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�e article presents solutions to anomaly detection in network tra�c for critical smartmetering infrastructure, realized with the use
of radio sensory network.�e structure of the examined smart meter network and the key security aspects which have in	uence on
the correct performance of an advanced metering infrastructure (possibility of passive and active cyberattacks) are described. An
e
ective and quick anomaly detectionmethod is proposed.At its initial stage, Cook’s distancewas used for detection and elimination
of outlier observations. So prepared data was used to estimate standard statistical models based on exponential smoothing,
that is, Brown’s, Holt’s, and Winters’ models. To estimate possible 	uctuations in forecasts of the implemented models, properly
parameterized Bollinger Bands was used. Next, statistical relations between the estimated tra�c model and its real variability were
examined to detect abnormal behavior, which could indicate a cyberattack attempt. An update procedure of standard models in
case there were signi�cant real network tra�c 	uctuations was also proposed. �e choice of optimal parameter values of statistical
models was realized as forecast errorminimization.�e results con�rmed e�ciency of the presentedmethod and accuracy of choice
of the proper statistical model for the analyzed time series.

1. Introduction

SmartMetering Communications Networks (SMCN) are one
of the most important parts of the Smart Grid system [1].
With smartmetering, not only the remote, automatic electric-
ity meters’ reading but also the customer’s switching on/o

is possible. �e reading process can be done very o�en, for
example, every 15 minutes per every meter. Frequent reading
allows for more accurate energy consumption forecasting
because of having large statistic material based on individual
electricity consumption pro�les (the more accurate we fore-
cast, the more money we save).

Smart Metering Communications Network consists of
last-mile networks, access networks, and a backbone net-
work. Both backbone and access networks are realized using
typical methods, that is, using IP network as a backbone and
mostly GPRS technology to access it. It should be noted that
these typical solutions are not the only ones. �ere can be
other very original solutions, for example, the one described
in [2]. Last-mile smart metering networks use PLC (Power

Line Communications), RF (radio frequency), or a hybrid of
these technologies. In this article, like in [3], the RF tech-
nology is considered. Using RF technology based on short-
range devices makes the last-mile smart metering network
similar to WSN (wireless sensor network). Moreover, they
also use the multihop technique to expand communication
range. �e value of bit rates used in these networks, which is
between a few to a few hundred of kbit/s, is probably the last
similarity of these networks. �ere are two main di
erences
betweenWSNs and last-mile smartmetering communication
networks, namely, energy issues and memory de�cit. In last-
mile smart metering communication network, dedicated for
automatic electricity meter reading, energy issues do not
exist, which is opposite to WSNs [4]. �e result of the �rst
diversity is the di
erence in the applied routing protocols.
In WSNs, routing protocols are oriented on the balanced
involvement of intermediary nodes in the process of data
transferring, while in smart metering, they are oriented
on reliability of data distribution and acquisition. Memory
de�cit in communication nodes of the smart meters is caused
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Figure 1: Smart metering critical infrastructure management system: an overview.

by using it mostly to implement sophisticated encryption
algorithms, because smartmetering systems, being part of the
Smart Grid (which is classi�ed as the critical infrastructure),
must meet high security requirements. �e result of this
memory de�cit forces other approaches to solve typical
problems of the networkmaintenance. One of such problems
is anomaly detection in last-mile network. It is impossible to
implement even simplest anomaly detection algorithms, even
though there is a sparememory, because this sparememory is
reserved for the future for newmore sophisticated encryption
algorithms. Independent from the memory insu�ciency, the
second reason of di�culties with anomaly detection in smart
meters is that the throughput of the last-mile network is
too small to report detected anomalies in the right time.
Moreover, most of the anomalies would also be detected
by the neighbouring nodes, which multiplexes data tra�c
in the network. In smart metering, the last-mile networks
operate at nearly maximum tra�c load. �e typical number
of smart meters in a single last-mile network is around 250.
Every smart meter must be read out every 15min and it takes
a few seconds (from 1 sec. to 4 sec. typically). �ere is only
a small margin of bandwidth to support the maintenance
and management or to enable the reading process during
degraded propagation conditions.�e above reasons induced
us to carry out detection of anomalies in the data tra�c con-
centrator. �e data tra�c concentrator (TC) is a thick node
similar to the sink in WSNs. �e construction of it is mostly
based on the single-board computers which have enough
RAM and ROM memory and also have a fast processor. �e
data tra�c concentrator is connected to both last-mile and
access networks. It is easy to update when there is access to
network database of anomalies or the detection methods.

Bearing in mind the above, we have chosen to detect
network anomalies by means of exponential smoothing of
statistical models and outliers detection. �e purpose of the
proposed operations is to examine di
erences between real
network tra�c parameters and the same tra�c’s estimated
statistical models. A two-stage anomaly detection method
was used for the process mentioned above. Its �rst part
consisted in seeking and elimination of any outliers in tra�c
parameters of the advanced metering infrastructure (AMI).
�is step was based on Cook’s distance, which is a simple and
e�cient method. Consequently, in the second part of the
process, the data which remained served as a base for creation
of statistical models by means of exponential smoothing. In
result, the operation showed di
erences in the tested AMI
parameters.

In our solution, three types of anomalies were tested: (i)
energy the� by bypassing electricity meter and energymeters
shielding, (ii) electromagnetic distortion caused by Radio
Frequency Interferences (RFI) and conducted interferences
through power mains, and (iii) interference of communica-
tion caused by coordinated attacks.

General overview of Smart Grid advanced metering in-
frastructure (AMI) is presented in Figure 1. A last-mile net-
work consists of AMI network realized by means of wireless
sensor network (WSN). Power meters have built-in wireless
sensors, working in industrial, scienti�c, and medical (ISM)
bands. Tra�c from power meters is received by a tra�c
concentrator, which plays a role of communication gateway
between a WSN network and other communication links
realized by, for example, IP network, General Packet Radio
Service (GPRS), or Long-Term Evolution (LTE). Every traf-
�c concentrator communicates through access point name
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(APN) server (see Figure 1) which represents a link realized
by packet communication network. In higher energy opera-
tor, the level application installed on the metering server is
responsible for maintenance and billings.

�e article is organized as follows: a�er Introduction,
Section 2 describes communication scheme used in the last-
mile test-bed network. Next, Section 3 presents related work
on existing anomaly detection systems for Smart Metering
CommunicationsNetwork. Section 4 discusses the categories
and nature of AMI security questions. Section 5 presents
the structure and functioning of the research system. In
Section 6, the real-life experimental setup as well as experi-
mental results is presented. Finally, Section 7 concludes our
work.

2. Communication Scheme Used in
the Last-Mile Test-Bed Network

Communication scheme used in the examined last-mile
network was designed by one of the coauthors in 2010
and published in 2011 in [5] as EGQF (Energy Greedy
Quasi-Flooding) protocol.�is paper presents only necessary
information about the scheme for better understanding of
the methods of anomaly detection. �e EGQF protocol is
independent from communication media types and may be
used in networks using RF, PLC, or even RF/PLC [6] hybrid
technologies. It uses the multihop technique for an extending
transmission range and also the multipath technique to
improve reliability of data transfer. �e architecture of the
presented network is very simple because it can operate
having only two types of nodes: a tra�c concentrator and
electricity meters. �e tra�c is forced and coordinated by
the tra�c concentrator. At the same time, only one electricity
meter is queried. All the other nodes, which are not queried
at the moment, can act as transfer nodes relaying packets to
or from the destination node. Due to the lack of memory,
terminals do not know the network topology and even do not
know the addresses of neighbouring nodes.

�e EGQF protocol uses a reduced set of packet types,
that is, command packets, response packets, andACK/Cancel
packets. Command packets, in most cases, are used by the
tra�c concentrator for querying the electricity meter. �e
response from the electricity meter is transported over the
response packet. �e ACK/Cancel packet is a packet which
acts as the ACK for the destination node and as the reading
process canceller for the other nodes.�eACK/Cancel packet
can be sent only by the tra�c concentrator to con�rm the
reception of the response and to put out the 	ooding of
remaining response copies. �e relaying process in nodes,
which are neither destination nor source nodes, depends
on transmitting the copy of the packet a�er random time
in the condition of a not detected carrier. �e di
erence
between the typical 	ooding protocol and the EGQF protocol
is that using a typical 	ooding protocol nodes sends a copy
of packet always once during the transferring process, while
when using the EGQF protocol, copies are sent as o�en as
needed, for example, once, twice, or not at all. �e decision
whether a copy of the packet should be sent is made when
the transfer discriminator (TD) value of a packet is greater

than the previous stored one. Initial (or set at the end of
the process) transfer discriminator value is zero. �e transfer
discriminator consists of two �elds organized in the following
order: the packet type code and the time to live (TTL)
counter. �e TTL occupied the least three signi�cant bits of
the control �eld of the packet, while the packet type code
occupied two more signi�cant bits in the same �eld, so that
the transfer process of command packet is always canceled
a�er receiving a response packet. It is the same with response
packet transfer a�er receiving ACK/Cancel.

�ese two cases show us a situation when the copy is not
sent, which is di
erent with regard to the typical 	ooding
protocol. �is solution reduces the risk of collision. Using
the same solution, it is possible to send the copy of the same
packet typemore than once. Such situation occurs when a�er
sending the copy of the packet the same packet is received but
with smaller value of TTL.�is situation does not occur very
o�en (i.e., when a packet with a greater number of hops came
earlier than a packet with a smaller number of hops), and it
increases reliability [6, 7].

Only the response and command packets can have
payload �eld. Payload �eld is encrypted by the application
layer, whereas the rest, like overhead, is transmitted in open
unencrypted mode. So it is impossible to change readouts
(attack the application layer), but it is possible to generate
extra tra�c by the extra node which has the same address
as the existing, in last-mile, smart meter. Such an attack on
con�dentiality causes deterioration in network performance
and can even make the real smart meter unreachable, for
example, by sending copies of the response packets with small
value of TTL.

3. Related Work

In most cases, anomaly detection in LV network depends
on energy the� detection. �e oldest method depends on
�nding irregularities from the customer billing centre [8].
�is centralized method does not allow reacting quickly
because of having historical long-term consumption records.
�erefore, in [8], the new decentralized method based on
short periods customers’ consumption pro�les is proposed.
In [9], the authors used a variety of sophisticated techniques
also for the� detection. �ere are a lot of works which focus
on communication security by means of encryption or key
distribution, for example, [10, 11].

�is work focuses on anomaly detection in last-mile RF
Smart Grid communication network, which is not only the
result of the energy the� but also the result of deliberate,mali-
cious customers’ behavior or simply unconscious disturbing
actions coming from other systems. �ere is a similar work
[12], in which anomaly detection is realized neither in the
central point nor in electricitymeters but in a simple way.�e
proposedmethods of anomaly detection presented in [12] are
mostly dedicated for the�s detecting,whilewe focused on any
anomaly detection in communication.

Anomalies in communication may be caused by various
factors, for example, a human or independent of human
activity and unintentional or intentional actions, such as
the�, for instance. �ere are quite a lot of works dedicated
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to anomaly detection in communication networks, also in
Smart Grid communications systems [13–16], including the
last-mile area of their communication networks. However,
in these works, the authors focus on anomaly detection
in an IP network, where also for smart metering last-mile
network the data is carried over IP if PLC PRIME or G3
interface was implemented [17]. We used RF technology for
last-mile network, where IP technology implementation was
not possible, because it would lengthen the radio frames and
make the radio transmission unreliable.

In literature, most anomaly detection systems are focused
on anomalies in power distribution systems such as transmis-
sion line outages, unusual power consumption, and momen-
tary and sustained outages [18]. In our work, we proposed
anomaly/attack detection system in last-mile RF Smart Grid
network (not in IP network). We proposed the two-step
method of anomaly detection dedicated for last-mile RF com-
munication network consisting of nodes, which are based on
short-distance devices with the memory de�cit and reduced
protocol stack, that is, one protocol both for the data link layer
and for the network layer.

4. Security in Smart Metering
Communications Network

Ensuring security and protection of data collected by the
smart metering systems is an exceptionally essential element
of the SMCN solutions. It is obvious that data gathered
by smart meters say much about private aspects of the
recipients’ lives. Moreover, having additional information
such as sequences of readings, types of devices, or the number
of inmates, it is easy to create a precise pro�le of daily living
activities of the observed recipients, which in consequence
may lead to serious abuses [19, 20].

�e threats coming from the recipients themselves who
have the smart metering infrastructure are not a less impor-
tant security problem.�e recipients can perform destructive
activities on AMI, which consist in disturbing data saved in
the meter, recon�guration of settings and parameters of the
counter, disruption of data transmission, or replacement of
the internal counter’s so�ware so that it conveys understated
values of consumed energy [9, 12, 21].

However, what appears to be a more serious problem is
protection against cyberattacks [22]. A large-scale application
of smart metering creates new entering possibilities for an
unauthorized use by information systems. Joining of smart
meters with information networks of energy companies,
energy sellers, and companies managing distributed gen-
eration is essential for proper functioning of smart power
networks. �us, every meter becomes a potential entering
point for a cyberattack [23]. Protection of smart networks
against such attacks seems to be a more complex task and
much more di�cult to solve in comparison with ensuring
security to data collected by smart meters or prevention from
the users’ abuses.

Cyberattacks onto the SMCN security may be divided
into two elementary groups: passive and active attacks. �e
passive ones are all the attempts of an unauthorized access
to data or the SMCN infrastructure, in which the attacker

does not use emission of signals which may disturb or even
disenable correct work of the system. Active attacks, on the
other hand, are all the attempts of an unauthorized access
by the attacker to data or the SMCN system’s infrastructure
with the use of emission of any signals or activities that can
be detected [24–26].

While performing a passive attack onto the SMCN, the
attacker disguises their presence and tries to obtain access to
the transmitted data by passive monitoring of the network.
For protection against such incidents, di
erent cryptographic
mechanisms are o�en used. Another passive form of attack
onto the SMCN is activities aiming at obtaining an analysis
of the tra�c within the network. In this case, the attacker’s
intention is not acknowledging the content of transmitted
data packets but is gaining knowledge about topology of
the wireless sensor network. Due to the above, collecting
information on the basis of tra�c analysis in the SMCN gives
the intruder knowledge about the network’s critical nodes
which ensure its proper work [25].

Contrary to the above presented passive methods of
attack onto the SMCN, by using active attack forms, the
intruder directly or indirectly in	uences the content of the
sent data and/or the network’s operational capabilities [26].
Attacks of this kind are easier to detect in comparison to the
passive ones because they have direct impact onto the SMCN
performance quality. An e
ect of an active attack may be, for
example, degradation of services, or, in extreme cases, lack of
access to particular services, or even a complete loss of control
over the SMCN network.

Active attacks can be divided into three groups [25, 26]: (i)
physical attacks, destruction of a node, a node manipulation,
and electromagnetic pulse (EMP); (ii) attacks onto integrity,
con�dentiality, or privacy of data (including unauthorized
access to data); (iii) attacks on services (Denial of Service
(DoS) or Distributed Denial of Service (DDoS)) and attacks
directed at each SMCN network layer.

�e physical attacks are direct destructive operations that
aim to physically destroy or damage the AMI infrastructure.
A similar role can be performed by attacks using short-
term high-energy electromagnetic pulse (EPM) or high pulse
distortion in the supply network [27, 28].

�e attacks directed at integrity or con�dentiality of data
are exceptionally dangerous because they enable the attacker
to gain an unauthorized access to the AMI and to data
transmitted by it. One of possible forms of such activity is the
Sybil attack. It consists in compromising the network’s legal
node and the takeover of its identi�er together with access to
the AMI infrastructure [29].

Another type of attacks is a Wormhole attack [30]. In
this case, the attacker creates additional links and transmits
packets to an unauthorized node in WSN network. �is type
of attack may have serious impact on routing process and
can be an introduction to other more serious attacks such as
“man into the middle” attack. Overall network performance
can also be downgraded because of ine�cient resource
utilization.

�e DoS/DDoS attacks in the SMCN lead to an overload
of the attacked nodes and thereby they disenable acquiring
data from the attacked nodes or they preclude using the
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services o
ered by the attacked network. Attacks of this kind
are usually realized by introducing network tra�c which is
bigger than it is possible to service. �ey can have di
erent
characters; for example, they may appear in the physical layer
and take the form of jamming, and in the data link layer they
may 	ood the network with packets, simultaneously leading
to data colliding and necessity to retransmit it. Appearance
of the DoS attack in a network layer, on the other hand, may
consist in sending packets in the wrong direction [24, 31].

To protect against the above-mentioned threats, in par-
ticular di
erent kinds of active and passive attacks, it is
necessary to ensure a high level of security to the SMCN
infrastructure by application of the following rules concern-
ing sending information and the used functionalities [32, 33].

Con�dentiality. Data sent by means of the chosen commu-
nication standard, and in particular sensitive data, should
be inaccessible to outsiders. It means that no person from
outside can obtain access permissions of the consumer or ser-
vice supplier and that the information recipients themselves
do not have access to the sensitive data allowing performing
unauthorized pro�ling, for example, do not have access to
information about performance of particular devices but only
to aggregated power consumption.

Integrity. �is requirement must ensure that the received
message has not been changed during transmission. In case
of last-mile networks, integrity has impact on proper and
not delayed data transmission. Change in the information
content, as a result of interference or a hacker’s attack, could
cause rupture in communication and activation of the wrong
device.

Authorization. �is operation is used for identi�cation of
devices and nodes and veri�cation of the source or origin
of the data in the network. Authorization is essential at the
level of administrative task realization in the network. What
is exceptionally important is proper authorization of numer-
ators of the AMI and particular network’s devices, because it
conditions correct performance of the system as a whole.

Accessibility. �is concerns access to the network, even in
cases of attacks and possible damage to the devices. �e in-
frastructure should be designed in such a way that its re-
sources, for example, computational capabilities and mem-
ory, would enable full functionality with maximum process
involvement of its elements.

Time Sensitivity. Every sent piece of information, o
set
by a particular �xed time window, may become useless.
�e network must retain the ability to communicate with
certain time delays. In case of home metering infrastructure,
time sensitivity is connected to response time, that is, time
counted from the service claim to proper receiver’s response.
Assurance of appropriate response time conditions proper
realization of the claimed service.

�e problem of advancedmetering infrastructure’s digital
security is a complex and di�cult task to realize in prac-
tice. It requires designing and introducing high e�ciency

mechanisms of safety and security in order to provide con-
�dentiality and integrity of data, preventing abuse caused
by recipients, as well as detection and neutralization of
attacks. One of the possible solutions to so-stated issue is
implementation of abnormal behavior detection system for
particular SMCN parameters, which points at a possibility of
a given abuse appearance.

�e above-mentioned solution is the main focus of the
present paper.

5. Methodology of Anomaly Detection System:
The Proposed Solution

In order to ensure appropriate level of security to critical
infrastructures such as Smart Metering Communications
Networks, in particularAMI last-mile network, it is necessary
to monitor and control those infrastructures simultaneously.
Only this type of activities enables detecting and minimizing
the results of di
erent kinds of abuses, coming from the inside
(unauthorized and/or destructive actions of the recipient) as
well as the outside (attacks realized by cybercriminals) of the
protected infrastructure [19].

�e most o�en implemented solutions, realizing so-
stated aim, are the IDS/IPS systems (Intrusion Detection Sys-
tem/Intrusion Prevention System), that is, mechanisms of
detection (IDS) and preventing intrusions (IPS), operating in
real time [34]. In the hierarchy of critical infrastructure, they
should be placed just a�er security elements, such as �rewalls.
IDS systems are used for monitoring threats and incidents
of safety violation and for informing about their occurrence.
�e IPS systems, on the other hand, additionally take actions
to prevent an attack, minimize its e
ects, or actively respond
to security violation. �us, the mentioned solutions allow
for an increase in the level of protection of the AMI infras-
tructure by means of strengthening communication control
between its di
erent elements.

�e IDS systems may be classi�ed as belonging to one of
two groups using di
erent techniques of threat identi�cation.
�e �rst one is based on detection of known attacks bymeans
of de�ned, speci�c (for them) features, called signatures. �e
second, on the other hand, is based on an idea of monitoring
the system’s normal operation in order to detect anomalies,
which may proclaim an intrusion [34, 35].

�e basic advantage of methods based on anomaly detec-
tion is the ability to recognize unknown attacks (abuses).
�ese methods use knowledge of not how a particular attack
looks like but of what does not correspond to de�ned
norms of the network tra�c. �erefore, the IDS/IPS systems
founded on the use of anomalies are more e�cient and e
ec-
tive than systems using signatures in the process of detecting
unknown, new types of attacks (abuses) [36].

Bearing in mind the above, for the purpose of this
research paper, we decided to detect anomalies by means of
performing an analysis of deviations from the real AMI last-
mile tra�c parameters with regard to the estimated statistical
models (Figure 2). In our method, detecting anomalies is
performed in two steps. In the �rst stage, three exponential
smoothing models are formed as a basis for the AMI
network tra�c parameters. For this reason, prior to creating
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Figure 2: General overview of the proposed anomaly/attack detection method for AMI smart metering network.

the models, features of the network tra�c are chosen and
calculated by means of outliers detection and their exclusion.
Next, the exponential smoothing models of parameters are
estimated (on the basis of features of the analyzed AMI
network tra�c). In consequence, we obtain statistical models
which serve as a basis for anomaly detection method. In the
second stage, anomaly detection systems choose and estimate
appropriate features of the network tra�c, a�er which they
compare the di
erences between the real network tra�c and
the calculated statistical models to perform AMI network
parameters assessment.

In Figure 2, we can see a block scheme of the pro-
posed anomaly detection method. Tra�c from AMI last-
mile network is captured by means of APN gateway. �e
proposed method is divided into two main steps. First step
consists of calculation of model reference parameters (the
elimination procedure of outliers’ observations is realized
at this stage) from extracted AMI network tra�c features.
Models for AMI network tra�c features can be updatedwhen
the model is not up to date because of di
erent reasons, for
example, network architecture changes. Model parameters
are calculated based on three di
erent exponential smoothing
models and Bollinger Bands calculation (see Sections 5.2 and
5.3). Reference models are used for comparing online the
extracted AMI network tra�c features in the second step
of the proposed method. When calculated online, values of
AMI network exceed parameters stored in the ADS reference
model. �e database anomaly report is detected for a given
tra�c feature (more explanation is presented in Section 6).

5.1. Outliers Detection and Elimination: Cook’s Distance.
Due to the nature of the Smart Metering Communications
Networks’ infrastructure (which is similar in many ways to
WSN), there is a real threat of signi�cant 	uctuations of
the analyzed tra�c parameters in a network, that is, high
likelihood of occurrence of outliers. Origin of the mentioned
	uctuations may vary, for example, radio wave propaga-
tion (environmental source), changes to the infrastructure
(technical source), hardware damage, an a�ermath of a
network attack, and intended deceit of users. Construction

of a statistical model on a set of such data may lead to
many unfavorable consequences. It is then highly likely that
inference, predication, and decision-making process based
on such a model will be burdened with big errors, and
the created model will not re	ect the main mechanisms
regulating behavior of the analyzed phenomenon. �erefore,
evaluation of in	uence of particular observations onto the
�nal result should be an essential element of initial data
analysis. It would allow detecting outliers and eliminating
them from the data set.

In our approach, identi�cation of outliers in the analyzed
SMCN tra�c parameters is performed by means of a method
using Cook’s Distance [37]. �e essence of this method is
estimation of the distance which states the level of data
matching for two models: (i) a complete model, which
includes all observations from the learning set, and (ii) a
model built on a set of data, from which one � observation
was omitted.

�� = ∑��=1 (�̂� − �̂�(�))
2

	 ⋅MSE
, (1)

where �̂� is the forecasted value of � variable for observations
number � in the complete model, that is, built on the whole

learning set; �̂�(�) is the forecasted value of � variable for
observations number � in the model built on the set ��(�),
where � is number of observations that were temporarily
deactivated, MSE is the mean-model error, and 	 is the
number of parameters used in the analyzed model.

For Cook’s distance �� threshold value, above which
the given observation should be treated as an outlier, in
compliance with criterion (1), 1 is accepted, or alternatively

4 − 	 − 2 , (2)

where  is the number of observations in the learning set.

5.2. 	e Exponential Smoothing Models for Estimation of AMI
Tra
c Features Value. �e exponential smoothing methods
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are a wide range of statistical models with di
erent assump-
tions and complexity levels, which emerge from a common
idea of creating forecasts by means of weighted moving
averages. �e common denominator of those methods is
assigning (exponentially) weight decreasing with distance
in time to past observations in the process of setting new
forecast of a future observation [38].

It is easy to notice that exponential smoothingmodels are
based on a sensible assumption that the future value depends
on not only the last observed value but also their whole series
of the past values. At the same time, the in	uence of old values
(previous) is smaller than the in	uence of the new values [39].

Great practical importance of exponential smoothing
models is based on the fact that they are suitable for forecast
construction not only in conditions of stabilized development
of phenomena to our interest but also when this develop-
ment is irregular, characterized by trend’s 	uctuations. In
these models, solid analytic trends are not accepted. To the
contrary, it is assumed that, for every period, assessment
of the trend’s level and possible periodical 	uctuations are
built as some average from these kinds of evaluations made
in previous periods [38, 40]. Among many representations
known in literature, in this paper, the following models
will be used: Davies and Brown [41], Holt’s linear [42], and
Winters’ [43] models. It is due to a di
erent representation
of the compositional models of the analyzed time series and
willingness to determine possibly the best model for the
presented method of anomaly detection.

5.2.1. Brown’sModel. A simplemodel of exponential smooth-
ing, otherwise called Brown’s model [41], is one of the
methods most o�en used in case of a time series with
�xed or very weak trend, when the series does not show
developmental trend and 	uctuations of its values result
from random factors.�is method consists in smoothing the
time series of the forecasted variable by means of weighted
moving average; however, the weights are de�ned according
to exponential rule.

�is model can be described by means of the following
recurrent formula:

�1 = �1, (3)

�� = ���−1 + (1 − �) ��−1, (4)

where �1, �2, . . . , �� are values of the forecasted series, �� is
the value of the forecast in time �, and � is a parameter of
the model, so-called smoothing constant, with the value of� ∈ [0, 1].

�e conclusion from (4) is that the value of forecast in
time � depends, in recurrent manner, on the value of the time
series and forecasts for times � − 1, � − 2, . . . , 1. As the value of
forecast �1, necessary for construction of the model, we most
o�en accept the initial value of the variable forecasted in the
time series, that is, �1, or arithmetic average of few �rst values
of the variable � from the time series.

�e value of coe�cient � in	uences the degree of a time
series smoothing, so if � ≈ 1, then the constructed forecast
will highly count the ex post errors of the previous forecasts.

However, in the opposite case, when � ≈ 0, the built forecast
will employ those errors to a small extent. Brown assumed
that the parameter � should equal 2/( + 1), where  is the
number of observations [44].

Because the size of coe�cient � has impact on the quality
of the predictive model and the size of forecasts’ errors, it is
impossible to point arbitrarily the best value of that coe�cient
for every data. �erefore, this problem can be de�ned as an
optimization task; that is, we are looking for such an �̂, for
which

� (�̂) = min
�∈[0,1]

� (�) , (5)

where �(�)denotes an objective function, which characterizes
the standard forecast error.

�e o�en used objective function is

� (�) = 1
�∑
�=1

������ − ������ , (6)

which describes mean absolute forecast error. Its form is
essential, because minimization of the objective function
(5) is minimization of the sum of absolute deviations. �is
problem is easy to check for computationally simpler linear
programming problem.

5.2.2. Holt’s Linear Model. For smoothing and forecasting
a time series, in which developmental model and trend of
random 	uctuations may be present, Holt’s model [42] is
most o�en used. It is described by means of two parameters,� and �, and it then takes the following form:

�1 = �1,�1 = �1 − �0,
�� = ��1 + (1 − �) (��−1 + ��−1) ,
�� = � (�� − ��−1) + (1 − �) ��−1,

(7)

where �1, �2, . . . , �� are the values of the forecasted series,�� is the smoothed value of the time series, �� describes the
smoothed trend’s growth value in the moment of time t,
variables � and � are the model’s parameters, and � indexes
the consecutive time moments.

�e values of�� and �� are calculated in recurrentmanner.
�e forecasts of the future time series’ values, however, are
determined in the following way:

�∗�+	−1 = ��−1 + � ⋅ ��−1, � = 1, 2, 3, . . . . (8)

Holt’s model’s parameters � and � are chosen in such
a way that they minimize possible errors of the expired
forecasts. For this reason, speci�c values of these parameters
are taken and determined, in compliance with dependency
(8), with the assumption that  = � and � = 1 are the expired
forecasts.

�∗� = ��−1 + ��−1, (9)
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for time moments �, where � = 2, 3, . . . ,  − 1 on the basis
of series values from the previous period {�1, �2, . . . , ��−1}.
�ese forecasts can be compared to factual values of the series��.�e obtained di
erences are errors of the expired forecasts
which are given by a model for the taken parameters � and�. As a measurement of the method’s quality, the average of
errors of the expired forecasts should be acknowledged. It
may be a linear average,

�1 = 1 − 2
�−1∑
�=2
⌈��−1 + ��−1 − ��⌉ , (10)

or root mean square,

�2 = √ 1 − 2
�−1∑
�=2
(��−1 + ��−1 − ��)2. (11)

Finally, it is necessary to choose from all possible � and� parameter values such data that provides the lowest error
value �1 or �2. By doing so, optimal parameters values and
a measure of the forecast error are determined for the taken
model. It is commonly accepted that � ∈ [0, 1] and � ∈ [0, 1].
5.2.3. Winters’ Model. Winters’ model is a generalized Holt’s
model form. It is used for forecasting and smoothing a
time series, in which a seasonal component, development
trend, and random 	uctuations may occur. �ere are two
most o�en used types of Winters’ model: (i) multiplicative
model, when the level of seasonal 	uctuations around the
trend increases or decreases (more precisely when the relative
level of seasonal 	uctuations is approximately constant), and
(ii) additive model, when the level of seasonal 	uctuations
around a weak trend or a constant level does not change,
that is, when the absolute level of seasonal 	uctuations is
approximately constant. For the purpose of the presented
solution, only the additive model will be described and used.

Winters’ [43] model is described by means of three
parameters, �, �, and �, representing, respectively, the
smoothing constant for the trend’s level, the change in the
trend’s level, and seasonal 	uctuations. For so-described
parameters, it then takes the following form:

��−1 = � (��−1 −  �−1−
) + (1 − �) (��−2 + ��−2) ,
��−1 = � (��−1 − ��−2) + (1 − �) ��−2,
 �−1 = � (��−1 − ��−1) + (1 − �) �−1−
,

(12)

where �1, �2, . . . , ��−1 are values of the forecasted series, ��−1
is the smoothed value of the forecast variable in moment �−1
a�er elimination of the seasonal values, ��−1 describes with
evaluation the increment trend in the moment of time � − 1, �−1 is evaluation of the seasonal index in the moment �−1, !
is the length of the seasonal cycle (the number of phases in the
cycle, where 1 ≤ ! ≤ ), variables �, �, and � are the model’s
parameters with values from the range [0, 1], and � is an index
of the following moments of time.

�e forecast �∗� in the moment of time � is given by the
following dependency:

�∗� = �� + �� (� − ) +  �−
, � > . (13)

Parameters �, �, and � are chosen similarly as in Holt’s
model, minimizing the mean square error of the expired
forecasts; or values close to 1 are chosenwhen the components
of the time series change quickly; or values close to 0 are
chosen when the series’ components do not show quick
changes.

As values of �1, �1, and 1, we take, respectively, the value
from the time series corresponding to the �rst phase of the
second cycle (or the average value from the �rst cycle), the
di
erence of the average values from the second and �rst
cycles, and the quotient value of the variable in the �rst cycle
in relation to the average value in the �rst cycle.

5.3. Estimation of the Forecast Variability: Bollinger Bands.
Bollinger Bands is a tool of technical analysis invented by
Bollinger at the beginning of the 80s of the 20th century
[45]. It was created on the basis of observation of �nancial
instruments volatility. It is composed of three elements: (i)
the middle band (core), which is  periodic moving average;
(ii) the upper band, being � times of  periodic standard
deviation above the middle band; and (iii) the bottom
band, being � times of  periodic standard deviation below
the middle band. �e main idea of this tool is the rule
that when data variability is low (their standard deviation
decreases), then the bands shrink. However, in case the data
variability increases, the bands expand. �us, this tool shows
dynamics of data variability. It usually defaults to the values
of parameters � = 2 and  = 20 [46]. Such approach is based
on the assumption that, in data of normal distribution, the
area of two standard deviation widths includes 95 percent of
all observations.

In the presented solution, we used Bollinger Bands to
estimate forecasts variability of the exploited statistical mod-
els. As the middle band (the core), we adopted the values
of statistical models’ forecasts, � was the double standard
deviation, and  = 15 (due to the 15-minute analysis win-
dows). Figure 3 presents an exemplary PPM signal and
Bollinger Bands created on its base (for Holt’s model).

5.4.	eCondition ofModel’s Parameters Update. It is possible
that data in the analyzed time series will 	uctuate due to the
nature of the AMI network tra�c parameters. �e reasons
for such a phenomenon are to be found in possible changes
of the AMI network infrastructure (ageing of devices and
replacementwith new/othermodels) or emergence of perma-
nent obstacles, which have signi�cant impact on the trans-
mitted radio signal. �ese factors should cause adapting of
the proposed anomaly detection method to the changing
conditions (which are not an a�ermath of any abuses). One of
the possible solutions to so-stated problem can be an update
procedure of the reference statistical models, realized on new
data sets which contain the subject 	uctuations.

�e condition for creation of a new reference model
should be detection of a signi�cant and possibly permanent
statistical variability in the analyzed data set (elements of a
time series). Assuming a close-to-normal data distribution,
we can deduce that in the range of width of six standard
deviations there is over 99 percent of data. �us, if we de�ne
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Figure 3: Exemplary Bollinger Bands for packets perminute (PPM)
network feature.

the average on the basis of the forecast set of the given
exponential smoothing model, and the standard deviation
is estimated for the real values of the analyzed data, then a
great degree of not ful�lling the above stated condition may
proclaim that the statistical nature of the analyzed data has
changed.

Due to the above, the following condition can be for-
mulated. If it is not satis�ed, the reference model should be
updated.

�� ∈ (# − 3$, # − 3$) � = 1, 2, . . . , , (14)

where {�1, �2, . . . , ��} is a time series limited by -elements
analysis window, # is the average calculated on the forecasts
of the given reference model in the analysis window, and $ is
the variance of the tested time series elements in relation to
such an average.

In result of conducting many experiments in the pre-
sented solution, we adopted the size of analysis window  =15 and an assumption that only not satisfying condition (14)
in over 30% of analysis windows in a time period of a week
causes an e
ect in the form of reference model update.

6. Experimental Installation and Results

Figure 2 presents general overview of the proposed anomaly
detection method. Tra�c from 70 power meters distributed
across eight buildings is captured by APN gateway through
an IP link. �e proposed method is divided into two mains
steps: calculation of ADS model parameters and online
anomaly detection. In both steps, we have to extract AMI
tra�c features proposed in Table 1. A�er that, we calculate
initial reference models for every tra�c feature. Models are
calculated for a period of one week and time is divided
into 15 minutes’ analysis windows. Every tra�c feature is
organized as one-dimensional time series. First substep in
model parameters calculating removes outlier values (see
Section 5.1) from every tra�c feature in order to remove

Table 1: AMI network tra�c features captured from sensor network
gateway.

Network feature AMI network tra�c feature description

NF1
RSSI: received signal strength indication for AMI

power meter [dBm]

NF2 LQI: link quality indicator value (values: 0–127)

NF3 PER: packet error rate per minute [%]

NF4 PPM: number of packets per minute

NF5 TTL: packet time to live value

suspicious values from the model calculation. A�er that, we
calculate exponential smooth models with the use of three
exponential smooth models: Brown, Winters, and Holt (see
Section 5.2).

In the next step, we compute Bollinger Bands (see
Section 5.3) for achieving network tra�c features variability
intervals. In the end, we save models parameters together
with associated Bollinger bands to database of reference
models. In the second step of the proposed method, we
compare values of online extracted AMI network features to
reference models stored in the ADS database. ADS model
gives us variability interval/variability canal for a given tra�c
feature. When the online calculated AMI tra�c features
values do not exceed interval set by the reference model, we
assume that there is no anomaly/attack for a given tra�c
feature. When network tra�c exceeds values set by the
referencemodel, an anomaly detection report is generated for
a given tra�c feature.

�e method proposed so far would not be resistant to
AMI network changes, like increasing number of sensors
or topology changes. In these cases, the reference models
will not be updated and the number of FP indicators would
increase in time. �at is why we propose a trigger condition
which is responsible for initiation of model parameters
recalculation (see (14)). When the proposed condition is not
satis�ed in 30% of 15 minutes’ analysis windows (30% of
analysis windows in a period of one week), we recalculate
tra�c pro�les for a period of one week (network tra�c values
are always stored for a period of oneweekwhich iswhywe can
always recalculate tra�c pro�les when condition from (14)
is not satis�ed). New ADS network pro�les are always active
since the beginning of a new week.

6.1. Experimental Setup and Results. In this section, we
showed experiments and results obtained in real-world test
of the AMI powermeter network.We proposed four di
erent
scenarios that trigger anomaly/attack in our test network.We
proved that the proposed anomaly/attack detection method
can be useful in detection of unwanted situations in the AMI
measurement network.

�e anomaly detection method presented in the article
was evaluated bymeans of real-world installation of AMI net-
work.�eAMI network tra�cwas captured from installation
placed in our university building [47].�e network consisted
of 70 sensor nodes installed within energy power meters (see
Figure 4). Sensors were installed on four 	oors (see Figure 6),



10 Journal of Sensors

Table 2: DR [%] and FP [%] for anomalies/attacks performed on AMI network with Scenario 1.

Feature
Holt Winters Brown

Description
DR [%] FP [%] DR [%] FP [%] DR [%] FP [%]

NF1 92.40 8.80 90.20 9.80 88.10 10.40 Signi�cant impact on NF1 in Scenario 1

NF2 96.00 5.60 94.10 7.50 90.20 9.80 Signi�cant impact on NF2 in Scenario 1

NF3 91.00 9.40 88.40 11.30 86.30 12.70 —

NF4 81.40 9.20 89.10 11.10 86.20 12.60 —

NF5 72.20 10.20 70.10 12.60 68.20 12.80 —

Figure 4: Opened power meter with signed WSN communication
radio module.

Figure 5: Cluster of electricity power meters in building 2.3.

located in eight separate buildings. In Figure 5, we can see
a cluster of electricity meters installed in building 2.3 (see
Figure 6). A tra�c concentrator was placed on the second
	oor. Tra�c from the AMI network was captured from IP
connection of the tra�c concentrator signed by red octagon
located in building number 2.4 (see Figure 6). In the next step,
we extract �ve tra�c featuresNF1–NF5 (Table 1), where every
tra�c feature is represented by one-dimensional time series
values.

We used these tra�c features for anomaly/attack detec-
tion by means of the proposed statistical algorithm.

First two features describe the quality of the radio link:
NF1 RSSI [dBm] (higher value stands for better signal’s
strength) and NF2 LQI value (values change from 0 to 127;
lower values indicate higher link quality). LQI characterizes
strength and quality of the received packet (in other words,
how easily the received signal can be demodulated), contrary
to RSSI, which gives us information about the received
signal strength (it is not the measure of ability to decode
signal), where radio frequency power can originate from
arbitrary source such as Gaussian Frequency Shi� Keying
(GFSK), other ISM systems,Wi-Fi, Bluetooth, or background

radiation. NF3 andNF4 features give us two values in a period
of one minute: packet error rate (PER) per minute (number
of corrupted packets received by concentrator)/(number of
all packets received by the concentrator) in time interval (in
our case, it was oneminute) and PPM, number of packets per
minute. NF5 carries information about TTL value of packets
received by a tra�c concentrator. �e proposed anomaly
detection method was designed especially for data link and
network layers. Because of security restrictions, we do not
have access to the application layer payload. Application layer
data is, in our case, available only for the energy supplier.
We focused on detection of anomalies/attacks in layer 2
and layer 3, because there are not many anomaly detection
solutions that work in last-mile AMI network. Additionally,
predictable amounts of tra�c made it a great candidate for
anomaly detection, and we use this feature. Tra�c is actually
small taking into account computing power of the tra�c
concentrator processor but it is also large enough not to
implement anomaly detection in smart meter.

We created di
erent anomaly and attack scenarios for
anomaly detection in the AMI network, and we selected four
of them to evaluate the proposed method:

Scenario 1. Radio Frequency Interferences (RFI) and con-
ducted interferences through power mains and Electromag-
netic Interferences (EMI).

Scenario 2. Existence of natural and human-made obstacles,

Scenario 3. Power meter intentional damages,

Scenario 4. Coordinated attacks on power meter AMI net-
work.

Scenarios used for anomaly/attack detection have various
impacts on AMI network tra�c features proposed in Table 1.
In Scenario 1, we consider distortions caused by, for example,
di
erent radio ISM systems, and conducted EMI distortions
carried by physical power line. A conducted EMI distortion
may come from devices connected to power mains like
electric engines, switching power supply, welding machines,
or any industrial environment. Parts of conducted EMI
distortions are presented in IEC standard 61000-4-4 [48]. We
simulated some distortions that belong to both groups.

Distortions from Scenario 1 have biggest impact on
network features NF1 (RSSI) and NF2 (LQI). Detection rate
and false positive partial results for Scenario 1 are presented
in Table 2.



Journal of Sensors 11

2.5

2.3

2.2

2.4

2.7

2.1

3.1

2.6

Smart meter on the ground floor

Smart meter on the �rst floor

Smart meter on the second floor

Smart meter on the third floor

Traffic concentrator on the second floor

Figure 6: Physical layout of power meters of AMI network in the university building [5].

Table 3: DR [%] and FP [%] for anomalies/attacks performed on AMI network with Scenario 2.

Feature
Holt Winters Brown

Description
DR [%] FP [%] DR [%] FP [%] DR [%] FP [%]

NF1 88.20 8.20 86.10 10.10 83.20 11.80 Signi�cant impact on NF1 in Scenario 2

NF2 92.40 5.20 90.30 7.30 87.50 9.40 Signi�cant impact on NF2 in Scenario 2

NF3 82.20 9.60 80.20 11.20 76.40 12.40 —

NF4 80.20 10.10 78.10 12.10 76.30 12.60 —

NF5 85.60 12.20 82.40 12.60 79.40 12.80 —

An attack, according to Scenario 1, is easy to carry out, for
example, by using amateur shortwave radio set to the same
frequency as the working channel; modulation type does
not matter. �e best results in attacking give the transmitter
localized close to the tra�c concentrator or a cluster of
electricity power meters.

Scenario 2 was simulated by locating groups of power
meter sensors on di
erent 	oors and distant buildings (see
Figure 6). Temporarily placed obstacles, like a big truck,
can also have an impact on WSN network transmission.
Localization and distance between the AMI power meter
sensors have impact on every capturednetwork tra�c feature.
Partial results for Scenario 2 can be observed in Table 3.

�e easiest way to carry out the attack according to
Scenario 2 is grounding the concentrator antenna or slightly
unscrewing it. In our experiments, we achieved this e
ect
by reducing transmitting power and increasing the receiver’s
sensitivity simultaneously.

Intentional damage from Scenario 3 is caused by power
meter users who want to avoid/delay paying electricity bills
or want to bypass power meter or disturb AMI network
operation. Electromagnetic metallic shielding and bypassing
of power meter are exemplary methods for disturbing of
the AMI sensor operation. Partial results for this scenario
are presented in Table 4. Intentional damage can be seen
especially for NF3, where PER for a given power meter
increases.

In our experiments, we simply turned smart meters o

frommains or remotely changed the radio channel frequency
just to make communication impossible. In real situation,
instead of power meter intentional damaging, the easiest
way to achieve the same e
ect is forcing the fuse protection
(before input connector) to act.

Scenario 4 takes into account coordinated attacks/anom-
alies performed on power meters Smart Grid infrastructure.
We simulate WSN 	ooding attack [49] and a�er that we
add some intermediate sensor in order to perform additional
links (Wormhole-type attack [30]).�is type of attack/anom-
aly has the biggest impact on NF4 PPM (number of packets
per minute) and NF5 TTL (packet time to live) value.
Subsequent partial result can be seen in Table 5. In this
scenario, tra�c features (NF1–NF3) did not give us usable
information for anomalies detection, so they can be omitted
in this case.

Attacks, according to Scenario 2, were emulated by us
with the use of smart meter service terminal, which is a
mobile, speci�c kind of the tra�c concentrator.We sent from
service terminal to all power meters a “set date & time”
command in broadcast 	ooding mode every 5 seconds.

Attacks described in Scenarios 1–3 require physical ac-
cess, for example, in case of EMI distortions conducted
through power mains or enough proximity to a selected part
of physical infrastructure and in case of EMI distortions con-
ducted through radio. Power meter shielding also requires
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Table 4: DR [%] and FP [%] for anomalies/attacks performed on the AMI network with Scenario 3.

Feature
Holt Winters Brown

Description
DR [%] FP [%] DR [%] FP [%] DR [%] FP [%]

NF1 86.40 8.60 84.10 10.30 80.70 12.60 —

NF2 88.40 8.40 85.20 9.80 83.10 11.70 Signi�cant impact on NF2 in Scenario 3

NF3 90.50 6.40 87.20 8.80 85.60 10.90 Signi�cant impact on NF3 in Scenario 3

NF4 82.30 11.50 79.50 12.40 76.40 12.80 —

NF5 86.20 12.40 83.40 12.50 80.80 12.80 —

Table 5: DR [%] and FP [%] for anomalies/attacks performed on AMI network with Scenario 4.

Feature
Holt Winters Brown

Description
DR [%] FP [%] DR [%] FP [%] DR [%] FP [%]

NF1 — — — — — — Insigni�cant/negligible for Scenario 4

NF2 — — — — — — Insigni�cant/negligible for Scenario 4

NF3 — — — — — — Insigni�cant/negligible for Scenario 4

NF4 92.40 6.50 90.20 8.60 87.10 10.40 —

NF5 90.50 7.60 87.30 9.80 85.50 11.70 —

physical access to power meter. In case of Scenario 4, for
example, 	ooding attacks on last-mile network can be per-
formed remotely by a GPRS/IP gateway.

�e anomaly detectionmethod based on network pro�les
has a weakness coming from the fact that pro�les are aging.
�is can cause an increase in the false positive (FP) values.
To alleviate this e
ect, we propose in Section 5.4 a condition
that triggers recalculation ofWSNnetwork pro�les.However,
there can still be situations when temporary detection rates
and false positive values can be a little bit worse between the
pro�les’ update processes. �ese situations may appear when
we rapidly change the network structure, for example, by
adding entire streets with large number of new powermeters.
�e proposed trigger will indicate the need to recalculate new
pro�les, but it will happen with a programmed delay.

In order to decrease e
ectiveness of the proposed
anomaly detection solution, the attacker needs knowledge
about anomaly detection algorithms used for pro�les calcu-
lation, when the system recalculates pro�les, and what kinds
of tra�c features are extracted from the network tra�c. �e
attacker armed with such knowledge can temporarily dis-
turb AMI network operation between recalculations of new
pro�les. If the attacker has information about tra�c features
used by anomaly detection algorithm, he can perform an
attack that would not have an impact on the proposed tra�c
features.

Taking into account all four scenarios, the overall per-
formance of the proposed anomaly/attack method for �ve
AMI network features is presented in Table 6.Most simulated
attacks and anomalieswere detected. In case ofDR [%], values
change from 68.20 to 92.26%, while FP varies between 6.40
and 12.80%. �e best results for three simulated scenarios
(Scenarios 1–3) were obtained for features NF1 and NF2.
For these scenarios, features NF1 and NF2 were the most
universal. For Scenario 4, NF4 and NF5 features �t better to
the characteristic of simulated anomalous events. From the
three evaluatedmodels, we achieved the best results for Holt’s

Table 6: Overall DR [%] and FP [%] for anomalies/attacks per-
formed on AMI Smart Grid network.

Feature
Holt Winters Brown

DR [%] FP [%] DR [%] FP [%] DR [%] FP [%]

NF1 89.00 8.53 86.80 10.07 84.00 11.60

NF2 92.26 6.40 89.87 8.20 86.93 10.30

NF3 87.90 8.47 85.27 10.43 82.77 12.00

NF4 84.07 9.32 84.23 11.05 81.50 12.10

NF5 83.62 10.60 80.80 11.88 78.48 12.53

exponential smoothing model, where not only exponential
smoothing but also forecasting for time series with trend is
possible.

Anomaly detection prediction based on Holt’s expo-
nential smoothing model gives us DR [%] values within
83.62–92.26% interval and FP [%] values changing from 6.40
to 10.60%. We were able to detect all performed anoma-
lies/attacks described in the proposed scenarios taking into
account all extracted tra�c features (it was not possible to
detect all anomalies/attacks by means of one tra�c feature).
In literature, there are many various anomaly detection
methods using di
erent algorithms [36, 50, 51] applied to
WSN networks. On the basis of literature analysis, we can
state that in general for WSN anomaly detection solutions
FP [%] values are generally less than 10% [36, 50, 51]. Taking
into accountHolt’s exponential smoothingmodel, we achieve
FP values changing from 6.40 to 10.60%, so we can state that
this interval is acceptable for anomaly detection class security
systems.

7. Conclusions

Providing an adequate security and protection level of data
sourced by intelligent measuring systems is currently an
intensively examined and developed question for the world’s



Journal of Sensors 13

leading seats of learning. It is obvious that the AMI networks,
due to their nature, are exposed to a signi�cant number of
threats originating from both outside and inside of their
own infrastructure. Data collected recurrently by intelligent
meters contain much information about private aspects of
recipients’ lives, which may be used for realization of serious
abuse. Other, but not less important, problems of security
within the AMI infrastructure are dangers coming from
the recipients themselves. In some cases, they may perform
actionswhich are destructive for theAMI. Such activitiesmay
consist in disturbing data saved in the meter or hampering
their transmission. However, the key security problem is
providing an adequate level of protection against external
abuse, that is, safety from cyberattacks. In this case, every
element of the SMCN infrastructure, AMI in particular, may
become a potential attack point.

Growing level of complexity, globalization of range, and
dynamically increasing number and nature of new attacks
impose a change in approach towards realization of network
security systems. Currently, most o�en implemented mech-
anisms are the methods of detection and classi�cation of
abnormal behaviors re	ected in the analyzed network tra�c
parameters. An advantage of such solutions is protection
against attacks unknown so far, o�en directed towards
de�ned resources of critical infrastructures, or simply being
the so-called zero-day exploits. Anomaly detection systems,
in those cases, may play the key role. �eir task is then
detection (for the purposes of automatic response) of not
typical behaviors in the network tra�c which constitute
symptoms of diverse abuse, originating both inside and
outside the secured infrastructure.

�e article presents an e
ective solution to the problem
of anomaly detection in the network tra�c for the critical
measurement infrastructure. �e structure of the AMI net-
work, built for the purpose of the experiment, is presented
and described. Crucial security problems which have a
direct impact on proper operation of the advanced measure-
ment infrastructure are discussed. A two-stage method was
proposed for anomaly detection in the examined sensory
network tra�c, represented by proper time series. In the
�rst stage, any possible outlying observations in the analyzed
time series were detected and eliminated. �e purpose of
such operation was to prepare correct data for creation of
standard statistical models based on exponential smoothing.
Estimation of possible 	uctuations of models’ forecasts was
realized by means of suitably parameterized Bollinger Bands.
An update procedure was also proposed for the standard
models in case serious 	uctuations appear in the real network
tra�c. �e second stage consisted in examining statistical
relations between the standard tra�c model and its real
variability in order to detect abnormal behavior, which could
signify an attempt of some abuse, for example, a network
attack.

In the article, we proposed a method for anomaly/attack
detection in data link and network layers. We did not analyze
application layer, because in our case the application layer
payload is only available for energy supplier. We focused
on layer 2 and layer 3 because there are not many anomaly
detection solutions in this area.

�e proposed method of anomaly detection was evalu-
ated with the use of real AMI network, which consists of
70 power meter nodes, located in eight distant buildings.
A�er network tra�c features extraction, we checked three
di
erent statistical models based on exponential smoothing
together with Bollinger Bands. On the basis of four practical
scenarios, we can conclude that the most promising results
were achieved for Holt’s exponential smoothing model. �e
proposedmodel �ts to the characteristic of the network tra�c
features extracted from the AMI network. In case of Holt’s
model, not only is exponential smoothing possible, but also
we can forecast time series with trend. We also propose a
solution for aging reference models. We propose a condition
(see (14)) for triggering recalculation of model parameters.

For future work, we are planning to examine usability
of statistical models for anomaly detection in AMI power
meter network using Power Line Communication (PLC)
module instead of radio communication. In the next step, we
would like to propose anomaly detection solution for hybrid
AMI power meter network using at the same time radio
communication and PLC communication modules.
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