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Abstract—As several home appliances, such as air conditioners,
heaters, and refrigerators, were connecting to the Internet, they
became targets of cyberattacks, which cause serious problems
such as compromising safety and even harming users. We have
proposed a method to detect such attacks based on user behavior.
This method models user behavior as sequences of user events
including operation of home IoT (Internet of Things) devices and
other monitored activities. Considering users behave depending
on the condition of the home such as time and temperature,
our method learns event sequences for each condition. To mit-
igate the impact of events of other users in the home included
in the monitored sequence, our method generates multiple event
sequences by removing some events and learning the frequently
observed sequences. For evaluation, we constructed an experi-
mental network of home IoT devices and recorded time data for
four users entering/leaving a room and operating devices. We
obtained detection ratios exceeding 90% for anomalous oper-
ations with less than 10% of misdetections when our method
observed event sequences related to the operation. In this article,
we also discuss the effectiveness of our method by comparing with
a method learning users’ behavior by Hidden Markov Models.

Index Terms—Anomaly detection, behavior pattern, consumer
electronics, cybersecurity, Internet of Things, operation by
attackers, smart home.

I. INTRODUCTION

H
OME appliances such as refrigerators, heaters, and

air conditioners are being increasingly integrated with

Internet connections to expand connectivity beyond personal

computers and smartphones. These devices are collectively

called IoT (Internet of Things) devices. Users can obtain

information from IoT devices and operate them using smart-

phones, tablets, or smart speakers.

Currently, seven billion IoT devices are connected to the

Internet, with a substantial increase to 215 billion devices
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expected by 2025 [1]. As the number of devices connected to

the Internet increases, the risk for these devices to be targeted

by cyberattacks also increases [2]–[5]. In fact, direct attacks

and malware targeting of IoT devices [6], [7] have already

been reported.

Most of the current attacks targeting IoT devices aim to

create botnets [8], [9]. Such attacks are detectable by methods

based on analyses of attacker behaviors [10]–[12] or through

usual traffic comparisons [13], [14].

However, as IoT devices are closely included in our routine,

attacks may cause immediate and personal harm to users [15].

For instance, the operation of IoT devices by attackers may

threaten user safety, potentially even causing physical harm,

through actions such as changing the temperature of an air

conditioner or the settings of a healthcare device. In addi-

tion, simultaneous attacks on high-power IoT devices can

suddenly increase energy demands and lead to major power

outages [16]. Therefore, methods to detect and prevent cyber-

attacks are necessary for the widespread adoption of IoT

devices.

Intrusion detection systems are the typical countermeasures

against attacks targeting IoT devices. Zarpelao et al. [17]

presented an intrusion detection system to detect anomalous

traffic over IoT devices by either comparing the packets to

predefined rules or detecting outliers from the observed traf-

fic. Although existing intrusion detection systems assume that

legitimate and anomalous traffic patterns are notably differ-

ent, both attackers and legitimate users send the same types

of packets to operate IoT devices. For instance, if an attacker

sends packets via the malware-infected smartphone of a legit-

imate user, even the source IP address is identical to that of

the legitimate user. Consequently, existing intrusion detection

systems cannot distinguish between packets sent by legitimate

users and attackers based on the available information.

To improve user protection, we proposed a method to detect

the anomalous operation of home IoT devices by learning

user behaviors during operation [18]. Our method learns user

behaviors. Then, when a command arrives at a home IoT

device, the method verifies whether it matches the learned

behavior. When a command does not agree with the learned

behavior, it is classified as an anomaly. Therefore, the proposed

method can detect anomalous operation that does not fit

the user behaviors even if the commands are generated by

malware-infected smartphones.

User behaviors may depend on the condition of the room

such as time and temperature. Considering the above point,
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we define user behaviors by sequences of operations accord-

ing to conditions such as time and sensor measurements in the

home network. When we learn the sequences of operations, we

should consider the case that a monitored sequence of oper-

ations includes operations by multiple users because a smart

home may have multiple users. Such operations by the other

users have a large impact on learning essential user behav-

ior. To mitigate such impact, our method generates multiple

sequences of operations by removing some operations from the

monitored sequence and learns sequences that are frequently

observed from them.

In this article, we extend our previous work [18] by inves-

tigating the effectiveness of our method by comparing it with

a method to learn normal activities of a user by using Hidden

Markov Models (HMM) [19]. In addition, we compared our

method with methods using a part of our leaning method, and

discussed the effectiveness of our method.

The rest of this article is organized as follows. We describe

the related work in Section II. Then, We describe the proposed

method to detect anomalous operations in Section III. After

that, we report the evaluation of the method and the corre-

sponding results in Section IV. Finally, we draw conclusions

and discuss directions of future work in Section V.

II. RELATED WORK

As several home appliances, such as air conditioners,

heaters, and refrigerators, are being connected to the Internet,

and they became targets of cyberattacks [6], [7], which can

cause serious problems such as compromising safety and even

harming users [15]. Therefore, the methods to detect attacks

for the home IoT devices have been proposed [10]–[14]. For

example, Hodo et al. proposed a method to detect intruded

IoT devices. This method uses an artificial neural network

trained by using the packet traces. By using the artificial neural

network, this method classifies the normal and threat patterns

on an IoT network and detects DoS attacks [20]. Xu et al.

proposed the method to detect intruded home IoT devices

that become a part of botnets. This method uses a bloom-

filter based analytics framework to find anomalous packets and

detect intruded home IoT devices [10]. Martin et al. proposed a

comprehensive home network defense method against attacks

to home IoT devices. This method uses honeypot to find

attacks by the signatures-based method and changes settings

of firewalls to drop the attacking packets [11].

They focus on the intrusion or anomaly on the IoT devices

and detect anomalies based on the difference of traffic from/to

the IoT devices. However, if an attacker sends packets via the

malware-infected smartphone of a legitimate user, even the

source IP address is identical to that of the legitimate user.

That is, the anomalous operation cannot be detected by the

methods based on the difference of traffic from/to the IoT

devices. Therefore, we proposed a method to detect anomalous

operations by learning user behaviors.

Ramapatruni et al. also proposed a method to detect anoma-

lous operations by learning user behaviors. This method uses

Hidden Markov Models (HMM) to learn the normal activ-

ities of a user. This method uses the information obtained

from sensors and/or statuses of the home IoT devices as

the observations. By using the observations, this method learns

the parameters of HMM. Then, this method detects the anoma-

lous operations if an operation whose probability is low

occurs. They demonstrated the accuracy of this method by

using the dataset collected at the smart home environment

deployed by them. This method focuses on the case of a

single user [19]. However, a smart home may have multiple

users. Therefore, in this article, we propose a method to

detect anomalous operations even in the case of multiple users

in a home.

There exist papers on learning user behaviors in other

areas. Rashid et al. proposed a method to detect behaviors of

malicious insiders of organizations by learning behaviors of

legitimate users. In this article, the behaviors are defined by

a sequence of actions stored in log files of computer systems

and modeled by a hidden Markov model. Then, this method

detects the malicious insider whose behavior does not match

the learned model [21]. Haider et al. proposed a method to

detect zero-day attacks for cloud servers by modeling the

users’ usage behavior. This article also defined user behaviors

as a sequence of actions. This article modeled the behavior

by using nested-arc hidden semi-Markov model (NAHSMM).

This article demonstrated that the method detects major attack

families such as DoS and worms by learning the model by

using traffic data [22].

Methods to monitor people in a home and learn their behav-

ior have also been proposed. For example, Aran et al. proposed

a method to detect anomalous behavior in elderly daily life.

This method monitors locations of a person in a house by using

motion sensors, chair sensors, bed sensors and so on. Then,

this method uses the time series of the locations to detect

anomalous behavior [23].

Similar to our method, they learn the sequence of events,

but they cannot be applied to learning the users’ operation in

a smart home. First, user behaviors depend on the conditions

of the home such as time of day, temperature, and humid-

ity, but they do not consider the behavior changing by the

condition. Another problem is that a smart home has multiple

users. As a result, a monitored sequence may include the event

by the other users, which has an impact on learning essential

user behaviors. Note that the essential event sequences include

only the events from one user. Therefore, we proposed a new

method to learn users’ behaviors so as to detect anomalous

operations.

III. ANOMALY DETECTION IN SMART HOME OPERATION

In this section, we introduce a method to detect the anoma-

lous operation of home IoT devices attributed to attackers. The

proposed method considers specific patterns of user behav-

ior depending on diverse conditions. For example, when users

return home and feel cold, they turn on a heater and then

a humidifier, whereas if it is warm, they never turn on the

heater. In addition, operation sequences reflect user behavior.

For example, a user turns on the heater and then the humid-

ifier, whereas another user first turns on the humidifier. The

proposed method learns these types of condition-dependent
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Fig. 1. Overview of detection model.

operation sequences to establish behavior patterns, and it

classifies deviations from these learned patterns as anomalies.

In this section, we describe the proposed model of user

behavior. Then, we explain the learning of user behaviors and

the detection of anomalous operations.

A. Learning Model

Fig. 1 illustrates the model to learn user behaviors. This

model is defined by the conditions and the stored user behav-

iors for each condition. The conditions are represented as a

table in which each cell corresponds to each condition. For

each condition, we store the learned user behaviors. The rest

of this subsection explains the detail of the model of the

conditions and the user behaviors for each condition.

1) Conditions: We define a condition as a combination of

time of day and sensor measurements such as room tempera-

ture, humidity, and noise value. The variables representing the

various components of a condition are denoted as ci, where

index i starts from 1 and reaches a maximum imax. An exam-

ple, as shown in Fig. 1 has two metrics, time of day and

temperature to define the condition. That is, imax is 2 and

c1 represents the time of a room, whereas c2 represents its

temperature. For tractability, we discretize continuous data by

using multiple thresholds for each type of data. Specifically,

a value of c1 and c2 satisfying c
(j)

1 ≤ c1 ≤ c
(j+1)

1 and

c
(k)
2 ≤ c2 ≤ c

(k+1)

2 , where c
(j)

1 is the j-th threshold of the

1st variable and c
(k)
2 is the k-th threshold of the 2nd variable,

is classified into the colored area of Fig. 1.

2) User Behaviors: In this article, we define an event as

any monitored behavior of a user, including the operation of

IoT devices such as operating a heater, opening a refrigerator,

and turning a TV’s volume up, and any other behavior moni-

tored by sensors, such as entering or leaving a room. Also, we

define an event sequence as events occurring within a time-

frame of T seconds from a previous event. We store the event

sequences for each condition. Any model and data structure

can be used to store the event sequence, but in this article,

we model the sequences by a tree where the children nodes

of the root are the initial events and the leaves are the final

events. Anomalous event sequences occur when an executed

sequence is not contained in any tree. The “Learned Event

Sequences” in Fig. 1 shows an example of event sequences.

In this example, an event sequence of “User01 Enter”,

Fig. 2. Generated event sequences when events A, B, and C occur in this
order within T seconds.

“Operate DeviceA”, and “Operate DeviceB” is observed 6

times, that of “User01 Enter” and “Operate DeviceA” is

observed 2 times and that of “User01 Enter” and “Operate

DeviceC” is observed 4 times. The learned event sequence

can be used to detect anomalies. For example, “Operate

DeviceA” occurs only after “User01 Enter” occurs. Thus, the

“Operate DeviceC” and “Operate DeviceA” are detected as

anomalous.

B. Learning User Behaviors

Our method learns user behaviors by storing the moni-

tored event sequences. In the proposed method, we store the

sequences at a home gateway that can monitor all the packets

from the IoT devices and users’ smartphones and other oper-

ation devices. However, some event sequences may include

events from different users when more than one person inhab-

its or visits the smart home. To mitigate the impact of these

events, which should be treated as noise, and learn only essen-

tial event sequences, we remove events from the observed

sequences. Note that the essential event sequences include only

the events from one user.

Our method learns the event sequences by the following

steps. First, our method generates multiple event sequences

by removing some events from the observed sequences. Then

our method learns the frequent event sequences by using the

generated event sequences. The event sequences that occur

many times are the essential sequences of events that the users

often do. Therefore, we use only the event sequences that occur

many times as the learned event sequences of the legitimate

users. The rest of this section explains the detail of each step

to learn user behaviors.

1) Generation of Event Sequences: Algorithm 1 gener-

ates event sequences that are subsets of the monitored event

sequence smonitored. In Algorithm 1, we introduce a binary

variable v which indicates the events included in the gener-

ated sequence; if ith bit of v is 1, the generated sequence stmp

includes ith event of smonitored. Otherwise ith event of smonitored

is not included in stmp. After generating one event sequence,

v is incremented. By continuing the above steps, we generate

all subsets of smonitored.

Figure 2 shows an example to generate event sequences

when a sequence “A-B-C” is monitored. The first v is set to
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Algorithm 1 Generating Event Sequences From the Monitored

Event Sequence

Input: smonitored: monitored sequence of events
Output: S: List of generated sequences of events

function GENERATEEVENTSEQUENCES(smonitored)
v ⇐ UnsignedBinaryVariable(1)

S ⇐ EmptyList()

while v < UnsignedBinaryVariable(2|smonitored|) do
stmp ⇐ EmptySequence()

for i = 1 . . . |smonitored| do
if ith bit of v = 1 then

Add ith event of smonitored to stmp

end if
end for
Add stmp to S
Increment v

end while
return S

end function

001, and the sequence “A” is generated. Then, v is incremented

and becomes 010. The sequence “B” is generated. These

steps are continued to generate all patterns of subsets of the

monitored event sequence.

2) Selection of Conditions: The proposed method selects

the condition based on that corresponding to the initial event in

the sequence and updates the model for the selected condition.

However, to effectively use event sequences and learn user

behaviors even from a few sequences per condition, we update

not only the model corresponding to the condition of the ini-

tial event but also models with similar conditions. When the

condition of the initial event is {croot
1 , . . . , croot

imax}, the sequence

is used to update the model for the region on which ci satisfies

croot
i − αi ≤ ci ≤ croot

i + αi for some value αi, which can vary

according to index i.

3) Updating Tree of Event Sequences: When the home

gateway observes an event sequence, nodes and links are cre-

ated in the tree corresponding to the selected conditions, thus

including the event sequence, where the initial and final events

of the sequence are the root and leaf in that branch, respec-

tively. Then, we increment a counter for each link on the route

corresponding to the event sequence. Algorithm 2 shows the

steps to update the tree of an event sequence. We update the

tree by calling Update(root, s) where root is the root node for

the condition. If the length of sequence s, |s| is 0, this pro-

cedure ends. Otherwise, this procedure searches the children

of the current node pos whose event is the first event of s,

s1. If a child whose event is s1 is found, we set next to the

found node. Otherwise, we add a new node and set next to the

new node. Then, we update the counter for the link between

pos and next. Finally, we iteratively call Update() to update

the subtree whose root is next by using the sequence s2...|S|

which is the sequence generated from s by removing s1. By

repeating this procedure, we update the tree.

We repeat this procedure to each generated sequence. As a

result the count for links related to frequent event sequences

increases. Thus, we detect anomalies by using the pruned tree

that contains only the links whose counters exceed threshold

nd ×Lnum, where nd is an adjustment parameter, d is the depth

Algorithm 2 Updating the Tree of Each Condition Using

Generated Event Sequences

Input: pos: node of the start point of update, s: event sequence
Output:

function UPDATE(pos, s)
if |s| = 0 then

return
end if
if pos has a child whose event is s1 then

next ←child of pos whose event is s1
else

next ←new node whose event is s1
add next to the list of child of pos

end if
increment counter for the link (pos, next)
Update(next, s2..|s|)

end function

Algorithm 3 Comparing a New Event Observed Sequence

With Learned Event Sequences

Input: pos: node of learned event sequences, s: observed event
Sequence

Output: Matched, Pending, Unmatched
function SEARCH(pos, s)

if |s| = 0 and pos has no children then
return Matched

else if |s| = 0 then
return Pending

else if pos has a child whose event is s1 then
next ←child of pos whose event is s1
return Search(next, s2..|s|)

else
return Unmatched

end if
end function

of the links, and Lnum is the total number of learned operations

for the target device. In this manner, we eliminate spurious

events (i.e., noise) from the event sequence.

C. Detection

When the home gateway observes operation execution,

it generates the corresponding event sequences, which are

compared to learned behaviors.

1) Generation of Event Sequences: An executed operation

generates multiple event sequences, similar to during learning,

by removing events from the sequence within a T seconds

timeframe from a previous event and uses these sequences to

determine whether the operation is anomalous.

2) Decision-Making: We check whether an executed opera-

tion is anomalous by comparing the generated event sequences

with the learned behaviors. Algorithm 3 shows the proce-

dure to compare an event sequence with the learned event

sequences. We compare the event sequence s with the learned

event sequences by calling Search(root, s) where root is

the root node for the condition of the initial event of the

sequence s. In this procedure, we repeat searching the chil-

dren until the nodes corresponding to all events in the executed

sequence are located or not. If this procedure cannot locate the

nodes corresponding to one of the events in the sequence, this

procedure returns “Unmatched”. If this procedure locates the
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Fig. 3. Experimental home network environment.

nodes corresponding to all events and reaches a leaf node,

this procedure return “Matched”. If corresponding nodes are

found for all events in the sequences, but the node correspond-

ing to the final event is not a leaf, we need to wait for the

next event to be executed because the sequence matches only

the subset of the learned sequence and it depends on the next

event whether the sequence completely matches the learned

sequence. In this case, the procedure return “Pending”.

This checking is performed for all generated event

sequences. If the above procedure returns “Unmatched” for

all generated event sequences, the operation is classified as

anomalous, whereas if the above procedure returns “Matched”

for one of the generated event sequences the operation is clas-

sified as legitimate. If the procedure returns “Pending” for one

of the generated event sequences, we wait for the next event

to be executed. If the next event does not occur within T sec-

onds, searching is terminated. Otherwise, we generate event

sequences including the next event and compare the resulting

sequences with learned behaviors by using the same procedure

described above.

IV. EVALUATION AND RESULTS

A. Data

To obtain data for the evaluation of the proposed anomaly

detection method, we constructed a network of home IoT

devices in our laboratory, as shown in Fig. 3. We deployed

two access points; one access point is used to connect elec-

tronic devices and another access point is used to connect

smart phones. Both of the access points are connected to the

gateway switch. The gateway switch relays all packets from/to

electronic devices and smart phones. By configuring the gate-

way switch, we captured all packets from/to electronic devices

and smart phones without loss.

In this experiment, we deployed 13 types of connectable

consumer electronics listed in Table I. These home electronic

devices can be connected to the Internet, are commercially

TABLE I
DEPLOYED HOME IOT DEVICES IN THE EXPERIMENTAL HOME NETWORK

ENVIRONMENT TO EVALUATE ANOMALY DETECTION

available, and can be deployed in our laboratory. Before start-

ing the experiment, we analyzed the packets from/to the

deployed electronics when we control the devices and clar-

ified the features of the packets when devices are operated.

By using the features, we detect the operations of the elec-

tronics devices from the captured packets. In addition to the

operations of the devices, we monitored the time when users

entering or leaving a room. The time when users entering or

leaving a room is obtained by monitoring the packets from

smart phone of each user.

In this experimental home network environment, four stu-

dents from our laboratory participated in the study. We allowed

the participants to use the home IoT devices freely every other

month for a total duration of 6 months. Additionally, we asked

them to fill logs with information including time of operating

the deployed electronics and time of entering and leaving the

laboratory. We confirmed that these times can be matched with

the monitored time of operating the electronics and the time of

entering and leaving the laboratory from the captured packets.

We also captured sensor data such as temperature, humidity,

and noise. As these sensor measurements remained at stable

levels in the laboratory environment, we considered the time

of day as the only condition for detection in this study.

We used two datasets, A and B, obtained in April, June,

and August, and in May, July, and September 2017, respec-

tively. The same participants used the IoT devices during the

acquisition periods of the datasets.

For evaluation, we used the misdetection and detection

ratios.

1) Misdetection Ratio: To determine the misdetection ratio,

we require sufficient legitimate operations in the test data.

Given the limited number of legitimate operations we were

able to collect during the study period, we determined the mis-

detection ratio by using leave-one-out cross-validation [24],

which divides the dataset into multiple sets and evaluates one

of them after training using the others. After verifying all the

combinations from these sets, we can obtain the overall results.

We separated data in a daily timeframe. Then, we used the data

of one day for testing and those of the other days for learning

legitimate behaviors. Finally, we calculated the misdetection

ratio from the number of misdetections to the total number of

operations that turning on the power of each device.
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TABLE II
SETTINGS OF PROPOSED AND ITS VARIANT METHODS

2) Detection Ratio: The evaluation also included anoma-

lous operations besides the observed legitimate operations. We

used a strategy similar to that for misdetection to obtain the

detection ratio. We separated the dataset by day and used the

data of one day for testing and the remainder for learning.

We added 100 anomalous operations that resembled legiti-

mate operations of turning on each device into the test data for

each day and attempted to detect them. Then, we calculated

the detection ratio from the number of detected anomalous

operations over the days.

B. Compared Methods

To evaluate the effectiveness of our method we com-

pared our method with the other methods. In this evalua-

tion, we compare our method with the method proposed by

Ramapartuni et al. [19]. By comparing with this method, we

demonstrate the effectiveness of our method. Moreover, we

also compare the methods without some part of our method.

By comparing them, we evaluate the necessity of each part of

our method.

1) HMM Method [19]: This method learns the users’

behavior by HMM. This method uses the observations

obtained by the sensors and/or statuses of devices. This method

learns the parameters of the HMM so as to suit the sequences

of the observations. Then, by using the learned model, this

method detects anomalous operations if an operation whose

estimated probability is less than a threshold occurs. In this

evaluation, we use the states of devices shown in Table I and

the list of users currently in the room as the observations.

2) Variant of Our Methods: Table II shows the variants of

our method used in this section. The details of the variants are

as follows.

a) Only condition: One important aspect of the proposed

detection method is the use of event sequences and opera-

tion conditions. To investigate the effectiveness of using event

sequences, we compared the proposed method with a vari-

ant using only condition information. For this evaluation, we

used only the time of day as a condition, which was stored as

part of the training data. Then, we defined an anomaly when

the number of operations that occur in the timeframe from

Time −α1 to Time +α1 is below n1 × Lnum, where Time is the

time of day of the tested operation.

b) Without condition: In a smart home, user behavior

depends on the conditions. To investigate the effectiveness of

condition information, we compared the proposed method with

a variant using only sequence information with noise removal.

This method learns all event sequences in the same way as our

method except that it does not use the condition information.

TABLE III
EVALUATION PARAMETERS IN EACH DATASET TO EVALUATE THE

PROPOSED ANOMALY DETECTION METHOD

c) No noise removal: A smart home may have multiple

users and monitored event sequences may include the

operation of multiple users. Thus, noise removal when learn-

ing the event sequences is also one of important aspects of our

method. By removing noise (i.e., spurious events), the method

learns essential event sequences. To investigate the effective-

ness of noise removal, we also compared the proposed method

with its variant without removing noise. Anomaly detection

proceeded in the same manner for both compared methods.

Specifically, when events A, B, and C are monitored, the com-

parison variant only learns the sequence A, B, C, whereas the

proposed method learns the sequences generated by removing

noise shown in Fig. 2.

d) Only sequence: This method simply learns user

behaviors based on only sequences of events without noise

removal method similar to the existing methods that learn user

behaviors. By comparing our method with this method, we

demonstrate the advantages of our method over the existing

methods.

C. Evaluation Parameters

The proposed method has three types of parameters, T , α1,

n1, and nd. We set T according to the procedure in our previous

work [18]. We adjusted the other parameters and evaluated

the method to obtain the misdetection and detection ratios,

whose relations were depicted as receiver operating character-

istic curves. Table III lists all the evaluation parameters for

this study.

D. Results

Fig. 4 shows the receiver operating characteristic curves

of the proposed method and five compared methods, where

the detection ratio is plotted according to the misdetection

ratio. The proposed method detects more than 90% of attacks,

whereas misdetection reaches only 10% of the legitimate

operations for most devices.

The detection ratio of the variant using only the con-

dition (i.e., time of day) is much lower than that of the

proposed method. This confirms that using the event sequences

effectively improves detection.

The detection ratio of the variant without noise removal is

much lower than that of our method. Hence, noise removal

is necessary to learn essential event sequences. For exam-

ple, we observed the following sequence: user 2 enters the

room, opens the refrigerator, and operates electric fan B,

but the refrigerator was operated by another user. Hence,

the event sequence was not essential, which corresponded to

user 2 entering the room and operating electric fan B, leading

to a misdetection for the legitimate fan operation. In addi-

tion, the detection ratio of the HMM method is much lower
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Fig. 4. Receiver operating characteristic curves of detection using the proposed method and comparison variants: (a) coffee maker in dataset A, (b) electric
fan A in dataset A, (c) electric fan B in dataset A, (d) TV A in dataset A, (e) TV B in dataset A, (f) TV C in dataset A, (g) TV D in dataset A, (h) coffee
maker in dataset B, (i) electric fan A in dataset B, (j) electric fan B in dataset B, (k) TV A in dataset B, (l) TV B in dataset B, and (m) TV C in dataset B.

than that of our method. This is because, the HMM method

does not consider that multiple users are in the home. In

the case that multiple users are in the home, the number

of states required to model the home is significantly large.

On the other hand, the number of observed operations on

home IoT devices is limited. As a result, we cannot estimate
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Fig. 5. Distribution of time between an operation of each device and its
nearest event: (a) Dataset A, (b) Dataset B.

the proper parameters of the HMM due to the lack of the

observations.

The proposed method achieved similar detection ratios to

the method using the sequence information with noise removal

except for the results of coffee makers. That is, the effective-

ness of considering condition information was not large. This

is because we used only time of day to define the conditions. If

we use the other sensors to define the conditions, the difference

may become larger.

Fig. 4 shows that attacks in some devices are not accurately

detected by the proposed method. For example, the detection

ratio of attacks for the coffee maker of the proposed method

is similar to that of its variant using only the time condition.

Moreover, the proposed method cannot take a misdetection

ratio for TVs A and B in dataset A and electric fan B and

TV A in dataset B below 10%.

To investigate the difference between devices whose attacks

are accurately detected and those whose attacks cannot be

accurately detected, we further investigated the usage of these

devices. Fig. 5 shows whether the operation of each device

is included in event sequences, including multiple events.

Specifically, we plot the distribution of time between an oper-

ation of each device and its nearest event. Next, we determine

the frequency of the monitored event sequences. We first stored

the event sequences in the training dataset. Then, we com-

pared the event sequences in the test dataset with the stored

event sequences and generated the event sequences per oper-

ation in the test dataset by removing noise, as explained in

Section III-B1. Finally, we determined the number of stored

event sequences matching each generated event sequence

and obtained the maximum count for each operation in the

test dataset. Fig. 6 shows the distribution of the number of

matching event sequences.

From the figures above, we identified the devices whose

attacks cannot be accurately detected. Figure 5 clarifies the

devices that tend to be used alone. The elapsed time between

an operation of the coffee maker and another event is large,

compared with those of other devices. 44% of coffee maker’s

operations in dataset A and 62% of those in dataset B have no

previous or next events within T seconds. For devices that tend

to be used alone, the event sequence approach does not func-

tion properly. Consequently, the detection ratio of the proposed

method for such devices is similar to that of the variant using

only the condition. Due to the similar reason, the detection

ratio of attacks for the electronic fan B in dataset B becomes

Fig. 6. Frequency of matching behaviors: (a) Dataset A, (b) Dataset B.

also similar to that of the method using only the condition

when the parameters set so as to make the misdetection ratio

smaller than 0.28. Fig. 5 shows more than 25% of the opera-

tions of the electronic fan B in dataset B have no previous or

next events within T seconds. As a result, parameters in our

method are set to avoid misdetection of single operations if the

misdetection ratio should be less than 0.28. One approach to

prevent anomalous operations in such devices is to deploy sen-

sors to thoroughly monitor their operation. Another approach

to improve the detection accuracy of legitimate operations is

to use more information to define the conditions.

Another kind of devices that cannot be detected accurately

includes TVs A and B in dataset A and electric fan B and

TV A in dataset B. Our method detects more than 90% of the

attacks for these devices but cannot make the misdetection

ratio less than 10%. This is caused by rare event sequences.

Fig. 6 shows that some event sequences generated for such

devices do not match any previously stored event sequences.

Consequently, such rare event sequences are detected. Storing

more data can avoid misdetection in such devices, but only

a limited number of operations are monitored in each home.

Hence, using data from several homes can help provide more

training data.

E. Discussion

Our method can be applied to a system like an intrusion pre-

vention system. This system monitors the commands to home

IoT devices and detects anomalous operations by our method.

If an anomalous operation is detected, the system avoids

anomalous operations by dropping the packets related to the

operations. In this system, the detection ratio is more impor-

tant than the misdetection ratio, because if an attack is not

detected, the home IoT devices operated by an attacker may

cause immediate and personal harm to users. If a legitimate

operation by a user is mistakenly detected as an anomalous

operation, the command from the user is dropped. However,

we can implement a mechanism to enable users to operate the

IoT devices even in the case of misdetections. For example,

we can send notification of the detection to the users’ smart-

phone and allow operations temporally after authentication by

different factors. Therefore, the parameters should be set so

as to achieve high detection ratios.

In the evaluation in Section IV, if we set parameters so as

to detect more than 99% of anomalous operations, our method
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misdetects about 6 legitimate operations per month except for

the operations of the coffee maker. However, the operations of

the coffee maker are misdetected many times. As discussed in

Section IV, it is difficult to distinguish the legitimate opera-

tions of the coffee maker from anomalous operations, because

most of the operations of the coffee makers are single oper-

ations. As discussed above, the impact of the misdetection is

smaller than the attacks that cannot be detected. However, the

frequent misdetection makes users uncomfortable. Therefore,

we need to improve the accuracy of the detection, which is

one of our future work.

We should also discuss the possibility that attackers change

their attacks so as to avoid detection by our method. The

attackers might mimic the behaviors of legitimate users. In

this case, our method cannot detect the command sent by

the attackers. To mimic the behavior of legitimate users, the

attackers require the knowledge of the behavior of legitimate

users and the ability to control the devices included in the

legitimate event sequence. Especially if many users use a

device in the same manner, the attackers may easily infer the

behavior of legitimate users. To avoid such attacks, we need

to (1) protect learned user behaviors so that attackers cannot

obtain the information, (2) make the model complicated so

that the attacker cannot infer the behavior by adding more

sensors, including more events and so on, and (3) include the

devices that are difficult to be operated by the attackers in the

model. The robust method against such attacks is also one of

our future work.

Another point to be discussed is the number of users in a

home. Our method considers the case that multiple users in

a home, and avoids misdetection by learning essential behav-

iors of all users. By doing so, our method avoids misdetections

even if many users are in a home and behave differently from

each other. However, as the number of users who behave dif-

ferently from each other increases, more event sequences are

stored as legitimate sequences. Even if a large number of event

sequences are stored, it is difficult for attackers to operate the

home IoT devices so that the event sequence including the

attack matches the learned event sequences, if the model of the

event sequence is complicated enough to avoid the inference

of the legitimate behavior.

V. CONCLUSION

We validate the effectiveness of our method for detecting

anomalous operations of home IoT devices by comparing it

with an existing method and some of its variants. The proposed

method can learn sequences of user behaviors according to

conditions such as time of day, temperature, and humidity.

Then, when an operation command arrives, the method com-

pares the current sequence with learned sequences for the

current condition. If the sequences do not match, the opera-

tion is considered as anomalous. We constructed a network of

home IoT devices in our laboratory and allowed four subjects

to operate the devices for 3 months. We recorded the times

at which the devices were operated along with sensor data.

Using these data, we evaluated the detection and misdetec-

tion rates of the proposed method and its variants considering

only the condition or without removing spurious events. The

proposed method can detect over 90% of anomalous operations

with less than 10% of misdetections if the events related to

legitimate operations can be monitored. Therefore, we found

that the most effective way to learn user behaviors in homes

for the detection of anomalous operation is by learning event

sequences and user habits when entering and leaving rooms. In

addition, noise (i.e., spurious event) removal is necessary for

improved detection. When single operations that do not cor-

respond to observed sequences occur, the proposed method

achieves a higher accuracy by learning sequences executed

multiple times than by using only condition information.

However, the proposed detection method can produce a

high rate of misdetections, especially when single or rare

operations occur. In fact, as the method achieves accuracy

by comparing event sequences, the anomaly detection of

isolated and rare events depends only on the operation condi-

tion. To improve the detection accuracy for such operations,

we can deploy sensors that monitor events related to these

operations. Alternatively, we can use more information to

define conditions. In our evaluation, we used only the time

of day to define conditions. However, defining more repre-

sentative conditions to distinguish legitimate operations can

lead to improved detection accuracy. We will explore meth-

ods to improve legitimate single operation detection in future

research.

Mitigating the misdetection of rare legitimate operations is

another challenge, as we cannot obtain sufficient training data

to accurately identify such rare operations in each home. To

obtain more training data, we will use data from several homes

in future work. However, some problems remain to be solved

before achieving this type of data collection. For instance, dif-

ferent homes and environments and varying user behaviors

may render the collected data useless. Thus, we need to gather

data from several homes whose users exhibit similar behav-

iors. Moreover, as privacy is a major concern, we should use

anonymized data from different homes to preserve information

privacy.
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