Anomaly polynomial of general 6d SCFTs


Kantaro Ohmori w/ Hiroyuki Shimizu, Yuji Tachikawa, Kazuya Yonekura

arXiv:1408.5572, 1??????

Introduction

Interacting 6d SCFTs

- $\mathcal{N}=(2,0)$ or $\mathcal{N}=(1,0)$ (chiral theories)
- UV fixed point

Why 6d SCFTs?

- Strongly coupled system
 : no known Lagrangian
- Compactification ⇒ low dimensional systems
- Might control low dimensional dualities e.g. $\mathcal{N}=(2,0)$ theories of ADE type

What's done?

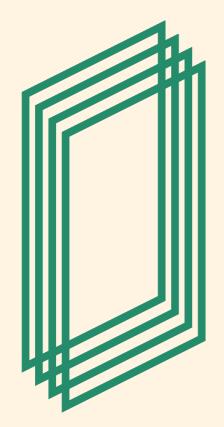
String (M,F-) theoretical constructions

[Witten '96],[Ganor,Hanany '96],[Seiberg '97],[Intrilligator Blum '97] [Brunner,Karch '97],[Hanany,Zaffaroni '97],[Aspinwall,Morrison '97] etc. [Heckman,Morrison,Vafa '13][Gaiotto Tomasielo '14], [Del-Zotto,Heckman,Tomasiello,Vafa '14]

- Enormous works for $\mathcal{N}=(2,0)$ theories [Gaiotto '09]...
- Anomaly polynomials for above $\mathcal{N}=(1,0)$ theories
 - Inflow: [Freed, Harvey, Minasian, Moore, '98], [KO, Shimizu, Tachikawa '14]
 - Tensor branch:[Intrilligator '14],[KO,Shimizu,Tachikawa,Yonekura '14]

Plan

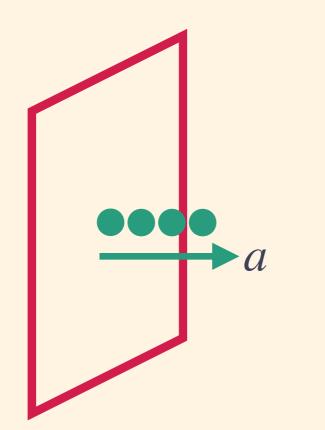
- Brane constructions of 6d SCFTs
- Anomaly polynomial
- Tensor branch anomaly matching
- Torus compactifications (if time permits)


Brane constructions of 6d SCFTs

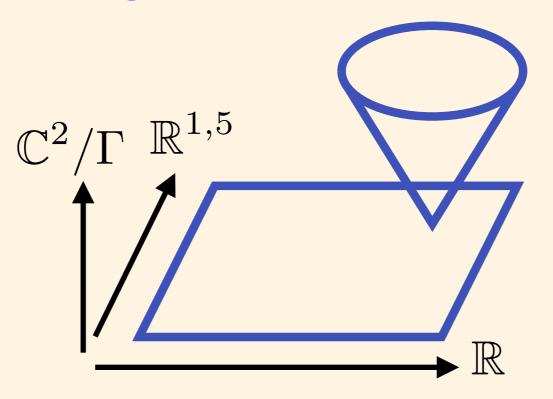
6d $\mathcal{N} = (1,0)$ **Supermultiplets**

- 8 supercharges, SU(2) R-symmetry
- Tensor multiplet: $(B^+_{\mu\nu}, \psi^+, a)$ $a \in \mathbb{R}$: "tensor branch" vev (preserves R-sym)
- Vector multiplet: (A_{μ}, λ^{-}) No scalar
- Hyper multiplet: (ϕ_i, ψ^+) i = 1, 2, 3, 4 $\phi \in \mathbb{R}^4$: "Higgs branch" vev (breaks R-sym)

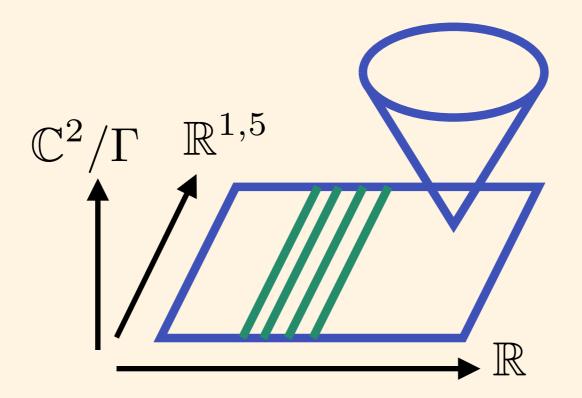
$\mathcal{N}=(2,0)$ theory of A-type


Q coincident M5-branes

$\Rightarrow A_{Q-1}\text{-type } (2,0) \text{ theory} \\ + \text{ center of mass mode}$


E-string theory

Q M5-branes on "End-of-the-world" brane (10d)

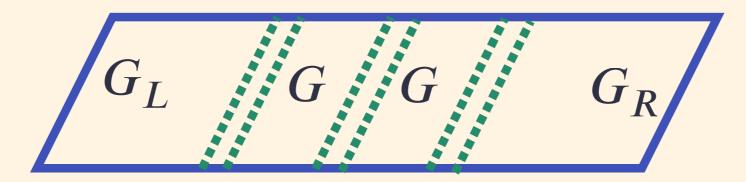

E-string theory of rank Q
 ⇒ with E₈ flavor symmetry
 + free hyper
 (center of mass mode)

M5-branes on $\mathbb{C}^2/\Gamma_{A,D,E}$ $\Gamma_G \subset SU(2)$:Finite Subgroup \Rightarrow 7d Vecter mult. with gauge group GOn singular locus of $\mathbb{C}^2/\Gamma \times \mathbb{R}^{1,6}$

Q M5-branes on Singular locus of $\mathbb{C}^2/\Gamma \times \mathbb{R}^{1,6}$

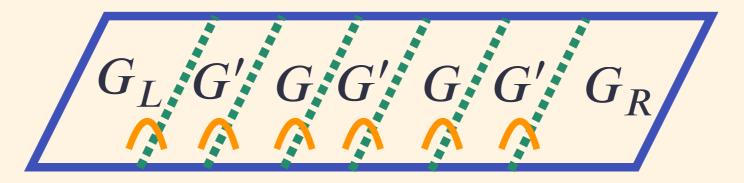
 $G \times G$ flavor symmetry

 G_R G_L


G = SU(k + 1) + bifundamentals

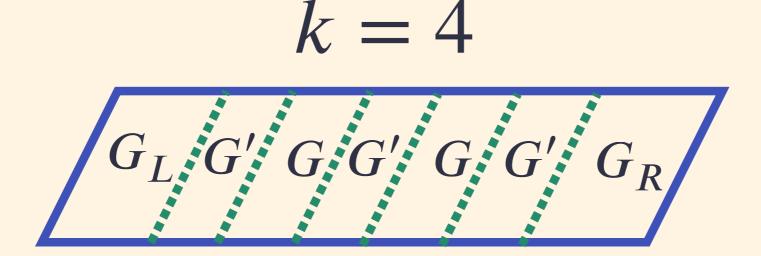
Q-1 dynamical vector mult.s of SU(k + 1)+ bifundamental hypers of neighboring SU(k+1)'s +Q-1 Tensor multiplets with tensor vev.s a_i (dynamical) + massive string (M2 branes)

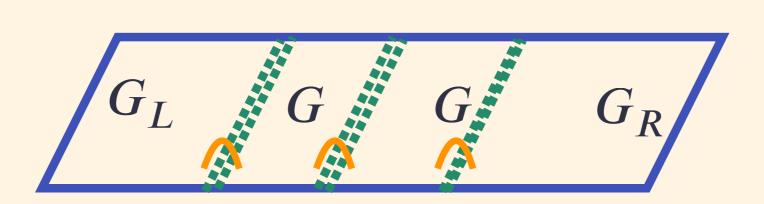
$$G_L \quad G \quad G_R$$


G = SO(2k)

`` Fractional M5"

G = SO(2k)

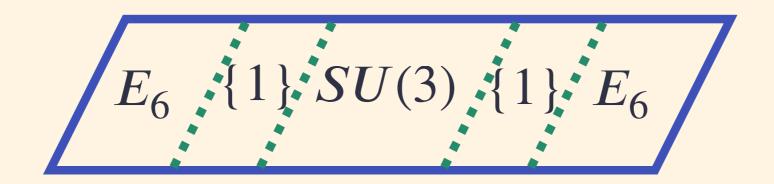

`` Fractional M5"


G = SO(2k)G' = USp(2k - 8) +half bifundamentals

SO(2k)-Usp(2k-8) alternating quiver theory

Gauge couplings are governed by tensor vev.s (dynamical) This system is also realized by D6-O6-NS5 system in IIA

G = SO(8)G' = USp(0)


G = SO(8) +rank 1 E-string theories

``(SO(8), SO(8)) conformal matter" = E-string $SO(8) \times SO(8) \subset E_8$

[Del-Zotto,Heckman,Tomasiello,Vafa '14]

 E_6 E_6

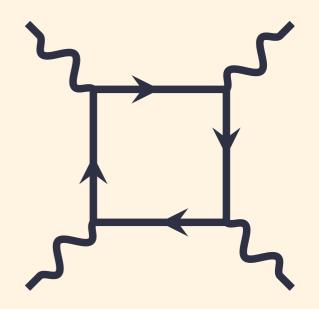
SU(3) E_6 E_6

[Del-Zotto,Heckman,Tomasiello,Vafa '14]

$$E_6$$
 $SU(3)$ E_6

rank 1 E-string theories

``($SU(3), E_6$) conformal matter" = E-string $SU(3) \times E_6 \subset E_8$


Other 6d SCFTs

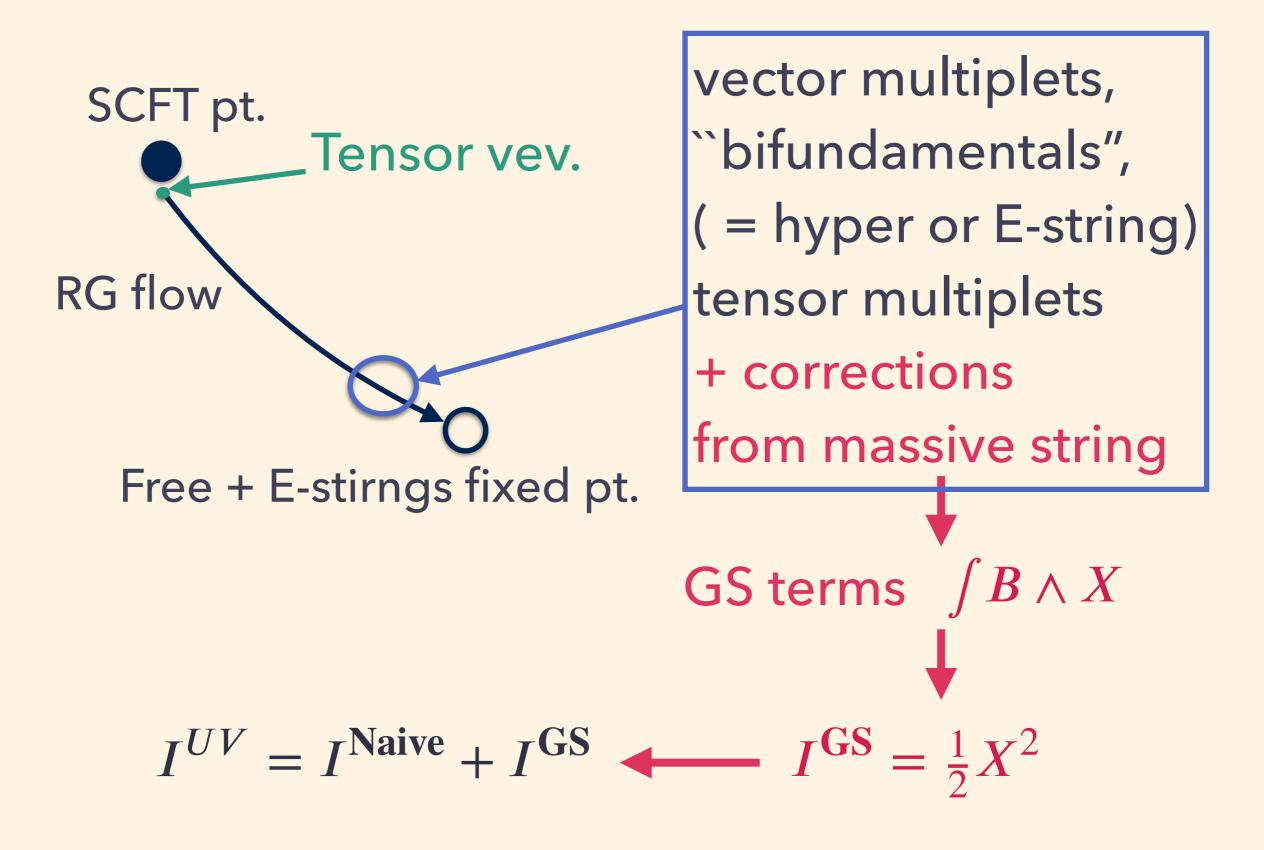
- End-of-the-world brane + ALE singularity
 + (multiple) M5 branes
 [Del-Zotto,Heckman,Tomasiello,Vafa '14]
- F-theory construction [Heckman,Morrison,Vafa '13]
- Lagrangian constructions
 [Smilga '07],[Samtleben, E. Sezgin, and R. Wimmer '11,'12]
 [Ho, Matsuo '14] for (2,0) theories

Anomaly polynomials

Anomaly in 6d SCFTs

- Anomaly polynomial 8-from I_8
 - $I_8 \supset (\operatorname{Tr} F_R^2)^2, \qquad SU(2)_R^4$ (Tr R²)², (Tr R⁴), grav.⁴ (Tr F_G^2)², G⁴ Tr F_R^2 Tr R², Tr F_R^2 Tr F_G^2, \cdots mixed
- Anomaly polynomial should exist even for non-perturbative SCFTs.

6d Green-Schwarz term

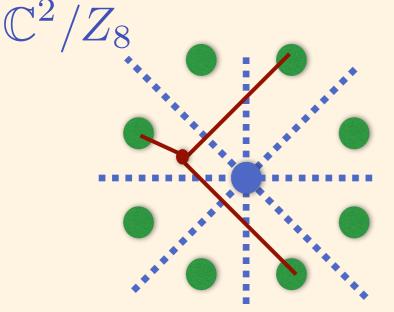

•
$$\int B \wedge X_4, X_4 \supset \operatorname{Tr} F_R^2, \operatorname{Tr} F_G^2, \operatorname{Tr} R^2$$

ſ

induces modified Bianchi identity $dH \propto X_4$ and additional anomaly $\delta I_8 = \frac{1}{2}X_4^2$ [Monnier '13]

 This contribution is important for calculating anomaly polynomial of 6d SCFTs.

Basic idea [Intrilligator '14],[KO,Shimizu,Tachikawa,Yonekura '14]



- Vector, tensor, hyper mult. and E-strings generate $I^{\text{Naive}} \supset (\text{Tr} F_{\text{gauge}}^2)^2, \text{Tr} F_{\text{gauge}}^2 \text{Tr} R^2,$ $\text{Tr} F_{\text{gauge}}^2 \text{Tr} F_R^2, \text{Tr} F_{\text{gauge}}^2 \text{Tr} F_{\text{flavor}}^2$
- Anomaly for E-strings are calculated from anomaly inflow: [KO,Shimizu,Tachikawa '14]
- Because the UV theory are superconformal, $I^{UV} = I^{\text{Naive}} + I^{\text{GS}}$ should not contain F_{gauge}

- Example: $I^{\text{Naive}} \supset -\alpha (\text{Tr}F_{\text{gauge}}^2)^2 \beta \text{Tr}F_{\text{gauge}}^2 \text{Tr}R^2$
- To cancel this by $I^{GS} = \frac{1}{2}X^2$ X should contain $X \supset \sqrt{2\alpha} \operatorname{Tr} F_{gauge} + \frac{\beta}{\sqrt{2\alpha}} \operatorname{Tr} R^2$
- We can fix all of the GS terms $\int B_i \wedge X^i$ in this manner. (If # of $X^i = \#$ of gauge fields)

• $I^{UV} = I^{\text{Naive}} + I^{\text{GS}}$: Do square completion!

- Result for Q M5's on Singularities: $I^{\rm UV} \supset \frac{Q^3 |\Gamma|^2}{96} ({\rm Tr} F_R^2)^2$
- The leading behavior can be understood from Higgs branch and M2 junction:

 Q^3 behavior ← M2 junction. $Q^3 |\Gamma|^3$ ways of suspending junction divided by Γ

M5 branes and mirrors

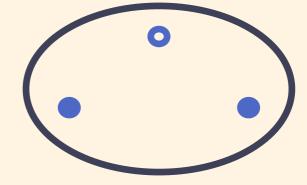
Torus compactifications

(on going with the same collaborators)

Torus compactifications

 What is the 4d theory of M5 branes on torus-compactified singularities?

$$\mathbb{R}^{1,3}$$
 T^2 \mathbb{R} \mathbb{C}^2/Γ M5 \circ \circ \circ


- Is that SCFT?
- Can we find candidates in Class S theories?
- How to check?

Known examples and Class S

- Single M5 on $\Gamma = A_k$ singularity \Rightarrow bifundamental both in 6d and 4d.
- Single M5 on $\Gamma = D_4$ singularity \Rightarrow Rank 1 E-sting theory in 6d
 - \Rightarrow Minahan-Nemeshansky E_8 theory in 4d

Known examples and Class S

- Single M5 on $\Gamma = A_k$ singularity \Rightarrow bifundamental both in 4d.
 - = Class S of type A_k def'ed by (

- : ``full" puncture (full symmetry)
- : ``simple" puncture (U(1) or no sym.)

Known examples and Class S

- Single M5 on $\Gamma = D_4$ singularity \Rightarrow Rank 1 E-sting theory in 6d
 - \Rightarrow Minahan-Nemeshansky E_8 theory in 4d

= Class S of type D_4 def'ed by

- : ``full" puncture (full symmetry)
- : ``simple" puncture (U(1) or no sym.)

Guess for *Q*=1

Single M5 on g-sing. $\times T^2$ without center of mass (``(G,G) conformal matter") $\stackrel{?}{=}$ Class S of type g def'ed by

- : ``full" puncture (full symmetry)
- : ``simple" puncture (U(1) or no sym.)

`` 4d conformal matter"

Checks

- Dim.s of Higgs/Coulomb branches matches
- The geometry of Higgs branch = \mathbb{C}^2/Γ_g
- With plausible assumption, we can calculate the conformal anomalies and flavor levels for one M5 on g-sing. ×T²
 ⇒ matches with the class S conjecture.

• M/IIB duality chain? Not so clear.

Conclusion

 The anomaly polynomials of 6d SCFTs can be calculated by adding tensor branch contributions and GS contributions.

 For ``6d (G,G) conformal matter", the candidate for the torus compactified theories can be found in the Class S theories.

Further directions

- Comactifications of 6d (1,0) SCFTs
 - 4d anomaly polynomials for T^2 compactified theories?
 - What and how the 4d theories are?
- 6d a-theorems?

Appendix

Tensor branch anomaly matching wo/ vector

- N=(2,0) and E-string theories : there is no vector in tensor branch theory
- We know 5d theories obtained by circle compactifications for those theories.
- In 5d coulomb branch corresponds to 6d tensor branch, we have U(1) vector A_i come from 6d self-dual tensor B_i and massive mode because of coulomb vev.

Tensor branch anomaly matching wo/ vector

- In 5d coulomb branch corresponds to 6d tensor branch, we have U(1) vector A_i come from 6d self-dual tensor B_i and massive mode because of coulomb vev.
- Those missive modes generates 5d CS terms $\int A_i \wedge X^i$, which is calculable. • This should come from 6d GS term $\int B_i \wedge X^i$