
AnomalyKiTS: Anomaly Detection Toolkit for Time Series

Dhaval Patel, Giridhar Ganapavarapu, Srideepika Jayaraman,
Shuxin Lin, Anuradha Bhamidipaty, Jayant Kalagnanam,

IBM Thomas J. Watson Research Center
Yorktown Heights, New York, USA, 10598

{pateldha@us., giridhar.ganapavarapu@, j.srideepika@, shuxin.lin@, anubham@us., jayant@us.}ibm.com

Abstract
This demo paper presents a design and implementation
of a system AnomalyKiTS for detecting anomalies from
time series data for the purpose of offering a broad range
of algorithms to the end user, with special focus on
unsupervised/semi-supervised learning. Given an input time
series, AnomalyKiTS provides four categories of model
building capabilities followed by an enrichment module that
helps to label anomaly. AnomalyKiTS also supports a wide
range of execution engines to meet the diverse need of
anomaly workloads such as Serveless for CPU intensive
work, GPU for deep-learning model training, etc.

Introduction
With wider adoption of Industry 4.0, many industrial appli-
cations are harvesting data from ongoing processes in real
time. The collected data are of increasingly wide range of
formats such as time series, images, alarms, quality inspec-
tion reports, etc. Among all these diverse data modalities,
time series is the most common data format across multiple
applications and has recently gained significant attention.
For example, our recent work in the time series domain in-
cludes AutoAI-TS (Shah et al. 2021), Smart-ML (Patel et al.
2020a), TransformerML (Zerveas et al. 2021), FLOps (Patel
et al. 2020b), etc.

Broadly, two types of time series data analysis toolkits are
developed in the literature: General purpose toolkits such as
sktime (Löning et al. 2019), pyFTS (Silva et al. 2018), tsdl
(Hyndman and Yang 2018. v0.1.0), tslearn (Tavenard et al.
2020), GluonTS (Alexandrov et al. 2020) etc, and purpose-
built toolkits such as Anomaly Detection toolkits (Zhao,
Nasrullah, and Li 2019; Ying et al. 2020; Ren et al. 2019;
Zhang, Nie, and Yuan 2020; Buda, Caglayan, and Assem
2018; Gao et al. 2020; Geiger et al. 2020; Lee, Lin, and Gran
2020; Bhatnagar et al. 2021), etc. The former one provides
a range of algorithms to the end user for quick exploration;
on the other hand, the latter one is tailored to support a spe-
cific usecase and is more rigid in the customization. We no-
ticed a recent surge in unsupervised learning based anomaly
toolkits. This is due to the fact that obtaining a label for su-
pervised learning in an automated and reliable manner is a
challenging task for time series data.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Although both types of system development aim to en-
able easy access to build anomaly solutions centered around
time series, current systems overload the user with a large
variety of options and APIs. Some form of standardization,
formal definition and automation of the anomaly task is re-
quired. Scikit-learn library (Buitinck, Louppe, and etl 2013)
has been popular among data scientists, but it is limited to
mostly tabular data. The sktime (tslearn) library extended
definition to support time series data but mainly concen-
trated on forecasting (classification) functionality. PyOD is
the popular outlier detection toolkit but lacks support for
time series data. Moreover, the data size and the nature of
anomaly varies from application to application, and the cur-
rent off-the-shelf toolkits do not cover all the usecases such
as Semi-supervised anomaly, Prediction Based unsupervised
anomaly, etc. In this demo paper, we present a design and
implementation of a system that enables data scientists and
AI practitioners to get a unified access to various anomaly
detection machinery for time series data.

AnomalyKiTS : System Overview
Figure 1 gives an overview of AnomalyKiTS’s layered ar-
chitecture. AnomalyKiTS is based on Sklearn compliant
standardized architecture, components and output schema.

Figure 1: Layered architecture of AnomalyKiTS

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

13209



Anomaly Operators. The bottom-most layer consists of
basic machine learning primitives such as Estimators, Trans-
formers, Outlier Detectors, Data Stationarizers, etc. These
components tend to perform one specific task/function and
are referred to as Operators. At present, we have imple-
mented 30+ Operators for anomaly related tasks along with
the components that are already available in other libraries.

Anomaly Pipelines. The second layer implements ad-
vance machine learning primitives in the form of an anomaly
pipeline that logically connects different components from
the lower layer. We introduced 4 types of anomaly pipelines:
• DeepAD
• RelationshipAD
• ReconstructAD
• WindowAD

These four pipelines cover a wide range of anomaly de-
tection approaches such as: DeepAD uses an ensemble of
time series forecasting models for anomaly detection (Buda,
Caglayan, and Assem 2018), whereas RelationshipAD is
based on the pair-wise relationship between variables for
anomaly detection (Zong et al. 2018; Liu et al. 2018). Apart
from generating the anomaly score in a unique way, each of
the pipelines provides an additional capability in the form
of “anomaly thresholding” to generate the anomaly labels
(+1 for normal sample and -1 for anomalous) and if possi-
ble the predicted contribution of an individual variable. The
pipeline supports two types of anomaly labeling methods:
Static and Dynamic.

Anomaly Workflow. The left side of the third layer is a
core data science workflow module and is inspired by the
fact that, the data scientist would be interested in explor-
ing multiple pipelines and picking the one that meets their
need. To simplify the multiple pipelines specification, we
adopted a Directed Acyclic Graph (DAG) based workflow
construction as discussed in detail (Shrivastava et al. 2019;
Patel et al. 2020a). Along with DAG, user can also config-
ure the parameters for each forecasting pipeline to conduct
hyper-parameter tuning.

Execution Engines. The right side of the third layer is
an execution engine for scalable workflow exploration. This
layer is an important module to meet the need of explor-
ing multiple pipelines and/or a single pipeline with a large
dataset in an efficient and scalable way. Compared to other
libraries, our system provides a more uniform access to mul-
tiple execution platforms such as Watson Machine Learning
for GPU based training, Spark and Serverless (Ray, Cloud
Function, Code Engine) for CPU intensive task level paral-
lelism, etc.

Anomaly Usecases. The top most layer is an application
layer that offers various pre-built industrial templates to
build reusable applications. In the case of un-supervised ex-
ploration, our system provides several ranking methods such
as EM Score and AL Score (Goix 2016) that do not require
explicit label information. In the case of semi-supervised ex-
ploration, the user provides a small amount of labeled data
for obtaining the rank of each pipeline in the Workflow.

AnomalyKiTS : Benchmark and Deployment
AnomalyKiTS is tested for various datasets ranging from
synthetically generated time series data (e.g., Argots) to
client engagement, and public sources (Geiger et al. 2020;
Wu and Keogh 2021). In the following Figure 2, we pro-
vided box plot of more that 10,000 experiments on various
Static anomaly thresholds. Briefly, we train various Win-
dowAD based anomaly detection algorithms, and then apply
different scoring method to obtain the anomaly label. The
generated anomaly label is compared with available ground
truth. We used “recall” of an algorithm as a ranking criteria.
X axis is average rank and Y-axis is various scoring methods
with different parameter settings. In this case, a parameter-
free “ostu” method turns out to be a winner.

Figure 2: Benchmark : 80+ public datasets

Service Deployment. AnomalyKiTS is deployed on IBM
API Hub1. Currently it supports two types of requests:
• Batch mode. scan the entire time series and detect the

anomaly from any where
• Train-Test mode. use the historical data as a training and

then detect anomaly in the most recent data

(a) Execution Time (b) Wait Time

Figure 3: Anomaly Service Testing on Code Engine

For each incoming request, Anomaly services obtain new
training resources (i.e., CPU/GPU) using Serverless Code
Engine or Watson Machine Learning. Figure 3 shows the
promptness of the service to handle homogeneous workload
of 43 incoming requests using IBM Code Engine. Each re-
quest was allocated 4 CPU with 16 GB RAM and the size of
the data varies up to 10k record and 5 features.

1https://developer.ibm.com/apis/catalog/ai4industry--
anomaly-detection-product/Introduction

13210



References
Alexandrov, A.; Benidis, K.; Bohlke-Schneider, M.;
Flunkert, V.; Gasthaus, J.; Januschowski, T.; Maddix,
D. C.; Rangapuram, S.; Salinas, D.; Schulz, J.; Stella, L.;
TÃ¼rkmen, A. C.; and Wang, Y. 2020. GluonTS: Proba-
bilistic and Neural Time Series Modeling in Python. Journal
of Machine Learning Research, 21(116): 1–6.
Bhatnagar, A.; Kassianik, P.; Liu, C.; Lan, T.; Yang, W.;
Cassius, R.; Sahoo, D.; Arpit, D.; Subramanian, S.; Woo,
G.; Saha, A.; Jagota, A. K.; Gopalakrishnan, G.; Singh,
M.; Krithika, K. C.; Maddineni, S.; Cho, D.; Zong, B.;
Zhou, Y.; Xiong, C.; Savarese, S.; Hoi, S.; and Wang, H.
2021. Merlion: A Machine Learning Library for Time Se-
ries. arXiv:2109.09265.
Buda, T. S.; Caglayan, B.; and Assem, H. 2018. DeepAD: A
Generic Framework Based on Deep Learning for Time Se-
ries Anomaly Detection. In Phung, D.; Tseng, V. S.; Webb,
G. I.; Ho, B.; Ganji, M.; and Rashidi, L., eds., Advances in
Knowledge Discovery and Data Mining, 577–588. Cham:
Springer International Publishing. ISBN 978-3-319-93034-
3.
Buitinck, L.; Louppe, G.; and etl, M. B. 2013. API design
for machine learning software: experiences from the scikit-
learn project. In ECML PKDD Workshop, 108–122.
Gao, J.; Song, X.; Wen, Q.; Wang, P.; Sun, L.; and Xu,
H. 2020. RobustTAD: Robust Time Series Anomaly De-
tection via Decomposition and Convolutional Neural Net-
works. arXiv:2002.09545.
Geiger, A.; Liu, D.; Alnegheimish, S.; Cuesta-Infante,
A.; and Veeramachaneni, K. 2020. TadGAN: Time Se-
ries Anomaly Detection Using Generative Adversarial Net-
works. In 2020 IEEE International Conference on Big Data
(Big Data), 33–43.
Goix, N. 2016. How to Evaluate the Quality of Unsuper-
vised Anomaly Detection Algorithms? arXiv:1607.01152.
Hyndman, R.; and Yang, Y. 2018. v0.1.0. tsdl: Time Series
Data Library.
Lee, M.-C.; Lin, J.-C.; and Gran, E. G. 2020. ReRe:
A Lightweight Real-time Ready-to-Go Anomaly Detection
Approach for Time Series. arXiv:2004.02319.
Liu, H.; Paffenroth, R. C.; Zou, J.; and Zhou, C. 2018.
Anomaly Detection via Graphical Lasso. arXiv:1811.04277.
Löning, M.; Bagnall, A.; Ganesh, S.; Kazakov, V.; Lines,
J.; and Király, F. J. 2019. sktime: A Unified Interface for
Machine Learning with Time Series. In Systems for ML
NeurIPS.
Patel, D.; Shrivastava, S.; Gifford, W.; Siegel, S.;
Kalagnanam, J.; and Reddy, C. 2020a. Smart-ML: A Sys-
tem for Machine Learning Model Exploration using Pipeline
Graph. In 2020 IEEE International Conference on Big Data
(Big Data), 1604–1613.
Patel, D.; Yousaf Shah, S.; Zhou, N.; Shrivastava, S.;
Iyengar, A.; Bhamidipaty, A.; and Kalagnanam, J. 2020b.
FLOps: On Learning Important Time Series Features for
Real-Valued Prediction. In 2020 IEEE International Con-
ference on Big Data (Big Data), 1624–1633.

Ren, H.; Xu, B.; Wang, Y.; Yi, C.; Huang, C.; Kou, X.;
Xing, T.; Yang, M.; Tong, J.; and Zhang, Q. 2019. Time-
Series Anomaly Detection Service at Microsoft. In Pro-
ceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, KDD ’19,
3009–3017. New York, NY, USA: Association for Comput-
ing Machinery. ISBN 9781450362016.
Shah, S. Y.; Patel, D.; Vu, L.; Dang, X.-H.; Chen, B.; Kirch-
ner, P.; Samulowitz, H.; Wood, D.; Bramble, G.; Gifford,
W. M.; Ganapavarapu, G.; Vaculin, R.; and Zerfos, P. 2021.
AutoAI-TS: AutoAI for Time Series Forecasting, 2584–2596.
Proceedings of the 2021 International Conference on Man-
agement of Data, SIGMOD.
Shrivastava, S.; Patel, D.; Gifford, W. M.; Siegel, S.; and
Kalagnanam, J. 2019. ThunderML: A Toolkit for Enabling
AI/ML Models on Cloud for Industry 4.0. In Miller, J.;
Stroulia, E.; Lee, K.; and Zhang, L.-J., eds., Web Services
– ICWS 2019, 163–180. Cham: Springer International Pub-
lishing. ISBN 978-3-030-23499-7.
Silva, P. C. L.; et al. 2018. pyFTS: Fuzzy Time Series for
Python.
Tavenard, R.; Faouzi, J.; Vandewiele, G.; Divo, F.; Androz,
G.; Holtz, C.; Payne, M.; Yurchak, R.; Rußwurm, M.; Ko-
lar, K.; and Woods, E. 2020. Tslearn, A Machine Learning
Toolkit for Time Series Data. Journal of Machine Learning
Research, 21(118): 1–6.
Wu, R.; and Keogh, E. J. 2021. Current Time Series
Anomaly Detection Benchmarks are Flawed and are Cre-
ating the Illusion of Progress. arXiv:2009.13807.
Ying, Y.; Duan, J.; Wang, C.; Wang, Y.; Huang, C.; and
Xu, B. 2020. Automated Model Selection for Time-Series
Anomaly Detection. CoRR, abs/2009.04395.
Zerveas, G.; Jayaraman, S.; Patel, D.; Bhamidipaty, A.; and
Eickhoff, C. 2021. A Transformer-Based Framework for
Multivariate Time Series Representation Learning. In Pro-
ceedings of the 27th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, KDD, 2114–2124.
Zhang, Z. Z.; Nie, K.; and Yuan, T. T. 2020. Moving Metric
Detection and Alerting System at eBay. arXiv:2004.02360.
Zhao, Y.; Nasrullah, Z.; and Li, Z. 2019. PyOD: A Python
Toolbox for Scalable Outlier Detection. Journal of Machine
Learning Research, 20(96): 1–7.
Zong, B.; Song, Q.; Min, M. R.; Cheng, W.; Lumezanu, C.;
Cho, D.; and Chen, H. 2018. Deep Autoencoding Gaussian
Mixture Model for Unsupervised Anomaly Detection. In
International Conference on Learning Representations.

13211


