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We leverage recent breakthroughs in neural density estimation to propose a new unsupervised ANOmaly

detection with Density Estimation (ANODE) technique. By estimating the conditional probability density

of the data in a signal region and in sidebands, and interpolating the latter into the signal region, a fully data-

driven likelihood ratio of data versus background can be constructed. This likelihood ratio is broadly

sensitive to overdensities in the data that could be due to localized anomalies. In addition, a unique potential

benefit of the ANODE method is that the background can be directly estimated using the learned densities.

Finally, ANODE is robust against systematic differences between signal region and sidebands, giving it

broader applicability than other methods. We demonstrate the power of this new approach using the LHC

Olympics 2020 R&D dataset. We show how ANODE can enhance the significance of a dijet bump hunt by

up to a factor of 7 with a 10% accuracy on the background prediction. While the LHC is used as the

recurring example, the methods developed here have a much broader applicability to anomaly detection in

physics and beyond.

DOI: 10.1103/PhysRevD.101.075042

I. INTRODUCTION

Despite an impressive and extensive search program
from ATLAS [1–3], CMS [4–6], and LHCb [7] for new
particles and forces of nature, there is no convincing
evidence for new phenomena at the Large Hadron
Collider (LHC). However, there remain compelling theo-
retical (e.g., naturalness) and experimental (e.g., dark
matter) reasons for fundamental structure to be observable
with current LHC sensitivity. The vast majority of LHC
searches are designed with specific signal models moti-
vated by one of these reasons (e.g., gluino pair production
from supersymmetry) in mind, and these searches are
optimized with a heavy reliance on simulations, for both
the signal and the StandardModel (SM) background. Given
that it is impossible to cover every model with a specially
optimized search (see e.g., [8,9] for comprehensive lists of
currently uncovered models), and given that there are vast
regions of unexplored LHC phase space, it is critical to
consider extending the search program to include more
model-agnostic methods.

A variety of model-agnostic approaches have been
proposed to search for physics beyond the Standard
Model (BSM) at colliders. These approaches are designed
to be broadly sensitive to anomalies in data without
focusing on specific models. Yet, they have varying degrees
of both signal model and background model independence,
as there is often a tradeoff between the broadness of a
search and how sensitive it is to particular classes of signal
scenarios. Existing and proposed model-agnostic searches
range from fully signal model independent but fully back-
ground model dependent [10–26] (because they compare
data to SM simulation), to varying degrees of partial signal
model and background model independence [27–40].
A comprehensive overview of existing model-agnostic
approaches and how they are classified in terms of signal
and backgroundmodel independencewill be given in Sec. II.
This paper introduces a new approach called ANOmaly

detection with Density Estimation (ANODE) that is com-
plementary to existing methods and aims to be largely
background and signal model agnostic. Density estimation,
especially in high dimensions, has traditionally been a
difficult problem in unsupervised machine learning. The
objective of density estimation is to learn the underlying
probability density from which a set of independent and
identically distributed examples were drawn. In the past
few years, there have been a number of breakthroughs in
density estimation using neural networks and the perfor-
mance of high-dimensional density estimation has greatly
improved. The idea of ANODE is to make use of these
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recent breakthroughs in order to directly estimate the
probability density of the data. Assuming the signal is
localized somewhere, one can attempt to use sideband
methods and interpolation to estimate the probability density
of the background. Then, one can use this to construct a
likelihood ratio generally sensitive to new physics.
As with any search for BSM, it is not enough to have a

discriminant that is sensitive to signals, one must also have
a valid method of background estimation, otherwise it will
be impossible to claim a discovery of new physics. The
method of background estimation can further introduce
possible sources of signal and background model depend-
ence, and it is important to avail oneself of data-driven
background methods in any truly model-agnostic search.
This paper will explore two methods of data-driven back-
ground estimation, one based on importance sampling, and
the other based on directly integrating the background
density estimate obtained in the ANODE procedure.
Other neural network approaches to density estimation

have been studied in high energy physics. Such methods
include generative adversarial networks (GANs) [41–67],
autoencoders [56,68], physically inspired networks [69,70],
and flows [71,72]. GANs are efficient for sampling from a
density and are thus promising for accelerating slow simu-
lations, but they do not provide an explicit representation of
the density itself. For this reason, ANODE is built using
normalizing flows [71] and in particular the recently pro-
posed masked autoregressive flow (MAF) [73]. These
methods estimate densities by using a succession of neural
networks to gradually map the original data to a transformed
dataset that follows a simple distribution (e.g., normal or
uniform).
The ANODE method is demonstrated using a simulated

large-radius dijet search based on the LHC Olympics
2020 R&D dataset [74]. In particular, properties of had-
ronic jets are used as discriminating features to enhance a
bump hunt in the invariant mass of pairs of jets. ANODE
learns a parametrized density of the features using a
sideband and this is combined with a density estimation
of the same features in the signal region. The resulting
likelihood ratio is able to enhance the sensitivity of a
traditional bump hunt from S=

ffiffiffiffi

B
p

∼ 1 to S=
ffiffiffiffi

B
p

≫ 5. There
is currently no dedicated search for generic dijet signatures
where each of the jets can also originate from a BSM
resonance [8,75–78]. Therefore, this particular application
could be directly useful for extending the LHC physics
search program. Many other applications to resonant new
physics searches involving jets and other final states are
also possible.
In order to benchmark the performance of ANODE, it is

compared with the compared with classification without
labels (CWoLa) hunting method [33,34]. The CWoLa
approach is also a neural network-based resonance search,
but does not involve density estimation. Instead, CWoLa
hunting uses neural networks to identify differences between

signal regions and neighboring sideband regions. By turning
the problem into a supervised learning task [79], CWoLa is
able to effectively find rare resonant signals. However,
CWoLa hunting has certain requirements on the independ-
ence of the discriminating features and the resonant feature.
ANODEdoes not have this requirement, and the potential for
exploiting correlated features is studied by introducing
correlations.
This paper is organized as follows. Section II reviews the

landscape of model-independent searches at the LHC to
provide context for the ANODE method. Section III
introduces the details of the ANODE approach and
provides a brief introduction to normalizing flows. The
reminder of the paper illustrates ANODE through an
example based on a dijet search using jet substructure.
Details of the simulated samples are provided in Sec. IV,
and the results for the signal sensitivity and background
specificity are presented in Sec. VA and V B, respectively.
A study of correlations between the discriminating features
and the resonant feature is in Sec. V C. The paper ends with
conclusions and outlook in Sec. VI.

II. AN OVERVIEW OF MODEL-(IN)DEPENDENT

SEARCHES

Aviable search for new physics generally must have two
essential components: it must be sensitive to new phenom-
ena and it must also be able to estimate the background
under the null hypothesis (Standard Model only). The
categorization of a search’s degree of model (in)depend-
ence requires consideration of both of these components.
Figure 1 illustrates how to characterize model independ-
ence for both BSM sensitivity and SM background speci-
ficity. We will now consider each in turn.

A. BSM sensitivity

For BSM sensitivity, the various types of searches are
categorized as follows:

(i) Almost all searches at the LHC are optimized (with
or without machine learning) using simulations of
both the SM and particular signal models. This is
represented as the lower-left corner of Fig. 1(a).

(ii) A handful of searches use signal simulation and
unlabeled data to optimize the event selection. These
are background model agnostic and are depicted in
the upper-left corner of Fig. 1(a). For example, this
was used in the γγ channel of the recent tt̄h
observation, using events with inverted selection
criteria to define the background data sample for
optimization [81,82].

(iii) A series of signal model agnostic, but background
model-dependent searches have been performed by
D0 [10–13], H1 [14,15], ALEPH [16], CDF [17–19],
CMS [20,21], and ATLAS [22–24]. All of these
searches share essentially the same approach: they
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compared histograms of data to histograms of SM
simulations and looked for discrepancies. Such
searches are represented in the lower-right part of
Fig. 1(a). Recently, there have been proposals to
extend these searches with deep learning [25,26].

(iv) More recently, a variety of approaches have been
proposed, often relying on sophisticated deep learn-
ing techniques, that attempt to be both signal and
background model agnostic, to varying degrees.
These include approaches based on autoencoders
[27–32], weak supervision [33,34], nearest neighbor
algorithms [35–37], probabilistic modeling [38],
reweighted simulation [39], and others [40]. These
are indicated in the upper-right corner of Fig. 1(a).

In the upper-right corner of Fig. 1(a), we have also
attempted to illustrate in finer detail the differences between
some recent model-agnostic approaches. For example, the
autoencoder is in the farthest corner since it assumes almost
nothing about the signal or the background but can be run
directly on the data, as long as the signal is sufficiently rare
[27,28]. The tradeoff is that there is no optimality guarantee
for the autoencoder—any signal that it does find will be
found in a rather uncontrolled manner. Meanwhile, CWoLa
hunting [33,34] is somewhat more signal and background
model dependent than autoencoders, since this approach
assumes that the signal is localized in a particular feature,
and that there is an uncorrelated set of additional features
on which one can train a classifier to distinguish signal
region and sideband. In return, one obtains a guarantee of

asymptotic optimality—the classifier approaches the like-
lihood ratio [83] in the limit of infinite statistics.1

The ANODE method introduced in this paper comple-
ments the other recently proposed techniques and is
asymptotically optimal. To do this, ANODE estimates
the density of the background-only scenario using side-
bands and compares that with the density estimated in a
signal-sensitive region (details are in Sec. III). Like the
CWoLa hunting method, the new approach is broadly
sensitive to resonant new physics and thus it is placed in
the upper-right part of Fig. 1(a). The reason that ANODE is
further right and above CWoLa hunting is that it is less
sensitive to correlations, a feature that is discussed more
below.

B. Background estimation

Avariety of methods are commonly used for background
estimation and are highlighted in Fig. 1(b). Generally,
background estimation is less dependent on the signal
model than achieving signal sensitivity and therefore the x-
axis range of Fig. 1(b) is more compressed than Fig. 1(a).

(i) In some cases, the simulation is used to directly
estimate the background. This is often the case for
well-understood backgrounds such as electroweak
phenomena or very rare processes that are difficult to
constrain with data.
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MUSiC (CMS), 
General Search 

(ATLAS)

Some searches
(train signal 
versus data)

autoencoders
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method
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(a) Signal sensitivity (b) Background specificiy 
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(train with 
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Direct Density 
estimation, Sideband
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FIG. 1. A graphical representation of searches for new particles in terms of the background and signal model dependence for achieving
signal sensitivity (a) and background specificity (b). The Model Unspecific Search for New Physics (MUSiC) [20,21] and general search
[22–24] strategies are from CMS and ATLAS, respectively. LDA stands for latent dirichlet allocation [38,80], ANOmaly detection with
Density Estimation (ANODE) is the method presented in this paper, CWoLa stands for classification without labels [33,34,79], and
SALAD stands for simulation assisted likelihood-free anomaly detection [39]. Direct density estimation is a form of sidebanding where
the multidimensional feature space density is learned conditional on the resonant feature (see Sec. III B).

1See the Appendix for more details about “optimality.”
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(ii) Most searches use data in some way to constrain
the background prediction. One common approach
is the control region method, where a search is
complemented by an auxiliary measurement to
constrain the simulation. Knowledge of the signal
is used to ensure that the auxiliary measurement is
not biased by the presence of signal.

(iii) The two most common methods for background
estimates that do not directly use simulation are the
ABCD method and the sideband method (bump
hunt). The ABCD method operates by identifying
two independent features, each of which is sensi-
tive to the presence of signal. Four regions, labeled
A, B, C, and D are constructed by (anti)requiring a
threshold on the two features. The background rate
in the most signal sensitive region is estimated
from the other three regions. Background simu-
lations are required to verify independence of the
two features.

(iv) Finally, the sideband fit only requires that the
background be smooth in the region of a potential
signal so that a parametric (or not [84]) function can
be fit to sidebands and interpolated. However, this
method only works for resonant new physics.

While strategies from Fig. 1(a) can often be matched
with any approach in Fig. 1(b), there is often one combi-
nation that is used in practice. Table I provides examples of
various searches and the background estimation technique
that typically is associated with that search. Searches with a
complex background may use multiple background esti-
mation procedures.
ANODE can be combined with any background esti-

mation technique, but it can also be used directly since
the background density is already estimated to construct
a signal-sensitive classifier. Even though directly provid-
ing an accurate background estimation puts stringent
requirements on the accuracy of the density estimation,
it also reduces the need for a full decorrelation between
classification features and the resonant feature. A variety
of decorrelation techniques exist [94–104], but ulti-
mately decorrelating removes information available for
classification.

III. THE ANODE METHOD

This section will describe the ANODE proposal for an
unsupervised method to search for resonant new physics
using density estimation.
Letm be a feature in which a signal (if it exists) is known

to be localized around some m0. The value of m0 will be
scanned for broad sensitivity and the following procedure
will be repeated for each window in m. It is often the case
that the width of the signal in m is fixed by detector
properties and is signal model independent. A region
m0 � δ is called the signal region (SR) and m ∉ ½m0 − δ;
m0 þ δ� is defined as the sideband region (SB). A tradi-
tional, unsupervised, model-agnostic search is to perform a
bump hunt in m, using the SB to interpolate into the SR in
order to estimate the background.
Let x ∈ Rd be some additional discriminating features in

which the signal density is different than the background
density. If we could find the region(s) where the signal
differs from the background and then cut on x to select
these regions, we could improve the sensitivity of the
original bump hunt in m. The goal of ANODE is to
accomplish this in an unsupervised and model-agnostic
way, via density estimation in the feature space x.
More specifically, ANODE attempts to learn two den-

sities pdataðxjmÞ and pbackgroundðxjmÞ for m ∈ SR. Then,
classification is performed with the likelihood ratio,

RðxjmÞ ¼ pdataðxjmÞ
pbackgroundðxjmÞ : ð3:1Þ

In the ideal case that pdataðxjmÞ ¼ αpbackgroundðxjmÞ þ
ð1 − αÞpsignalðxjmÞ for 0 ≤ α ≤ 1 and m ∈ SR, Eq. (3.1)

is the optimal test statistic for identifying the presence of
signal. In the absence of signal, RðxjmÞ ¼ 1, so as long as
psignalðxjmÞ ≠ pbackgroundðxjmÞ, RdataðxjmÞ has a nonzero

density away from 1 in a region with no predicted
background.
In practice, both pdataðxjmÞ and pbackgroundðxjmÞ are

approximations and so RðxjmÞ is not unity in the absence
of signal. The densities pðxjmÞ are estimated using condi-
tional neural density estimation as described in Sec. III A.

TABLE I. A table with the common pairings of search strategy for signal sensitivity (left column), the background
estimation (middle column), and an example search (right column).

Search Typical background strategy Recent examples

MUSiC and the general search Pure MC prediction [20,22]
Pure electroweak processes Pure MC prediction [85]
SUSY with top quarks and W bosons Control region method [86,87]
All-hadronic searches ABCD method [88,89]
Long-lived particle searches ABCD method [90,91]
BSM resonance searches Sideband method [92,93]
CWoLa hunting Sideband method [33,34]
ANODE Sideband or direct density This paper
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The function pdataðxjmÞ is estimated in the signal region
and the function pbackgroundðxjmÞ is estimated using the

sideband region and then interpolated into the signal
region. The interpolation is done automatically by the
neural conditional density estimator. Effective density
estimation will result in RðxjmÞ in the SR that is localized
near unity and then one can enhance the presence of signal
by applying a threshold RðxjmÞ > Rcut for Rcut > 1. The
interpolated pbackgroundðxjmÞ can then also be used to

estimate the background, as described in Sec. III B.

A. Neural density estimation

The ANODE procedure as described in the previous
subsection is completely general with regards to the method
of density estimation. In this work, we will demonstrate a
proof of concept using normalizing flow models for density
estimation. Since normalizing flows were proposed in
Ref. [71], they have generated much activity and excite-
ment in the machine learning community, achieving state-
of-the-art performance on a variety of benchmark density
estimation tasks.
The core idea behind a normalizing flow is to apply a

change of variables from a random variable with a simple
density (e.g., Gaussian or uniform) to one with a complex
density that matches some training dataset. The trans-
formation from one density describing random variable
X to another density describing random variable Y follows
the usual change of variables formula using the Jacobian,

pYðyÞ ¼ pXðxÞ
�

�

�

�

det

�

∂f

∂x

��

�

�

�

−1

; ð3:2Þ

where x and y are realizations of X and Y, respectively,
X and Y have the same dimension, and Y ¼ fðXÞ is an
invertible function. The process in Eq. (3.2) can be repeated
to build a normalizing flow,

pYðyÞ ¼ pXðxÞ
Y

N

i¼1

�

�

�

�

det

�

∂fi

∂yi−1

��

�

�

�

−1

; ð3:3Þ

where Yi ¼ fiðYi−1Þ, Y0 ¼ X, and Y ¼ fNðYN−1Þ. The
first neural density estimation with normalizing flows had
the following form for x ∈ Rn:

fðxÞ ¼ xþ x̄σðw · xþ bÞ; ð3:4Þ

where σ is an elementwise nonlinearity and x̄ ∈ Rn; w ∈

R
n; b ∈ R are trainable parameters. The benefit of Eq. (3.4)

is that the Jacobian evaluation is simple from the chain rule.
Since the first development of normalizing flows, there has
been significant development in extending their expressiv-
ity. One innovation is to combine flows with autoregressive
density estimation [105]. An autoregressive flow [106]
modifies the change of variables so that for Yi ¼ fðXiÞ,

Yi;α ¼ fi;αðXi;1;…; Xi;αÞ, where the indices α denote the

dimension of Xi and Yi for α ¼ 1;…; n. Any f that satisfies
this condition is amenable to neural density estimation
because the Jacobian determinant evaluation is simple. In
particular, the Jacobian is upper triangular and therefore
the determinant is the product of the diagonal elements:
Q

n
α¼1

∂fi;α=∂xα. ANODE is built on an MAF [73]. For an

MAF,

Yi;α¼μi;αðYi;1;…;Yi;α−1Þþσi;αðYi;1;…;Yi;α−1ÞXi;α; ð3:5Þ

where σi;α > 0 and μi;α are arbitrary functions and Yi;1 ¼
μi;1 þ σi;1Xi;1 for arbitrary numbers σi;1 > 0, μi;1. As in

Eq. (3.3), this procedure is repeated multiple times to build
a deep autoregressive flow. The masking in MAF comes
from its use of masked autoencoder for distribution
estimation (MADE) [107] to evaluate μi;α and σi;α for all

α in one forward pass. This approach eliminates the need
for the recursion in Eq. (3.5). MAF is nearly the same as
inverse autoregressive flows (IAFs) [105], which also use
Gaussian autoregressions and are built on MADE. The
main difference is that MAF is very efficient for density
estimation and slow for sampling, while IAF is slow for
density estimation and fast for sampling. As ANODE only
needs to estimate the density without producing new
samples, MAF is selected as the method of choice.
The estimation of pbackgroundðxjmÞ for ANODE requires

that the MAF provides a conditional density. This can be
accomplished by adding m as an input to all functions μi
and σi.

B. Estimating the background

An anomaly detection technique is only useful for
finding new particles if the Standard Model background
can be estimated. As mentioned earlier, one benefit of the
direct density estimation in ANODE is that the background
can be directly estimated with pbackgroundðxjmÞ. This results
in the following multiple possibilities for background
estimation that are considered in this work:

(i) Direct density estimation: These methods use the
interpolated pbackgroundðxjmÞ to directly compute the
efficiency ϵbgðRcjmÞ of the background after a

threshold requirement on RðxjmÞ.
Density sampling. One could directly sample events
from pbackgroundðxjmÞ using the stacked change of
variables specified by Eq. (3.5). As mentioned in
Sec. III A, this is less efficient for MAF compared
with IAF. This sampling is not pursued in this paper.

Density integration. Another approach is to directly
integratepbackgroundðxjmÞ for events withRðxjmÞ > Rc,

ϵbgðRcjmÞ ¼
Z

dxpbackgroundðxjmÞΘðRðxjmÞ − RcÞ:

ð3:6Þ
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Importance sampling. Analytically integrating a function
in high dimensions is impractical, so one can estimate
the integral with importance sampling. An effective
method to implement this sampling is to make the
following observation:

ϵbgðRcjmÞ ¼
Z

dxpbackgroundðxjmÞΘðRðxjmÞ − RcÞ

¼
Z

dxpfullðxjmÞ 1

RðxjmÞΘðRðxjmÞ − RcÞ

¼
Z

∞

Rc

dRpfullðRjmÞ 1
R
: ð3:7Þ

The last line in Eq. (3.7) can be estimated by
computing the fraction of events in the SR (represent-
ing the full distribution) with R > Rc and then
weighting each event in the counting by 1=R.

(ii) Sideband inm: As long as the requirementRðxjmÞ >
Rc does not sculpt a localized feature in m, one can
estimate the background prediction by performing a
fit in them spectrum from the SB and interpolating to
the SR. This is a standard approach, as discussed
in Sec. I.

Further details about background estimation are pre-
sented in Sec. V B for the numerical example described in
the next section.

C. Comparison with the CWoLa hunting method

The CWoLa hunting method [33,34] is a recently
proposed model-agnostic sideband method that also uses
machine learning and will serve as a benchmark for
ANODE. In the CWoLa hunting approach, the signal
sensitivity is achieved by training a classifier to distinguish
the SR from the SB. This classifier will approach the
likelihood ratio RCWoLa, which is optimal under certain
conditions,

RCWoLaðxÞ ¼
pdataðxjSRÞ
pdataðxjSBÞ

¼ pdataðxjSRÞ
pbackgroundðxjSBÞ

¼ pdataðxjSRÞ
pbackgroundðxjSRÞ

; ð3:8Þ

where the second equality is true in the absence of signal in
the sideband2 and the third equality is true when x and m
are independent. The background is estimated using a
sideband fit after placing a selection based on the above
classifier.
A key assumption of the CWoLa method is that x and m

are independent. This condition is stronger than the
requirement for the background fit, but is necessary for

achieving signal sensitivity. In particular, in the presence of
a dependence between x and m, the CWoLa classifier will
learn the true differences between SB and SR. If these
differences are larger than the differences between signal
and background in the SR, the CWoLa classifier may not
succeed in finding the signal.
In contrast, the ANODE method does not require any

particular relationship between x and m to achieve signal
sensitivity. In fact, the information about m could be fully
contained within x, and ANODE could still succeed in
principle. Therefore, ANODE can make use of features
which are strongly correlated with m, thus extending
the potential sensitivity to new signals. This is possible
because of the two step density estimation, interpolating
pbackgroundðxjmÞ from the sideband and then estimating

pdataðxjmÞ from the SR. Such an approach is not possible
with CWoLa hunting, which directly learns the likelihood
ratio. The only requirement for ANODE is that there are
no nontrivial features in the SR that cannot be smoothly
predicted from the SB. Section V C illustrates the ability of
ANODE to cope with correlated features.

IV. DETAILS OF THE SAMPLE

A simulated resonance search using large-radius dijets is
used to illustrate ANODE. The simulated datasets are
from the LHC Olympics 2020 challenge research and
development dataset [74]. For a background process, one
million quantum chromodynamic (QCD) dijet events are
simulated with PYTHIA 8 [108,109] without pileup or
multiple parton interactions. The signal is a hypothetical
W0 boson (mW0 ¼ 3.5 TeV) that decays into an X boson
(mX ¼ 500 GeV) and a Y boson (mY ¼ 100 GeV), with
the same simulation setup as the QCD dijets. The X and Y
bosons decay promptly into quarks and due to their large
Lorentz boost in the laboratory frame, the resulting
hadronic decay products are captured by a single large-
radius jet. The detector simulation is performed with
Delphes 3.4.1 [110–112] and particle flow objects are
clustered into jets using the Fastjet [113,114] implementa-
tion of the anti-kt algorithm [115] using R ¼ 1.0 as the jet
radius. Events are selected by requiring at least one such jet
with pT > 1.3 TeV.While there exist LHC searches for the
case that X and Y are electroweak bosons [116,117], the
generic case is currently uncovered by a dedicated search.
The resonant feature m will be the invariant mass of the

leading two jets, mJJ. These two jets are ordered by their
mass mJ so that by construction, mJ1

< mJ2
. The discrimi-

nating features x are four-dimensional, consisting of the
observables,

mJ1
; mJ2

−mJ1
; τ

J1
21
; τ

J2
21
; ð4:1Þ

where τ21 is the n-subjettiness ratio [118,119]. This
observable is the most widely used single feature for
identifying jets with a two-prong substructure. While the

2
This is not strictly necessary—the classifier can still be

optimal even if there is some signal in the sideband [79].
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ultimate goal of ANODE is to perform density estimation
on high-dimensional, low-level features, there is already
utility in a search with high-level features from Eq. (4.1).

Thus, to demonstrate how ANODE works, this will be the
focus for the rest of this paper.
Simulated data are constructed by injecting 1000 signal

events to the full background sample. A histogram ofmJJ is
presented in Fig. 2. As expected, the signal peaks near mW0.
The signal region is defined by mJJ ∈ ½3.3; 3.7� TeV and
then the sideband is the rest of the spectrum. The simulated
data are divided into two equal samples for training and
testing; thus, we have ≈500; 000 background and ≈500

signal events in each sample. In the SR, we are left with
≈60; 000 background and ≈400 signal events in each

sample. This corresponds to S=
ffiffiffiffi

B
p

¼ 1.6 and S=B ¼
0.6% in the SR. This value of S=

ffiffiffiffi

B
p

would be the
approximate significance from a sideband fit (ignoring the
fit errors). Section VA will show how much this can be
enhanced from ANODE.
The additional four features for classification are shown in

Fig. 3. The lighter jet mass peaks nearmY and the difference
between masses peaks at about mX −mY ¼ 400 GeV. The
τ21 observables are lower for the two-prong signal jets than
for the mostly one-prong background jets. Jet mass and τ21
are negatively correlated for QCD jets [95] and so τ21 is
higher for J2 than for J1.

FIG. 2. Histograms for the invariant mass of the leading two jets
for the Standard Model background as well as the injected signal.
There are 1 million background events and 1000 signal events.

FIG. 3. The four features used for classification: mJ1
(top left), mJ1

−mJ2
(top right), τ

J1
21

(bottom left), and τ
J2
21

(bottom right). These
histograms are inclusive in mJJ. There are 1 million background events and 1000 signal events for the mass histograms.
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The conditional MAF (along with most methods of
density estimation) has difficulty at sharp, discontinuous
edges and boundaries, so we first transform the dataset
before performing density estimation. First, all features are
linearly scaled to be ðfeatureÞ ↦ x ∈ ½0; 1�. Then, the logit
transformation logðx=ð1 − xÞÞ is applied to map the scaled
features to be between ð−∞;∞Þ. The Jacobian for this map
is accounted for when computing probability densities for
the original feature space. Even with this transformation,
density estimation is difficult near the boundaries.
Therefore, the scaled features are required to have
0.05 < x < 0.95. This keeps 95% (72%) of the signal
(background) in the SR. Below we will refer to this as the
“fiducial region.” All results below are computed with
respect to the number of events after this truncation.

V. RESULTS

A. Sensitivity

The conditional MAF is optimized3 using the log-
likelihood loss function, logðpðxjmÞÞ. All of the neural
networks are written in PyTorch [120]. For the hyper-
parameters, there are 15 MADE blocks (one layer each)
with 128 hidden units per block. Networks are optimized

with Adam [121] using a learning rate 10−4 and weight

decay of 10−6. The SR and SB density estimators are each
trained for 50 epochs. No systematic attempt was made to
optimize these hyperparameters, and it is likely that better
performance could be obtained with further optimization.
For the SR density estimator, the last epoch is chosen for
simplicity and it was verified that the results are robust
against this choice. The SB density estimator significantly
varies from epoch to epoch. Averaging the density esti-
mates pointwise over 10 consecutive epochs results in a
stable result. Averaging over more epochs does not further
improve the stability. All results with ANODE present
the SB density estimator with this averaging scheme for
the last 10 epochs.
Figure 4 shows a scatter plot of RðxjmÞ versus

logpbackgroundðxjmÞ for the test set in the SR. As desired,

the background is mostly concentrated around RðxjmÞ ¼ 1,
while there is a long tail for signal events at higher values of
RðxjmÞ and between−2 < logpbackgroundðxjmÞ < 2. This is

exactly what is expected for this signal: it is an overdensity
(R > 1) in a region of phase space that is relatively rare for
the background (pbackgroundðxjmÞ ≪ 1).

The background density in Fig. 4 also shows that the
RðxjmÞ is narrower around 1 when pbackgroundðxjmÞ is large
and more spread out when pbackgroundðxjmÞ ≪ 1. This is

evidence that the density estimation is more accurate when
the densities are high and worse when the densities are low.
This is also to be expected: if there are many data points

close to one another, it should be easier to estimate their
density than if the data points are very sparse.
Another view of the results is presented in Fig. 5, with

one-dimensional information about RðxjmÞ in the SR. The
left plot of Fig. 5 shows that the background is centered and
approximately symmetric around R ¼ 1 with a standard
deviation of approximately 17%. This width is due to
various sources, including the accuracy of the SR density,
the accuracy of the SB density, and the quality of the
interpolation from SB to SR. Each of these sources has
contributions from the finite size of the datasets used for
training, the neural network flexibility, and the training
procedure. The right plot of Fig. 5 presents the number of
background and signal events as a function of a threshold
R > Rc. The starting point are the original numbers back-
ground (40,000) and signal (400) numbers in the SR
window and the fiducial window. Starting from low S=B

and S=
ffiffiffiffi

B
p

one can achieve S=B > 1 and a high S=
ffiffiffiffi

B
p

with
a threshold requirement on R. Figure 6 shows that the
signal is clearly visible in the x distribution after applying
such a threshold requirement.
The performance of R as an anomaly detector is further

quantified by the receiver operating characteristic (ROC)
and significance improvement characteristic (SIC) curves
in Fig. 7. These metrics are obtained by scanning R and
computing the signal efficiency (true positive rate) and
background efficiency (false positive rate) after a threshold
requirement on R. The area under the curve for ANODE is
0.82. For comparison, the CWoLa hunting approach is also
shown in the same plots. The CWoLa classifier is trained
using sideband regions that are 200 GeV wide on either
side of the SR. The sidebands are weighted to have the
same number of events as each other and in total, the same

FIG. 4. Scatter plot of RðxjmÞ versus logpbackgroundðxjmÞ across
the test set in the SR. Background events are shown (as a two-
dimensional histogram) in gray scale and individual signal events
are shown in red.

3
Based on code from https://github.com/ikostrikov/pytorch-

flows.
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as the SR. A single NN with four hidden layers with 64
nodes each is trained using Keras [122] and TensorFlow
[123]. Dropout [124] of 10% is used for each intermediate

layer. Intermediate layers use rectified linear unit activation
functions and the last layer uses a sigmoid. The classifier is
optimized using binary cross entropy and is trained for

FIG. 5. Left: histogram of RðxjmÞ evaluated on the test set; right: the integrated number of events that survive a threshold on RðxjmÞ.
The two distributions are scaled to represent the rates for 500,000 total background events and 500 total signal events, as introduced in
Sec. IV.

FIG. 6. Distributions of mJ1
(left) and mJ2

−mJ1
(right) in the signal region after applying a threshold requirement on R.

FIG. 7. Receiver operating characteristic (ROC) curve (left) and significance improvement characteristic (SIC) curve (right).
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300 epochs. As with ANODE, ten epochs are averaged for
the reported results.4

The performance of ANODE is comparable to CWoLa
hunting in Fig. 7, which does slightly better at higher signal
efficiencies and much better at lower signal efficiencies.
This may be a reflection of the fact that CWoLa makes use
of supervised learning and directly approaches the like-
lihood ratio, while ANODE is unsupervised and attempts to

FIG. 8. Left: the number of events after a threshold requirement R > Rc using the two integration methods described in Sec. III B, as
well as the true background yield. Right: the ratio of the predicted and true background yields from the left plot, as a function of the
actual number of events that survive the threshold requirement. The shaded bands around the central predictions are the 1σ statistical
(Poisson) uncertainty derived from the observed background counts. The black dashed and dotted lines are 10% and 20% around a ratio
of 1.

FIG. 9. A comparison of the four features x between the SR and two nearby sidebands defined by mjj ∈ ½3.1; 3.3� TeV (lower
sideband) and mjj ∈ ½3.7; 3.9� TeV (upper sideband).

4A different regularization procedure was used in Refs. [33,34]
based on the validation loss and k-folding. The averaging here is
expected to serve a similar purpose.
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learn both the numerator and denominator of the likelihood
ratio. With this dataset, ANODE is able to enhance the
signal significance by about a factor of 7 and would
therefore be able to achieve a local significance above

5σ given that the starting value of S=
ffiffiffiffi

B
p

is 1.6.

B. Background estimation

This section explores the possibility of using the estimate
of pbackgroundðxjmÞ to directly determine the background
efficiency in the SR after a requirement on R > Rc.
Figure 8 presents a comparison between integration meth-
ods (direct integration and importance sampling) described
in Sec. III B and the true background yields. Qualitatively,
both methods are able to characterize the yield across
several orders of magnitude in background efficiency.
However, both methods diverge from the truth in the
extreme tails of the R distribution. The right plot of
Fig. 8 offers a quantitative comparison between methods.

For efficiencies down to about 10−3, both methods are

accurate within about 25%. The direct integration method
has a smaller bias of about 10%. This is consistent with
Fig. 5, for which the standard deviation is between 10%
and 20%.

C. Performance on a dataset with correlated features

The results presented in the previous sections have
established that ANODE is able to identify the signal
and estimate the corresponding SM backgrounds intro-
duced in Sec. IV. One fortuitous aspect of the chosen
features x introduced in Sec. IV is that they are all relatively
independent of mjj. This is illustrated in Fig. 9, using the

SR and neighboring sideband regions. As a result of this
independence, the CWoLa method is able to find the signal
and presumably the ANODE interpolation from SB to SR
is easier than if there was a strong dependence.
The purpose of this section is to study the sensitivity of

the ANODE and CWoLa hunting methods to correlations
in the features x with mjj. Based on the assumptions of the
two methods, it is expected that with strong correlations,
CWoLa hunting will fail to find the signal while ANODE
should still be able to identify the presence of signal in the
SR as well as estimate the background. To study this
sensitivity in a controlled fashion, correlations are intro-
duced artificially. In practice, adding more features to xwill
inevitably result in some dependence withmjj; the artificial

example here illustrates the challenges already in low
dimensions. New jet mass observables are created, which
are linearly shifted,

mJ1;2
→ mJ1;2

þ cmJJ; ð5:1Þ

where c ¼ 0.1 for this study. The resulting shifted lighter
jet mass is presented in Fig. 10.
New ANODE and CWoLa models are trained using the

shifted dataset and their performance is quantified in
Fig. 11. As expected, the fully supervised classifier is

FIG. 10. The lighter jet mass for the SR and the lower and upper
sideband regions after the shift defined by Eq. (5.1).

FIG. 11. ROC (left) and SIC (right) curves in the signal region using the shifted dataset specified by Eq. (5.1).
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nearly the same as Fig. 7. ANODE is still able to
significantly enhance the signal, with a maximum signifi-
cance improvement near 4. While in principle ANODE
could achieve the same classification accuracy on the
shifted and nominal datasets, the performance on the
shifted examples is not as strong as in Fig. 7. In practice,
the interpolation of pbackground into the SR is more chal-
lenging now due to the linear correlations. This could
possibly be overcome with improved training, better
choices of hyperparameters, or more sophisticated density
estimation techniques.
By construction, there are now bigger differences

between the SR and SB than between the SR background
and the SR signal. Therefore, the CWoLa hunting classifier
is not able to find the signal. This is evident from the ROC
curve in the left plot of Fig. 11, which shows that the
signal-versus-background classifier is essentially random
while the SR-versus-SB classifier has learned something
non-trivial.
Last, Fig. 12 shows the performance of direct density

estimation for the background prediction using the shifted
dataset. The performance is comparable to the unshifted
dataset (Fig. 8), meaning that ANODE could potentially be
used as a complete anomaly detection method even in the
presence of correlated feature spaces.

VI. CONCLUSIONS

This paper has presented a powerful new model-
independent search method called ANODE, which is built
on neural density estimation. Unlike other approaches,
ANODE directly learns the background probability density
and data probability density in a signal region. The ratio of
these densities is a powerful classifier and the background
density can be directly used to estimate the background
efficiency from a threshold requirement on the classifier.
Finally, ANODE is robust against correlations in the data,

which tend to break other model-agnostic sideband meth-
ods such as CWoLa.
The results presented in this paper are meant to be a

proof of concept of the general method, and there are many
exciting future directions. For example, while this paper
focused on collider searches for BSM, the ANODE method
is completely general and could be applied to many areas
beyond high energy physics, including astronomy and
astrophysics. Similarly, while the demonstrations here were
based on the innovative MAF density estimation technique,
the ANODE method can be used in conjunction with any
density estimation algorithm. Indeed, there are numerous
other neural density estimation methods from the past few
years that claim state-of-the-art performance, including
neural autoregressive flows [125] and neural spline flows
[126]; exploring these would be an obvious way to attempt
to improve the results in this paper. In addition, it would be
interesting to attempt the ANODE method on even higher-
dimensional feature spaces, all the way up to the full low-
level feature set of the four vectors of all the hadrons in the
event. This might already be feasible with existing neural
density estimators, at is it common to evaluate their
performance on high-dimensional datasets ranging from
UCI datasets [127] with up to ∼50 features, to image
datasets such as MNIST [128] and CIFAR-10 [129] which
have hundreds and thousands of features, respectively. The
prospects for the ANODE method are exciting: as the field
of neural density estimation continues to grow within the
machine learning community, ANODE will become more
sensitive to resonant new physics in collider high energy
physics and beyond.
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APPENDIX: COMMENTS ON OPTIMALITY

The Neyman-Pearson lemma only applies to simple
hypothesis tests. The lemma states that for a fixed prob-
ability of rejecting the null hypothesis when it is true
(level), the probability for rejecting the null hypothesis
when the alternative is true (power) is maximized with the
likelihood ratio test statistic. For supervised searches with
profiled nuisance parameters or for anomaly detection with
a composite alternative hypothesis, there is no uniformly

most powerful classifier. The goal of this brief section is to
clarify what is meant by asymptotically optimal anomaly
detection.
For any given BSM model, the procedures labeled

asymptotically optimal are likely not optimal. The sense
in which they are optimal is as follows. Let the null
hypothesis H0 be that the data are distributed according
to pbackground, a density describing the phase space of the

background-only. Furthermore, let the alternative hypoth-
esis HA be that the data are distributed according to pdata,
the learned density of the data. Distinguishing H0 from HA

is a simple hypothesis test. Therefore, the test statistic
pbackground=pdata has the property that for a fixed probability

for rejecting H0 given data ∼ pbackground, the probability for

rejectingH0 is as high as possible whenHA is true (which it
is). If pbackground ¼ pdata, then power ¼ level. So ANODE

is asymptotically optimal for rejecting the data as back-
ground-only, but is not “optimal” for rejecting any par-
ticular BSM model.

[1] ATLAS Collaboration, Exotic physics searches,
2019, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/
ExoticsPublicResults.

[2] ATLAS Collaboration, Supersymmetry searches, 2019,
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/
SupersymmetryPublicResults.

[3] ATLAS Collaboration, Higgs and Diboson searches,
2019, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/
HDBSPublicResults.

[4] CMS Collaboration, CMS exotica public physics results,
2019, https://twiki.cern.ch/twiki/bin/view/CMSPublic/
PhysicsResultsEXO.

[5] CMS Collaboration, CMS supersymmetry physics results,
2019, https://twiki.cern.ch/twiki/bin/view/CMSPublic/
PhysicsResultsSUS.

[6] CMS Collaboration, CMS beyond-two-generations (B2G)
public physics results, 2019, https://twiki.cern.ch/twiki/
bin/view/CMSPublic/PhysicsResultsB2G.

[7] LHCb Collaboration, Publications of the QCD, Electro-
weak and Exotica Working Group, 2019, http://lhcbproject
.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/
Summary_QEE.html.

[8] J. H. Kim, K. Kong, B. Nachman, and D. Whiteson, The
motivation and status of two-body resonance decays after the
LHCRun 2 andbeyond, J.HighEnergyPhys. 04 (2020) 030.

[9] N. Craig, P. Draper, K. Kong, Y. Ng, and D. Whiteson, The
unexplored landscape of two-body resonances, Acta Phys.
Pol. B 50, 837 (2019).

[10] B. Knuteson. Ph. D. thesis, University of California at
Berkeley, 2000.

[11] B. Abbott et al. (D0 Collaboration), Search for new
physics in eμX data at DØ using Sherlock: A quasi model

independent search strategy for new physics, Phys. Rev. D
62, 092004 (2000).

[12] V. M. Abazov et al. (D0 Collaboration), A quasi model
independent search for new physics at large transverse
momentum, Phys. Rev. D 64, 012004 (2001).

[13] B. Abbott et al. (D0 Collaboration), A Quasi-Model-
Independent Search for New High pT Physics at DØ,
Phys. Rev. Lett. 86, 3712 (2001).

[14] F. D. Aaron et al. (H1 Collaboration), A general search
for new phenomena at HERA, Phys. Lett. B 674, 257
(2009).

[15] A. Aktas et al. (H1 Collaboration), A general search for
new phenomena in ep scattering at HERA, Phys. Lett. B
602, 14 (2004).

[16] K. S. Cranmer, Searching for new physics: Contributions
to LEP and the LHC. PhD thesis, Wisconsin U., Madison,
2005.

[17] T. Aaltonen et al. (CDF Collaboration), Model-independent
and quasi-model-independent search for new physics at
CDF, Phys. Rev. D 78, 012002 (2008).

[18] T. Aaltonen et al. (CDF Collaboration), Model-independent
global search for new high-p(T) physics at CDF, arXiv:
0712.2534.

[19] T. Aaltonen et al. (CDF Collaboration), Global search for
new physics with 2.0 fb−1 at CDF, Phys. Rev. D 79 (2009)
011101.

[20] CMS Collaboration, MUSiC, a model unspecific search
for new physics, in pp collisions at

ffiffiffi

s
p ¼ 8 TeV, CERN

Report No. CMS-PAS-EXO-14-016, 2017.
[21] CMS Collaboration, Model unspecific search for new

physics in pp collisions at
ffiffiffi

s
p ¼ 7 TeV, CERN Report

No. CMS-PAS-EXO-10-021, 2011.

ANOMALY DETECTION WITH DENSITY ESTIMATION PHYS. REV. D 101, 075042 (2020)

075042-13

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HDBSPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HDBSPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HDBSPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HDBSPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_QEE.html
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_QEE.html
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_QEE.html
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_QEE.html
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_QEE.html
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_QEE.html
https://doi.org/10.1007/JHEP04(2020)030
https://doi.org/10.5506/APhysPolB.50.837
https://doi.org/10.5506/APhysPolB.50.837
https://doi.org/10.1103/PhysRevD.62.092004
https://doi.org/10.1103/PhysRevD.62.092004
https://doi.org/10.1103/PhysRevD.64.012004
https://doi.org/10.1103/PhysRevLett.86.3712
https://doi.org/10.1016/j.physletb.2009.03.034
https://doi.org/10.1016/j.physletb.2009.03.034
https://doi.org/10.1016/S0370-2693(04)01396-6
https://doi.org/10.1016/S0370-2693(04)01396-6
https://doi.org/10.1103/PhysRevD.78.012002
https://arXiv.org/abs/0712.2534
https://arXiv.org/abs/0712.2534
https://doi.org/10.1103/PhysRevD.79.011101
https://doi.org/10.1103/PhysRevD.79.011101


[22] M. Aaboud et al. (ATLAS Collaboration), A strategy for a
general search for new phenomena using data-derived
signal regions and its application within the ATLAS
experiment, Eur. Phys. J. C 79, 120 (2019).

[23] ATLASCollaboration,Ageneral search for newphenomena
with the ATLAS detector in pp collisions at

ffiffiffi

s
p ¼ 8 TeV,

CERN Report No. ATLAS-CONF-2014-006, 2014.
[24] ATLASCollaboration,Ageneral search for newphenomena

with the ATLAS detector in pp collisions at
ffiffiffi

s
p ¼ 7 TeV,

CERN Report No. ATLAS-CONF-2012-107, 2012.
[25] R. T. D’Agnolo and A. Wulzer, Learning new physics from

a machine, Phys. Rev. D 99, 015014 (2019).
[26] R. T. D’Agnolo, G. Grosso, M. Pierini, A. Wulzer, and

M. Zanetti, Learning multivariate new physics, arXiv:
1912.12155.

[27] M. Farina, Y. Nakai, and D. Shih, Searching for new
physics with deep autoencoders, arXiv:1808.08992.

[28] T. Heimel, G. Kasieczka, T. Plehn, and J. M. Thompson,
QCD or what?, SciPost Phys. 6, 030 (2019).

[29] T. S. Roy and A. H. Vijay, A robust anomaly finder based
on autoencoder, arXiv:1903.02032.

[30] O. Cerri, T. Q. Nguyen, M. Pierini, M. Spiropulu, and J.-R.
Vlimant, Variational autoencoders for new physics mining
at the large Hadron collider, J. High Energy Phys. 05
(2019) 036.

[31] A. Blance, M. Spannowsky, and P. Waite, Adversarially-
trained autoencoders for robust unsupervised new physics
searches, J. High Energy Phys. 10 (2019) 047.

[32] J. Hajer, Y.-Y. Li, T. Liu, and H. Wang, Novelty detection
meets collider physics, arXiv:1807.10261.

[33] J. H. Collins, K. Howe, and B. Nachman, Anomaly
Detection for Resonant New Physics with Machine Learn-
ing, Phys. Rev. Lett. 121, 241803 (2018).

[34] J. H. Collins, K. Howe, and B. Nachman, Extending the
search for new resonances with machine learning, Phys.
Rev. D 99 (2019) 014038.

[35] A. De Simone and T. Jacques, Guiding new physics
searches with unsupervised learning, Eur. Phys. J. C 79,
289 (2019).

[36] A. Mullin, H. Pacey, M. Parker, M. White, and S.
Williams, Does SUSY have friends? A new approach
for LHC event analysis, arXiv:1912.10625.

[37] G. M. Alessandro Casa, Nonparametric semisupervised
classification for signal detection in high energy physics,
arXiv:1809.02977.

[38] B. M. Dillon, D. A. Faroughy, and J. F. Kamenik, Uncov-
ering latent jet substructure, Phys. Rev. D 100, 056002
(2019).

[39] A. Andreassen, B. Nachman, and D. Shih, Simulation
assisted likelihood-free anomaly detection, arXiv:
2001.05001.

[40] J. A. Aguilar-Saavedra, J. H. Collins, and R. K. Mishra,
A generic anti-QCD jet tagger, J. High Energy Phys. 11
(2017) 163.

[41] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
Generative adversarial networks, arXiv:1406.2661.

[42] L. de Oliveira, M. Paganini, and B. Nachman, Learning
particle physics by example: Location-aware generative

adversarial networks for physics synthesis, Comput. Softw.
Big Sci. 1, 4 (2017).

[43] M. Paganini, L. de Oliveira, and B. Nachman, Accelerating
Science with Generative Adversarial Networks: An Ap-
plication to 3D Particle Showers in Multilayer Calorim-
eters, Phys. Rev. Lett. 120, 042003 (2018).

[44] M. Paganini, L. de Oliveira, and B. Nachman, CaloGAN:
Simulating 3D high energy particle showers in multilayer
electromagnetic calorimeters with generative adversarial
networks, Phys. Rev. D 97, 014021 (2018).

[45] A. Butter, T. Plehn, and R. Winterhalder, How to GAN
event subtraction, arXiv:1912.08824.

[46] J. Arjona Martinez, T. Q. Nguyen, M. Pierini, M.
Spiropulu, and J.-R. Vlimant, Particle generative adversa-
rial networks for full-event simulation at the LHC and their
application to pileup description, in 19th International

Workshop on Advanced Computing and Analysis Tech-

niques in Physics Research: Empowering the revolution:

Bringing Machine Learning to High Performance Com-

puting (ACAT 2019) Saas-Fee, Switzerland, 2019 (CERN,
Geneva, Switzerland, 2019).

[47] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn, and R.
Winterhalder, How to GAN away detector effects, arXiv:
1912.00477.

[48] S.Vallecorsa, F. Carminati, andG.Khattak, 3Dconvolutional
GAN for fast simulation, EPJWeb Conf. 214, 02010 (2019).

[49] C. Ahdida et al. (SHiP Collaboration), Fast simulation of
muons produced at the SHiP experiment using generative
adversarial networks, arXiv:1909.04451.

[50] S. Carrazza and F. A. Dreyer, Lund jet images from
generative and cycle-consistent adversarial networks,
Eur. Phys. J. C 79, 979 (2019).

[51] A. Butter, T. Plehn, and R. Winterhalder, How to GAN
LHC events, SciPost Phys. 7, 075 (2019).

[52] J. Lin, W. Bhimji, and B. Nachman, Machine learning
templates for QCD Factorization in the search for physics
beyond the standard model, J. High Energy Phys. 05
(2019) 181.

[53] R. Di Sipio, M. F. Giannelli, S. K. Haghighat, and S.
Palazzo, DijetGAN: A generative-adversarial network
approach for the simulation of QCD dijet events at the
LHC, J. High Energy Phys. 08 (2019) 110.

[54] B. Hashemi, N. Amin, K. Datta, D. Olivito, and M. Pierini,
LHC analysis-specific datasets with generative adversarial
networks, arXiv:1901.05282.

[55] V. Chekalina, E. Orlova, F. Ratnikov, D. Ulyanov, A.
Ustyuzhanin, and E. Zakharov, Generative models for fast
calorimeter simulation: The LHCb case, EPJ Web Conf.
214, 02034 (2019).

[56] ATLAS Collaboration, Deep generative models for fast
shower simulation in ATLAS, Report No. ATL-SOFT-
PUB-2018-001, 2018.

[57] K. Zhou, G. Endrodi, L.-G. Pang, and H. Stocker,
Regressive and generative neural networks for scalar field
theory, Phys. Rev. D 100, 011501 (2019).

[58] F. Carminati, A. Gheata, G. Khattak, P. M. Lorenzo, S.
Sharan, and S. Vallecorsa, Three dimensional generative
adversarial networks for fast simulation, J. Phys. Conf. Ser.
1085, 032016 (2018).

BENJAMIN NACHMAN and DAVID SHIH PHYS. REV. D 101, 075042 (2020)

075042-14

https://doi.org/10.1140/epjc/s10052-019-6540-y
https://doi.org/10.1103/PhysRevD.99.015014
https://arXiv.org/abs/1912.12155
https://arXiv.org/abs/1912.12155
https://arXiv.org/abs/1808.08992
https://doi.org/10.21468/SciPostPhys.6.3.030
https://arXiv.org/abs/1903.02032
https://doi.org/10.1007/JHEP05(2019)036
https://doi.org/10.1007/JHEP05(2019)036
https://doi.org/10.1007/JHEP10(2019)047
https://arXiv.org/abs/1807.10261
https://doi.org/10.1103/PhysRevLett.121.241803
https://doi.org/10.1103/PhysRevD.99.014038
https://doi.org/10.1103/PhysRevD.99.014038
https://doi.org/10.1140/epjc/s10052-019-6787-3
https://doi.org/10.1140/epjc/s10052-019-6787-3
https://arXiv.org/abs/1912.10625
https://arXiv.org/abs/1809.02977
https://doi.org/10.1103/PhysRevD.100.056002
https://doi.org/10.1103/PhysRevD.100.056002
https://arXiv.org/abs/2001.05001
https://arXiv.org/abs/2001.05001
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://arXiv.org/abs/1406.2661
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevD.97.014021
https://arXiv.org/abs/1912.08824
https://arXiv.org/abs/1912.00477
https://arXiv.org/abs/1912.00477
https://doi.org/10.1051/epjconf/201921402010
https://arXiv.org/abs/1909.04451
https://doi.org/10.1140/epjc/s10052-019-7501-1
https://doi.org/10.21468/SciPostPhys.7.6.075
https://doi.org/10.1007/JHEP05(2019)181
https://doi.org/10.1007/JHEP05(2019)181
https://doi.org/10.1007/JHEP08(2019)110
https://arXiv.org/abs/1901.05282
https://doi.org/10.1051/epjconf/201921402034
https://doi.org/10.1051/epjconf/201921402034
https://doi.org/10.1103/PhysRevD.100.011501
https://doi.org/10.1088/1742-6596/1085/3/032016
https://doi.org/10.1088/1742-6596/1085/3/032016


[59] S. Vallecorsa, Generative models for fast simulation, J.
Phys. Conf. Ser. 1085, 022005 (2018).

[60] K. Datta, D. Kar, and D. Roy, Unfolding with generative
adversarial networks, arXiv:1806.00433.

[61] P. Musella and F. Pandolfi, Fast and accurate simulation of
particle detectors using generative adversarial networks,
Comput. Softw. Big Sci. 2, 8 (2018).

[62] M. Erdmann, L. Geiger, J. Glombitza, and D. Schmidt,
Generating and refining particle detector simulations using
the Wasserstein distance in adversarial networks, Comput.
Softw. Big Sci. 2 (2018) 4.

[63] K. Deja, T. Trzcinski, and Ł. Graczykowski, Generative
models for fast cluster simulations in the TPC for the
ALICE experiment, EPJ Web Conf. 214, 06003 (2019).

[64] D. Derkach, N. Kazeev, F. Ratnikov, A. Ustyuzhanin, and
A. Volokhova, Cherenkov detectors fast simulation using
neural networks, in 10th International Workshop on Ring

Imaging Cherenkov Detectors (RICH 2018) Moscow,

Russia, 2018 (CERN, Geneva, Switzerland, 2019).
[65] H. Erbin and S. Krippendorf, GANs for generating EFT

models, arXiv:1809.02612.
[66] M. Erdmann, J. Glombitza, and T. Quast, Precise simu-

lation of electromagnetic calorimeter showers using a
Wasserstein generative adversarial network, Comput.
Softw. Big Sci. 3, 4 (2019).

[67] J. M. Urban and J. M. Pawlowski, Reducing autocorrela-
tion times in lattice simulations with generative adversarial
networks, arXiv:1811.03533.

[68] J. W. Monk, Deep learning as a parton shower, J. High
Energy Phys. 12 (2018) 021.

[69] A. Andreassen, I. Feige, C. Frye, and M. D. Schwartz,
JUNIPR: A framework for unsupervised machine learning
in particle physics, Eur. Phys. J. C 79, 102 (2019).

[70] A. Andreassen, I. Feige, C. Frye, and M. D. Schwartz,
Binary JUNIPR: An Interpretable Probabilistic Model for
Discrimination, Phys. Rev. Lett. 123, 182001 (2019).

[71] D. Rezende and S. Mohamed, Variational inference
with normalizing flows, in Proceedings of the 32nd

International Conference on Machine Learning, edited
by F. Bach and D. Blei (Proceedings of Machine
Learning Research (PMLR), Lille, France, 2015), Vol. 3,
pp. 1530–1538.

[72] M. S. Albergo, G. Kanwar, and P. E. Shanahan, Flow-
based generative models for Markov chain Monte Carlo in
lattice field theory, Phys. Rev. D 100, 034515 (2019).

[73] G. Papamakarios, T. Pavlakou, and I. Murray, Masked
autoregressive flow for density estimation, in Advances in

Neural Information Processing Systems, edited by I.
Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (Curran Associates, Inc.,
Long Beach, CA, 2017), Vol. 30, pp. 2338–2347.

[74] G. Kasieczka, B. Nachman, and D. Shih, R&D dataset for
LHC Olympics 2020 anomaly detection challenge, 2019,
https://doi.org/10.5281/zenodo.2629073.

[75] J. A. Aguilar-Saavedra, Stealth multiboson signals, Eur.
Phys. J. C 77, 703 (2017).

[76] J. A. Aguilar-Saavedra and F. R. Joaquim, The minimal
stealth boson: Models and benchmarks, J. High Energy
Phys. 10 (2019) 237.

[77] K. Agashe, J. H. Collins, P. Du, S. Hong, D. Kim, and
R. K. Mishra, Detecting a boosted diboson resonance,
J. High Energy Phys. 11 (2018) 027.

[78] K. Agashe, J. H. Collins, P. Du, S. Hong, D. Kim, and
R. K. Mishra, Dedicated strategies for triboson signals
from cascade decays of vector resonances, Phys. Rev. D
99, 075016 (2019).

[79] E. M. Metodiev, B. Nachman, and J. Thaler, Classification
without labels: Learning from mixed samples in high
energy physics, J. High Energy Phys. 10 (2017) 174.

[80] D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent dirichlet
allocation, J. Mach. Learn. Res. 3, 993 (2003).

[81] M. Aaboud et al. (ATLAS Collaboration), Observation of
Higgs boson production in association with a top quark
pair at the LHC with the ATLAS detector, Phys. Lett. B
784, 173 (2018).

[82] A. M. Sirunyan et al. (CMS Collaboration), Measurements
of Higgs boson properties in the diphoton decay channel in
proton-proton collisions at

ffiffiffi

s
p ¼ 13 TeV, J. High Energy

Phys. 11 (2018) 185.
[83] J. Neyman and E. S. Pearson, On the problem of the most

efficient tests of statistical hypotheses, Phil. Trans. R. Soc.
A 231, 289 (1933), https://www.jstor.org/stable/91247.

[84] M. Frate, K. Cranmer, S. Kalia, A. Vandenberg-Rodes,
and D. Whiteson, Modeling smooth backgrounds and
generic localized signals with Gaussian processes, arXiv:
1709.05681.

[85] M. Aaboud et al. (ATLAS Collaboration), Search for
heavy ZZ resonances in the lþl−lþl− and lþl−νν̄ final

states using proton–proton collisions at
ffiffiffi

s
p ¼ 13 TeV with

the ATLAS detector, Eur. Phys. J. C 78, 293 (2018).
[86] M. Aaboud et al. (ATLAS Collaboration), Search for

top-squark pair production in final states with one lepton,
jets, and missing transverse momentum using 36 fb−1 of
ffiffiffi

s
p ¼ 13 TeV pp collision data with the ATLAS detector,
J. High Energy Phys. 06 (2018) 108.

[87] CMS Collaboration, Search for direct top squark pair
production in events with one lepton, jets and missing
transverse energy at 13 TeV, Technical Report No. CMS-
PAS-SUS-19-009, CERN, Geneva, 2019.

[88] M. Aaboud et al. (ATLAS Collaboration), Search for new
phenomena with large jet multiplicities and missing trans-
verse momentum using large-radius jets and flavour-
tagging at ATLAS in 13 TeV pp collisions, J. High
Energy Phys. 12 (2017) 034.

[89] A. M. Sirunyan et al. (CMS Collaboration), Search for
pair-produced resonances decaying to quark pairs in
proton-proton collisions at

ffiffiffi

s
p ¼ 13 TeV, Phys. Rev. D

98, 112014 (2018).
[90] M. Aaboud et al. (ATLAS Collaboration), Search for long-

lived particles produced in pp collisions at
ffiffiffi

s
p ¼ 13 TeV

that decay into displaced hadronic jets in the ATLAS muon
spectrometer, Phys. Rev. D 99, 052005 (2019).

[91] A. M. Sirunyan et al. (CMS Collaboration), Search for
long-lived particles decaying into displaced jets in proton-
proton collisions at

ffiffiffi

s
p ¼ 13 TeV, Phys. Rev. D 99,

032011 (2019).
[92] G. Aad et al. (ATLAS Collaboration), Search for new

resonances in mass distributions of jet pairs using 139 fb−1

ANOMALY DETECTION WITH DENSITY ESTIMATION PHYS. REV. D 101, 075042 (2020)

075042-15

https://doi.org/10.1088/1742-6596/1085/2/022005
https://doi.org/10.1088/1742-6596/1085/2/022005
https://arXiv.org/abs/1806.00433
https://doi.org/10.1007/s41781-018-0015-y
https://doi.org/10.1007/s41781-018-0008-x
https://doi.org/10.1007/s41781-018-0008-x
https://doi.org/10.1007/978-3-030-18058-4_21
https://arXiv.org/abs/1809.02612
https://doi.org/10.1007/s41781-018-0019-7
https://doi.org/10.1007/s41781-018-0019-7
https://arXiv.org/abs/1811.03533
https://doi.org/10.1007/JHEP12(2018)021
https://doi.org/10.1007/JHEP12(2018)021
https://doi.org/10.1140/epjc/s10052-019-6607-9
https://doi.org/10.1103/PhysRevLett.123.182001
https://doi.org/10.1103/PhysRevD.100.034515
https://doi.org/10.5281/zenodo.2629073
https://doi.org/10.1140/epjc/s10052-017-5289-4
https://doi.org/10.1140/epjc/s10052-017-5289-4
https://doi.org/10.1007/JHEP10(2019)237
https://doi.org/10.1007/JHEP10(2019)237
https://doi.org/10.1007/JHEP11(2018)027
https://doi.org/10.1103/PhysRevD.99.075016
https://doi.org/10.1103/PhysRevD.99.075016
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1016/j.physletb.2018.07.035
https://doi.org/10.1016/j.physletb.2018.07.035
https://doi.org/10.1007/JHEP11(2018)185
https://doi.org/10.1007/JHEP11(2018)185
https://www.jstor.org/stable/91247
https://www.jstor.org/stable/91247
https://www.jstor.org/stable/91247
https://arXiv.org/abs/1709.05681
https://arXiv.org/abs/1709.05681
https://doi.org/10.1140/epjc/s10052-018-5686-3
https://doi.org/10.1007/JHEP06(2018)108
https://doi.org/10.1007/JHEP12(2017)034
https://doi.org/10.1007/JHEP12(2017)034
https://doi.org/10.1103/PhysRevD.98.112014
https://doi.org/10.1103/PhysRevD.98.112014
https://doi.org/10.1103/PhysRevD.99.052005
https://doi.org/10.1103/PhysRevD.99.032011
https://doi.org/10.1103/PhysRevD.99.032011


of pp collisions at
ffiffiffi

s
p ¼ 13 TeV with the ATLAS

detector, arXiv:1910.08447.
[93] A. M. Sirunyan et al. (CMS Collaboration), Search for high

mass dijet resonances with a new background prediction
method in proton-proton collisions at

ffiffiffi

s
p ¼ 13 TeV, arXiv:

1911.03947.
[94] G. Louppe, M. Kagan, and K. Cranmer, Learning to pivot

with adversarial networks, arXiv:1611.01046.
[95] J. Dolen, P. Harris, S. Marzani, S. Rappoccio, and N. Tran,

Thinking outside the ROCs: Designing decorrelated tag-
gers (DDT) for jet substructure, J. High Energy Phys. 05
(2016) 156.

[96] I. Moult, B. Nachman, and D. Neill, Convolved substruc-
ture: Analytically decorrelating jet substructure observ-
ables, J. High Energy Phys. 05 (2018) 002.

[97] J. Stevens and M. Williams, uBoost: A boosting method
for producing uniform selection efficiencies from multi-
variate classifiers, J. Instrum. 8, P12013 (2013).

[98] C. Shimmin, P. Sadowski, P. Baldi, E. Weik, D. Whiteson,
E. Goul, and A. Søgaard, Decorrelated jet substructure
tagging using adversarial neural networks, Phys. Rev. D
96, 074034 (2017).

[99] L. Bradshaw, R. K. Mishra, A. Mitridate, and B. Ostdiek,
Mass agnostic jet taggers, arXiv:1908.08959.

[100] ATLAS Collaboration, Performance of mass-decorrelated
jet substructure observables for hadronic two-body decay
tagging in ATLAS, Report No. ATL-PHYS-PUB-2018-
014 (2018).

[101] G. Kasieczka and D. Shih, DisCo fever: Robust networks
through distance correlation, arXiv:2001.05310.

[102] L.-G. Xia, QBDT, a new boosting decision tree method
with systematical uncertainties into training for High
Energy Physics, Nucl. Instrum. Methods Phys. Res., Sect.
A 930, 15 (2019).

[103] C. Englert, P. Galler, P. Harris, and M. Spannowsky,
Machine learning uncertainties with adversarial neural
networks, Eur. Phys. J. C 79, 4 (2019).

[104] S. Wunsch, S. Jórger, R. Wolf, and G. Quast, Reducing the
dependence of the neural network function to systematic
uncertainties in the input space, arXiv:1907.11674.

[105] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I.
Sutskever, and M. Welling, Improved variational inference
with inverse autoregressive flow, in Advances in Neural

Information Processing Systems, edited by D. D. Lee, M.
Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett
(Curran Associates, Inc., Barcelona, Spain, 2016), Vol. 29,
pp. 4743–4751.
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