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The frequency shift and broadening of long-wavelength optical phonons due to interactions
with electrons are calculated in a monolayer graphene as a function of the electron density. The
broadening disappears and the frequency shift exhibits a logarithmic singularity when the Fermi
energy is half of the energy of the optical phonon. The shift increases in proportion to the Fermi
energy for sufficiently high electron density.
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§1. Introduction

In an effective-mass approximation, an electron in
a graphite monolayer is described by Weyl’s equation
for a massless neutrino.1,2) Transport properties in such
an exotic electronic structure are quite intriguing, and
the conductivity with/without a magnetic field including
the Hall effect3,4) and the dynamical transport5) were
investigated theoretically. The results show that the
system exhibits various characteristic behaviors different
from conventional two-dimensional systems.6) Quite re-
cently, this single layer graphite was fabricated,7) and the
magnetotransport was measured including the integer
quantum Hall effect, demonstrating the validity of the
neutrino description of the electronic states.8,9)

The graphene is quite unique because the electron or
hole concentration in a single sheet is controlled by a gate
voltage for a wide range and therefore provides a system
where the phonon spectrum can be modified directly by
the gate voltage. Further, the phonon frequencies near
the Γ point can be measured directly by the Raman
scattering.10,11) Quite recently effects of electron-phonon
interactions on the dispersion and the broadening of opti-
cal phonons were investigated in the undoped case.12,13)

In this paper we shall study interaction effects on long-
wavelength optical phonons as a function of the electron
concentration.

In a previous work, a continuum model suitable
for a correct description of long-wavelength acoustic
phonons was constructed.14) A similar continuum model
was developed for optical phonons and the Hamiltonian
for electron-phonon interactions was derived also.15) We
shall use this continuum model to calculate the self-
energy of phonon Green’s function in a graphene. The
real part of the self-energy gives an energy shift and the
imaginary part provides a lifetime. In §2, the k·p scheme
for the description of electronic states and a continuum
model of optical phonos are reviewed very briefly. The
phonon Green’s function is calculated and shifts and
broadening of phonon modes are discussed in §3. The
results are discussed in §4 and a short summary is given
in §5.

§2. Formulation

2.1 Effective-mass description

In a graphite sheet the conduction and valence

bands consisting of π orbitals cross at K and K’ points of
the Brillouin zone, where the Fermi level is located.16,17)

Electronic states of the π-bands near a K point are
described by the k·p equation:1−2)

H0F (r) = εF (r), (2.1)

with

H0 = γ

(
0 k̂x−iky

k̂x+ik̂y 0

)
= γ(σ·k), (2.2)

where γ is a band parameter, σ = (σx, σy) is the Pauli
spin matrix, and k̂ = (k̂x, k̂y) = −i∇ is a wave-vector
operator.

The wave function is written as

Fsk(r) =
1
L

Fs,k exp(ik·r), (2.3)

with

Fs,k =
1√
2

(
s

eiθ(k)

)
, (2.4)

where L2 is the area of the system, s=+1 and −1 denote
the conduction and valence bands, respectively, and

kx = k cos θ(k), ky = k sin θ(k), k = |k|. (2.5)

The corresponding energy is given by

εs(k) = s ε(k), (2.6)

with

ε(k) = γk. (2.7)

For the K’ point, the Hamiltonian is given by

H0 = γ

(
0 k̂x+ik̂y

k̂x−ik̂y 0

)
= γ(σ∗ ·k̂), (2.8)

and the corresponding wave function is given by

Fs,k =
1√
2

(
eiθ(k)

s

)
. (2.9)

Figure 1 shows the dispersion relation and the density of
states schematically.

2.2 Long Wavelength Optical Phonon

The long-wavelength optical phonons in the two-
dimensional graphite was discussed previously based on
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a valence-force-field model,14,15) and in the following
we shall limit ourselves to the long-wavelength limit.
Let u = (ux, uy) be the relative displacement of two
sub-lattice atoms A and B, i.e.,

u(R) =
1√
2
[uA(R)−uB(R)], (2.10)

where R denotes a coordinate specifying a unit cell.
In the long-wavelength limit R can be replaced by a
continuous coordinate r. Then we have

u(r) =
∑
q,μ

√
h̄

2NMω0
(bqμ + b†−qμ)eμ(q)eiq·r, (2.11)

where N is the number of unit cells, M is the mass of a
carbon atom, ω0 is the phonon frequency at the Γ point,
q = (qx, qy) is the wave vector, μ denotes the modes (t
for transverse and l for longitudinal), and b†qμ and bqμ

are the creation and destruction operators, respectively.
Define

qx = q cos ϕ(q), qy = q sin ϕ(q), (2.12)

with q= |q|. Then, we have

el(q) = i(cosϕ(q), sin ϕ(q)),
et(q) = i(− sinϕ(q), cos ϕ(q)).

(2.13)

The corresponding phonon Hamiltonian is written as

Hph =
∑
q,μ

h̄ω0

(
b†qμbqμ+

1
2

)
. (2.14)

2.3 Electron-Phonon Interaction

The optical phonon modifies the distance between
neighboring carbon atoms and therfore the band struc-
ture through the change in the resonance integral be-
tween carbon atoms. The corresponding effective Hamil-
tonian was obtained for acoustic phonons in ref. 14 and
for optical phonons in ref. 15. The interaction Hamilto-
nian for the K point is given by

HK
int = −

√
2
βγ

b2

(
0 uy(r)+iux(r)

uy(r)−iux(r) 0

)

= −
√

2
βγ

b2
σ×u(r), (2.15)

and for the K’ point

HK′
int = −

√
2
βγ

b2

(
0 uy(r)−iux(r)

uy(r)+iux(r) 0

)

= −
√

2
βγ

b2
σ∗×u(r), (2.16)

where the vector product for vectors a=(ax, ay) and b=
(bx, by) in two dimension is defined by a×b=axby−aybx

and b = a/
√

3 is the equilibrium bond length. The
dimensionless parameter β is given by

β = −d ln γ0

d ln b
, (2.17)

where γ0 is the resonance integral between nearest neigh-
bor carbon atoms related to γ through γ = (

√
3a/2)γ0.

This means that the lattice distortion gives rise to a shift
in the origin of the wave vector or an effective vector
potential, i.e., ux in the y direction and uy in the x
direction. It should be noticed that this Hamiltonian
is quite general because of the symmetry if the coupling
parameter β (∼ 2) is regarded as adjustable.

Explicitly, we have

Hint = −
√

h̄

2NMω0

∑
q,μ

√
2
βγ

b2
Vμ(q)eiq·r(bqμ + b†−qμ),

(2.18)
where

V K
l (q) =

(
0 −e−iϕ(q)

eiϕ(q) 0

)
, (2.19)

and

V K
t (q) =

(
0 ie−iϕ(q)

ieiϕ(q) 0

)
, (2.20)

for the K point. For the K’ point, the correspond-
ing quantities are obtained by the relation V K′

μ (q) =
V K

μ (−q)∗. These matrices satisfy

Vμ(q)† = Vμ(−q). (2.21)

2.4 Phonon Green’s Function

The phonon thermal Green’s function is defined by

Dμ(q, τ) = −〈Tτ [φqμ(τ)φqμ(0)†]〉, (2.22)

with

φqμ = bqμ+b−qμ†, (2.23)

and

φqμ(τ) = exp(τH)φqμ exp(−τH), (2.24)

where τ is the imaginary time and Tτ denotes the
imaginary-time ordered product. The free Green’s func-
tion is given by

D0
μ(q, ωm) =

∫ 1/kBT

0

eiωmτD0
μ(q, τ)dτ =

2h̄ω0

(iωm)2−(h̄ω0)2
,

(2.25)
where the Matsubara frequency with integer m is defined
by ωm =2πkBTm.

In general, D(q, iωm) is given by

Dμ(q, iωm) =
2h̄ω0

(iωm)2−(h̄ω0)2−2h̄ω0Πμ(q, iωm)
,

(2.26)
with the self-energy Πμ(q, iωm). We shall consider the
lowest order self-energy given by the diagram shown in
Fig. 2. By making an analytic continuation iωm→ h̄ω+i0,
we have the retarded Green’s function

Dμ(q, ω) =
2h̄ω0

(h̄ω+i0)2−(h̄ω0)2−2h̄ω0Πμ(q, ω)
. (2.27)

The phonon frequency is determined by the pole of
Dμ(q, ω) as

( ω

ω0

)2

−1 =
2

h̄ω0
Re Πμ(q, ω). (2.28)

As will become clear in the following, the phonon self-
energy is small. In this case, the shift of the phonon
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frequency is given by

Δωμ =
1
h̄

Re Πμ(q, ω0), (2.29)

and the broadening is given by

Γμ = − 1
h̄

Im Πμ(q, ω0). (2.30)

§3. Optical-Phonon Self-Energy

In the following we shall consider the phonons at the
Γ point, i.e., |q|→0. Explicit matrix elements are

|(sk|V K
μ (q)|s′k)|2 = |(sk|V K′

μ (q)|s′k)|2

=
1
2
{
1−ss′sμ cos 2[θ(k)−ϕ(q)]

}
, (3.1)

with sμ = +1 for the longitudinal mode and −1 for the
transverse mode. The self-energy is given by

Πμ(q, ω) = −gvgsL
2
∑
s,s′

∫
dk

(2π)2
(βγ

b2

)2 h̄

NMω0

× 1
2
{
1−ss′sμ cos 2[θ(k)−ϕ(q)]

} f [εs(k)]−f [εs′(k)]
h̄ω−εs(k)+εs′(k)+i0

,

(3.2)
where f(ε) is the Fermi distribution function,

f(ε) =
1

e(ε−ζ)/kBT +1
, (3.3)

with ζ being the chemical potential, and gs and gv are the
spin and valley degeneracy (gs =gv =2). The self-energy
is independent of the modes after the angular integration
over k and becomes

Πμ(q, ω) = −gvgs

(βγ

b2

)2 h̄

NMω0

1
2
L2

∑
s,s′

∫
dk

(2π)2

× f [εs(k)]−f [εs′(k)]
h̄ω−εs(k)+εs′(k)+i0

. (3.4)

It is clear in this equation that only interband pro-
cesses (ss′ = −1) contribute to the phonon self-energy,
for which the matrix element squared is proportional to
1+sμ cos[θ(k)−ϕ(q)]. Therefore, for the transverse mode
(sμ = −1) the interaction strength is maximum for an
electron with k perpendicular to direction of ±q, i.e.,
with k in the direction of the displacement, and vanishes
for k in the direction of ±q. For the longitudinal mode
(sμ = +1), on the other hand, the interaction is the
strongest for k parallel to ±q or the displacement. In
spite of this anisotropic electron-phonon coupling, the
resulting phonon dispersion becomes isotropic due to
the isotropic dispersion in graphene. In carbon nan-
otubes, however, the wave vector along the circumference
direction is quantized, which leads to softening of the
longitudinal mode and hardening of the transverse mode
in metallic carbon nanotubes.15)

The dependence of the interaction strength on
the wave-vector direction can be understood by the
k·p Hamiltonian (2.2) and the interaction Hamiltonian
(2.15). In fact, the wave function with wave vector k
is the eigen state of the pseudo-spin in the direction k

and therefore only the part of the interaction Hamilto-
nian with the spin component perpendicular to the k
direction, i.e., the displacement u in the k direction,
contributes to interband transitions. Figure 3 shows the
strength of interband transitions as a function of the
direction of the wave vector measured from the direction
of u.

Define the dimensionless coupling parameter

λ =
gvgs

4
36

√
3

π

h̄2

2Ma2

1
h̄ω0

(β

2

)2

. (3.5)

For M =1.993×10−23 g, a=2.46 Å, h̄ω0 =0.196 eV, and
gv =gs =2, we have

λ ≈ 3×10−3 gvgs

4

(β

2

)2

. (3.6)

This parameter is slightly different from that defined in
ref. 15. Then, we have

Πμ(q, ω) = −λ

∫ ∞

0

ε dε [f(−ε)−f(ε)]

×
( 1

h̄ω+2ε+i0
− 1

h̄ω−2ε+i0

)
, (3.7)

where use has been made of the density of states
∫

dk

(2π)2
δ[ε±ε(k)] =

|ε|
2πγ2

. (3.8)

We are calculating the self-energy of optical phonons
starting with the known phonon modes in the two-
dimensional graphite. Therefore, the direct evaluation
of the above self-energy causes a problem of double
counting.20) In fact, if we apply the above formula to
the case of vanishing Fermi energy, we get the frequency
shift due to virtual excitations of all electrons in the π
bands. However, this contribution is already included
in the definition of the frequency ω0. In order to avoid
such a problem, we have to subtract the contribution in
the undoped graphene for ω = 0 corresponding to the
adiabatic approximation.

This contribution can be obtained from the above
by putting ω=0 and f(ε)=f0(ε), with

f0(ε) =
{

0 (ε>0);
1 (ε<0), (3.9)

as

Π2D
μ (q, ω) = −λ

∫ εc

0

ε dε
( 1

2ε+i0
+

1
2ε−i0

)
= −λεc,

(3.10)
where we have introduced the cutoff energy εc of the
order of the half of the π-band width. Thus, the redefined
self-energy becomes

Πμ(q, ω) = λ

∫ ∞

0

dε [1−f(−ε)+f(ε)]

+
1
2
λh̄ω

∫ ∞

0

dε [f(−ε)−f(ε)]

×
( 1

h̄ω+2ε+i0
+

1
h̄ω−2ε+i0

)
. (3.11)
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We have the relation

f−ζ(ε) = 1−fζ(−ε), (3.12)

which leads to the conclusion that the self-energy is
symmetric between ζ >0 and ζ <0, i.e., the electron-hole
symmetry. In the following, therefore, we shall confine
ourselves to the case ζ > 0. When we consider a level
broadening effect by introducing a phenomenological
imaginary part

δ =
h̄

τ
, (3.13)

caused by scattering of electrons due to disorder, we have

Πμ(q, ω) = λ

∫ ∞

0

dε [1−f(−ε)+f(ε)]

+
1
2
λ(h̄ω+iδ)

∫ ∞

0

dε [f(−ε)−f(ε)]

×
( 1

h̄ω+2ε+iδ
+

1
h̄ω−2ε+iδ

)
. (3.14)

At zero temperature, in particular, we have

Πμ(q, ω) = λεF − 1
4
λ (h̄ω+iδ)

(
ln

h̄ω+2εF+iδ
h̄ω−2εF+iδ

+ πi
)
,

(3.15)
where εF is the Fermi energy. In the clean limit δ → 0,
we have

Πμ(q, ω) = λεF − 1
4
λ h̄ω

[
ln

∣∣∣ h̄ω+2εF

h̄ω−2εF

∣∣∣ + πiθ(h̄ω−2εF)
]
.

(3.16)
The frequency shift, i.e., the real part, diverges loga-
rithmically to −∞ at εF = h̄ω0/2. Apart from this
logarithmic singularity, the phonon frequency increases
roughly in proportion to εF for εF >h̄ω0. The broadening
is nonzero only for εF <h̄ω0/2.

Figure 4 shows the frequency shift and broadening
for various values of 1/ω0τ . For nonzero δ or 1/ω0τ ,
the logarithmic singularity of the frequency shift and
the sharp drop in the broadening disappear, but the
corresponding features remain for 1/ω0τ 	1.

§4. Discussion

The dependence of the frequency shift on the Fermi
energy can be understood as the change in the effective
force constant due to the reduction of screening due to
interband transitions within the π bands. For interband
processes, the electron-phonon matrix element is inde-
pendent of the electron-hole energy and therefore the
contribution of each pair is proportional to the inverse of
their energy due to the energy denominator. With the
use of the fact that the density of states is proportional
to the energy, this immediately leads to the contribution
proportional to the π-band width εc for εF = 0. When
the Fermi level increases, the states below the Fermi level
in the conduction band can no longer contribute to the
screening process and as a result the phonon frequency
increases in proportion to εF.

As shown in eqs. (3.1) and (3.2), the denominator
vanishes for ε(k)= h̄ω0/2. This gives rise to the imagi-
nary part of Π as long as εF <h̄ω0/2. For the real part,

this causes the logarithmic divergence when the integral
over ε=γ|k| is cut off at ε= h̄ω0/2, i.e., when εF = h̄ω0/2.
This is the origin of the behavior of the broadening and
the energy shift shown in Fig. 4.

For the parameter γ = 6.46 eV·Å giving γ0 =
3.03 eV, the electron concentration corresponding to the
condition εF = h̄ω0/2 becomes 0.73×1012 cm−2. For the
mobility of μ∼104 cm2/Vs, the broadening h̄/τ becomes
∼ 6 meV, where use has been made of μ=ev2τ/εF with
v=γ/h̄.21) Actual broadening is likely to be larger than
this estimated value because the transport relaxation
time can be longer than the conventional relaxation time
giving the broadening of the spectral function, giving
1/ω0τ > 0.03. It is possible, therefore, to observe
the anomaly of optical phonons due to electron-phonon
interactions.

§5. Summary and Conclusion

In this paper, the energy shift and broadening of
optical phonons have been calculated as a function of the
Fermi energy in a monolayer graphene. The broadening
disappears suddenly when the Fermi energy exceeds
the half of the optical-phonon energy in an undoped
graphene sheet. The energy shift becomes minus infinity
logarithmically when the Fermi energy becomes the half
of the phonon energy and increases in proportion to the
Fermi energy for sufficiently large Fermi energy. The
logarithmic singularity is removed by level broadening
due to disorder but the anomaly is expected to prevail
in systems with high mobility.
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Figure Captions

Fig. 1 A schematic illustration of the dispersion re-
lation εs(k) and the density of states D(ε) of the
graphene. The vertical arrow indicates interband
transitions due to electron-phonon interaction.

Fig. 2 A Feynman diagram for the self-energy for
optical phonons with a wave vector q and Matsubara
frequency ωm.

Fig. 3 The strength of interband transitions due to
electron-phonon interaction as a function of the
direction of the wave vector measured from the
direction of the lattice displacement u.

Fig. 4 The frequency shift (solid line) and broadening
(dashed line) of optical phonons as a function of the
Fermi energy. τ is a phenomenological relaxation
time characterizing the level broadening effect due
to disorder.
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