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This paper presents a first attempt to evaluate two 

previously proposed methods for statistical anomaly 

detection in sea traffic, namely the Gaussian Mixture 

Model (GMM) and the adaptive Kernel Density Estimator 

(KDE). A novel performance measure related to anomaly 

detection, together with an intermediate performance 

measure related to normalcy modeling, are proposed and 

evaluated using recorded AIS data of vessel traffic and 

simulated anomalous trajectories. The normalcy modeling 

evaluation indicates that KDE more accurately captures 

finer details of normal data. Yet, results from anomaly 

detection show no significant difference between the two 

techniques and the performance of both is considered 

suboptimal. Part of the explanation is that the methods 

are based on a rather artificial division of data into 

geographical cells. The paper therefore discusses other 

clustering approaches based on more informed features of 

data and more background knowledge regarding the 

structure and natural classes of the data. 
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1 Introduction 

Anomaly detection has been identified as a critical 
component in order to achieve Situation Awareness in the 
context of information fusion and maritime surveillance 
([1], [2], [3], [4], [5], [6] and [7]). Anomaly detection can 
be regarded as a method that supports the Situation 
assessment process at JDL level 2 by indicating objects 
and situations that, in some sense, deviate from the 
expected, known or “normal” behavior and thus may be of 
interest for further investigation. 

Conceptually, the methods that have been proposed 
and implemented for anomaly detection in the maritime 
domain are based on statistical modeling of kinematical 
properties and behavior of individual vessels. In particular, 
the majority of the proposed feature models comprise a 
combination of momentary kinematical state features such 
as position, course/heading, speed, velocity vector, 

acceleration and angular velocity ([1], [3], [4], [6] and 
[7]). Furthermore, behavior over time is “captured” by 
clusters of vessel trajectories [5] or discrete state transition 
models where discrete vessel position state is a function of 
the previous position and velocity state [2]. 

Technically, the models and algorithms proposed for 
anomaly detection in the maritime domain are more or less 
data driven in the sense that normalcy is determined by 
machine learning algorithms analyzing a relative large set 
of historical data assumed to reflect normalcy. Generally, 
the methods are based on either neural networks that learn 
what is normal by unsupervised/semi-supervised learning 
([1] and [2]), or more refined and transparent 
statistical/probabilistic models ([3], [4], [5] and [6]), or a 
hybrid where neural networks are used for determining 
parameters of a statistical model [7]. Considering the 
statistical methods, these can be categorized as parametric 
([3] and [6]) or non-parametric [4], where the parametric 
methods assume that the model for (normal) data has a 
particular structure or belongs to a family of 
parameterized models. Structure and parameter setting can 
be purely data driven, e.g. unsupervised learning of 
structure and parameter estimation based on available data 
using machine learning techniques ([3] and [5]), or it can 
be a hybrid approach supporting the incorporation of 
human expert knowledge together with 
unsupervised/supervised learning [6]. 

So far, there has been no attempt to further evaluate 
and compare different methods for anomaly detection in 
the maritime domain. In this paper, we are concerned with 
a first attempt to investigate and compare the performance 
of two previously proposed statistical models for anomaly 
detection in sea traffic, namely the Gaussian Mixture 
Model (GMM) [3] and the adaptive Kernel Density 
Estimator (KDE), also known as the Parzen Window 
method [4]. 

The rest of the paper is structured as follows. First we 
describe a general approach to statistical modeling and 
anomaly detection based on vessel position and velocity 
vector, followed by a presentation of the GMM and KDE 
approaches as well as description of cell based normalcy 
modeling and anomaly detection. We then proceed to the 
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experimental part of the paper where a novel performance 
measure is proposed and evaluated for the two models. 
The results are followed by a discussion and conclusion 
including directions for future work. 

2 Statistical anomaly detection based 

on vessel position & velocity vector 

The feature model we propose in this paper is 
identical to that previously proposed in [3] and [4], i.e. sea 
traffic is characterized by the momentary position in 
latitudinal and longitudinal coordinates and the velocity in 
latitudinal and longitudinal directions of individual 
vessels, i.e. a four-dimensional feature space. Considering 
“normal” or routine sea traffic, we assume that values of 
the four features constituting a single data vector, i.e. a 
single vessel observation, can be statistically modeled by a 
joint probability density function (PDF) that captures 
correlations between the features. Given such a PDF, we 
calculate the data likelihood for a particular vessel 
observation and the assumption that it is normal and that it 
is independent of previous observations, i.e. it constitutes 
an iid (independent and identically distributed) random 
sample from the underlying normal PDF. But, assuming 
that we have no corresponding PDF for 
abnormal/anomalous sea traffic (and prior probabilities for 
normal and anomalous vessels), we cannot determine the 
Bayesian posterior probability that the vessel observation 
is normal or anomalous. However, we can interpret the 
likelihood as an indication of the degree to which the 
corresponding observation is normal; if the likelihood is 
below a particular threshold, we assume that it is very 
unlikely that it was generated from the normal PDF and 
thus it is considered to be an anomaly. 

As is the case in most real world applications, we do 
not have the true PDF for the feature values of normal 
data. In fact, we do not even know the parametric-form of 
the PDF, if such exists. The only thing we have is a (large) 
data sample that we assume has been generated from the 
PDF we seek. Thus, we need to estimate the PDF from our 
sample data without assuming any particular parametric 
form of the PDF. 

2.1 Gaussian Mixture Model & 

Expectation-Maximization 

The GMM is perhaps the most commonly used 
parametric density model for approximating arbitrary 
continuous multivariate PDFs when there is no particular 
knowledge or assumption regarding the parametric form 
of the density. It consists of K multivariate Gaussian 
distributions known as mixture components, where each 
component k has its own parameter set { }kkk Σμ ,=θ  

where kμ  is the mean value vector and kΣ  is the 

covariance matrix of the multivariate Gaussian. Each 
component of the mixture also has an associated mixing 
weight kπ  and all weights are non-negative and sum to 

one. The probability density function for the Gaussian 
mixture model is given in equation (1):  
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The total parameter set { }Kθθθ ,...,1=  for a fixed 

number of components K can be estimated from a training 
data set using the Expectation-Maximization (EM) 
algorithm originally proposed by Dempster et.al. [8]. 
Given a randomly initialized parameter set, the algorithm 

iteratively estimates the optimal parameter set θ̂  that 
maximizes the average log likelihood of the training set. 
However, depending on the initialization, the EM 
algorithm may converge to a local maximum that is 
different from the global maximum. Therefore, in order to 
suppress the sensitivity to initialization, we execute 
multiple runs of the EM algorithm with random 
initializations for a fixed number of components K and 

store the best estimate Kθ̂ , i.e. the total parameter set that 

yields the highest average likelihood, as the optimal K-
component model. 

In order to determine a suitable number of 
components K, we estimate multiple mixture models with 
different number of components, i.e. with different values 
of K, and use the holdout method to determine when we 
are starting to over-fit the data. This is done in an 
incremental manner by, starting with K=1, estimate the 
optimal K-component model and the optimal (K+1)-
component model and compare the average likelihood of a 
separate and non-correlated validation set; if the likelihood 
has decreased since adding another component, we 
assume that the (K+1)-component model is over-fitting the 
data and thus the K-component model is considered the 
optimal solution. 

2.2 Adaptive Kernel Density Estimation 

Generally, vessel traffic more or less follows sea 
lanes that can be described as sequences of straight line 
segments. Adopting the multivariate Gaussian for the 
spatial distribution of vessels implies that the location and 
extension of these sea lane segments are characterized by 
a Gaussian mean vector and covariance matrix, 
respectively, in the two-dimensional plane. However, one 
may argue that the two-dimensional Gaussian is not an 
optimal density model if we assume that the distribution of 
vessel positions along the major axis of the sea lane 
segments is approximately uniform, even though the 
variance along the axis perpendicular to the sea lane 
would nicely capture the vessel position offset relative the 
sea lane. 

The adaptive KDE, also known as the Parzen 
Window method, is another technique for estimating 
unknown probability densities which, in contrast to the 
GMM, is purely non-parametric in the sense that it makes 
no assumption at all regarding the parametric form of the 
true density; the form of the estimated PDF is explicitly 
determined by the training data. This property gives the 
KDE an advantage over the GMM regarding the ability to 
accurately model arbitrary sea lanes as discussed above. 
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The probability density function for the KDE, given 
by equation (2), is determined simply by placing a kernel 
function on each and every observation kx  of the training 

set having size K, where each kernel is parameterized by 
its adaptive window width kh  estimated from the training 

set as described in [4].  
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Similarly to [4], we adopt the multivariate Gaussian kernel 
with zero-mean and fixed covariance matrix Σ  given in 

equation (3), where the kernel covariance is estimated as 
the sample covariance of the whole training set. 

 

 ( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧ ∑−

∑
= −

xxx
1

2 2

1
exp

2

1 T

dπ
φ  (3) 

2.3 Cell based normalcy modeling and 

anomaly detection 

When the size and the complexity of the training set 
grows, parameter estimation and anomaly detection may 
become infeasible due to the complexity of the statistical 
models and algorithms. In the case of the KDE, the 
computational complexity of the algorithms for 
calculating the adaptive window widths and anomaly 
detection are quadratic and linear in the size of training 
set, respectively. 

In order to suppress the computational complexity, 
we previously proposed that the surveillance area should 
be discretized into a uniformly sized grid where each cell 
has a local PDF estimate based on the local training data 
[3]. If the number of samples of the local training set is 
below specific threshold, the amount of training data is 
considered to be insufficient for normalcy learning and 
thus no PDF is estimated for that particular cell. Thus, 
observations within such cells would be considered 
anomalous, regardless of their features. Because grid 
discretization is done without considering the actual 
geographical distribution of data (e.g. without considering 
what is land and sea), there will most likely be one or 
more cells that lack a sufficient amount of data for 
normalcy modeling. 

3 Experimental evaluation 

In order to evaluate the GMM and KDE for statistical 
anomaly detection, we have trained and evaluated the 
implemented models based on a set of recorded AIS1 data 
assumed to reflect normal/typical sea traffic. This data has 
been preprocessed, resulting in a set of trajectories that 
have been further divided into a training set for estimating 
the PDFs and an evaluation set for evaluating the 
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 Automatic Identification System (AIS). For more 

information on AIS: http://www.imo.org 

performance of the estimated PDFs. The experiment 
consist of two parts corresponding to two novel 
performance measures we have defined for this 
application; normalcy modeling performance and anomaly 

detection performance. 

3.1 Normalcy modeling performance 

By normalcy modeling performance we mean the 
ability to estimate the true PDF for normal data; recall that 
our goal is to find a PDF that approximates the true PDF 
for normal feature values. Assuming that the observations 
from our evaluation set are normal, we would expect that 
their likelihood under the normal hypothesis in general is 
rather high. Therefore, we assess normalcy modeling 
performance based on the normal evaluation data 
likelihood for the GMM and KDE model; the model that 
assigns the largest likelihood for previously unseen normal 
data is assumed to better estimate the true normal PDF and 
is therefore regarded as superior. 

3.2 Anomaly detection performance 

The normalcy modeling performance proposed above 
is not enough if we are to evaluate two systems ability to 
detect anomalies. Yet, assessing anomaly detection 
performance is not straight forward; as discussed in 
previous work [3], there exists no established benchmark 
comprising a set of well defined maritime scenarios that 
are considered anomalous by domain experts. In fact, one 
may argue that assessing anomaly detection performance 
in this way is not appropriate as we are biased towards 
evaluating the systems ability to detect a particular class of 
anomalous situations, i.e. from a goal driven perspective, 
which stands in conflict with our definition of an anomaly 
as something prior unknown/ill-defined [3].  

In this paper, we have addressed anomaly detection 
performance by evaluating the models ability to 
distinguish simulated trajectories, which have been 
generated by an arbitrary stochastic process, from real 
recorded trajectories that are assumed to have been 
generated by the true normal process, i.e. according to the 
normal PDF we are trying to estimate. The evaluation 
metric we use in this context is the number of consecutive 
observations required from an arbitrary anomalous 
trajectory segment in order to classify it as anomalous; the 
model that requires the least number of observations is 
regarded as superior. 

3.3 AIS data description and preprocessing 

The normal data used for both experiments in this 
paper has been generated from a large set of historical AIS 
data provided by Saab Transponder Tech. The data set 
corresponds to about three weeks of continuously recorded 
AIS traffic data that has been collected from vessels along 
the west coast of Sweden (Figure 1). All observations are 
unlabelled in the sense that there is no explicit label telling 
if a particular observation is normal or anomalous; 
however, we assume that the data set more or less reflect 
normal/routine sea traffic. 
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From the raw AIS data we have extracted the MMSI2, 
latitudinal and longitudinal position, course, speed and 
absolute timestamp for each recorded AIS report, where 
speed and course are transformed to longitudinal and 
latitudinal velocities. Thus, we have vessel reports 
containing six attributes corresponding to the vessel ID, 
timestamp, position and velocity in latitudinal and 
longitudinal space. 

Even though we are not explicitly characterizing 
trajectories in our statistical model, we still want to group 
vessel reports corresponding to particular vessel 
trajectories for practical and experimental reasons.  This 
“tracking” of the vessels is based on their MMSI which is 
assumed to uniquely identify each vessel present in the 
data set. In order to suppress the size of the data set 
without losing significant information, vessel reports from 
the trajectories are sampled at a fixed rate; whenever a 
tracked vessel has travelled a distance equal to or larger 
than the sampling distance, in these experiments set to 200 
m, the current vessel report is added to the trajectory. In 
principle, this sampling for a particular vessel is continued 
until either no new vessel reports are received within a 
particular time interval (e.g. due to the fact the vessels 
leaves AIS-coverage), or it has remained stationary for 
more than 5 min in which case it is assumed to be 
moored3. In any of these cases, the trajectory is terminated 
and a new trajectory initiated when the vessel appears 
again or leaves its stationary state and starts to move again 
(i.e. it initiates a new route). In total, approximately 
4,500,000 observations were sampled from the data, 
generating a total of 36,370 trajectories. 

For each cell, we extract local trajectory segments 
from the part of the trajectories that are within the cell. 
The local trajectory segments are then divided into two 
sets corresponding to local training data, used for PDF 
estimation, and local evaluation data used for evaluating 
the normalcy modeling and anomaly detection 
performance. In our experiments, 80 % of the local 
trajectory segments were randomly selected for training 
and the rest used for evaluation. By partitioning the set of 
trajectory segments rather than the set of all observations, 
we suppress correlation between the training set and 
evaluation set (which would be the case if both contained 
observations from the same trajectory). 

3.4 Simulation of anomalous trajectories 

The trajectories used for evaluating the anomaly 
detection performance each consist of two parts; the first 
part corresponds to a normal segment and the second part 
an anomalous segment. The normal segment of each 
evaluation trajectory is constructed by first selecting a 
random trajectory from the set of normal evaluation 
trajectories, and then selecting a random break point along 
this trajectory; the subpart of the selected trajectory that 
extend to the selected breakpoint constitutes the normal 
segment.  The anomalous segment, extending from the 

                                                 
2
 Maritime Mobile Service Identity 

3
 The attribute ’Navigational status’ available in the AIS 

reports was empirically found to be unreliable. 

selected breakpoint, is generated according to a discrete 
stochastic process. Starting at 0t , the process samples new 

values for speed and course (independently of the previous 
values of the normal segment) from the two corresponding 
uniform PDFs within the intervals 0-30 knots and 0-360°, 
respectively. In the next time step 1t , the latitudinal and 

longitudinal coordinates of the trajectory are updated 
based on the current course, speed and time difference 

01 ttt −=Δ . Analogously to the sampling of the AIS 

trajectories described in section 4.1, we chose the next 
sampling time point 1t  such that the corresponding 

geographical distance between the sampling points equals 
a predefined sampling rate, in this case 200 m. Thus, tΔ  is 
a dynamic variable that depends on the current speed. At 
each new time step, there is a 10 % probability that new 
values for the speed and course, independently of each 
other, are sampled from the same uniform PDFs 
mentioned previously. Moreover, if the trajectory is about 
to enter a cell lacking a model or leaves the grid, a new 
course is sampled that ensures that the trajectory does not 
violate the boundaries.  This process is repeated until the 
anomalous trajectory segment has a reached a predefined 
length. 

3.5 Parameters and grid setup 

For the parameter estimation of the GMM, 20 % of 
the available trajectory segments of the corresponding 
local training set were randomly and exclusively selected 
for the hold-out model validation, i.e. determining the 
appropriate number of mixture components. This value 
was chosen arbitrarily but considered to be enough for 
model validation. 

For the normalcy modeling experiment, we have used 
the total data set, covering the west coast of Sweden, and 
applied a global grid of size 12 and 24 cells in longitudinal 
and latitudinal direction, respectively, resulting in cells 
having approximately quadratic form of size 22 km. 
However, only 112 out of 288 cells contained enough data 
for normalcy modeling; cells with less than 100 
observations in the evaluation data were simply excluded 
from normalcy learning. The size of the global grid was 
chosen with consideration to the computational 
complexity of the parameter estimation in general and the 
KDE adaptive window widths estimation in particular; 
given the current grid size, estimation of adaptive window 
widths took approximately 24 h on a PC laptop. 

The initial anomaly detection experiments presented 
in this paper have, for practical reasons, been limited to a 
local area outside of the harbor of Gothenburg. The size of 
the local grid was set to 6 (longitude) and 4 (latitude), 
where each cell has a length of approximately 2 km. The 
reason for choosing a smaller cell size was because of the 
relatively high traffic density around the harbor. 
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Figure 1: Plot of vessel trajectories extracted from the AIS-dataset, covering the western coast of Sweden
2
. The grid of size 

12x24 used during the experiments is overlaid, where each cell is approximately quadratic with length 22 km 

 

 

Figure 2: Plot of vessel trajectories extracted from the AIS-dataset covering an area outside the harbor of Gothenburg
4
 

located in the upper right corner. The grid of size 6x4 used during the experiment is overlaid, where each cell is 
approximately quadratic with length 2 km

                                                 
4
 Screenshot taken from the Google Earth application. 
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Two thresholds, one for the GMM and one for the KDE, 
are used during the anomaly detection evaluation, were 
each has been tuned to a level where 1 % of the normal 
trajectory segments of the evaluation set contain one or 
more anomalous observations.  This threshold is 
interpreted as an estimated false alarm rate of 1 per every 
100 arbitrary normal trajectories observed by the models 
which we considered a reasonable operational alarm rate. 

3.6 Results 

Results for the normalcy modeling experiment is 
summarized in Table 1 below, where for each model 
(columns) the median and the first percentile (rows) of the 
log likelihood for all observations from the set of all 
available normal evaluation trajectories is presented. 

 

 GMM KDE 

Median of log 

likelihood for total 

evaluation set 

-1.8270 -1.3162 

1
st
 percentile of log 

likelihood for total 

evaluation set 

-11.6569 -7.7414 

Table 1: Summary of the log likelihood performance of the 
GMM and KDE over the total evaluation set 

 
Table 2 below summarizes the anomaly detection 

experiment for the local area outside of Gothenburg, 
where the evaluation is based on 10,000 simulated 
trajectories that have been generated as described in 
section 3.4. Recall that each simulated trajectory has two 
parts; an initial normal segment that transits to an 
anomalous segment at a randomly selected point. Having 
fixed the rate of false alarms, i.e. rate of normal segments 
detected as anomalous as described in section 3.5, we 
calculate, for each model, the number observations it 
requires before it detects the first anomalous observation 
of each anomalous segment. The results are summarized 
as the mean and median for all the 10,000 anomalous 
segments. 

 

 GMM KDE 

Mean number of 

observations required 

for detection of 

anomalous segment 

17.72 17.43 

Median number of 

observations required 

for detection of 

anomalous segment 

12 12 

Table 2: Summary of the number of anomalous 
observations required before detecting corresponding 

anomalous segment 

 

Figure 3: Plot of vessel trajectories in a cell of the global 
grid, illustrating a two-directional major sea lane and 

another minor sea lane crossing the major 

 

Figure 4: Visualization of normalized PDF in position 
space for the GMM for the cell in Figure 3, based on the 

mean and the covariance in position space for each 
component of the GMM. Note the unimodal peak halfway 

along the two parallel sea lanes, hiding the separation 
between them 

 

Figure 5: Visualization of normalized PDF in position 
space for the KDE for the cell in Figure 3, based on each 
kernel location and total sample covariance in position 

space. Note how this PDF, in contrast to the one in Figure 
4, nicely discriminates the two parallel lanes and 

approximates a uniform density along them 

761



4 Discussion 

4.1 Normalcy modeling performance 

Looking at Table 1, we may interpret the results as 
the KDE being superior in the sense that the median data 
likelihood of a normal observation is higher than for the 
GMM model; the median of the likelihood for the normal 
evaluation set is approximately 5/3 times the 
corresponding likelihood for the GMM model. This ratio 
is even larger, approximately 50:1, in favor of the KDE 
when considering the first percentile, i.e. the least likely 
observations encountered in the evaluation set. These 
results, together with the plotted PDFs in Figure 4 and 
Figure 5, support the hypothesis that the KDE more 
accurately captures features in normal data related to e.g. 
the spatial distribution of the vessel location along sea 
lanes. 

One could argue that the assumption that the recorded 
AIS-data strictly reflects normal traffic is not realistic and 
feasible. In fact, there may be occurrences in this data that 
some people, in some contexts, would consider anomalous 
and worthy an alert. However, by taking the median and 
not the mean value of the (log) likelihoods for all 
observations, our assessment of the normalcy modeling 
performance is robust with regard to such anomalies. 
Consider for example the case that we actually have a true 
anomaly in our evaluation data. A “good” normalcy model 
would then assign this observation a (very) low likelihood, 
while a “bad” normalcy model might assign it a 
considerably larger likelihood. Thus, taking the mean 
would penalize models that detect these true anomalies in 
favor for models that do not. 

4.2 Anomaly detection performance 

Having observed the intermediate results from Table 
1, it would seem a reasonable hypothesis that that the 
KDE have an advantage when it comes to discriminating 
observations sampled from PDFs other than the normal; if 
areas in feature space covered by normal data have a 
relatively high density, it must follow that other 
(anomalous) areas have a relatively small density as the 
integral of the PDF is normalized to one. Yet, considering 
Table 2, it appears that there is no significant difference 
between the models when it comes to actually 
discriminating observations from arbitrary trajectories 
from those of normal trajectories; the mean and the 
median of the number of observations required before the 
detection of an anomalous segment is approximately 17 
and exactly 12, respectively, for both models. Translating 
these results to distances implies that the models detect the 
anomalous segments after 3,4km (mean) and 2,4km 
(median), respectively. This may be considered rather far 
given the rather constrained behavior of the normal vessel 
trajectories in the area and the random sweeping behavior 
of the anomalous trajectories; we expect that a reasonably 
effective anomaly detector should detect such anomalous 
behavior at an earlier stage. 

4.3 Limitations of the cell based approach 

One reason for the rather disappointing anomaly 
detection results may be that we have modeled the 
problem incorrectly in one or more aspects. The cell 
division model described in this paper serves well for 
suppressing the size of the data set used for statistical 
modeling. However, it is rather naïve in the sense that it 
does not take into account the actual vessel traffic 
distribution. Moreover, one may argue that simply 
partitioning the data based on only geographical proximity 
of individual observations, regardless of other contextual 
information such as trajectory origin and destination, 
vessel type etc, is rather artificial and do not reflect a 
natural partitioning of the data. Consider for example the 
cell in column 2 and row 2 (starting from the top) in 
Figure 2. Clearly, there appears to be one major sea lane 
and one minor sea lane that extends in north-westwards 
direction from the major. Because of the relatively low 
traffic intensity in the minor sea lane in this particular cell, 
traffic along and close to the lane will be regarded as 
rather unlikely, perhaps even anomalous, even though 
there clearly is a sea lane that is part of normalcy. This 
issue highlights that an anomaly is perhaps more of a 
relative concept that should be considered in the right 
context. In the example discussed above, it would 
probably be more appropriate to model the two sea lanes 
separately by two different statistical models and evaluate 
new observations by first determining the most likely sea 
lane (model), e.g. based on a Bayesian posterior analysis 
using prior probabilities for the two sea lanes and their 
likelihoods for the observation, and then do anomaly 
detection relative the most likely model.  

Generally, when attempting statistical modeling of 
large and complex data sets, we believe that it is important 
that we use all available background knowledge regarding 
the structure and natural classes in data. In the context of 
statistical modeling of AIS data, this implies that 
information regarding origin, destination, vessel type etc 
that are directly accessible from the AIS data, together 
with other contextual information, such as season and time 
of day, should be exploited during modeling. Yet, we still 
believe that partitioning data into cells in some way could 
prove a suitable approach as part of a hierarchical 
clustering when dealing with rather long and complex 
trajectories. 

4.4 Future work 

Following the discussions of the previous section, a 
natural direction for future work is to consider alternative 
approaches to partitioning of the vessel reports, such as 
considering vessel class and the origin and the destination 
of the corresponding trajectories. In [4], the authors 
propose extracting “motion patterns” from the training set 
where each motion pattern corresponds to a cluster of 
trajectories having more or less the same origin. Assuming 
that vessels originating from the same area, typically 
harbor or area where coverage/tracking starts, have similar 
trajectories and behavior to a larger extent than arbitrary 
vessels, this partitioning is indeed an interesting approach 
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to implement and evaluate.  Such a trajectory clustering 
could potentially be part of a hierarchical clustering that 
also involves further clustering based on destination and 
cell division as discussed in section 3.7.  

Another direction for future work is development of 
the feature model used for the statistical analysis. As 
pointed out in [3], the momentary position- and velocity 
vector model is rather limited in the sense that 1) change 
of individual vessel behavior over time and 2) 
spatiotemporal relations to other vessels are not 
statistically modeled. Moreover, data sources and data 
types related to information other than vessel kinematics,  
such as various ship data bases and other intelligence, 
could potentially enhance the prior data partitioning of 
vessel trajectories, or serve as basis for statistical 
modeling in other feature spaces. 

5 Conclusion 

In this paper we have presented and evaluated two 
methods previously proposed for statistical anomaly 
detection in sea traffic; the GMM & EM, and the adaptive 
KDE. These two methods have been used for estimating 
the joint PDF for the position-velocity vector of normal 
vessel trajectories within confined geographical cells. A 
novel performance measure for evaluating anomaly 
detection performance, together with an intermediate 
performance measure related to normalcy modeling 
performance, have been proposed and evaluated based on 
recorded AIS data, assumed to reflect normal traffic, and 
simulated stochastic trajectories assumed to be anomalous. 

Intermediate results indicate that the KDE is superior 
to the GMM in the sense that the median likelihood of a 
previously unseen normal observation is higher for the 
KDE; this supports our prior hypothesis that the KDE 
more accurately characterizes features in the data, such as 
sea lanes. However, results from the anomaly detection 
experiments were somewhat surprising in the sense that 
there was no significant difference between the two 
methods, even though intermediate results regarding 
normalcy modeling performance suggest that KDE 
potentially has some advantage. Moreover, anomaly 
detection results for both models were quite disappointing 
as the expected trajectory distance observed before 
detection was considered rather large given the rather 
constrained normal trajectories and the sweeping and 
stochastic character of the anomalous trajectories. 

One explanation for the suboptimal anomaly 
detection performance may be that we have modeled the 
problem incorrectly in one or more aspects. In particular, 
we question the rather blunt cell division approach to 
partitioning of the vessel reports, considered as rather 
artificial and not reflecting a natural partitioning of the 
data. Rather, other clustering approaches based on more 
informed features of data and more background 
knowledge regarding the structure and natural classes of 
the data should be used. Hierarchical clustering, 
considering first trajectory origin and second trajectory 
destination would probably be more appropriate. 
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