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1 Introduction

We have seen a renaissance of the study of 6d N = (1, 0) theories since the publication of

the seminal work [1]. For example, we now have a better understanding of the landscape

of such theories [2–6] and have a general formula for their anomaly polynomials [7, 8].

An essential feature of these theories is that they have supersymmetric strings charged

under self-dual tensor fields. The properties of these strings have received much attention,

but the analysis has so far been mostly restricted to the case when the description in terms

of the refined topological string and/or the 2d gauge theory is available [9–17].

In this note, we provide a formula for the anomaly polynomial of the 2d worldsheet

theories of these strings. The only input required is the anomaly of the bulk 6d theory,

and therefore our formula applies generically. Our formula is given in (2.4), (2.5).

When a 2d gauge theory description of the worldsheet theory of the strings is known,

we can compare the outcome of our main formula (2.4), (2.5) and the anomaly polynomial

computed from the gauge theory spectrum. We will see below that these two computations

indeed do match. When such a 2d gauge theory description is not known, our formula

should help us look for one.

Prime examples where the 2d gauge theories are not known are the following. Take

an F-theory compactification on a complex two-dimensional base with an isolated P
1 of

self intersection −n with n ≥ 3. It is known that this configuration automatically forces a

nontrivial gauge algebra g on the curve.

In table 1 we listed this g together with its dual Coxeter number h∨ for the cases with

no additional matter on the curve; for a derivation, see e.g. [18].1 This configuration gives

1As an aside, let us point out curious coincidences concerning table 1: this is an exact subset of table 4

of [19] and table 4 of [20], where a different topic, namely the 2d chiral algebras associated to 4d N = 2

theories were studied. The two tables in [19, 20] contain su(2) and g2 in addition, and k4d there equals n
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n 3 4 5 6 8 12

g su(3) so(8) f4 e6 e7 e8

h∨ 3 6 9 12 18 30

Table 1. Smallest allowed gauge algebra g and its dual Coxeter number h∨ on an isolated curve

of self-intersection −n in F-theory. We see a relation h∨ = 3(n− 2).

rise to a 6d N = (1, 0) system with one tensor multiplet and a vector multiplet for g. These

6d theories are known as minimal 6d N = (1, 0) theories.

Instantons of this vector multiplet become supersymmetric strings with N = (0, 4)

supersymmetry. For n = 4 there is a natural gauge theory description and detailed studies

have been made [13, 15] but not much is known in other cases.2 Our formula (2.4), (2.5)

gives at least the anomaly polynomials of these strings, and also explains a curious nu-

merology

h∨ = 3(n− 2) (1.1)

that is evident in table 1, as we will see below.

In the rest of the note, we first provide the derivation of the formula (2.4), (2.5) using

the anomaly inflow in section 2. We also provide checks by comparing with the anomaly

polynomials computed from 2d gauge theories when available. Then we discuss some of

the implications of our formula in section 3 and conclude.

Note added. In the final stage of the research leading to this note, a paper [26] appeared,

in which the authors also presented our main formula (2.4), although their main concern

was the elliptic genera of the strings. In [26] a 2d gauge theory description was also given

for the case n = 3.

2 Derivation and checks

2.1 Anomaly formula from the inflow

Review of the tensor branch effective action. Let us briefly recall the tensor branch

effective action of 6d N = (1, 0) theories to set up the notations. On the generic point of the

here. This series of groups with an addition of the empty group, namely

∅ , su(2) , su(3) , g2 , so(8) , f4 , e6 , e7 , e8 ,

is known as Deligne’s exceptional series of groups, from the papers by Deligne [21, 22] in 1996. The relation

of the F-theory list of groups and Deligne’s exceptional series was already noted in a paper by Grassi and

Morrison [23], see lemma 7.4 there.

It is to be noted that the same series of groups has also appeared in a paper by Mathur, Mukhi and

Sen [24] from 1988 when 2d RCFTs with only two characters were systematically looked for. Is there a

single unifying principle behind these appearance of the same sequence of groups in various corners of string

theory? (Deligne’s exceptional series of groups was also independently found by Cvitanović, see section 21.2

of [25] for the history of multiple independent (re)discoveries of this series. The authors thank L. Rastelli

for the information.)
2But see Note added below.
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tensor branch, the 6d N = (1, 0) theory consists of massless tensor/vector/hyper multiplets

plus massive dynamical stringy excitations. Integrating out the massive modes, a part of

the effective action is given as

2π

∫

ηij
(

1

2
dBi ∧ ⋆dBj +Bi ∧ Ij

)

. (2.1)

Here Bi is the self-dual 2-form field normalized so that its field strength is quantized in

integer values.3 The strings in the 6d theory are charged under those 2-form fields and the

charge matrix is given by ηij . The Dirac quantization law requires that the matrix ηij is

symmetric, positive definite and integral. In the following, indices are raised/lowered by

using ηij .

The Green-Schwarz coupling Bi ∧ Ij contributes to the anomaly polynomial of the 6d

theory by 1
2η

ijIi ∧ Ij [27]. For all 6d N = (1, 0) theories known to exist so far, the 4-form

Ii is known to have a concrete form given by

ηijIj =
1

4

(

ηiaTrF 2
a − (2− ηii)p1(T )

)

+ h∨Gi
c2(I) (2.2)

as derived in [7, 28]. Here the sum over the indices j and a is taken, but the index

in ηii is not summed. The field strengths Fa include both dynamical and background

gauge fields. Accordingly, we extend the charge matrix η to include both dynamical and

background tensor multiplets.4 p1(T ) is the first Pontrjagin class of the tangent bundle of

the 6d spacetime and c2(I) is the second Chern class of the background SU(2)I R-symmetry

bundle of the 6d N = (1, 0) supersymmetry. The trace Tr is normalized so that 1
4 TrF

2 is

1 for one-instanton configurations. h∨Gi
is the dual Coxeter number of the Lie group Gi.

When Gi = ∅, it is understood as 1, which happens only when ηii = 1 or 2.

Main formula. We put the self-dual string at x2 = · · · = x5 = 0 in 6d spacetime. The

charge of the string is specified by a vector Qi with integral entries. The worldvolume

theory on the string has the global symmetries SU(2)L × SU(2)R × SU(2)I ×
∏

aGa. Here

SU(2)L×SU(2)R ≃ SO(4)N comes from rotating the normal directions to the string, while

SU(2)I ×
∏

aGa comes from the R, gauge and global symmetries of the bulk 6d theory.5

The supercharge of 6d N = (1, 0) theory decomposes as

(2,1,2)+ + (1,2,2)− (2.3)

under SU(2)L × SU(2)R × SU(2)I , with the subscript ± denoting the chirality. We take

the convention that the remaining half of the supercharge is in (1,2,2)−. Therefore, the

SO(4) R-symmetry of N = (0, 4) supersymmetry is identified with SU(2)R × SU(2)I .

Then, the anomaly 4-form I4 of the 2d N = (0, 4) theory on the string is given as

I4 =
ηijQiQj

2

(

c2(L)− c2(R)
)

+ ηijQiIj . (2.4)

3Because Bi is self-dual, it is imprecise to write the kinetic term as in (2.1), but we will see that it is

convenient to include it here for the inflow computation.
4The indices a, b, . . . are for both dynamical and background fields, while the indices i, j, . . . are only

for dynamical ones.
5Here we should not confuse SU(2)R with the R-symmetry of 6d supersymmetry.
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If we assume the general validity of the concrete formula (2.2), this can be more

explicitly written as

I4 =
ηijQiQj

2

(

c2(L)− c2(R)
)

+Qi

(

1

4
ηiaTrF 2

a −
2− ηii

4

(

p1(T )− 2c2(L)− 2c2(R)
)

+ h∨Gi
c2(I)

)

. (2.5)

In deriving (2.4) and (2.5), we decompose the 6d p1(T ) as 2d p1(T ) + p1(N) and we use

the relations χ(N) = c2(L)− c2(R) and p1(N) = −2c2(L)− 2c2(R).

In the following, we will derive the formula (2.4) using the inflow computation. We

will then check (2.5) against concrete examples for which 2d gauge theory description is

known.

Inflow argument. Here we perform the anomaly inflow computation for the self-dual

string, using a method pioneered by [29]. The anomaly inflow of self-dual strings was

studied in other places before, see e.g. [30–32], mostly in the case of 6d N = (2, 0) theory.

In the presence of the string, the Bianchi identity for the 3-form field strength is

modified to be

dHi = Ii +Qi

5
∏

j=2

δ(xj)dxj , (2.6)

where Qi is the charge of the string. Its solution is given by

Hi = Qi
e
(0)
3

2
+ (regular) , (2.7)

where e
(0)
3 is the global angular form of the S3 bundle of the tubular neighborhood of the

string, which is related to the Euler class χ4(N) of the normal bundle by de
(0)
3 = 2χ4(N).

To compute the anomaly polynomial of the 2d theory, it is convenient to use

2π

∫

Y7

ηij
(

1

2
dHi ∧Hj +Hi ∧ Ij

)

, (2.8)

instead of (2.1). Here Y7 is an auxiliary 7d manifold bounding the physical 6d spacetime.

We also extend the worldsheet of the string to Y7 and denote it as M3.

In the presence of the string, the most singular term in (2.8) is given as

2π

∫

Y7

(

ηijQiQj

4
χ4(N)e

(0)
3 + ηijQiIj

e
(0)
3

2

)

. (2.9)

Anomaly inflow tells us that integrating out (2.9) we obtain the anomaly on the string

worldsheet. Integration is straightforward since there is a factor of the Euler class χ4(N)

which just reduces the integral over Y7 to M3. The result is

2π

∫

M3

(

ηijQiQj

4
e
(0)
3 + ηijQiI

(0)
j,3

)

(2.10)

which correctly reproduces the formula (2.4).
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vector (Aµ, λ
α̇A
+ ) hyper (φαα̇, λ

αA
−

) Fermi (Ψl
+)

O(Q) antisymmetric symmetric fund

SU(2)L − fund −

SU(2)R fund − −

SU(2)I fund fund −

SO(16) − − fund

Table 2. The gauge theory description of the worldsheet theory on Q E-strings. α, α̇ = 1, 2 are

indices for SU(2)L,R, A = 1, 2 are for SU(2)I and l = 1, . . . , 16 are for SO(16) flavor symmetry. We

explicitly write the representations of the fermions in the multiplets. O(Q) is the gauge symmetry

while the other symmetries are global. In the computation of anomalies, we should note that all

the fermions listed above are real.

The computation of the contribution from the kinetic term of (2.1) or equivalently the

first term of (2.8), in the form presented above, involves some amount of hand-waving,

due to the self-dual nature of the tensor fields. A more careful derivation, following the

one presented in [33] in the case of D3-branes coupled to a self-dual 5-form, gives the same

result.

2.2 Comparison with gauge theory description

When the UV realization of the string worldsheet theory as a 2d N = (0, 4) gauge theory

is known, we can easily compute its anomaly polynomial by counting the number of mul-

tiplets.6 In this subsection, we provide further pieces of evidence for the formula (2.5) by

checking the agreement.

E-string theory. On the one hand, using our formula (2.5), we see the anomaly 4-form

of the bound state of Q E-strings is given as

IE-string4 (Q) =
Q2 +Q

2
c2(L)−

Q2 −Q

2
c2(R)−

Q

4
TrF 2

E8
−

Q

4
p1(T ) +Qc2(I) . (2.11)

Here we used the fact that ηia in (2.2) for the E8 global symmetry is −1.

On the other hand, the matter content of the gauge theory was determined in [12] and

is summarized in table 2. Noting that all the fermions in the table are real and we have

to multiply 1/2 in the anomaly computation, we can check that the SU(2)L,R,I anomaly

matches with (2.11).

The anomaly of the E8 global symmetry also matches under the assumption that the

SO(16) symmetry in the UV enhances to E8 in the IR. In fact, the Fermi multiplet Ψl
+

contributes to the anomaly by 1
2Q

(

− 1
2 trfund F

2
SO(16)

)

= −Q
4 TrF 2

SO(16).

6A nice summary of multiplets of N = (0, 4) supersymmetric theories can be found e.g. in [34]. As for the

conventions, a left moving (plus sign in the chirality) complex Weyl fermion in a representation ρ contributes

to the anomaly polynomial by Â(T ) trρ e
iF . In particular, a left moving complex Weyl fermion in 2d in

the fundamental representation of SU(2) gives the anomaly − 1

2
trfund F

2 = − 1

4
TrF 2 = −c2

(

SU(2)
)

. The

numerical factor relating TrF 2 and trfund F
2 for various groups is summarized e.g. in the appendix of [7].

– 5 –
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vector (Aµ, λ
α̇A
+ ) hyper (φαα̇, λ

αA
−

) hyper (qα̇, ψ
A
−
) Fermi (ψF

+)

U(Q) adjoint adjoint fund fund

SU(2)L − fund − −

SU(2)R fund − − −

SU(2)I fund fund fund −

SU(2)F − − − fund

Table 3. The gauge theory on the worldsheet of Q M-strings. Here the indices α, α̇, A are the same

as in the E-string. F = 1, 2 is the fundamental indices of SU(2)F symmetry. U(Q) is the gauge

symmetry and the others are global. Again, the fermions λ are real.

For the gravitational anomaly, the vector multiplet gives − 1
24(Q

2 − Q)p1(T ), the hy-

permultiplet gives + 1
24(Q

2 +Q)p1(T ) and the Fermi multiplet gives −1
3Qp1(T ). Summing

up those contributions, we reproduce the coefficient of p1(T ) in (2.11).

A1 N = (2, 0) theory. According to our formula (2.5), the anomaly on the charge Q

string in A1-type N = (2, 0) theory (called M-string in [9]) is given as

IM-string
4 (Q) = Q2

(

c2(L)− c2(R)
)

+Q
(

c2(I)− c2(F )
)

. (2.12)

Here we decompose the SO(5) R-symmetry as SU(2)F ×SU(2)I ⊂ SO(5) and regard SU(2)I
as the R-symmetry of 6d N = (1, 0) supersymmetry and SU(2)F as the flavor symmetry.

Both SU(2) symmetries are realized on the worldsheet theory on M-string and appear in

the anomaly polynomial (2.12).

The gauge theory description of the worldsheet theory [9] is listed in table 3. It is

straightforward to check that the counting of multiplets reproduces (2.12).

n = 4 minimal 6d N = (1, 0) theory. According to (2.5), the anomaly 4-form of the

charge Q string in n = 4 minimal 6d N = (1, 0) theory is given as

In=4
4 (Q) = (2Q2−Q)c2(L)− (2Q2+Q)c2(R)+QTrF 2

SO(8)+
Q

2
p1(T )+6Qc2(I) . (2.13)

The gauge theory on the worldsheet is determined in [13]. The matter content and

representations are given as in table 4. We can check that the multiplets in table 4 correctly

reproduce the anomaly (2.13).

6d string chains. The paper [15] studied the strings in a class of 6d N = (1, 0) theories

engineered by an F-theory compactification on a base with a linear chain of P1’s with self-

intersections −1, −2, and −4. The 2d N = (0, 4) gauge theory on the string worldsheet

is a linear quiver gauge theory with gauge groups
∏N

i=1G(Qi). The string charge {Qi}
N
i=1

determines ranks of gauge groups, while precise matter content and types of gauge groups

depend on which 6d theory we consider.

For these 2d theories, we can also check the agreement in anomalies computed by the

formula (2.5) and the multiplet counting. As a simple example, let us compute the SU(2)I
anomaly of the charge-{Qi}Ni=1 string in rank-N 6d

(

SU(k), SU(k)
)

conformal matter [2]

– 6 –
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vector (Aµ, λ
α̇A
+ ) hyper (φαα̇, λ

αA
−

) hyper (qα̇, ψ
A
−
)

Sp(Q) symmetric antisymmetric fund

SU(2)L − fund −

SU(2)R fund − −

SU(2)I fund fund fund

SO(8) − − fund

Table 4. The gauge theory on the charge Q string in n = 4 minimal 6d N = (1, 0) theory. Sp(Q)

is the gauge symmetry and SO(8), SU(2)L,R,I are global symmetries. The indices α, α̇, A are

the same as in the E-string case. Again the fermions λ are all real. The bifundamental hyper of

Sp(Q)× SO(8) is in fact a half-hypermultiplet.

in two ways. From the formula (2.5), the coefficient of c2(I) is equal to k
∑N

i=1Qi. On the

other hand, the multiplets in the quiver description having a non-trivial SU(2)I anomaly

are U(Qi) vectors, U(Qi)-adjoint hypers and U(Qi) × SU(k)i-bifundamental hypers [15].

However, the contributions from vectors and adjoint hypers cancel out, and the bifunda-

mental hypers have the anomaly
(

k
∑N

i=1Qi

)

c2(I) in total, as expected.

3 Implications

3.1 ADE classification of 6d N = (2, 0) theories

Let us start by reviewing a nice argument by Henningson [30] for the ADE classification

of 6d N = (2, 0) theories.7 Take an N = (2, 0) theory with r tensor multiplets, on generic

points on its tensor branch. There will be strings charged under these tensor multiplets.

Given two strings with charges ~Q and ~Q′ respectively, let us write the Dirac pairing as

〈 ~Q, ~Q′〉 = ηijQiQ
′

j . (3.1)

The Dirac quantization law demands that we have 〈 ~Q, ~Q′〉 ∈ Z.

Let us consider a single string with charge ~Q, and let us determine the term propor-

tional to c2(L), c2(R), p1(T ) of the anomaly polynomial. Since the string breaks transla-

tional invariance and supertranslational invariance, there are four bosonic zero-modes and

eight chiral Majorana fermionic zero-modes, forming a hypermultiplet of the worldsheet

N = (4, 4) supersymmetry. The fermionic zero-modes transform as (2,1,2)− + (1,2,2)+
under SU(2)L×SU(2)R×SU(2)I , with the subscript ± denoting the chirality. In total, the

anomaly polynomial is

Iworldsheet4 =

(

c2(L) +
1

12
p1(T )

)

−

(

c2(R) +
1

12
p1(T )

)

= c2(L)− c2(R) . (3.2)

The crucial assumption in [30] was that the worldsheet theory is given purely by these

Nambu-Goldstone zero modes. Then the anomaly (3.2) needs to be reproduced from the

7Another field theoretical argument for the ADE classification of 6d N = (2, 0) theories can be found

in [35].
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anomaly inflow. At this point we do not know the 6d Green-Schwarz coupling. We just

assume a generic one

dHi = cip1(T ) (3.3)

where we neglected contributions from the 6d R-symmetry c2(I) since they do not affect

the 2d anomaly terms we are considering here.

Using our inflow formula (2.4), we obtain

Iworldsheet4 =
〈 ~Q, ~Q〉

2

(

c2(L)− c2(R)
)

+ 〈 ~Q,~c〉
(

p1(T )− 2c2(L)− 2c2(R)
)

. (3.4)

Comparing (3.2) and (3.4), we find that we need

〈 ~Q, ~Q〉 = 2 , (3.5)

and at the same time we conclude ci = 0 in (3.3).

We see that the charge lattice of strings of a 6d N = (2, 0) theory is an integral lattice

generated by vectors whose length squared is two. This condition is known to be equivalent

to the fact that the charge lattice is a simply-laced root lattice, and therefore it has an ADE

classification. We also derived ci = 0 in (3.3), which agrees with a different computation

done in [7].

3.2 Existence of E8 flavor symmetry of the smallest 6d N = (1, 0) theory

Let us now proceed to N = (1, 0) theories. Nobody would disagree in saying that the

E-string theory is the smallest nontrivial N = (1, 0) theories in six dimensions. Still, this

smallest theory somehow has E8 flavor symmetry. Why is that?

Let us try to mimic the argument recalled in the previous subsection. Again, we restrict

attention to the terms proportional to c2(L), c2(R) and p1(T ) in the anomaly polynomial.

Suppose we have an N = (1, 0) theory with one tensor multiplet. To make the 6d

theory as small as possible, let us assume that the Dirac pairing is given by

η = 1 (3.6)

and there is no dynamical gauge field on the tensor branch. As for the Green-Schwarz

term, we assume the validity of the general formula

dH = I =
η − 2

4
p1(T ) . (3.7)

For 6d N = (1, 0) theories constructed from F-theory, this relation follows from the in-

tersection number of the canonical divisor and the genus-0 curve producing the tensor

multiplet [28]. A purely field-theoretical derivation of (3.7) is not known yet to the au-

thors’ knowledge, but it should not be impossible to find one.

For a string of charge Q = 1, by plugging in (3.6) and (3.7) to our formula (2.4), we

find the inflow

I inflow4 =
1

2

(

c2(L)− c2(R)
)

−
1

4

(

p1(T )− 2c2(L)− 2c2(R)
)

+ c2(I)

= c2(L) + c2(I)−
1

4
p1(T ) . (3.8)

– 8 –



J
H
E
P
1
1
(
2
0
1
6
)
1
6
5

On the string worldsheet, there are bosonic and fermionic zero modes coming from

the breaking of the bulk translational and supertranslational symmetry. They form a

hypermultiplet of 2d N = (0, 4) supersymmetry, and have the anomaly polynomial

Izero modes
4 = c2(L) + c2(I) +

1

12
p1(T ) . (3.9)

Comparing (3.8) and (3.9), we know that there necessarily are some additional degrees

of freedom on the worldsheet since there is a mismatch in the gravitational anomaly by

−1
3p1(T ). To account for the difference, the simplest possibility is to add a chiral CFT on

the non-supersymmetric side of the string worldsheet, with c = 8.

Assuming that the partition function of the string worldsheet theory is well-defined up

to a phase, this additional chiral CFT with c = 8 needs to be a theory with only a single

character. This forces us to choose the E8 current algebra of level one. We cannot say that

the argument above is a derivation of the E8 flavor symmetry, but it does at least indicate

that the E8 symmetry needs to arise automatically.

3.3 World-sheet structure of strings of minimal 6d N = (1, 0) theories

Finally, let us consider strings of minimal 6d N = (1, 0) theories, whose construction in

F-theory was recalled in section 1. We will continue to use the same symbols there. Using

the 6d anomaly polynomial computed in [7], we see that a charge Q string has the anomaly

polynomial

I4(n,Q) =
nQ2 − (n− 2)Q

2
c2(L)−

nQ2 + (n− 2)Q

2
c2(R)

+
nQ

4
TrF 2

G +
(n− 2)Q

4
p1(T ) +Qh∨Gc2(I) (3.10)

by applying our main formula (2.5).

We know that an instanton configuration of g vector multiplet is charged under the

tensor field, such that the instanton number is identified with the charge Q of the instanton-

string. This means that the 2d world-sheet theory with N = (0, 4) supersymmetry of the

strings of the minimal 6d N = (1, 0) theory should at least have a Higgs branch which is the

instanton moduli space of gauge group g of instanton number Q. This has a quaternionic

dimension h∨Q.

For n = 4 and g = so(8), the worldsheet gauge theory is known and is precisely the

ADHM construction of charge-Q so(8) instanton. This suggests that, even for other n in

table 1, the worldsheet theory is the N = (0, 4) sigma model on the charge-Q instanton

moduli space of gauge algebra g.

Now, moving along the Higgs branch does not break SU(2)I symmetry and the dif-

feomorphism symmetry of the worldsheet. Therefore the terms proportional to p1(T ) and

c2(I) can be obtained straightforwardly at the generic point on the Higgs branch. There,

the string is in fact a finite-sized instanton-string, and we know that there are 4h∨Q bosonic

zero modes and the same number of chiral fermionic zero modes. From this, we see that

the anomaly polynomial should contain the terms

Qh∨G

(

1

12
p1(T ) + c2(I)

)

. (3.11)
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Comparing with (3.10), we see that we need to have

h∨ = 3(n− 2) . (3.12)

This explains the curious numerology (1.1) pointed out in section 1.
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