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Abstract Anomaly detection in multidimensional data is a challenging task. Detect-

ing anomalous mobility patterns in a city needs to take spatial, temporal, and traffic

information into consideration. Although existing techniques are able to extract spa-

tiotemporal features for anomaly analysis, few systematic analysis about how different

factors contribute to or affect the anomalous patterns has been proposed. In this paper,

we propose a novel technique to localize spatiotemporal anomalous events based on

tensor decomposition. The proposed method employs a spatial-feature-temporal ten-

sor model and analyzes latent mobility patterns through unsupervised learning. We

first train the model based on historical data and then use the model to capture the

anomalies, i.e., the mobility patterns that are significantly different from the normal

patterns. The proposed technique is evaluated based on the yellow-cab dataset collected

from New York City. The results show several interesting latent mobility patterns and

traffic anomalies that can be deemed as anomalous events in the city, suggesting the

effectiveness of the proposed anomaly detection method.
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1 Introduction

The high availability of transportation data such as taxi archives provides great

opportunities for understanding people’s mobility patterns in a city. Despite the

analysis performed for understanding the majority moving trend such as (Yuan

et al. 2012), detecting and understanding regions with anomalous mobility pat-

terns attract more and more attention especially in the big cities such as New

York where traffic congestion is always a big transportation issue. Understand-

ing those anomalous traffic patterns can help with a better management of the

city.

The above problem lies in the domain of anomaly detection which has been exten-

sively studied in the field of data mining and machine learning. Many techniques have

been proposed (Chandola et al. 2009) and applied to various application domains. How-

ever most of the existing techniques fail to provide a clear decomposition of the data to

reveal the potential factors that best capture, describe, or affect the anomalous behav-

iors. These factors are usually critical for the interpretation of the analysis results and

can be helpful for analyst to control and prevent the undesired anomalies. For example,

in the above problem, to detect anomalous mobility patterns based on the transporta-

tion data, we need to examine the data from multiple perspectives such as space, time,

traffic volumes, and their relationships. Matrix-based methods such as PCA, though

proved to be powerful in many areas, cannot deal with multi-way data. Some empirical

evidence (Fanaee-T and Gama 2016a) has shown the superiority of tensor-based meth-

ods over traditional matrix-based methods. On this occasion, tensor-based methods

are appropriate since the tensor could store the natural multi-dimensional relationship

of the data. Tensor-based anomaly detection methods (Fanaee-T and Gama 2016a) are

able to decompose a multi-way tensor into information factors and reveal their rela-

tionships based on probability models. However, none of the existing tensor-based

techniques are specifically developed to detect anomalous traffic patterns, such as

sudden increase in the volume of incoming or outgoing people of a particular region

or irregular traffic flow among several regions.

In this paper, we propose a novel anomaly detection technique based on tensor

decomposition for spatiotemporal data. The proposed technique follows unsupervised

learning procedure in which a model is trained based on samples showing normal traffic

patterns. Later, the extracted patterns are used for detecting anomalous transportation

regions that significantly differ from the normal cases. In particular, we first segment

a city into several regions and extract traffic features from each region for analysis.

A three-way tensor, spatial-feature-temporal, is prepared based on the features and

decomposed into three key information facets that describe how the latent mobility

patterns are distributed in dimensions of space, feature and time, respectively. Then

local outlier factor is calculated based on the decomposition results and the findings

are interpreted in both spatial and temporal context. This paper has the following key

contributions:

– We propose a novel framework, TBAD, based on tensor decomposition to localize

anomalies in dynamic traffic system. Our method can localize anomalous regions

in a given time interval.

123
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– We give an intuitive interpretation of the latent patterns extracted from decompo-

sition.

– We evaluate the performance of our framework on real-world datasets. All our

experiments show the effectiveness and consistency of our framework in localizing

spatiotemporal anomalous events.

The rest of this paper is organized as follows. We first discuss related work in Sect. 2,

followed by preliminary knowledge and notations in Sect. 3. Section 4 introduces the

model and data processing pipeline for anomaly detection. In Sect. 5, we describe

an empirical evaluation of the proposed method through real-world data. Finally, we

conclude with a summary and future directions in Sect. 6.

2 Related work

In this section, we review techniques that are most related to our work, including classic

anomaly detection algorithms, tensor-based anomaly detection and spatiotemporal

event detection.

2.1 Classic anomaly detection algorithms

Anomaly detection has been extensively studied during the past decades, many classic

techniques have been proposed (Chandola et al. 2009; Jiang and Cui 2016). In gen-

eral, these techniques can be categorized into several types such as statistic methods,

classification-based methods, spectral-based methods and so on. Although each type

of these methods has its own advantages and disadvantages, all these techniques can

only produce detecting results without reasonable interpretation of the anomaly, which

makes it difficult for people to understand and validate the result. Besides, most of

the methods are matrix-based and are not able to tackle the multi-dimensional data.

Spectral-based method is considered as one of the most appropriate methods for tack-

ling high dimensional data, which automatically performs dimensionality reduction

and can also be used as a preprocessing step followed by other methods in the pro-

jected space. We thus consider using a tensor-based method to perform dimensionality

reduction and also impose non-negativity constraint to make the result interpretable.

In particular, we use the non-negative CP decomposition as a spectral method for

dimensionality reduction and interpretation.

2.2 Tensor-based anomaly detection

Recently, Hadi et al. did a comprehensive review of the tensor-based anomaly detec-

tion techniques, most of which were developed beyond the scope of computer

science (Fanaee-T and Gama 2016a). Here we focus on those tensor based methods

that are most related to our work.
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2.2.1 Supervised model

Supervised tensor-based anomaly detection techniques have been developed based on

dimensionality reduction (Prada et al. 2012a, b; Tork et al. 2012; Wang et al. 2014;

Fanaee-T and Gama 2016b; Bai et al. 2013), classification (Tao et al. 2005; Kotsia et al.

2012; Rendle 2012), and prediction (Zheng et al. 2014; Zhao et al. 2015; Matsubara

et al. 2012; Bahadori et al. 2014; Thai-Nghe et al. 2010). Our work is inspired by

dimensionality reduction and feature extraction based approaches.

2.2.2 Semi-supervised model

Most of the semi-supervised models are designed for real-time anomaly detection

and can be divided into two categories (Fanaee-T and Gama 2016a). Methods in both

categories use normal data (i.e., positive samples) to construct a tensor and use the

decomposition results as a baseline. Those decomposition results based on the testing

data however failed to align with the baseline are considered as anomalies. Methods in

the first category statistically test the null hypothesis such as Nomikos and MacGregor

(1994) and Tian et al. (2009). Methods in the second category compare the differences

between the baseline and the testing data based on the eigenvectors and eigenvalues

of the factor matrices (Fanaee-T and Gama 2014, 2015). For example, Fanaee-T

and Gama (2015) proposed a novel approach called EigenEvent. They generated a

dynamic baseline tensor (Space Features Time) from historical data and process the

coming time window into a two-dimensional matrix (Space Features). Then the matrix

and the baseline tensor were decomposed into subspace and then matched with the

eigenvectors and eigenvalues. Anomalous time windows were detected when the angle

between the matrix’s eigenvector was higher than expected or the ratio of matrix’s

eigenvalue to the baseline eigenvalue was higher than expected.

However, it is sometimes impossible for us to get labelled data especially in real-

world problem. Thus our work mainly focus on unsupervised tensor-based model.

2.2.3 Unsupervised model

Most unsupervised tensor-based models used in anomaly detection (Papalexakis et al.

2012, 2014; Mao et al. 2014; Gauvin et al. 2014) plot the factor matrices obtained

from the tensor decomposition and the anomalies are manually identified by human

experts based on the plotting results. For instance, Papalexakis et al. (2014) used a

three-way (“user-venue-time”) tensor and detected anomalous components by plotting

each component’s values on each mode and found the most anomalous components

by analyzing the images. In addition, Mao et al. (2014) applied CP decomposition on a

three-way (“sourceIP-targetIP-time”) tensor model to detect malicious network behav-

ior. Gauvin et al. (2014) proposed a plot-based detection of the community-activity

structure of temporal networks. Papalexakis et al. (2012) proposed a novel paral-

lelizable tensor decomposition method called PARCUBE. They also showed some

plot-based detection results based on PARCUBE. All these techniques follow a simi-

lar procedure in which the tensor is decomposed and the results are plotted for human

experts to explore. Different from these methods, we propose an unsupervised model,

123



1060 C. Lin et al.

which implements automatic anomaly detection after decomposition to discover the

most suspicious spatial regions to users for a detailed inspection, which is more precise

and efficient.

In addition, there are some related work (Sun et al. 2006, 2008; Shi et al. 2015) for

online anomaly detection using tensor subspace analysis. These methods use recon-

struction error as the metric for detecting anomaly. Although STA (Streaming Tensor

Analysis) (Sun et al. 2006) is an efficient tool for tackling tensor stream, reconstruc-

tion model lacks some intuitive interpretation of the anomaly and may suffer a lot

from the instability of real-world data. Our method can be used in online detection

(see Sect. 4.2) and the non-negativity constraint makes it possible to interpret and

understand the latent patterns (see Sect. 5.1).

We compare our work with two most relevant techniques as follows. Prada et al.

(2012a, b) proposed a technique, in which PARAFAC was used to decompose a three-

way (“space–time–frequency”) tensor based on the normal samples. Then the derived

time factor matrix was trained via kNN. And features used in kNN were the latent com-

ponents derived from the tensor decomposition. However, the aim of their work was

detecting anomaly in engineering structures which is different from our application.

Thus, their techniques cannot directly apply to our problem. Differently, our method

is designed to capture the temporal dynamics of the transportation data. Some inter-

pretable latent patterns are extracted, which better illustrates the decomposition results

and helps understand the anomaly. Tork et al. (2012) applied a Tucker3 decomposition

for discovering abnormal users in an IP/TV network based on the latent components

that are derived from the tensor decomposition, but the analysis results are difficult to

interpret. Our work use non-negative PARAFAC decomposition to derive latent mobil-

ity pattern based on real-world regions on map, which is more intuitive. In addition,

a simple map visualization (See Sect. 5.1) is used for analysis interpretation, inspired

by some visual techniques designed for time-series data (Xie et al. 2014; Xu et al.

2017) and taxi trajectories (Liu et al. 2017; Weng et al. 2018).

2.3 Spatiotemporal anomaly detection

There are techniques designed specifically for anomaly detection in spatiotemporal

data. For example, monitoring the gas sensor networks (Wang et al. 2008) and detect-

ing anomalies in the spatiotemporal network data (Young et al. 2014; Zhang et al.

2017; Paschalidis and Smaragdakis 2009). However, these techniques are designed

for a targeted domain based on many assumptions in that specific field. In compari-

son, Graph-TSS proposed by Liu et al. (2016) utilizes the latent semantics of textual

information for spatial event detection. This work performs experiments using Twitter

data and can effectively detect several anomalous events such as Argentina civil unrest

events. However, it is a graph-based method which produces the most anomalous sub-

graph from the network. Thus it may not detect some small events that only cause a

few number of nodes changed. This problem also comes with EventTree (Rozenshtein

et al. 2014). Although it is a benchmark in spatiotemporal field, it focuses more on

the trajectories of big events. Since some local events may not influence the neighbor

areas, they are difficult to find when using EventTree because no anomalous sub-graph
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Table 1 Notations
Notation Definition

X , X, x, x Tensor, matrix, column vector, scalar

X(:,i) i-th column of X

X(i,:) i-th row of X

‖.‖ Frobenius norm

◦ Outer product

X(n) Mode-n matricization of tensor X

⊗ Kronecker product

⊙ Khatri-Rao product

is formed. Yet, Our method compares each region’s behavior to its normal case. Even

the anomaly has little influence on nearby regions, it will be detected once it behaved

much different from its normal behavior. In addition, many visual techniques have

been proposed to facilitate analyzing spatiotemporal data (Liu et al. 2014; Sun et al.

2013, 2017a, 2017b; Xia et al. 2016; Wu et al. 2018).

3 Background and preliminaries

Here we list all necessary background knowledge for tensor decomposition and our

algorithm framework TBAD. Table 1 provides an overview of the notations we use.

The Kronecker product of two matrices A ∈ R I×J and B, denoted by ⊗ is defined

as Kolda and Bader (2009):

A ⊗ B =

⎛

⎜

⎜

⎜

⎝

a11 B a12 B · · · a1J B

a21 B a22 B · · · a2J B
...

...
. . .

...

aI 1 B aI 2 B · · · aI J B

⎞

⎟

⎟

⎟

⎠

For two matrices A = (a1, a2, . . . , ak) , B = (b1, b2, . . . , bk) with the same num-

ber k of columns, their Khatri-Rao product, denoted by ⊙, is defined as Kolda and

Bader (2009):

A ⊙ B = (a1 ⊗ b1, a2 ⊗ b2, . . . , ak ⊗ bk)

3.1 Tensor

A tensor, denoted by X , is a multi-dimensional array, which is an extensional concept

of matrix. In general, a N-way tensor(or Nth-order tensor) is a tensor of N dimensions.

In particular, a zero-way tensor is a scalar, a one-way tensor is a vector and two-

way tensor is a matrix. A N-way tensor X ∈ R+
I1×I2×···×IN has N ways with the

dimensionality of I1, I2, . . . , IN . R+ means all the elements of X are non-negative,

which are commonly used in real-world applications.
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3.2 Tensor decomposition

Given a tensor X , the CP decomposition (or PARAFAC decomposition) factorizes the

tensor into a sum of rank-one tensors (Kolda and Bader 2009). For example, given a

three-way tensor X ∈ R
I×J×K , it can be written as Kolda and Bader (2009):

X ≈
R

∑

r=1

ar ◦ br ◦ cr = [[A, B, C]] (1)

where R is a positive number and ar ∈ R
I , br ∈ R

J , cr ∈ R
K for r = 1, 2,…, R.

PARAFAC decomposition is usually represented in its matrix form [[A, B, C]] (Kolda

and Bader 2009), where the columns of matrix A, B, C are the ar , br , cr vectors. In

particular, A = (a1, a2, . . . , aR) , B = (b1, b2, . . . , bR) , C = (c1, c2, . . . , cR).

As the symbol ’◦’ represents outer product of vectors, each element of the tensor

X can be also written as:

Xi jk ≈
R

∑

r=1

Air B jr Ckr

In this work, we use the non-negative CP decomposition in our framework, since it

admits a very intuitive interpretation of its latent factors, and non-negativity is inherent

to the data being considered.

3.3 Local outlier factor

The local outlier factor (LOF) is a classic anomaly detecting algorithm (Breunig et al.

2000). It detects anomalous data points by comparing each point’s density with its

k-nearest neighbors. LOF algorithm assigns scores of being an outlier to each data

point. The score is called the local outlier factor(LOF) of a data point. Data points

with high LOF value have less local densities than their k-nearest neighbors and are of

great probability to represent outliers. A LOF-value around 1 implies that the point’s

density is similar to its neighbors, which is of great probability to declare that it is not

an outlier. A LOF-value below 1 implies the point has lower density than its neighbors,

which also indicates it is not an outlier.

However, it is not time-evolving and may face computational difficulties when

dimensionality increases. Thus, we preprocess the data points before using LOF algo-

rithm, which is illustrated in Sect. 4 and the result shows a significant improvement

over pure LOF algorithm, which is discussed in Sect. 5.

4 TBAD: a tensor-based spatiotemporal anomaly detection method

We illustrate the pipeline of our algorithm model in Fig. 1a. The procedure consists

of four steps. First, we formulate a set of region-feature matrices in consecutive time

slices and build up a region-feature-time tensor. Second, we apply non-negative CP
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Fig. 1 System description. a Pipeline, b tensor formulation

decomposition on the tensor and extract latent mobility patterns from factor matrix

B∗. Third, we decompose each upcoming tensor with respect to the former latent

patterns(B∗) and capture their dynamic distribution on temporal and spatial dimension.

Finally, we compare each region’s co-occurrence of latent patterns with its historical

distribution. Anomalous regions often hold a different distribution of latent patterns

and we can use the LOF algorithm to find them. Here we assume that anomalous

regions are those with different traffic patterns compared to their normal historical

situation. In addition, we can also use other classic anomaly detection algorithms such

as one-class SVM (Chen et al. 2001) rather than LOF to detect anomaly.

4.1 Model formulation

As we discussed above, a tensor can store multi-dimensional information. Thus, we

use a tensor to represent traffic flow in a period of time. Suppose that there are K

features to measure a region and a time interval divided into M smaller time slices,

we can construct a tensor X ∈ R
N×K×M to indicate a spatiotemporal information,

which represents the feature variances of different regions over time. In particular, the

element Xi jk denotes the value of j-th feature in i-th region during the period of k-th

time slice. Note that there are two notions in time dimension. First, the tensor is built
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over a period of time(e.g., a day, a week or a year). The time interval is further divided

into several fixed time slices, of which the granularity is determined according to the

length of the time interval. For example, the length of the time slices can be set to one

hour when the interval is a day, or a day when the interval is a week. In our experiment,

the interval is a day and the length of time slices is 2-h.

The features used in the tensor are selected according to different data sources.

The following describes the situation of tensor formulation using yellow taxi data in

NYC. Suppose that the number of region is N , which is pre-determined. Then we

use 2N features to measure the incoming and outgoing flow of a certain region. The

first N features indicate the number of taxi trips leaving region-i . And the next N

features indicate the number of trips entering region-i . To be specific, for region-i ,

X [i, j, k] denotes the number of trips from region-i to region- j in k-th time slice and

X [i, N + j, k] denotes the number of trips from region- j to region-i in k-th time slice,

respectively. In particular, both X [i, i, k],X [i, N + i, k] denotes the number of trips

traveling inside region-i (one of which is omitted in analysis to avoid redundancy).

Figure 1b shows an numerical example of our proposed tensor formulation method.

4.2 Extracting basic mobility patterns

With the large volume of historical traffic data, our goal is to find several basic mobility

patterns which can be used to represent normal traffic behavior. In other words, a

region’s traffic pattern can be interpreted as linear combination of the former basic

patterns. In this case, we can interpret a region’s traffic patterns with the interpretation

of the basic patterns. Technically, we are going to produce a factor matrix B∗ to extract

basic mobility patterns in a city. We first get all the tensors Xi (i = 1,…,n) to be trained

and B∗ is calculated by:

B∗ = argmin
Ai ,Ci ,B∗≥0

n
∑

i=1

(‖Xi −[[Ai , B∗, Ci ]]‖2 +α‖Ai − Ai−1‖2 +β‖Ci −Ci−1‖2) (2)

B∗ is the feature-component (basic mobility pattern) factor matrix. We suppose B∗ to

be the common factor matrix of all the training tensors. Therefore, it stores the most

common relationship between feature and basic traffic patterns and Ai , Ci matrices

capture the dynamic spatial and temporal distribution of basic patterns. Thus, B∗ can

represent the most general basic mobility patterns on the training set.

The coefficients α, β here are used to control smoothness on factor matrices Ai and

Ci , which aims to eliminate the anomaly in the training set. Since the training set is

not labelled, we suppose that imposing smoothness can eliminate the influence of the

anomalies on the extracted latent patterns. The values of the two coefficients are set

according to the specific situations.

It is easy to illustrate how this can be used in online situation. When the latest tensor

Xn+1 arrives, we can solve the optimization problem (2) by applying Xn+1 to gain a

new B∗. As time evolves, we can replace the oldest tensor X1 with the latest tensor

Xn+1 when solving (2) to save computation time and storage space.
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Besides, when dealing with time dependent models, different time intervals are not

treated equally. In general, latest ones are more important than the ones in the past.

To achieve this goal, additional coefficients can be added to the objective function.

B∗ = argmin
Ai ,Ci ,B∗≥0

n
∑

i=1

γi‖Xi − [[Ai , B∗, Ci ]]‖2 (3)

γi controls the importance of i th-time interval. For simplicity, the experiments in our

work still use (2) as objective function.

4.3 Factorizing upcoming tensor

With the factor matrix B∗ we got in Sect. 4.2, we apply non-negative CP decomposition

to the upcoming tensor X , which contains the latest traffic data to be detected, with

the constraint that the B (feature-component) factor matrix is equal to B∗:

A, C = argmin
A,C≥0

‖X − [[A, B∗, C]]‖ (4)

This is calculated under the assumption that the basic traffic patterns do not change

dramatically in a short time. Thus we can use the same subspace to capture the relation-

ship between feature and latent traffic patterns. With the same relationship between

feature and latent patterns, we can then use the factor matrix A and C to capture

the patterns’ distribution on spatial and temporal dimension. In particular, matrix A

(region-component matrix) describes the patterns’ co-occurrence on a certain region.

For example, A[i, k] captures the k-th pattern’s occurrence on i-th region. The larger

the value is, the more likely that region-i behaves in tune with pattern-k. Matrix C

(time-component matrix) describes the pattern’s temporal activity level. For example,

C[ j, k] indicates the activity level of k-th pattern in j-th time slice. The larger the

value is, the more traffic flow behaves in accord with pattern-k in j-th time slice.

4.4 Detecting anomaly by factor matrices

According to Sects. 4.2 and 4.3, we got factor matrices Ai (i = 1, . . . , n) for the

training tensors and factor matrix A for the detecting tensor. In particular, the row vector

Ai (k, :) in each factor matrix Ai represents the patterns’ historical co-occurrence on

region-k. As discussed previously in the beginning of Sect. 4, we hold the assumption

that anomalous regions are those behave differently from their historical behavior.

Thus we apply LOF algorithm to Ai (k, :) (i = 1,…,n) and A(k, :) to detect whether

the co-occurrence of the basic patterns on k-th region has changed and the lof-value is

denoted as lo fk . Moreover, lo fk will be a large value if the region shows such different

traffic behavior that the co-occurrence of basic patterns changed dramatically. Thus

we found regions’ extent of anomaly by their lof-value.
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4.5 Update rule

We solve the above optimization problem (2) using block coordinate descent (Kim

et al. 2014) and a multiplicative rule based on a tensor time series of the historical

data. We treat B, At , Ct (t = 1, . . . , n) as 2n + 1 blocks and the update order is

A1 → C1 → A2 → C2 → · · · An → Cn → B∗ . In particular, the update rules are:

1. solve A(t), t = 1, 2, . . . , n

A(t) = argmin
A≥0

(||X T
t,(1) − (Ct ⊙ B)AT ||2 + α||AT − AT

t−1||
2)

= argmin
A≥0

||X − F AT ||2

here X =
(

X T
t,(1)√

αAT
t−1

)

, F =
(

Ct ⊙ B√
α I

)

A jk ← A jk

(X T F) jk

(AFT F) jk

2. solve C(t), t = 1, 2, . . . , n

C(t) = argmin
C≥0

(||X T
t,(3) − (B ⊙ At )C

T ||2 + β||CT − CT
t−1||

2)

= argmin
C≥0

||X − FCT ||2

here X =
(

X T
t,(3)√

βCT
t−1

)

, F =
(

B ⊙ At√
β I

)

C jk ← C jk

(X T F) jk

(C FT F) jk

3. solve B∗

B∗ = argmin
B≥0

n
∑

t=1

||X T
t,(2) − (Ct ⊙ At )BT ||2

= argmin
B≥0

||X − F BT ||2

here X =

⎛

⎜

⎜

⎜

⎜

⎝

X T
1,(2)

X T
2,(2)
...

X T
n,(2)

⎞

⎟

⎟

⎟

⎟

⎠

, F =

⎛

⎜

⎜

⎜

⎝

C1 ⊙ A1

C2 ⊙ A2

...

Cn ⊙ An

⎞

⎟

⎟

⎟

⎠

B jk ← B jk

(X T F) jk

(B FT F) jk

where I is the Identity matrix. The X t,(n) denotes the n-mode matricized version

(Cichocki et al. 2009) of X t .
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Fig. 2 Interpretation of latent patterns; (a1, a2, a3, a4) shows the spatial information of patters on the map

and (b1, b2, b3, b4) reveals the pattern’s temporal distribution respectively

5 Empirical evaluation

We applied TBAD to real-world data sets in order to verify its accuracy. The experiment

was conducted on New York City yellow taxi trip data in 2014.1 It contained around

3,000,000 yellow cab trip data at New York City in 2014, which included trips’ origin,

destination, pick-up time, drop-off time and passenger count. We first used TBAD

to find the anomaly region based on the traffic data. We used R = 5, 10, 15 in our

experiments and how to choose R are discussed in the next section. Special event

corresponding to the anomaly region should be found to verify the correctness of

TBAD. Then we compared the error rate of TBAD with similar approach with untrained

model and pure LOF.

5.1 Interpretation of basic mobility patterns

To illustrate how we interpret the extracted patterns, we visually summarize the spa-

tial and temporal information by applying basic visual representations on the map

of Manhattan. As shown in Fig. 2a1–a4, we place a grid on the top of the map to

demonstrate the division of regions. The flow pattern of each region is encoded with

a node inside the grid, with the size of node representing the volume of the flow,

and the color representing the direction of the flow. A red-to-yellow-to-green color

gradient is adopted here to indicate the average flow direction, with the red color

indicating that the region contains more incoming trips and the green indicating more

1 https://data.cityofnewyork.us/view/gn7m-em8n.
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the outgoing trips. We further demonstrate the temporal distribution of the specific

pattern (a1–a4) in Fig. 2b1–b4. As the length of time slices is 2-hour, we plot the

temporal distribution of these patterns in each time slice. The size of nodes encodes

the activity level so as to highlight time slices in which the pattern is more significant.

Specifically, the size is set according to the Ci (i = 1, ..., n) factor matrices we got in

Sect. 4.2. For example, the activity level of kth-pattern in j th-time slices in i th-time

interval is Ci [ j, k]. Figure 2a1, a2 illustrate two distinct patterns when set R = 10,

and Fig. 2b1, b2 reveal their corresponding temporal characteristics. These patterns

mainly appear around the center of Manhattan in 6 and 10 a.m. of the weekdays and

disappear in weekends. This could reveal the morning peak of these regions, dur-

ing which people flood into Manhattan Midtown (e.g., Rockefeller Center) to go to

work.

To reveal the impact of parameter R on the extracted patterns, we decrease

and increase the value of R to 5 and 15 as shown in Fig. 2a3, a4 respectively.

When the value of R is small, the extracted patterns are mostly aggregated,

resulting in a mixture of incoming and outgoing flows, which makes it diffi-

cult to observe separately. On the contrary, if R is too large, some extracted

patterns will be less meaningful. For example, Fig. 2b4 shows one of the tem-

poral patterns when R is set to 15, which is inactive all the time, providing

no useful information and should be considered as noise. Generally, patterns are

more interpretative when the number of latent patterns increases. However, it

will also produce more noise and less meaningful information. Thus, a prop-

erly chosen R should provide us with more meaningful and less noisy pat-

terns.

5.2 Case study

In order to locate the anomalous region easily, we divided the New York City into

mesh-grid according to the longitude and the latitude. Then we computed anomaly

score for each region. Regions with high anomaly scores were the anomalies we were

trying to find. Following are several cases that TBAD generate from the third-season

data in 2014:

Electric Zoo Music Festival at Randall’s Island Park Figure 3 shows the anomaly

region detected by TBAD on August 30 and 31. In Fig. 3, we have calculated the

anomaly-score of the highlighted region on every Saturday. Most of the score was

around 1, while the score on August 30th was 11.26. That value was significantly

higher than the average score. So we considered August 30th as an anomalous date for

that region. According to the speculation, we found that Electric Zoo music festival

was held at Randall’s Island park during that period.

Queen Mary 2(Ocean Liner) New York Arrival Figure 4 shows the extraordinary taxi

flow between two regions shown on the map on September 27. The score(Day index

25) of those regions on September 27th was around 18.66, which was clearly an outlier

in the diagram. Actually, ocean cruiser Queen Mary 2 arrived at New York Manhattan
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Fig. 3 Anomalous region and anomaly score diagram on August 30

Fig. 4 Anomalous region and anomaly score diagram on September 27

Cruiser Terminal on that day, while she used to dock at New York Brooklyn Cruiser

Terminal, which is located at the red area. Thus, we thought that the unusual docking

terminal forced many people to travel from Brooklyn to Manhattan.

U.S. OPEN (Tennis Tournament) Semifinal and Final We observed a high anomaly

score on September 6 and 7 in the region surrounding Flushing Meadows-Corona Park

as shown in Fig. 5. For all Sundays and Saturdays in the third season of 2014, we can

clearly find the anomaly which is around September 6 through the diagram with an

anomaly score of 12.22.

After checking U.S. OPEN’s schedule, we found out that men’s singles semifinals

was on September 6 and women’s singles final was on September 7. These matches

involved famous tennis players such as Novak Djokovic, Roger Federer and Serena

Williams. That would be reason why people were gathering there at a certain time.

Except for the tournament, there existed another anomaly point with a score of 5.65

in the following week. This anomalous point indicated another special event in the

park, which was the World Maker Faire on September 20 according to our search

result.
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Fig. 5 Anomalous region and anomaly score diagram on September 6 and 7

Fig. 6 Our model successfully detect the Music Festival (Left) and the U.S.OPEN (Right). And the

untrained model cannot detect them and shows much more irregular results

5.3 Compared with untrained model

We have compared our TBAD framework with existing approach using untrained

model. As untrained models share no similarity in factor matrices, the latent mobility

patterns extracted from the tensor may differ a lot. Thus, the feature vectors extracted

from the factor matrix A have no baseline meaning and cannot be compared altogether.

We have done experiments and the result in Fig. 6 shows that untrained model may

produce massive wrong detection results.

5.4 Compared with LOF

We have also compared our method with the existing approach using LOF. Since LOF

algorithm detects anomaly in numerous points and a point can only denote one time

slice, time dimension is not considered, resulting in the insensitivity to the change in

a dynamic traffic system.

We have done some comparison to demonstrate the idea. The result is shown in

Fig. 3. The red and yellow points correspond to the result of our model and LOF
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respectively. The figure shows that our method is much more sensitive and effective

than directly using LOF algorithm. Although the LOF results still have two days

sharing the highest score, it is quite similar to other points and thus difficult for us to

distinguish.

6 Conclusion

In this paper, we present a novel framework for detecting anomalous event. It integrates

tensor decomposition and LOF algorithm to localize anomaly in a given time interval.

We demonstrate the power of TBAD through its application in New York City yellow

taxi data. We have done a case study based on anomalous event found by our system and

several comparison with other present techniques. In the future, we would apply the

framework to more areas such as pollution monitoring and severe weather warning.

Furthermore, we would design a multi-functional visualization system to make the

anomaly visually shown to the users and let the users to interact with the system to

further improve its accuracy.
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