHY

[78] ICS CERT. Monthly Monitor October Dececember, 2012.

[79] IEC. 60870-5, Telecontrol Equipment and Systems, 1988.

[80] IEC. 62210, Power System Control and Associated Communications - Data and
Communication Security, 2003.

[81] IEC. 60870-5-104, Transmission protocols - Network Access for IEC 60870-5-101
Using Standard Transport Profiles, 2006.

[82] IEC. 62443, Industrial Communication Networks - Network and System Security
- Part 1-1: Terminology, Concepts and Models, 2011.

[83] IEC. 62351, Power Systems Management and Associated Information Exchange,
2013.

[84] IEEE. Guide for Electric Power Substation Physical and Electronic Security,
2000.

[85] IEEE. 1711, Trial-Use Standard for a Cryptographic Protocol for Cyber Security
of Substation Serial Links, 2011.

[86] IEEE. P1686, Draft Standard for Intelligent Electronic Devices (IEDs) Cyber
Security Capabilities, 2013.

[87] V. M. Igure, S. A. Laughter, and R. D. Williams. Security Issues in SCADA
Networks. Computers & Security, 25(7):498–506, Oct. 2006.

[88] ISO/IEC. 8824, Information Processing Systems - Open Systems Interconnection
- Specification of Abstract Syntax Notation One (ASN.1), 1987.

[89] ISO/IEC. 9506, Manufacturing Message Specification, 1990.

[90] ISO/IEC. 15408-1, Evaluation Criteria for IT Security - Part 1: Introduction
and General Model, 2009.

[91] ISO/IEC. 27000, Information Technology - Security Techniques, 2009.

[92] S. Karnouskos and A. W. Colombo. Architecting the Next Generation of Service-
Based SCADA/DCS System of Systems. In IECON 2011 - 37th Annual Con-
ference of the IEEE Industrial Electronics Society, pages 359–364. IEEE, Nov.
2011.

[93] C. Ken. A DNP3 Protocol Primer. Technical report, DNP Users Group, 2000.

[94] A. Khelil, D. Germanus, and N. Suri. Protection of SCADA Communication
Channels. In J. Lopez, R. Setola, and S. D. Wolthusen, editors, Critical Infras-
tructure Protection VI, pages 177–196. Springer, 2012.

BIBLIOGRAPHY 185

[95] T. H. Kobayashi, A. B. Batista, A. M. Brito, and P. S. M. Pires. Using a Packet
Manipulation Tool for Security Analysis of Industrial Network Protocols. In
IEEE Conference on Emerging Technologies and Factory Automation (ETFA),
pages 744–747, 2007.

[96] R. Krutz. Securing SCADA Systems. Wiley, 2005.

[97] S. Laxman and P. S. Sastry. A Survey of Temporal Data Mining. Sadhana, 31
(2):173–198, Apr. 2006.

[98] W. E. Leland, W. Willinger, M. S. Taqqu, and D. V. Wilson. On the Self-Similar
Nature of Ethernet Traffic. ACM SIGCOMM Computer Communication Review,
25(1):202–213, Jan. 1995.

[99] O. Linda, T. Vollmer, and M. Manic. Neural Network Based Intrusion Detection
System for Critical Infrastructures. In 2009 international joint conference on
neural networks, pages 1827–1834. ieee, June 2009.

[100] E. Lloyd and D. Warren. The Historically Adjusted Range and the Historically
Rescaled Adjusted Range. Stochastic Hydrology and Hydraulics, 2(3):175–188,
1988.

[101] P. Loiseau, P. Gonçalves, G. Dewaele, P. Borgnat, P. Abry, and P. V.-B. Primet.
Investigating Self-Similarity and Heavy-Tailed Distributions on a Large-Scale
Experimental Facility. IEEE/ACM Transactions on Networking, 18(4):1261–
1274, Aug. 2010.

[102] E. Luiijf. SCADA Security Good Practices for the Drinking Water Sector. Tech-
nical report, TNO, 2008.

[103] T. F. Lunt. A Survey of Intrusion Detection Techniques. Computers & Security,
12(4):405–418, June 1993.

[104] R. T. Marsh, J. R. Powers, and M. E. Adams. Critical Foundations: Protect-
ing America’s Infrastructures. Report of the president’s commission on critical
infrastructure protection. Technical report, President’s Commission on Critical
Infrastructure Protection, 1997.

[105] T. McEvoy and S. Wolthusen. Detecting Sensor Signal Manipulations in Non-
linear Chemical Processes. In Critical Infrastructure Protection IV, pages 81–94,
2010.

[106] M. Meier and T. Holz. Intrusion Detection Systems List and Bibliography.
https://www-rnks.informatik.tu-cottbus.de/en/node/209, 2001.

[107] Microsoft. Service Overview and Network Port Requirements for Windows.

https://www-rnks.informatik.tu-cottbus.de/en/node/209

186 BIBLIOGRAPHY

[108] J. Mikel. The 2003 Northeast Blackout–Five Years Later: Scientific American,
2008.

[109] Modbus Organization. Modbus Application Protocol Specification V1.1b3, Aril
2012.

[110] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside
the Slammer Worm. IEEE Security & Privacy Magazine, 1(4):33–39, July 2003.

[111] B. Mukherjee, L. Heberlein, and K. Levitt. Network Intrusion Detection. IEEE
Network, 8(3):26–41, May 1994.

[112] North American Electric Reliability Corporation. Guidance for Enforcement of
CIP Standards. Technical report, North American Electric Reliability Corpora-
tion, 2008.

[113] Norwegian Oil and Gas association. 104 - Recommended Guidelines for Infor-
mation Security Baseline Requirements for Process Control, Safety and Support
ICT Systems. Technical report, Norwegian Oil and Gas Association, 2009.

[114] C. Nuzman, I. Saniee, W. Sweldens, and A. Weiss. A Compound Model for TCP
Connection Arrivals for LAN and WAN Applications. Computer Networks, 40
(3):319–337, Oct. 2002.

[115] T. Oetiker. MRTG - The Multi Router Traffic Grapher. In Proceedings of the
12th USENIX conference on System administration, pages 141–148, Berkeley,
CA, USA, 1998. USENIX Association.

[116] P. Oman and M. Phillips. Intrusion Detection and Event Monitoring in SCADA
Networks. In Critical Infrastructure Protection, volume 253, pages 161–173,
2007.

[117] K. Park and W. Willinger. Self-Similar Network Traffic and Performance Eval-
uation. Wiley Online Library, 2000.

[118] V. Paxson. Bro: a System for Detecting Network Intruders in Real-Time. Com-
puter Networks, 31(23-24):2435–2463, Dec. 1999.

[119] V. Paxson and S. Floyd. Wide Area Traffic: the Failure of Poisson Modeling.
IEEE/ACM Transactions on Networking, 3(3):226–244, June 1995.

[120] S. Peerlkamp and M. Nieuwenhuis. Process Control Network Security. Technical
Report 1689428, Vrije Universiteit Amsterdam, 2010.

[121] L. Pi and P. Sitbon. Cryptographic Key Management for SCADA Systems-Issues
and Perspectives. In 2008 International Conference on Information Security and
Assurance (isa 2008), pages 156–161. IEEE, Apr. 2008.

BIBLIOGRAPHY 187

[122] U. K. Premaratne, J. Samarabandu, T. S. Sidhu, R. Beresh, and J.-C. Tan.
An Intrusion Detection System for IEC61850 Automated Substations. IEEE
Transactions on Power Delivery, 25(4):2376–2383, Oct. 2010.

[123] P. a. S. Ralston, J. H. Graham, and J. L. Hieb. Cyber Security Risk Assessment
for SCADA and DCS Networks. ISA transactions, 46(4):583–94, Oct. 2007.

[124] S. Rinaldi, J. Peerenboom, and T. Kelly. Identifying, Understanding, and Ana-
lyzing Critical Infrastructure Interdependencies. IEEE Control Systems Maga-
zine, 21(6):11–25, 2001.

[125] J. Rrushi and R. Campbell. Detecting Cyber Attacks on Nuclear Power Plants.
In Critical Infrastructure Protection II, volume 290, pages 41–54, 2009.

[126] J. Rrushi and K. Kang. Detecting Anomalies in Process Control Networks. In
Critical Infrastructure Protection III, pages 151–165, 2009.

[127] R. Sadre and B. R. Haverkort. Changes in the Web from 2000 to 2007. In
Managing Large-Scale Service Deployment. Proceedings of the 19th IFIP/IEEE
International Workshop on Distributed Systems (DSOM 2008), volume 5273 of
LNCS, pages 136–148. Springer, 2008.

[128] D. E. Sanger. Obama Order Sped Up Wave of Cyberattacks
Against Iran. http://www.nytimes.com/2012/06/01/world/middleeast/

obama-ordered-wave-of-cyberattacks-against-iran.html, 2012. Accessed:
2013-12-11.

[129] J. Schönwälder, A. Pras, M. Harvan, J. Schippers, and R. van de Meent. SNMP
Traffic Analysis: Approaches, Tools, and First Results. In 10th IFIP/IEEE
International Symposium on Integrated Network Management, pages 323–332.
IEEE, May 2007.

[130] G. Serazzi and S. Zanero. Computer Virus Propagation Models. In M. Calzarossa
and E. Gelenbe, editors, Performance Tools and Applications to Networked Sys-
tems, volume 2965 of Lecture Notes in Computer Science, pages 26–50. Springer
Berlin Heidelberg, 2004.

[131] J. Slay and M. Miller. Lessons Learned from the Maroochy Water Breach. In
Critical Infrastructure Protection II, volume 253, page 73. Springer, 2008.

[132] R. Sommer and A. Feldmann. NetFlow: Information Loss or Win? In Proceed-
ings of the second ACM SIGCOMM Workshop on Internet measurment - IMW
’02, page 173, New York, New York, USA, 2002. ACM Press.

http://www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-wave-of-cyberattacks-against-iran.html
http://www.nytimes.com/2012/06/01/world/middleeast/obama-ordered-wave-of-cyberattacks-against-iran.html

188 BIBLIOGRAPHY

[133] R. Sommer and V. Paxson. Outside the Closed World: On Using Machine
Learning for Network Intrusion Detection. In 2010 IEEE Symposium on Security
and Privacy, pages 305–316. IEEE, 2010.

[134] J. T. Sørensen. Security in Industrial Networks. Technical report, Norwegian
University of Science and Technology, 2007.

[135] A. Sperotto. Flow-Based Intrusion Detection. PhD thesis, University of Twente,
Enschede, The Netherlands, Oct. 2010.

[136] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller. An
Overview of IP Flow-Based Intrusion Detection. IEEE Communications Surveys
& Tutorials, 12(3):343–356, 2010.

[137] K. A. Stouffer, J. A. Falco, K. A. Scarfone, and K. Kent. SP 800-82: Guide to In-
dustrial Control Systems (ICS) Security. Technical report, NIST, Gaithersburg,
MD, United States, 2013.

[138] A. S. Tanenbaum. Computer Networks. Prentice Hall, 4th edition, 2002.

[139] A. S. Tanenbaum and M. Van Steen. Distributed Systems, volume 2. Prentice
Hall, 2002.

[140] C.-W. Ten, G. Manimaran, and C.-C. Liu. Cybersecurity for Critical Infrastruc-
tures: Attack and Defense Modeling. IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, 40(4):853–865, July 2010.

[141] H. Tipton. Information Security Management Handbook. CRC Press, Inc., Boca
Raton, FL, USA, 5 edition, 2003.

[142] B. Trammell and E. Boschi. Bidirectional Flow Export Using IP Flow Infor-
mation Export (IPFIX). RFC 5103 (Proposed Standard), Jan. 2008. URL
http://www.ietf.org/rfc/rfc5103.txt.

[143] P. P. Tsang and S. W. Smith. YASIR: A Low-Latency, High-Integrity Security
Retrofit for Legacy SCADA Systems. In Proceedings of The IFIP TC11 23rd
International Information Security Conference, volume 278, pages 445–459, Mi-
lano, Italy, 2008. Springer US.

[144] A. Valdes and S. Cheung. Intrusion Monitoring in Process Control Systems.
In 2009 42nd Hawaii International Conference on System Sciences, pages 1–7.
IEEE, 2009.

[145] A. Valdes and S. Cheung. Communication Pattern Anomaly Detection in Pro-
cess Control Systems. In 2009 IEEE Conference on Technologies for Homeland
Security, pages 22–29. IEEE, IEEE, May 2009.

http://www.ietf.org/rfc/rfc5103.txt

BIBLIOGRAPHY 189

[146] J. van den Broek. Periodicity of SNMP Traffic, 2007.

[147] A. Vázquez, R. Pastor-Satorras, and A. Vespignani. Large-Scale Topological
and Dynamical Properties of the Internet. Physical Review E, 65(6):066130,
June 2002.

[148] M. Vlachos, P. S. Yu, V. Castelli, and C. Meek. Structural Periodic Measures
for Time-Series Data. Data Mining and Knowledge Discovery, 12(1):1–28, Feb.
2006.

[149] Y. Wang. sSCADA: Securing SCADA Infrastructure Communications. Inter-
national Journal of Communication Networks and Distributed Systems, 6(1):59,
2011.

[150] A. K. Wright, J. A. Kinast, and J. McCarty. Low-Latency Cryptographic Pro-
tection for SCADA Communications. In Second International Conference on
Applied Cryptography and Network Security (ACNS), pages 263–277, Yellow
Mountain, China, 2004.

[151] K. Xiao, N. Chen, S. Ren, L. Shen, X. Sun, K. Kwiat, and M. Macalik. A
Workflow-Based Non-intrusive Approach for Enhancing the Survivability of Crit-
ical Infrastructures in Cyber Environment. In Third International Workshop on
Software Engineering for Secure Systems (SESS’07: ICSE Workshops 2007),
pages 4–4. IEEE, May 2007.

[152] D. Yang, A. Usynin, and J. Hines. Anomaly-Based Intrusion Detection for
SCADA Systems. In 5th Intl. Topical Meeting on Nuclear Plant Instrumentation,
Control and Human Machine Interface Technologies (NPIC&HMIT 05), pages
12–16, 2005.

[153] M. Yoon. Using Whitelisting to Mitigate DDoS Attacks on Critical Internet
Sites. IEEE Communications Magazine, 48(7):110–115, July 2010.

[154] J. Zhang and A. Moore. Traffic Trace Artifacts due to Monitoring Via Port Mir-
roring. In 2007 Workshop on End-to-End Monitoring Techniques and Services,
pages 1–8. IEEE, May 2007.

[155] G. Ziemba, D. Reed, and P. Traina. Security Considerations for IP Fragment
Filtering. RFC 1858 (Proposed Standard), Oct. 1995. URL http://www.ietf.

org/rfc/rfc1858.txt.

[156] C. C. Zou, W. Gong, and D. Towsley. Worm Propagation Modeling and Analysis
Under Dynamic Quarantine Defense. In Proceedings of the 2003 ACM workshop
on Rapid Malcode - WORM’03, page 51, New York, New York, USA, 2003. ACM
Press.

http://www.ietf.org/rfc/rfc1858.txt
http://www.ietf.org/rfc/rfc1858.txt

190 BIBLIOGRAPHY

Acronyms

ACF AutoCorrelation Function.

BITW Bump-In-The-Wire.

COTS Commercial Off-The-Shelf.

CPS Cyber-Physical System.

DCS Distributed Control System.

DFA Deterministic Finite Automaton.

DFT Discrete Fourier Transform.

DHS Department of Homeland Security.

DoS Denial of Service.

DPI Deep Packet Inspection.

FFT Fast Fourier Transform.

HMI Humam-Machine Interface.

IACS Industrial Automation Control Network.

ICS Industrial Control System.

IDS Intrusion Detection System.

IEC International Electrotechnical Commission.

IT Information Technology.

LAN Local Area Network.

LRD Long Range Dependent.

MMS Manufacturing Message Specification.

MTU Master Terminal Unit.

192 ACRONYMS

NCS Networked Control System.

NERC North American Electric Reliability Coorporation.

PCN Process Control Network.

PCS Process Control System.

PDU Protocol Data Unit.

PLC Programmable Logic Controller.

RTU Remote Terminal Unit.

SCADA Supervisory Control And Data Acquisition.

SNMP Simple Network Management Protocol.

STFT Short-Term Fourier Transform.

WAN Wide Area Network.

About the author

Rafael Ramos Regis Barbosa was born in Vila Velha, Esṕırito
Santo, Brazil on November 19th, 1983. In 2006, he received
his Bachelor of Science (B.Sc.) degree in Computer Science at
the Federal University of Esṕırito Santo (UFES). After grad-
uating, he was accepted with a full scholarship for a mas-
ter program in Computer Science at the State University of
Campinas (UNICAMP), where he enrolled in 2007. However,
just 6 months after starting the program, he decide to move
to the Netherlands, where he had been awarded a scholarship
to pursue a master degree in Telematics at the University of
Twente. After achieving his Master of Science (M.Sc.) degree,
he enrolled as a Ph.D. candidate at the Design and Analysis
of Communications Systems (DACS) group at the University

of Twente. In 2013, he is started working as a researcher at the European Network
for Cyber Security (ENCS) in The Hague.

A list of his publications in reverse chronological order:

• R. R. R. Barbosa, R. Sadre, and A. Pras. Flow Whitelisting in SCADA Net-
works. International Journal of Critical Infrastructure Protection 6(3-4):150–
158, Dec. 2013.

• R. R. R. Barbosa, R. Sadre, and A. Pras. Towards Periodicity Based Anomaly
Detection in SCADA Networks. In Proceedings of 2012 IEEE 17th International
Conference on Emerging Technologies & Factory Automation, pages 1–4. IEEE,
Sept. 2012.

• R. R. R. Barbosa, R. Sadre, and A. Pras. A First Look into SCADA Net-
work Traffic. In 2012 IEEE Network Operations and Management Symposium
volume 17, pages 518–521. Springer, IEEE, Apr. 2012.

• R. R. R. Barbosa, R. Sadre, and A. Pras. Difficulties in Modeling SCADA
Traffic: A Comparative Analysis. Passive and Active Measurement: 13th Inter-
national Conference, Pam 2012, Vienna, Austria, March 12-14, 2012.

• R. S. Schwartz, R. R. R. Barbosa N. Meratnia, G. Heijenk, and H. Scholten.
A Directional Data Dissemination Protocol for Vehicular Environments. Com-
puter Communications 34(17):2057–2071, Nov. 2011.

194 ABOUT THE AUTHOR

• I. Drago, R. R. R. Barbosa, R. Sadre, A. Pras, and J. Schönwälder. Report of
the Second Workshop on the Usage of NetFlow/IPFIX in Network Management.
Journal of Network and Systems Management 19(2):298–304, 2011.

• A. Pras, A. Sperotto, G. C. Moura, I. Drago, R. R. R. Barbosa, R. Sadre,
R. de O. Schmidt, and R. Hofstede. Attacks by “Anonymous” WikiLeaks Pro-
ponents not Anonymous. Technical Report TR-CTIT-10-41, CTIT, University
of Twente 2010.

• R. R. R. Barbosa, R. Sadre, A. Pras, and R. Meent. Simpleweb/University
of Twente Traffic Traces Data Repository. Technical Report TR-CTIT-10-19,
CTIT, Univeristity of Twente, Apr. 2010.

• R. S. Schwartz, R. R. R. Barbosa, N. Meratnia, G. Heijenk, and H. Scholten.
A Simple and Robust Dissemination Protocol for VANETs. In 2010 European
Wireless Conference, pages 214–222. IEEE, 2010.

• R. R. R. Barbosa and A. Pras. Intrusion Detection in SCADA Networks. In
Proceedings of the 4th International Conference on Autonomous Infrastructure,
Management and Security, pages 163–166. Springer, 2010.

	Introduction
	Background
	What is SCADA?
	Evolution and Vulnerabilities
	Intrusion Detection in SCADA
	Goal, Research Questions and Approach
	Thesis Outline

	Applicability of Traditional Traffic Models
	Introduction
	Datasets
	Invariants
	Analysis Results
	Conclusions

	SCADA Traffic Characterization
	Introduction
	Datasets
	Periodicity
	Connection Matrix
	Conclusions

	SCADA Security
	Introduction
	Differences with Traditional IT
	Documented Incidents
	Securing SCADA
	Summary

	Exploiting the Stable Connection Matrix
	Introduction
	Flow Whitelisting
	Approach
	Evaluation
	Discussion
	Conclusions

	Exploiting the Traffic Periodicity
	Attack Scenario and Research Questions
	Communication Model
	Related Work
	PeriodAnalyser
	Evaluation
	Discussion
	Conclusions and Future Work

	Conclusions and Future Work
	Summary
	Main Findings and Implications
	Future Directions

	SCADA Protocols
	Modbus
	MMS
	IEC 60870-5

	Additional Results
	Applicability of Traditional Traffic Models
	SCADA Traffic Characterization

	Bibliography
	Acronyms
	Index
	About the author

