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Abstract. This paper describes a real-valued representation for the negative selec-
tion algorithm and its applications to anomaly detection. In many anomaly detection
applications, only positive (normal) samples are available for training purpose. How-
ever, conventional classification algorithms need samples for all classes (e.g. normal
and abnormal) during the training phase. This approach uses only normal samples
to generate abnormal samples, which are used as input to a classification algorithm.
This hybrid approach is compared against an anomaly detection technique that uses
self-organizing maps to cluster the normal data sets (samples). Experiments are
performed with different data sets and some results are reported.
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1. Introduction

The anomaly detection problem can be stated as a two-class problem:
given an element of the space, classify it as normal or abnormal. Differ-
ent terminologies are used in different applications, such as “novelty [9]
or surprise [25] detection”, “fault detection” [37], and “outlier detection”.
Accordingly, many approaches have been proposed which include sta-
tistical [13], machine learning [29], data mining [30] and immunological
inspired techniques [7, 18, 23].

In many anomaly detection applications, however, negative (abnor-
mal) samples are not available at the training stage. For instance, in
computer security applications, it is difficult, if not impossible, to have
information about all possible attacks. In machine learning approaches,
the lack of samples from the abnormal class causes difficulty in apply-
ing supervised techniques (e.g. classification). Therefore, the obvious
machine learning solution is to use an unsupervised algorithm (e.g.
clustering).

! Draft Version. Final version appeared in Genetic Programming and Evolvable
Machines, 4(4), pages 383-403, Kluwer Acad. Publ., December 2003.
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2 GONZALEZ AND DASGUPTA

Approaches inspired by artificial immune systems have been applied
successfully to perform anomaly detection, not only in the area of
computer security [8, 21, 23, 26], but also in other fields such as fault
tolerant hardware [4], tool breakage detection [9], function optimization
[6], etc.

The negative selection (NS) algorithm [16] has been widely used for
change and anomaly detection. The algorithm is inspired by the selec-
tion process that takes place inside the thymus. In this process, T-cells
that recognize body own cells (self cells) are eliminated; this guaran-
tees that the remaining T-cells will recognize only foreign molecules.
D’haeseleer et al. [14] proposed an efficient implementation of the nega-
tive selection algorithm known as the greedy algorithm. This algorithm
is specifically designed for a binary representation of the self/non-self
space and the r-contiguous matching rule. Though this algorithm has
been used in different change/anomaly detection problems, some limita-
tions, however, have prevented it from being applied more extensively:

— Scalability: in order to guarantee good levels of detection, a large
number of detectors has to be generated (depending on the size
of the self). For some problems, the number of detectors could be
unmanageable [27].

— The low-level (binary) detector representation prevents the extrac-
tion of meaningful domain knowledge. This makes it difficult to
analyze reasons for reporting an anomaly.

— The distinction between the normal and abnormal is considered
sharp. This divides the space into two subsets: self (the normal)
and the non-self (abnormal). An element in the space is considered
to be abnormal if there exists a detector that matches it. In reality,
the normalcy is not a crisp concept. A natural way to character-
ize the self space is to define a degree of normalcy; this can be
accomplished, for instance, by defining the self as a fuzzy set.

— Other immune-inspired algorithms use higher level representation
(e.g. real valued vectors). A low level representation, like binary,
makes it difficult to integrate the NS algorithm with other immune
algorithms.

Some alternatives to r-contiguous matching have been proposed [1, 2,
21]. For example, different matching rules (similarity measures) were
reported by Harmer et al. [21]; however, an efficient negative selection
algorithm that uses them was not presented. An algorithm that extends
the exhaustive detector generation scheme (NS with mutation) was
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ANOMALY DETECTION USING RNS 3

proposed by Castro and Timmis [12]; this algorithm was compared
with other NS implementations by Ayara et al. [1]. Balthrop et al. [2]
proposed a different matching rule that subsumes r-contiguous match-
ing, called r-chunks. Some preliminary experiments on a “small data
set” suggest that the r-chunk matching rule can improve the accuracy
and performance of the NS algorithm.

Gonzalez et al. [20] proposed an approach for the negative selection
algorithm that uses a real-valued representation of the self/non-self
space. The algorithm is called real-valued negative selection (RNS).
This new algorithm tries to alleviate some of the drawbacks previously
mentioned, while using the structure of the higher-level-representation
real space to speed up the detector generation process. The algorithm
is described in Section 2.

An advantage of using the real-valued representation used is that,
for many problems, it is easy to map the generated detectors back
to the problem space. This characteristic was used [20] to implement
a hybrid approach that combines real-valued negative selection with
a conventional classification algorithm to perform anomaly detection
tasks. The details of this technique are described in Section 3.

We performed extensive experiments with different data sets. The
RNS algorithm is compared with binary NS (BNS, NS greedy algo-
rithm [14]) and with an unsupervised technique that builds a model of
the normal set through clustering.

A self-organizing map (SOM) [28] is used here as clustering tech-
nique, which forms a compact description of the normal space. This
compact map is subsequently used to classify new samples as normal
or abnormal [17, 24, 34]. A detailed description of this technique is
given in Section 4.

2. Real-Valued Negative Selection (RNS)

The NS algorithm [16] is based on the principles of self/non-self dis-
crimination in the immune system. It uses as input, a set of strings
that represents the normal data (self set) in order to generate detectors
in the non-self space. The negative detectors are chosen by matching
them to the self strings: if a detector matches it is discarded, otherwise,
it is kept. Some efficient implementations of the algorithm (for binary
strings) that run in linear time with the size of self have been proposed
[14, 16, 23]. However, the time complexity of these algorithms is expo-
nential on the size of the matching window (the number of bits used to
compare two binary strings).
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4 GONZALEZ AND DASGUPTA

The RNS algorithm was proposed by Gonzalez et al. [20]. Its main
feature is that the self/non-self space corresponds to a subset of R,
specifically [0, 1]™.A detector (antibody) is defined by an n-dimensional
vector that corresponds to the center and by a real value that represents
its radius; therefore, a detector can be seen as a hypersphere in R”. The
matching rule is expressed by the membership function of the detector,
which is a function of the detector-antigen Euclidean distance and the
radius of the detector (see Equation 1).

The input to the algorithm is a set of self samples represented
by n-dimensional points (vectors). The algorithm tries to evolve a
complement set of points (called antibodies or detectors) that cover
the non-self space. This is accomplished by an iterative process that
updates the position of the detector driven by two goals':

— Move the detector away from self points.

— Keep the detectors separated in order to maximize the covering of
non-self space.

|
For each detector 'd’ |‘

Does 'd’ match
any sel f point?

\i

Move 'd° away

from ot her
/ detectors
L 'd. age’ ++ 'd.age’ =0
. . Mve 'd away
Ci scard " d from sel f

\_,Q_—l =C£=

Figure 1. Illustrates an iteration of the real-valued negative selection algorithm.

The logical steps of the algorithm are shown in Figure 1, which are
described in a more detailed way in Figure 2.
The parameter r specifies the radius of detection of each detector. Ac-
cordingly, for an antigen a to be detected by a detector d, the distance

! This approach is similar to the NS greedy algorithm [14], but in a real-valued
space.
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REAL-VALUED-NEGATIVE-SELECTION(7,n,t,k)

r: radius of detection

7: adaptation rate

t: once a detector reaches this age it will be considered to be mature
k: number of neighbors to take into account

Generate a random population of detectors
While stopping criteria is not satisfied
For each detector d do
NearCells = k-nearest neighbors of d in the Self set
NearCells is ordered with respect to the distance to d
NearestSelf = median of NearCells
If distance( d, NearestSelf) < r

Then: .
—C
dir = Loty 10
If age of d >t > detector is old
Then:
Replace d by a new random detector
Else:
Increase age of d
d =d + n*dir
EndIf
Else:
ageof d =0

dir = Zd’eDetectors pg(d)(d—d")
d’ € Detectors “d(d,)

d=d+nx*dir
EndIf
EndFor
EndWhile

Figure 2. Real-valued negative selection (RNS) algorithm..

between d and a should be at most r. Since we do not want the detectors
to match self points, the shortest allowable distance for a good detector
to the self set is r. Therefore, the parameter r also specifies the allowed
variability of the self space.

In order to determine if a detector d matches a self point, the al-
gorithm calculates the k-nearest neighbors of d in the self set. It then
calculates the median distance of these k-neighbors. If this distance is
less than r, the detector d is considered to match self. This strategy
makes the algorithm more robust to noise and outliers.
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6 GONZALEZ AND DASGUPTA

The function pg(x) is the matching membership function of the
detector d. It indicates the degree of matching between z, an element
of the self/non-self space, and d. It is defined as:

lld—a||?

Md(x)ze_ r? (1)

where ||| is the Euclidean norm.

Each detector has an assigned age (initialized to zero) that is in-
creased at each iteration, if it is inside the self set. If the detector
becomes old, i.e. it reaches the maturity age ¢ and has not been able
to move out of the self space, it will be replaced by a new randomly
generated detector. The age is reset to zero when the detector is outside
of the self space.

The parameter 71 represents the size of the step used to move the
detectors. In order to guarantee that the algorithm will converge to a
stable state, it is necessary to decrease this parameter at each iteration
in such a way that lim; ., 7; = 0. We use the following updating rule

—i
N <= To€ 7™,

where 1) is the initial value of the adaptation rate, and 7 is a parameter
that controls its decay.

The stopping criterion is based on a pre-specified number of iter-
ations, num_iter. This produces a time complexity of O(num_iter -
numgp - (numgy + [S’])), where numgp is the number of detectors and
|| is the number of self samples.

3. Hybrid Immune System for Anomaly Detection

The NS algorithm has been used mainly to perform negative detec-
tion, i.e. the detectors generated by the algorithm are used directly to
identify elements in the abnormal (non-self) space. In this section, we
present a different use of the NS algorithm to perform anomaly detec-
tion that was initially proposed by Gonzalez et al. [20]. This approach
uses neither negative nor positive detection; rather, the approach tries
to find the boundary (crisp or fuzzy) between normal and abnormal
classes. This approach can be useful even if we are not performing
distributed anomaly detection or when the self set is small.

The basic idea is to use the RNS algorithm to generate non-self
samples. Then, apply a classification algorithm to find a characteristic
function of the self (or non-self) space.

Figure 3 illustrates the basic functional blocks of this approach.
During the training stage, the input corresponds to the normal samples
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ANOMALY DETECTION USING RNS 7

(feature vectors), which are used by the RNS algorithm [20] to generate
abnormal samples. Subsequently, the normal and abnormal samples are
used as input to a supervised algorithm that produces a classifier. This
classifier corresponds to the anomaly detection function and is used
during the testing phase to classify new samples as normal or abnormal.

Normal :
Samples :
Real-Valued |
Negative Selection ) :

Abnormal
Samples
' ' P '
Classification L Anomaly

H Detection
Algorithm Function

New
Samples

Normal Abnormal

Training : Detection

Figure 3. A hybrid immune system for anomaly detection that generates an anomaly
characterization function from normal samples.

It is important to highlight that this technique allows the use of a
supervised algorithm for a task that traditionally requires an unsuper-
vised method (e.g. clustering). The main advantages of this approach
are:

— The classification problem has been studied for a long time. There
are different efficient algorithms that have been extensively tested
and applied to solve problems in different fields. Our hybrid ap-
proach can utilize this algorithms in a efficient way.

— The approach does not require the modification of the classification
algorithm. It allows a modular composition that makes easier to
use widely available and well tested existing implementations of
supervised algorithms.

— The classification problem is closer to the problem of anomaly de-
tection than unsupervised learning problems, like clustering. Clus-
tering methods group the input data based on the principle of
maximizing the intraclass similarity and minimizing the interclass
similarity. On the other hand, the main objective that drives a
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8 GONZALEZ AND DASGUPTA

classification algorithm is to improve the accuracy of the classifier,
that is, to improve the ability to distinguish between classes. This is
clearly more related with the anomaly detection goal of maximizing
the detection rate while keeping a low false alarm rate.

— It is possible to use actual abnormal samples, if available, by com-
bining them with the ones generated by the RNS algorithm and
inputting them together to the classification algorithm.

The abnormal samples generated by the RNS algorithm can be thought
of as artificial anomalies. The idea of generating artificial anomalies was
independently proposed by Fan et al. [15] and ourselves [20]. Unlike
our work, the method proposed by Fan et al. is not related to AIS
research, and it does not use or refer to the NS algorithm. The basic idea
of Fan’s method is to generate artificial anomalies by perturbing real
data samples (normal and abnormal). The perturbation is performed by
randomly choosing a feature of a given sample and assigning a random
value. The generated artificial anomalies are combined with the real
data and fed to a learning algorithm. The artificial-anomaly generation
method assumes that each feature takes a discrete set of values; hence,
the algorithm cannot be directly applied to real-valued data.

There is no specific restriction on the kind of classification algorithm
that can be used, i.e., any algorithm that accepts real-valued vectors can
work. In this paper, we used a multi-layer perceptron (MLP) trained
with back-propagation [22]. In the remaining of this paper, we refer
this technique as Hybrid Neuro-Immune System (HNIS).

4. Anomaly Detection Using Self-Organizing Maps

A self-organizing map (SOM) is a type of neural network that uses
competitive learning [22, 28]. A SOM is able to capture the important
features contained in the input space and provides a structural repre-
sentation that preserves a topological structure. The output neurons of
a SOM are organized in a one- or two-dimensional lattice. The weight
vectors of these neurons represent prototypes of the input data that
can be interpreted as the centroids of clusters of similar samples.

In our experiments, we used SOM to cluster the normal samples.
After the network is trained, the generated clusters are used to deter-
mine if a new sample is normal or abnormal. The basic idea is: if a new
sample is ‘close’ enough to a normal cluster, it is considered normal;
otherwise, it is classified as abnormal.
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ANOMALY DETECTION USING RNS 9

In general, we have a distance function dist(s, K) that measures how
close the sample s is to the cluster, K. To determine the abnormality
of a new sample, the following function is used:

1 if dist(s, Normal) > «
0 otherwise

Xamormat(s) = { , @)

where,
dist(s, Normal) = min{dist(s, K;) | K; € C} , (3)

and C is the set of clusters (found by the SOM algorithm) that
represents the normal sub-space.

If we think the function dist(s, Normal) is a kind of membership
function? of the abnormal subspace, the function Xapnormai(s) corre-
sponds to the crisp version of it. In this case, the value a represents a
threshold that defines the boundary between the normal and abnormal
classes.

In order to determine a good distance measure dist(s, K), we tested
three options (in all the cases wg, neuron weights, represents the cen-
troid of the cluster K):

— Euclidean distance. This is the natural (or naive) choice since
the SOM algorithm uses it to determine if a sample belongs to a
given cluster:

dist(s,K) = ||s — wg]| (4)

— Normalized distance. The idea is to take into account the size of
the cluster. Some clusters can be very sparse and others can have
all the elements concentrated around the centroid. A measure of
the size is the standard deviation. So, the standard deviation of
the distance to the centroid of all the elements in a cluster (o) is
calculated and it is used to normalize the distance:

dist(s,K) = lls = wicl] (5)
OK

— Dy Minkowsky distance. The Euclidean distance gives the same
importance to all the features. So, it is possible that a sample with
a non-negligible deviation in one feature will be considered as hav-
ing the same overall deviation as a pattern with small deviations
on many features. The D, distance only takes into account the

maximum of the differences for all the features:

dist(s, K) = max{|s; — wg,|for i =1,...,n} (6)

2 Strictly speaking, this is not a membership function since it is not bounded.
However, we can apply, for instance, a sigmoid function to make it bounded.
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10 GONZALEZ AND DASGUPTA

5. Experiments and Results

We used four different data sets to test the ability of the proposed
technique, HNIS, to generate a good anomaly detection function when
it is trained using only normal samples. Each data set is divided in two
subsets: the training data set, which contains only normal samples,
and the test data set, containing a mixture of normal and abnormal
samples.

In order to compare the performance, we also apply BNS (greedy
algorithm) and the SOM anomaly detection technique (explained in
Section 4) to the same data sets. These techniques are compared in
terms of classification accuracy. The idea is to calculate the number of
true positives (TP, anomalous elements identified as anomalous), true
negatives (TN, normal elements identified as normal), false positives
(FP, normal elements identified as anomalous) and false negatives (FN,
anomalous elements identified as normal). These values are, however,
used to calculate two measures of effectiveness:

Detecti t rr
etection rate = —————
ionr TP FN
FP
False alarm rate = m

In general, we want a very high detection rate with a very low false
alarm rate. However, there is a trade-off between these two measures.
This trade-off can be shown using ROC (receiver operating charac-
teristics) curves [35]. The sensitivity of the system is controlled by a
threshold that determines when a new sample is normal or abnormal.
By varying this threshold, we can obtain different values for the detec-
tion and false alarm rates which are used to plot ROC curves. In the
case of HNIS and SOM techniques, whose output is a continuous value,
the threshold value is considered between 0 and 1.

The output of the BNS technique is not continuous, it is just 0 (nor-
mal) or 1 (abnormal); so, it does not make sense to apply a threshold to
this output. It is possible to use the parameter r, which define the size
of the matching window, as a threshold that we can vary to produce
different points of the ROC curve. However, we have to be careful when
interpreting the results, since, unlike the other two methods (HNIS
and SOM), each point of the ROC curve in BNS will correspond to a
different set of detectors.
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ANOMALY DETECTION USING RNS 11
5.1. MACKEY-GLASS TIME SERIES EXPERIMENTS

5.1.1. Data set and preprocessing
The Mackey-Glass series [31] has been used as a test set for different
anomaly detection approaches [5, 9, 25]. Although it is generated by a
deterministic differential equation, it exhibits a chaotic behavior that
makes its prediction difficult.

The differential equation that defines the series is the following:

dv  ax(t—71)

@ Traon 0 @)

The parameter 7 controls the complexity of the series dynamics,
ranging from periodic to chaotic behavior.

In order to generate the training and testing data sets, Equation 7
is solved numerically using the fourth-order Runge-Kutta method with
an integration step of 0.02, a sampling rate of 12, and an initial value
vector with all its elements equal to 1.1. The parameter values used for
the equation are: a = 0.2, b = 0.1, and ¢ = 10, which are the general
choice in the literature [9, 5].

The normal samples were produced from a time series with 500
elements generated using 7 = 30 and discarding the first 1000 samples
to eliminate the initial value effect. The resulting time series is shown
in Figure 4(a).

1 T T T T T T T T T 1

09 09
08 08
g 07 g 07

8 g
2 06 06

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Time Time

(a) (b)

Figure 4. Mackey-Glass time series: (a) normal, using 7 = 30, (b) with an anomaly,
7 =17 from 300 to 400.

The test data (Figure 4(b)) is generated as before using 7 = 30, but
starting with different initial conditions. An abnormality is introduced
between time 300 to 400 by changing the parameter 7 to 17. It is
important to note that this experimental setting is different from the
one used by Dasgupta and Forrest [9]. In that work, the anomalous time
series is identical to the normal one, with the exception of the portion
between 1000 and 1500. In our case, the two series are completely
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12 GONZALEZ AND DASGUPTA

different since they were generated using different initial conditions.
This makes the problem more challenging for the anomaly detection
algorithm, since it has to be able to learn the structure of the normal
set.

The features are extracted using a sliding overlapping window of
size n. If the time series has the values: x1,z9, ..., T,,, the feature set
generated from it will be the following:

(21, T, e Tp)
(22, T3, e Tpy1)
(l'mfnJrl Tm—n+2 --- l'm)

So, from a time series with m elements and using a sliding window
of size n, we can generate (m-n+1) samples. In our experiments, we
used n = 4. All the vector components are normalized to the interval
[0,1].

5.1.2. Ezperimental settings

For the HNIS technique, the RNS algorithm was run using as input the
training data to generate 400 detectors. The parameter values for the
algorithm were: » = 0.1, n =1, t = 5, and k = 1. The number of itera-
tions was set to 400. The MLP used had 4 inputs and 1 output. Three
different architectures were tested with 6, 12, and 16 hidden neurons.
The parameters of the back-propagation algorithm were: learning rate
0.05, momentum 0.9, and number of iterations 4000.

For the BNS algorithm, the data was converted to binary strings
assigning 5 bits to each feature and using binary and gray coding. This
produced binary strings of length 20. The matching threshold, r, was
varied from 6 to 12. The greedy algorithm was run setting the failure
probability to 0.

Three different SOM topologies were used: 4 input nodes with an
output layer of 4x3, 4x6 and 6x6 neurons, respectively. The weights
were initialized using random vectors. The SOM training algorithm was
run for 1000 iterations using a Gaussian neighborhood. The initial and
final learning rate were 0.1 and 0.005 respectively. The initial o value
was 5 and the final was 0.2.

5.1.3. Results

Figure 5 shows a typical output of three techniques when applied to
the testing set. An output value close to “0” means normalcy. Each
figure corresponds to the best result found by each method. Despite
the fact that in all cases the output shows an increased activity in
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Figure 5. Output value produced by the anomaly function when applied to the
Mackey-Glass testing set. (a) HNIS (12 hidden neurons); (b) BNS (r = 8, Gray
coding); (C) SOM (6x6, Do distance).

the abnormal region, there are peaks in the normal region that do not
allow to establish a clear boundary between normal and abnormal. In
order to smooth the anomaly detection function, a moving average filter
was applied. Accordingly, the new output Oy is calculated from the old
output Oy using the following formula:
S
0, = =9t ®

S
where s is the smoothing factor and indicates the size of the averag-
ing window. The filter was applied to the output produced by each
technique. Different values of s were tested (5, 10 and 15), choosing
the value that produced the best result for each individual technique.
Figure 6 shows the smoothed versions of the outputs in Figure 5.

The following subsections shows more details of the results produced
by each technique.

5.1.3.1. BNS results The number of detectors generated by the NS
greedy algorithm are summarized in Table I. These values coincide with
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Figure 6. Output value, smoothed using Equation 8, produced by the anomaly func-
tion when applied to the Mackey-Glass testing set. (a) HNIS (12 hidden neurons,
s = 5); (b) BNS (r = 8, Gray coding, s = 10); (C) SOM (6x6, , D distance,
s = 10).

the values predicted by the theoretical analysis described by D’haeseleer
et al. [14].

The performance of the different set of detectors is shown in the
ROC curves in Figure 7. It is important to note that it is possible to
generate these ROC curves for each detector because of the smoothing
process. This generates a continuous anomaly function that takes values
between 0 and 1; so, it makes sense to use a threshold to decide when
a given sample is normal or abnormal.

The results using Gray coding are in general better than the results
produced with Binary coding. This is explained by the fact that Gray
coding is more compatible with the kind of matching rule used by the
BNS algorithm, r-contiguous matching. This is a fact that has been
addressed by Dasgupta and Majumdar [11]. The best result is produced
with a set of detectors generated using » = 8. An increase in r does not
improve the performance, as it is shown by the ROC curves for r = 9
to r = 12, which are bound by the ROC curve generated with r = 8.
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Table I. Number of detectors produced by
BNS (greedy) algorithm when applied to
the Mackey-Glass training set.

Number of detectors
r  Binary coding Gray coding

6 0 0

7 13 19
8 90 79
9 300 301
10 736 750
11 1683 1705
12 3691 3709

1

2 2
I IS
14 4 @ _
= =
2 k]
E | g =7 —— |
@ j9
o o\ /7 =9 -

0 0.2 0.4 0.6 0.8 1 0.4 0.6 0.8 1

False Alarm Rate False Alarm Rate
(a) Binary encoding (b) Gray encoding

Figure 7. ROC curves for the BNS algorithm applied to the Mackey-Glass test data
set.

5.1.3.2. SOM results As it was discussed in section 4, three different
distance measures were proposed to calculate the anomaly detection
function defined in Equation 2. Figure 8(a) shows the ROC curves
corresponding to these distance measures. D, Minkowsky distance
(Equation 6) shows a slight advantage over other distance measures.
Figure 8(b) shows ROC curves for different topologies of the SOM
network. A higher number of neurons produces a most accurate clas-
sification; however, the difference between the curves is not big; this
suggests that a further increase in the network complexity may not
improve the accuracy.

5.1.3.3. HNIS results Figure 9 shows the ROC curves corresponding
to different MLP topologies. The figure shows that an increase from

GPEM2003resubm.tex; 8/04/2004; 10:47; p.15



16 GONZALEZ AND DASGUPTA

1 T T T T T l T T T T T
0.95 - B 0.95 - E
o) ! %) . e ]
T 09 o] 0.9 e E
14 14 (
c c
S 085 S 085 E
(5] o
Q Q
g 0.8 ‘ g 0.8 E
{ Euclidean distance 4x3 SOM ———
0.75 | Normalized distance ------- T 0.75 4x6 SOM ------- 7
! Dinf distance -------- ; 6X6 SOM --------
07 1 1 1 1 1 07 N | 1 1
0 005 01 0415 02 025 03 0 005 01 015 02 025 03
False Alarm Rate False Alarm Rate

(a) (b)

Figure 8. ROC curves for SOM anomaly detection applied to Mackey-Glass test
data set. (a) different distance measures using 6x6 topology; (b) different topologies
using Do, distance.

6 to 12 neurons improves the classification accuracy of the system.
Accordingly, 12 neurons seem to be enough, since an increase to 16
does not produce any significant improvement in accuracy.

Detection Rate

6 hidden neurons
12 hidden neurons -------
1§ hiddeln neurons -

0O 005 01 015 02 025 03
False Alarm Rate

Figure 9. ROC curves for HNIS anomaly detection applied to Mackey-Glass test
data set for different MLP topologies: 6, 12, and 16 hidden neurons.

5.1.4. Results comparison and discussion

The best performing configurations from each approach are compared
in Figure 10. The configurations are: HNIS, 12 hidden neurons; BNS,
Gray coding and r = 8; and SOM, 6x6 output layer and D, distance.
Clearly, HNIS has a better performance than other two methods. This
shows that, at least for this specific data set, the combination of RNS
with a MLP is able to capture the structure of the normal space, pro-
ducing an anomaly detection function that can discriminate the normal
and the abnormal new samples.
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Figure 10. Best ROC curves produced by each method for the Mackey-Glass test
data set.

In contrast to the results reported by Dasgupta and Forrest [10], the
performance of the BNS algorithm is very poor. This may be because of
the experimental settings used in our current work; the normal samples
in the test data set are different from to those presented during training.
This indicates that the anomaly detection algorithm should be able to
generalize the structure of the normal set based on a limited subset of
samples. Our hypothesis is that the binary (low-level) representation
along with the r-contiguous matching rule (used by BNS) may not
capture the high-level structure of the problem space.

5.2. NETWORK TRAFFIC DATA EXPERIMENTS

5.2.1. Data sets

5.2.1.1. MIT-Darpa 98 This data set is a version of the 1998 DARPA
intrusion detection evaluation data set prepared and managed by MIT
Lincoln Labs [32]. The data set was generated by processing the original
tecpdump data to extract 42 attributes (33 of them numerical) that
characterize the network traffic. This set was used in the KDD Cup
99 competition and is available at at the University of Irvine Machine
Learning repository® [33]. Even though the data set corresponds to
a 10% of the original data, its size is still considerably big (492,021
records).

We generated a reduced version of the 10% data set including only
the numerical attributes. Therefore, the reduced 10% data set is com-
posed by 33 attributes. The attributes were normalized between 0 and 1
using the maximum and minimum values found. Of the normal samples,
80% were picked randomly and used as training data set, while the
remaining 20% was used along with the abnormal samples as a testing

3 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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set. Five fuzzy sets were defined for the 33 attributes. One percent of
the normal data set (randomly generated) was used as a training data
set.

5.2.1.2. MIT-Darpa 99 This data set, was directly obtained from the
MIT-Lincoln Lab [32], and corresponds to the 1999 DARPA intrusion
detection system evaluation program. It represents both normal and
abnormal information collected in a test network, where simulated
attacks were performed. The data set is composed of network traffic
data (tcpdump, inside and outside network traffic), audit data (bsm),
and file systems data. We used the outside tcpdump network data for
a specific computer, and then we applied the tool tcpstat to get traffic
statistics. The first week’s data was used for training (attack free), and
the second week’s data for testing (this includes some attacks). We only
considered the network attacks in our experiments.

Three parameters were selected (bytes per second, packets per sec-
ond and ICMP packets per second), to detect some specific type of
attacks. These parameters were sampled each minute (using tcpstat)
and normalized. Because each parameter can be seen as a time series
function, the features were extracted using a sliding overlapping window
of size n = 3. Therefore, two sets of 9-dimensional feature vectors were
generated: one as training data set and the other as testing data set.
Each set contains approximately 5000 records.

5.2.2. Ezperimental settings

The experimental settings for all the techniques are the same as the
ones described in section 5.1.2. The only differences are: for the MIT-
Darpa 98 data set, the HNIS used 1000 detectors instead of 400, and
for the MIT-Darpa 99 data set, three different MLP topologies were
tested with 5, 9, and 18 hidden neurons, respectively.

5.2.3. Results comparison and discussion (MIT-Darpa 98)
The BNS algorithm was not able to generate a good set of detectors.
We ran it for different values of r ranging from 6 to 12. The algorithm
did not produce detectors for values of r less or equal to 8; however, for
r = 9 the algorithm produced more than 2 x 10® detectors before it had
to be manually stopped. This happened even with a failure probability
as high as 0.5. Our hypothesis is that the high dimensionality of the
space along with the small variability of the normal set makes it very
difficult to cover the non-self space using the NS greedy algorithm. This
result is similar to the one reported by Kim and Bentley [27].

Figure 11 shows the best ROC curves produced by the HNIS and
SOM anomaly detection techniques. The configurations are: HNIS, 12
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Figure 11. Best ROC curves produced by HNIS and SOM methods for the
MIT-Darpa 98 test data set.

hidden neurons and SOM, 4x6 using Dy, distance. The performance
of the two techniques was similar with a slight advantage of the SOM
technique. The performance of the HNIS is remarkable, in a problem
that seems to be very difficult for a technique that generates non-
self detectors in such a high dimensional space. It is clear that 1000
detectors are not enough to cover this space; however, the experiments
showed that they were enough to train a classifier (MLP) that could
effectively discriminate between normal and abnormal samples in the
testing set.

5.2.4. Results comparison and discussion (MIT-Darpa 99)

Figure 12 shows the best ROC curves produced by the three tech-
niques. The configurations are: HNIS, 5 hidden neurons; SOM, 4x6
output layer using D distance; and BNS, » = 6 with binary or Gray
coding. The SOM method is clearly better that the other two methods.
However, the other two methods also produced good results that have
a detection rate over 93% with a false alarm rates as small as 1%.
The HNIS method can reach a detection rate as accurate as the one
produced by SOM (98%), but only if the false alarm rate is increased to
13%. Notice that this trade-off cannot be applied to the BNS. However,
the BNS produces a very good detection rate (95%) with a very small
false alarm rate.

5.3. WISCONSIN BREAST CANCER EXPERIMENTS
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Figure 12. Best ROC curves produced by each method for Darpa 99 test data set.

5.3.1. Data set

This data set correspond to a breast cancer data set created at the
University of Wisconsin Hospitals [36]. This particular data set was
obtained from the University of Irvine Machine Learning repository?.
Each data record is conformed by ten numerical attributes and the
label (benign or malign). The data is composed by 699 records, but 16
of them have missing values. (we did not use these records.) The data
was normalized to fit the interval [0,1] , and we partitioned it in two
sets, training and testing. The training set contains 271 benign records.
The testing set is composed of 412 mixed benign and malign records.

5.3.2. Ezperimental settings
The experimental settings for all three techniques are the same as the
ones described in Section 5.1.2.

5.3.3. Results comparison and discussion

The best ROC curves produced by each method are shown in Figure 13.
These curves are produced by the following configurations: HNIS, 18
hidden neurons and SOM, 4x6 output layer using Euclidean distance.
In the case of BNS, there are three good configurations: » = 7 with
Gray coding, r = 8 with Gray coding, and r = 4 with binary coding.
It is important to note that the points in the ROC diagram for the
BNS method are generated by three different runs of the algorithm,
whereas the points for the other two methods correspond to only one
run in each case. All of the methods are able to produce high detection
rates. The HNIS method has a slight advantage over the SOM method,

4 Original database at ftp://ftp.ics.uci.edu/pub/
machine-learning-databases/breast-cancer-wisconsin.
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Figure 18. Best ROC curves produced by each method for Wisconsin breast cancer
test data set.

mainly for small false alarm rates. For false alarm rates higher than
7%, the performance of all the methods is similar.

6. Conclusions

In this paper, we presented a hybrid anomaly detection technique (HNIS)
that combines an immune inspired algorithm, real-valued negative se-
lection (which is also presented), and a conventional classification algo-
rithm. This method does not use positive or negative detection. Rather,
it tries to find a boundary between normal and abnormal classes.

The hybrid method is compared against binary negative selection
(BNS), using the greedy algorithm with r-contiguous matching [14],
and an anomaly detection technique based on self-organizing maps
(SOM).

The proposed approach (HNIS) produced good results in all four
data sets. BNS performed well in two of the experiments; however, it
failed to produce acceptable results in two other cases. The MIT-Darpa
98 data set is one of the data sets where BNS failed. This is consistent
with the results reported by Kim and Bentley [27]; these results were
used by them to support the claim that negative selection algorithm
suffers from “severe scaling problems”. However, our work shows that
the problem is not with the negative selection algorithm itself, rather
the kind of representation (binary) and matching rule (r-contiguous)
that were used. This was also suggested by Balthrop et al. [3].

Another important characteristic of the proposed approach is that
it can learn the structure of the self set using only a subset of normal
samples. In some applications, mainly in change detection, it is assumed
that the self set is complete; however, in many real anomaly detection
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applications, this is not the case. Hence, an anomaly detection algo-
rithm must be able to produce a good approximation of the structure of
the self/non-self space, even if a portion of the self set is available during
training. The experiments with the Mackey-Glass data set (Section 5.1)
are a good example of such problem. The BNS algorithm was not able
to make a good generalization of the self set for this data set, resulting
in a poor anomaly detection performance. The main reason is that the
low-level (binary) representation and the matching rule (r-contiguous)
used by the BNS algorithm do not represent appropriately the affinity
relationship at the problem space [19].

The results produced by the SOM method are similar to the ones
produced by the HNIS. It is not possible to conclude that one tech-
nique outperformed the other, since the differences on performance are
not statistically significant. These results are encouraging since they
suggest that the proposed hybrid approach can produce results that
are competitive with those produced by positive detection while pro-
viding some additional characteristics (such as the possibility of using
a classification algorithm when only normal samples are available).

Finally, the use of a more expressive representation for the detec-
tors allows the combination of negative selection with other learning
methods. Our previous work demonstrated the feasibility of combining
the negative selection algorithm with a classification algorithm (a MLP
trained with back-propagation). A very interesting experiment would
be to combine it with other immune inspired techniques, like those
based on immune network theory. This would open the doors for the
construction of an unified artificial system that combines different types
of immune mechanisms.
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