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ABSTRACT
An organization makes a new release as new information become
available, releases a tailored view for each data request, releases
sensitive information and identifying information separately. The
availability of related releases sharpens the identification of indi-
viduals by a global quasi-identifier consisting of attributes from re-
lated releases. Since it is not an option to anonymize previously
released data, the current release must be anonymized to ensure
that a global quasi-identifier is not effective for identification. In
this paper, we study the sequential anonymization problem under
this assumption. A key question is how to anonymize the current
release so that it cannot be linked to previous releases yet remains
useful for its own release purpose. We introduce the lossy join, a
negative property in relational database design, as a way to hide
the join relationship among releases, and propose a scalable and
practical solution.

Categories and Subject Descriptors
H.2.7 [Database Administration]: [Security, integrity, and protec-
tion]; H.2.8 [Database Applications]: [Data mining]

General Terms
Algorithms, Performance, Security

Keywords
k-anonymity, privacy, sequential release, classification, generaliza-
tion

1. INTRODUCTION
The work on k-anonymity [16][17] addresses the problem of re-

ducing the risk of identifying individuals in a person-specific table.
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Typically, a set of identifying attributes in a table, called the quasi-
identifier or QID, is generalized to a less precise representation so
that each partition grouped by QID contains at least k records (i.e.,
persons). Hence, if some record is linked to an external source by
a QID value, so are at least k − 1 other records having the same
QID value, making it difficult to distinguish a particular individ-
ual. In this notion, the QID is restricted to the current table, and
the database is made anonymous to itself. In most scenarios, how-
ever, related data were released previously: an organization makes
a new release as new information becomes available, releases a
separate view for each data sharing purpose (such as classifying a
different target variable [6][23][5]), or makes separate releases for
personally-identifiable data (e.g., names) and sensitive data (e.g.,
DNA sequences) [11]. In such scenarios, the QID can be a combi-
nation of attributes from several releases, and the database must be
made anonymous to the combination of all releases thus far. The
example below illustrates this scenario.

1.1 Motivating Examples

Table 1: The join of T1 and T2

T1

Pid Name Job Class
1 Alice Banker c1
2 Alice Banker c1
3 Bob Clerk c2
4 Bob Driver c3
5 Cathy Engineer c4

T2

Pid Job Disease
1 Banker Cancer
2 Banker Cancer
3 Clerk HIV
4 Driver Cancer
5 Engineer HIV

The join on T1.Job = T2.Job
Pid Name Job Disease Class
1 Alice Banker Cancer c1
2 Alice Banker Cancer c1
3 Bob Clerk HIV c2
4 Bob Driver Cancer c3
5 Cathy Engineer HIV c4
- Alice Banker Cancer c1
- Alice Banker Cancer c1

EXAMPLE 1. Consider the data in Table 1. Pid is the person
identifier and is included only for discussion, not for release. Sup-
pose the data holder has previously released T2 and now wants to
release T1 for classification analysis of the Class column. Essen-
tially T1 and T2 are are two projection views of the patient records.
The data holder does not want Name to be linked to Disease
in the join of the two releases; in other words, the join should be
k-anonymous on {Name, Disease}. Below are several observa-
tions that motivate our approach.
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(1) Join sharpens identification: after the join, the attacker can
uniquely identify the individuals in the {Bob, HIV } group through
the combination {Name, Disease} because this group has size
1. When T1 and T2 are examined separately, both Bob group and
HIV group have size 2. (2) Join weakens identification: after the
join, the {Alice, Cancer} group has size 4 because the records
for different persons are matched (i.e., the last two records in the
join table). When T1 and T2 are examined separately, both Alice
group and Cancer group have smaller size. In the database termi-
nology, the join is lossy. Since the join attack depends on matching
the records for the same person, a lossy join can be used to combat
the join attack. (3) Join enables inferences across tables: the join
reveals the inference Alice → Cancer with 100% confidence for
the individuals in the Alice group.

This example illustrates a scenario of sequential release: T1 was
unknown when T2 was released, and T2, once released, cannot be
modified when T1 is considered for release. This scenario is differ-
ent from the view release in the literature [13][26][7] where both T2

and T1 are a part of a view and can be modified before the release,
which means more “rooms” to satisfy a privacy and information
requirement. In the sequential release, each release has its own in-
formation need and the join that enables a global identifier should
be prevented. In the view release, however, all tables in the view
serve the information need collectively, possibly through the join
of all tables.

One solution, suggested in [17], is to k-anonymize the current
release T1 on QID that is the set of all join attributes. Since a fu-
ture release may contain any attribute in T1, QID essentially needs
to contain all attributes in T1. Another solution, suggested in [19],
is generalizing T1 based on the previous T2 to ensure that no value
more specific than it appears in T2 would be released in T1. Both
solutions suffer from monotonically distorting the data in a later re-
lease. The third solution is releasing a “complete” cohort where all
potential releases are anonymized at one time, after which no ad-
ditional mechanism is required. This solution requires predicting
future releases. The “under-prediction” means no room for addi-
tional releases and the “over-prediction” means unnecessary data
distortion. Also, this solution does not accommodate the new data
added at a later time.

1.2 Contributions
We consider the sequential anonymization of the current release

T1 in the presence of a previous release T2, assuming that T1 and
T2 are projections of the same underlying table. This assumption
holds in all the scenarios that motivate this work: release new at-
tributes, release a separate set of columns for each data request, or
make separate releases for personally-identifiable columns and sen-
sitive columns. The release of T1 must satisfy a given information
requirement and privacy requirement. The information require-
ment could include such criteria as minimum classification error
[2][5][6][23] and minimum data distortion [16][17]. The privacy
requirement states that, even if the attacker joins T1 with T2, he/she
will not succeed in linking individuals to sensitive properties. We
formalize this requirement into limiting the linking between two
attribute sets X and Y over the join of T1 and T2. This privacy no-
tion, called (X, Y )-privacy, generalizes k-anonymity [16][17] and
sensitive inferences [3][21][22]. A formal definition will be given
in Section 3.

Our basic idea is generalizing the current release T1 so that the
join with the previous release T2 becomes lossy enough to disorient
the attacker. Essentially, a lossy join hides the true join relationship
to cripple a global quasi-identifier. We first show that the sequential
anonymization subsumes the k-anonymization, thus the optimal so-

lution is NP-hard. We present a greedy method for finding a min-
imally generalized T1. To ensure the minimal generalization, the
lossy join responds dynamically to each generalization step. There-
fore, one challenge is checking the privacy violation over such dy-
namic join because a lossy join can be extremely large. Another
challenge is pruning, as early as possible, unpromising generaliza-
tion steps that lead to privacy violation. To address these chal-
lenges, we present a top-down approach to progressively specialize
T1 starting from the most generalized state. It checks the privacy
violation without executing the join and prunes unpromising spe-
cialization based on a proven monotonicity of (X, Y )-privacy. We
demonstrate the usefulness of this approach on real life data sets.
Finally, we discuss the extension to more than one previous release.

2. RELATED WORK
Our major difference from previous works is that we consider se-

quential releases and a global quasi-identifier formed by attributes
from several releases. Previous works primarily considered a single
release. [1] [12] showed that the optimal k-anonymization is NP-
hard. Algorithms for k-anonymization include [8][16][17] for min-
imum distortion, and [2][5][6][23] for classification. Variations and
alternatives of k-anonymity were also studied. [9] proposed the no-
tion of multidimensional k-anonymity where generalization is over
multi-dimension-at-a-time. [10] proposed the l-diversity to address
the attacks based on the lack of diversity of sensitive properties.
[21][22] proposed to limit the confidence of inferring a sensitive
property for a group of individuals. [24] proposed some generaliza-
tion methods to simultaneously achieve k-anonymity and limit the
confidence. [25] proposed the notion of personalized anonymity.
All the above works considered a single release.

Several recent works measured information disclosure arising
from linking two or more tables. [13] suggested a measure on in-
formation disclosure by a set of views with respect to a secret view.
[4] studied whether a new view disclosed more information than the
existing views with respect to a secret view. Both works employed
a probability model to measure information disclosure, which is
different from the k-anonymity model. [7][26] presented a method
of detecting privacy violation by a view set over a base table. Since
both works only detect, but do not remove, a violation, whether the
tables are released sequentially or not is not an issue. [20] consid-
ered k-anonymization of the data owned by multiple parties under
the assumption that a record is identified by a common key shared
by all parties. In the sequential release scenario, this common key
assumption does not hold and the join attributes can be generalized
as part of the global quasi-identifier.

3. PROBLEM STATEMENTS
For a table T , Π(T ) and σ(T ) denote the projection and selec-

tion over T , att(T ) denotes the set of attributes in T , and |T | de-
notes the number of distinct records in T .

3.1 Privacy
We assume that X and Y are disjoint sets of attributes that de-

scribe individuals and sensitive properties in any order. An example
is X = {Name, Job} and Y = {Disease}. There are two ways
to limit the linking between X and Y .

DEFINITION 3.1 ((X, Y )-ANONYMITY). Let x be a value on
X . The anonymity of x wrt Y , denoted aY (x), is the number of
distinct values on Y that co-occur with x, i.e., |ΠY σx(T )|. If Y
is a key in T , aY (x), also written as a(x), is equal to the number
of records containing x. Let AY (X) = min{aY (x) | x ∈ X}.
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We say that T satisfies the (X, Y )-anonymity for some specified
integer k if AY (X) ≥ k.

In words, (X, Y )-anonymity states that each value on X is linked
to at least k distinct values on Y . The existing k-anonymity is the
special case where X serves QID and Y is a key in T . The next ex-
ample shows the usefulness of (X, Y )-anonymity where Y is not a
key in T and k-anonymity fails to provide the required anonymity.

EXAMPLE 2. Consider the table

Inpatient(Pid, Job, Zip, PoB, Test).

A record in the table represents that a patient identified by Pid
has Job, Zip, PoB (place of birth), and Test. In general, a pa-
tient can have several tests, thus several records. Since QID =
{Job, Zip, PoB} is not a key in the table, the k-anonymity on
QID fails to ensure that each value on QID is linked to at least k
(distinct) patients. For example, if each patient has at least 3 tests, it
is possible that the k records matching a value on QID may involve
no more than k/3 patients. With (X, Y )-anonymity, we can spec-
ify the anonymity wrt patients by letting X = {Job, Zip, PoB}
and Y = Pid, that is, each X group must be linked to at least k
distinct values on Pid. If X = {Job, Zip, PoB} and Y = Test,
each X group is required to be linked to at least k distinct tests.

Being linked to k persons or tests does not imply that the prob-
ability of being linked to any of them is 1/k if some person or test
occurs more frequently than others. Thus a large k does not nec-
essarily limit the linking probability. The (X, Y )-linkability below
addresses this issue.

DEFINITION 3.2 ((X, Y )-LINKABILITY). Let x be a value
on X and y be a value on Y . The linkability of x to y, denoted
ly(x), is the percentage of the records that contain both x and y
among those that contain x, i.e., a(y, x)/a(x). Let Ly(X) =
max{ly(x) | x ∈ X} and LY (X) = max{Ly(X) | y ∈ Y }.
We say that T satisfies the (X, Y )-linkability for some specified
real 0 < k ≤ 1 if LY (X) ≤ k.

In words, (X, Y )-linkability limits the confidence of inferring
a value on Y from a value on X . With X and Y describing in-
dividuals and sensitive properties, any such inference with a high
confidence is a privacy breach. Often, not all but some values y
on Y are sensitive, in which case Y can be replaced with a sub-
set of yi values on Y , written Y = {y1, · · · , yp}, and a different
threshold k can be specified for each yi. More generally, we can
allow multiple Yi, each representing a subset of values on a differ-
ent set of attributes, with Y being the union of all Yi. For example,
Y1 = {HIV } on Test and Y2 = {Banker} on Job. Such a
“value-level” specification provides a great flexibility essential for
minimizing the data distortion.

EXAMPLE 3. Suppose that (j, z, p) on X = {Job, Zip, PoB}
occurs with the HIV test in 9 records and occurs with the Diabetes
test in 1 record. The confidence of (j, z, p) → HIV is 90%. With
Y = Test, the (X, Y )-linkability states that no test can be in-
ferred from a value on X with a confidence higher than a given
threshold.

When no distinction is necessary, we use the term “(X, Y )-privacy”
to refer to either (X, Y )-anonymity or (X, Y )-linkability. The fol-
lowing corollary can be easily verified.

COROLLARY 3.1. Assume that X ⊆ X ′ and Y ′ ⊆ Y . For the
same threshold k, if (X ′, Y ′)-privacy is satisfied, (X, Y )-privacy
is satisfied.

3.2 Generalization/Specialization
One way to look at a (X, Y )-privacy is that Y serves the “refer-

ence point” with respect to which the privacy is measured. For ex-
ample, with Y = Test each test in Y serves a reference point, and
AY (X) measures the minimum number of tests associated with X ,
and LY (X) measures the maximum confidence of inferring a test
from X . To satisfy a (X, Y )-privacy, our approach is generalizing
X while fixing the reference point Y . We assume that, for each
categorical attribute in X , there is a pre-determined taxonomy tree
of values where leaf nodes represent domain values and a parent
node is a generalization of child nodes. The root is the most gen-
eralized value of the attribute, denoted ANY . Each generalization
replaces all child values with the parent value. We consider only
the generalization that forms a “cut” in a taxonomy tree, where a
cut contains exactly one value on every root-to-leaf path. The val-
ues in a cut can be on different levels of the taxonomy tree. Such
generalization is more general than the full-domain generalization
[8][16][17] where all generalized values must be on the same level
of the taxonomy tree.

A generalized table can be obtained by a sequence of specializa-
tions starting from the most generalized table. Each specialization
is denoted by v → {v1, · · · , vc}, where v is the parent value and
v1, · · · , vc are the child values of v. It replaces the value v in ev-
ery record containing v with the child value vi that is consistent
with the original domain value in the record. A specialization for a
continuous attribute has the form v → {v1, v2}, where v1 and v2

are two sub-intervals of the larger interval v. Instead of being pre-
determined, the splitting point of the two sub-intervals is chosen
on-the-fly to maximize information utility. More details on infor-
mation utility will be discussed in Section 5.2.

3.3 Sequential Releases
Consider a previously released table T2 and the current table T1,

where T2 and T1 are projections of the same underlying table and
contain some common attributes. T2 may have been generalized.
We want to generalize T1 to satisfy a given (X, Y )-privacy. To pre-
serve information, T1’s generalization is not necessarily based on
T2, that is, T1 may contain values more specific than in T2. Given
T1 and T2, the attacker may apply prior knowledge to match the
records in T1 and T2. Entity matching has been studied in database,
data mining, AI and Web communities for information integration,
natural language processing and Semantic Web. We cannot con-
sider a priori every possible way of matching. Our work primar-
ily considers the matching based on the following prior knowledge
available to both the data holder and the attacker: the schema in-
formation of T1 and T2, the taxonomies for categorical attributes,
and the following inclusion-exclusion principle for matching the
records. Assume that t1 ∈ T1 and t2 ∈ T2.

• Consistency Predicate: for every common categorial attribute A,
t1.A matches t2.A if they are on the same generalization path
in the taxonomy tree for A. Intuitively, this says that t1.A and
t2.A can possibly be generalized from the same domain value.
For example, Male matches Single Male. This predicate is
implicit in the taxonomies for categorical attributes.

• Inconsistency Predicate: for two distinct categorical attributes
T1.A and T2.B, t1.A matches t2.B only if t1.A and t2.B are
not semantically inconsistent according to the “common sense”.
This predicate excludes impossible matches. If not specified,
“not semantically inconsistent” is assumed. If two values are
semantically inconsistent, so are their specialized values. For
example, Male and Pregnant are semantically inconsistent,
so are Married Male and 6 Month Pregnant.
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We do not consider continuous attributes because their taxonomies
may be generated differently for T1 and T2. Both the data holder
and the attacker use these predicates to match records from T1 and
T2. The data holder can “catch up with” the attacker by incorpo-
rating the attacker’s knowledge into such “common sense”. We as-
sume that a match function tests whether (t1, t2) is a match. (t1, t2)
is a match if both predicates hold. The join of T1 and T2 is a ta-
ble on att(T1) ∪ att(T2) that contains all matches (t1, t2). The
join attributes refer to all attributes that occur in either predicates.
Note that every common attribute A has two columns T1.A and
T2.A in the join. The following observation says that generalizing
the join attributes produces more matches, thereby making the join
more lossy. Our approach exploits this property to hide the original
matches.

Observation 1. (Join preserving) If (t1, t2) is a match and if
t′1 is a generalization of t1, (t′1, t2) is a match. (Join relaxing) If
(t1, t2) is not a match and if t′1 is a generalization of t1 on some
join attribute A, (t′1, t2) is a match if and only if t′1.A and t2.A
are on the same generalization path and t′1.A is not semantically
inconsistent with any value in t2.

Consider a (X, Y )-privacy. We generalize T1 on the attributes
X∩att(T1), called the generalization attributes. Corollary 3.1 im-
plies that including more attributes in X makes the privacy require-
ment stronger. Observation 1 implies that including more join at-
tributes in X (for generalization) makes the join more lossy. There-
fore, from the privacy point of view it is a good practice to include
all join attributes in X for generalization. Moreover, if X contains
a common attribute A from T1 and T2, under our matching predi-
cate, one of T1.A and T2.A could be more specific (so reveal more
information) than the other. To ensure privacy, X should contain
both T1.A and T2.A in the (X, Y )-privacy specification.

DEFINITION 3.3 (SEQUENTIAL ANONYMIZATION). The data
holder has previously released a table T2 and wants to release the
next table T1, where T2 and T1 are projections of the same under-
lying table and contain some common attributes. The data holder
wants to ensure a (X, Y )-privacy on the join of T1 and T2. The
sequential anonymization is to generalize T1 on X ∩ att(T1) so
that the join of T1 and T2 satisfies the privacy requirement and T1

remains as useful as possible.

THEOREM 3.1. The sequential anonymization is at least as hard
as the k-anonymization problem.

Proof: The k-anonymization of T1 on QID is the special case of
sequential anonymization with (X, Y )-anonymity, where X is QID
and Y is a common key of T1 and T2 and the only join attribute.
In this case, the join trivially appends the attributes of T2 to T1

according to the common key, after which the appended attributes
are ignored.

4. MONOTONICITY OF PRIVACY
To generalize T1, we will specialize T1 starting from the most

generalized state. A main reason for this approach is the following
anti-monotonicity of (X, Y )-privacy with respect to specialization:
if (X, Y )-privacy is violated, it remains violated after a specializa-
tion. Therefore, we can stop further specialization whenever the
(X, Y )-privacy is violated for the first time. This is a highly de-
sirable property for pruning unpromising specialization. We first
show this property for a single table.

THEOREM 4.1. On a single table, the (X, Y )-privacy is anti-
monotone wrt specialization on X .

Proof: For (X, Y )-anonymity, it suffices to observe that a spe-
cialization on X always reduces the set of records that contain
a X value, therefore, reduces the set of Y values that co-occur
with a X value. For (X, Y )-linkability, suppose that a special-
ization v → {v1, · · · , vc} transforms a value x on X to the spe-
cialized values x1, · · · , xc on X . Following an idea in [21], if
ly(xi) < ly(x) for some xi, there must exist some xj such that
ly(xj) > ly(x) (otherwise, ly(x) < ly(x)). Hence, the specializa-
tion does not reduce LY (X).

On the join of T1 and T2, in general, (X, Y )-anonymity is not
anti-monotone wrt a specialization on X ∩ att(T1). To see this, let
T1(C, D) = {c1d3, c2d} and T2(D, Y ) = {d3y3, d3y2, d1y1},
where ci, di, yi are domain values and d is a generalized value of
d1 and d2. The join based on D contains 3 matches (c1d3, d3y2),
(c1d3, d3y3), (c2d, d1y1), and AY (X) = AY (c2dd1) = 1, where
X = {C, T1.D, T2.D}. After specializing the record c2d in T1

into c2d2, the join contains only two matches (c1d3, d3y2) and
(c1d3, d3y3), and AY (X) = aY (c1d3d3) = 2. Thus, AY (X)
increases after the specialization.

The above situation arises because the specialized record c2d2

matches no record in T2 or becomes dangling. However, this situa-
tion does not arise for the T1 and T2 encountered in our sequential
anonymization. We say that two tables are population-related if ev-
ery record in each table has at least one matching record in the other
table. Essentially, this property says that T1 and T2 are about the
same “population” and there is no dangling record. Clearly, if T1

and T2 are projections of the same underlying table, as assumed in
our problem setting, T1 and T2 are population-related. Observation
1 implies that generalizing T1 preserves the population-relatedness.

Observation 2. If T1 and T2 are population-related, so are they
after generalizing T1.

LEMMA 4.1. If T1 and T2 are population-related, AY (X) does
not increase after a specialization of T1 on X ∩ att(T1).

Proof: As in the first part of Theorem 4.1, a specialization always
reduces the set of Y values that co-occur with X values. From
Observation 2, X values are specialized but not dropped in the spe-
cialized join. Therefore, the minimization for AY (X) is over a set
of values in which each value is only reduced, but not dropped.

Now, we consider (X, Y )-linkability on the join of T1 and T2. It
is not immediately clear how a specialization on X ∩ att(T1) will
affect LY (X) because the specialization will reduce the matches,
therefore, both a(y, x) and a(x) in ly(x) = a(y, x)/a(x). The
next lemma shows that LY (X) does not decrease after a special-
ization on X ∩ att(T1).

LEMMA 4.2. If Y contains attributes from T1 or T2, but not
from both, LY (X) does not decrease after a specialization of T1

on the attributes X ∩ att(T1).

Proof: Theorem 4.1 has covered the specialization on a non-join
attribute. So we assume that the specialization is on a join attribute
in X1 = X ∩ att(T1), in particular, it specializes a value x1 on
X1 into x11, · · · , x1c. Let Ri be the set of T1 records containing
x1i after the specialization, 1 ≤ i ≤ c. We consider only non-
empty Ri’s. From Observation 2, some records in T2 will match
the records in Ri. Let x2i be a value on X2 = X ∩ att(T2)
in these matching records and let Si be the set of records in T2

containing x2i. Note that |Ri| 
= 0 and |Si| 
= 0. Let R =
R1 ∪ · · · ∪Rc. |R| =

∑
j |Rj |. Without loss of generality, assume

that ly(x11x21) ≥ ly(x1ix2i), where 1 ≤ i ≤ c and y is a Y value.
We claim that ly(x1x2i) ≤ ly(x11x21), which implies that the spe-
cialization does not decrease Ly(X), therefore, LY (X). The intu-
ition is that of Theorem 4.1 and the insight that the join preserves

Research Track Paper

417



the relative frequency of y in all matching records. Let us consider
two cases, depending on whether y is in T1 or T2.

Case 1: y is in T1. Let σi be the percentage of the records con-
taining y in Ri. Since all records in Ri match all records in Si,

ly(x1ix2i) = |Ri|σi|Si|
|Ri||Si| = σi.

From ly(x11x21) ≥ ly(x1ix2i), we have σ1 ≥ σi, 1 < i ≤ c.
From the join preserving property in Observation 1, all records in
R match all records in Si. So we have

ly(x1x2i) =
(
∑

j |Rj |σj)|Si|
|R||Si| =

∑
j |Rj|σj

|R| ≤ σ1
∑

j |Rj |
|R|

= σ1 = ly(x11x21).

Case 2: y is in T2. Let σi be the percentage of records containing
y in Si. Exactly as in Case 1, we can show ly(x1ix2i) = σi and
σ1 ≥ σi, where 1 < i ≤ c, all records in R match all records in
Si. Now,

ly(x1x2i) = |R||Si|σi
|R||Si| = σi ≤ σ1 = ly(x11x21).

COROLLARY 4.1. The (X, Y )-anonymity on the join of T1 and
T2 is anti-monotone wrt a specialization of T1 on X∩att(T1). As-
sume that Y contains attributes from either T1 or T2, but not both.
The (X, Y )-linkability on the join of T1 and T2 is anti-monotone
wrt a specialization of T1 on X ∩ att(T1).

COROLLARY 4.2. Let T1, T2 and (X, Y )-privacy be as in Corol-
lary 4.1. There exists a generalized T1 that satisfies the (X, Y )-
privacy if and only if the most generalized T1 does.

Remarks. Lemma 4.1 and Lemma 4.2 can be extended to several
previous releases T2, · · · , Tp after the join is so extended. Thus,
the anti-monotonicity of (X, Y )-privacy holds for one or more pre-
vious releases. Our extension in Section 7 makes use of this obser-
vation.

5. ALGORITHMS
We present the algorithm for generalizing T1 to satisfy the given

(X, Y )-privacy on the join of T1 and T2. We can first apply Corol-
lary 4.2 to test if this is possible, and below we assume it is. Let Xi

denote X ∩ att(Ti), Yi denote Y ∩ att(Ti), and Ji denote the join
attributes in Ti, where i = 1, 2.

5.1 Overview
The algorithm, called Top-Down Specialization for Sequential

Anonymization (TDS4SA), is given in Algorithm 1. The input con-
sists of T1, T2, the (X, Y )-privacy requirement, and the taxonomy
tree for each categorical attribute in X1. Starting from the most
generalized T1, the algorithm iteratively specializes the attributes
Aj in X1. T1 contains the current set of generalized records and
Cutj contains the current set of generalized values for Aj . In each
iteration, if some Cutj contains a “valid” candidate for specializa-
tion, it chooses the winner w that maximizes Score. A candidate
is valid if the join specialized by the candidate does not violate the
privacy requirement. The algorithm then updates Score(v) and
status for the candidates v in ∪Cutj . This process is repeated un-
til there is no more valid candidate. On termination, Corollary 4.1
implies that a further specialization produces no solution, so T1 is
a maximally specialized state satisfying the given privacy require-
ment.

Below, we focus on the three key steps in Lines 3 to 5.

Algorithm 1 Top-Down Specialization for Sequential Anonymiza-
tion
Input: T1, T2, a (X, Y )-privacy requirement, a taxonomy tree for
each categorical attribute in X1.
Output: a generalized T1 satisfying the privacy requirement.

1: generalize every value of Aj to ANYj where Aj ∈ X1;
2: while there is a valid candidate in ∪Cutj do
3: find the winner w of highest Score(w) from ∪Cutj ;
4: specialize w on T1 and remove w from ∪Cutj ;
5: update Score(v) and the valid status for all v in ∪Cutj ;
6: end while
7: output the generalized T1 and ∪Cutj ;

5.2 Score Metric
Score(v) evaluates the “goodness” of a specialization v for pre-

serving privacy and information. Each specialization gains some
“information”, InfoGain(v), and loses some “privacy”, PrivLoss(v).
We choose the specialization that maximizes the trade-off between
the gain of information gain and the loss of privacy, proposed in [5]:

Score(v) =
InfoGain(v)

PrivLoss(v) + 1
. (1)

InfoGain(v) is measured on T1 whereas PrivLoss(v) is mea-
sured on the join of T1 and T2.

Consider a specialization v → {v1, · · · , vc}. For a continuous
attribute, c = 2, and v1 and v2 represent the binary split of the in-
terval v that maximizes InfoGain(v). Before the specialization,
T1[v] denotes the set of generalized records in T1 that contain v.
After the specialization, T1[vi] denotes the set of records in T1 that
contain vi, 1 ≤ i ≤ c.

The choice of InfoGain(v) and PrivLoss(v) depends on the
information requirement and privacy requirement. If T1 is released
for classification on a specified class column, InfoGain(v) could
be the reduction of the class entropy [15], defined by

InfoGain(v) = Ent(T1[v]) −
∑

i

|T1[vi]|
|T1[v]| Ent(T1[vi]). (2)

Ent(R) is the class entropy of a set of records R following from
Shannon’s information theory [18]. The more dominating the ma-
jority class in R is, the smaller Ent(R) is and the smaller the clas-
sification error is. The computation depends only on the class fre-
quency and some count statistics of v and vi in T1[v] and T1[v1] ∪
· · · ∪ T1[vc]. Another choice of InfoGain(v) could be the no-
tion of distortion [17]. If generalizing a child value vi to the parent
value v costs one unit of distortion, the information gained by the
specialization v → {v1, · · · , vc} is

InfoGain(v) = |T1[v]|. (3)

The third choice can be the discernibility [2].
For (X, Y )-privacy, PrivLoss(v) is measured by the decrease

of AY (X) or the increase of LY (X) due to the specialization of
v: AY (X) − AY (Xv) for (X, Y )-anonymity, and LY (Xv) −
LY (X) for (X, Y )-linkability, where X and Xv represent the at-
tributes before and after specializing v respectively. Computing
PrivLoss(v) involves the count statistics about X and Y over the
join of T1 and T2, before and after the specialization of v, which
can be expensive.

Challenges. Though Algorithm 1 has a simple high level struc-
ture, several computational challenges must be resolved for an ef-
ficient implementation. First, each specialization of the winner w
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affects the matching of join, hence, the checking of the privacy re-
quirement (i.e., the status on Line 5). It is extremely expensive to
rejoin the two tables for each specialization performed. Second, it
is inefficient to “perform” every candidate specialization v just to
update Score(v) on Line 5 (note that AY (Xv) and LY (Xv) are
defined for the join assuming the specialization of v is performed).
Moreover, materializing the join is impractical because a lossy join
can be very large. A key contribution of this work is an efficient
solution that incrementally maintains some count statistics without
executing the join. We consider the two types of privacy separately.

5.3 (X,Y)-Linkability
Two expensive operations on performing the winner specializa-

tion w are accessing the records in T1 containing w and matching
the records in T1 with the records in T2. To support these opera-
tions efficiently, we organize the records in T1 and T2 into two tree
structures. Recall that X1 = X ∩ att(T1) and X2 = X ∩ att(T2),
and J1 and J2 denote the join attributes in T1 and T2.

Tree1 and Tree2. In Tree1, we partition the T1 records by the
attributes X1 and J1 − X1 in that order, one level per attribute.
Each root-to-leaf path represents a generalized record on X1 ∪ J1,
with the partition of the original records generalized being stored at
the leaf node. For each generalized value v in Cutj , Link[v] links
up all nodes for v at the attribute level of v. Therefore, Link[v]
provides a direct access to all T1 partitions generalized to v. Tree1
is updated upon performing the winner specialization w in each
iteration. In Tree2, we partition the T2 records by the attributes J2

and X2−J2 in that order. No specialization is performed on T2, so
Tree2 is static. Some “count statistics”, described below, are stored
for each partition in Tree1 and Tree2.

Specialize w (Line 4). This step performs the winner specializa-
tion w → {w1, · · · , wc}, similar to the TDS algorithm for a single
release in [5]. It follows Link[w], and for each partition P1 on the
link,

• Step 1: refine P1 into the specialized partitions for wi, link them
into Link[wi]. The specialized partitions remain on the other
links of P1. This step will scan the raw records in P1. In the
same scan, we also collect the following count statistics for each
(new) partition P on Link[wi], which will be used later to up-
date Score(v). Let P [u] denote the subset of P containing the
value u and |P | denote the size of P :

− |P |, |P [θ]|, |P [wij ]| and |P [wij , θ]| (for Equation (2)).
− |P | (for Equation (3)).
− |P [y]| and |P [wij , y]| if Y is in T1, or |P | and |P [wij ]| if

Y is in T2 (for updating LY (Xv)).

θ is a class label in the class column, y is a value on Y , and wij

is a child value of wi. These count statistics are stored together
with the partition P .

• Step 2: probe the matching partitions in Tree2. Match the last
|J1| attributes in P1 with the first |J2| attributes in Tree2. For
each matching node at the level |J2| in Tree2, scan all partitions
P2 below the node. If x is the value on X represented by the
pair (P1, P2), increment a(x) by |P1| × |P2|, increment a(x, y)
by |P1[y]| × |P2| if Y is in T1, or by |P1| × |P2[y]| if Y is in
T2, where y is a value on Y . We employ an “X-tree” to keep
a(x) and a(x, y) for the values x on X . In the X-tree, the x
values are partitioned by the attributes X , one level per attribute,
and are represented by leaf nodes. a(x) and a(x, y) are kept
at the leaf node for x. Note that ly(x) = a(x, y)/a(x) and
Ly(X) = max{ly(x)} over all the leaf nodes x in the X-tree.

Remarks. This step (Line 4) is the only time that raw records are
accessed in our algorithm.

Update Score(v) (Line 5). This step updates Score(v) for the
candidates v in ∪Cutj using the count statistics collected at the
partitions in Tree1 and a(x) and a(x, y) in the X-tree. The idea
is the same as [5], so we omit the details. An important point is
that this operation does not scan raw records, therefore, is efficient.
This step also updates the “valid” status: If LY (Xv) ≤ k, mark v
as “valid”.

Analysis. (1) The records in T1 and T2 are stored only once
in Tree1 and Tree2. For the static Tree2, once it is created, data
records can be discarded. (2) On specializing the winner w, Link[w]
provides a direct access to the records involved in T1 and Tree2
provides a direct access to the matching partitions in T2. Since the
matching is performed at the partition level, not the record level,
it scales up with the size of tables. (3) The cost of each iteration
has two parts. The first part involves scanning the affected parti-
tions on Link[w] for specializing w in Tree1 and maintaining the
count statistics. This is the only operation that accesses records.
The second part involves using the count statistics to update the
score and status of candidates. (4) In the whole computation, each
record in T1 is accessed at most |X ∩ att(T1)| × h times because
a record is accessed only if it is specialized on some attribute from
X ∩ att(T1), where h is the maximum height of the taxonomies
for the attributes in X ∩ att(T1).

5.4 (X,Y)-Anonymity
Like for (X, Y )-linkability, we use Tree1 and Tree2 to find the

matching partitions (P1, P2), and performing the winner special-
ization and updating Score(v) is similar to Section 5.3. But now,
we use the X-tree to update aY (x) for the values x on X , and
there is one important difference in the update of aY (x). Recall
that aY (x) is the number of distinct values y on Y associated with
the value x. Since the same (x, y) value may be found in more than
one matching (P1, P2) pair, we cannot simply sum up the count ex-
tracted from all pairs. Instead, we need to keep track of distinct Y
values for each x value to update aY (x). In general, this is a time-
consuming operation, e.g., requiring sorting/hashing/scanning. Be-
low, we identify several special but important cases in which aY (x)
can be updated efficiently.

Case 1: X contains all join attributes. In this case, J1 ⊆ X1

and J2 ⊆ X2, and the partitioning in Tree1 and Tree2 is based
on X1 and X2. Hence, each x value is contributed by exactly one
matching (P1, P2) pair and is inserted into the X-tree only once.
Therefore, there is no duplicate Y value for each x value. The
computation is as follows: for each matching (P1, P2) pair, com-
pute aY (x1x2) by aY1(x1) × aY2(x2), where xi’s (i = 1, 2) are
represented by Pi’s, and aYi(xi)’s are stored with the partitions Pi

for xi in Treei. aYi(xi) = 1 if Yi = ∅.
aY1(x1) and aY2(x2) are computed as follows. At the root of

Tree1, we sort all records in the partition according to Y1 (skip this
step if Y1 = ∅). For the value x1 represented by the root, aY1(x1)
is equal to the number of distinct Y1 values in the sorted list. On
performing the winner specialization w, as we follow Link[w] in
Tree1 to specialize each partition P1 on the link, we create the
sorted list of records for the specialized partitions of P1, which al-
lows to compute aY1(x11), · · · , aY1(x1c) for the specialized val-
ues x11, · · · , x1c. Note that these lists are automatically sorted
because their “parent” list is sorted. For the static Tree2, we can
collect aY2(x2) at each leaf node representing a value x2 on X2 in
an initialization and subsequently never need to modify it.

Case 2: Y2 is a key in T2. In this case, the matching pairs
(P1, P2) for the same value x do not share any common Y values;
therefore, there is no duplicate Y value for x. To see this, let Pairx

be the set of all matching pairs (P1, P2) representing x. Since all
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Table 2: Attributes for the Adult data set
Dept. Attribute Type Numerical Range

# Leaves # Levels

Taxation Age (Ag) Cont. 17 - 90
Capital-gain (Cg) Cont. 0 - 99999
Capital-loss (Cl) Cont. 0 - 4356
Education-num (En) Cont. 1 - 16
Final-weight (Fw) Cont. 13492 - 1490400
Hours-per-week (H) Cont. 1 - 99
Education (E) Cat. 16 5
Occupation (O) Cat. 14 3
Work-class (W) Cat. 8 5

Common Martial-status (M) Cat. 7 4
Relationship (Re) Cat. 6 3
Sex (S) Cat. 2 2

Immigra- Native-country (Nc) Cat. 40 5
tion Race (Ra) Cat. 5 3

P1’s in Pairx have the same X value (i.e., x), they must have
different join values on J1 (otherwise they should not be different
partitions). This means that each P2 occurs in at most one pair
(P1, P2) in Pairx. Since P2’s are disjoint and Y2 is a key of T2,
the pairs (P1, P2) in Pairx involve disjoint sets of Y2 values, there-
fore, disjoint sets of Y values. This property ensures that, for each
matching (P1, P2), aY (x) can be computed by aY1(x1)×aY2(x2),
where aY1(x1) and aY2(x2) are stored with P1 in Tree1 and P2 in
Tree2, as in Case 1. Note that aY2(x2) is equal to |P2| because Y2

is a key of T2.
Case 3: Y1 is a key of T1 and Y2 = ∅. In this case, each P1

in Tree1 involves |P1| distinct Y1 values and shares no common
Y values with other partitions. To update the X-tree, for each P1

and all pairs (P1, P2) representing the same value x on X , we set
aY (x) to |P1| only once. Note that Y2 = ∅ is required; otherwise
we have to check for duplicates of Y values.

Case 4: Y is a key of the join of T1 and T2. For example,
if Y = {K1, K2}, where Ki is a key in Ti. In this case, aY (x)
is equal to the number of records containing x in the join. Since
each pair (P1, P2) involves a disjoint set of records in the join, we
increment aY (x) by |P1| × |P2| for the value x represented by
(P1, P2).

6. EMPIRICAL STUDY
All experiments were conducted on an Intel Pentium IV 2.4GHz

PC with 1GB RAM. The data set is the publicly available Adult data
set from [14], previously used in [2][5][6][8]. There were 30,162
and 15,060 records without missing values for the pre-split training
set and testing set respectively. We combined them into one set for
generalization. Table 2 describes the attributes (Cat. for categori-
cal and Cont. for continuous) and the binary Class corresponding
to income levels ≤50K or >50K. We adopted the taxonomy trees
in [5]. The data is released to two users. Taxation Department (T1)
is interested in the first 12 attributes and the Class attribute. Immi-
gration Department (T2) is interested in the last 5 attributes. Both
are interested in the 3 common attributes in the middle, M , Re, S.
We created two versions of the data set (T1, T2), Set A and Set B.

Set A (categorical attributes only): This data set contains only
categorical attributes. T1 contains the Class attribute, the 3 cate-
gorical attributes for Taxation Department and the 3 common at-
tributes. T2 contains the 2 categorical attributes for Immigration
Department and the 3 common attributes. The top 6 ranked at-
tributes in T1 are M , Re, S, E, O, W in that order, ranked by

discriminative power on the Class attribute. The join attributes are
the common attributes M, Re, S. The rationale is that if join at-
tributes are not important, they should be removed first.

Set B (categorical and continuous attributes): In addition to
the categorical attributes as in Set A, T1 contains the additional 6
continuous attributes from Taxation Department. T2 is the same as
in Set A. The top 7 attributes in T1 are Cg, Ag, M , En, Re, H , S
in that order.

We consider two cost metrics. The “classification metric” is the
classification error on the generalized testing set of T1 where the
classifier for Class is built from the generalized training set of T1.
The “distortion metric” was proposed in [17]. Each time a cate-
gorical value is generalized to the parent value in a record in T1,
there is one unit of distortion. For a continuous attribute, if a value
v is generalized to an interval [a, b), there is (b − a)/(f2 − f1)
unit of distortion for a record containing v, where [f1, f2) is the
full range of the continuous attribute. The distortion is separately
computed for categorical attributes and continuous attributes. The
total distortion is normalized by the number of records.

6.1 Results for (X,Y)-Anonymity
We choose X so that (1) X contains the N top ranked attributes

in T1 for a specified N (to ensure that the generalization is per-
formed on important attributes), (2) X contains all join attributes
(thus Case 1 in Section 5.4), and (3) X contains all attributes in T2.
TopN refers to the (X, Y )-anonymity so chosen. Below, Ki is a
key in Ti, i = 1, 2. We compare the following error or distortion:

• XY E: the error produced by our method with Y = K1.

• XY E(row): the error produced by our method with Y ={K1,K2}.

• BLE: the error produced by the unmodified data.

• KAE: the error produced by k-anonymity on T1 with QID =
att(T1).

• RJE: the error produced by removing all join attributes from
T1.

• XY D: the distortion produced by our method with Y = K1.

• KAD: the distortion produced by k-anonymity on T1 with QID
= att(T1).

The “benefit” and “loss” refer to the error/distortion reduction and
increase by our method in comparison with another method.

Results for Set A. Figure 1 depicts KAD and XY D averaged
over the thresholds k = 40, 80, 120, 160, 200, with KAD−XY D
being the benefit compared to k-anonymization. For Top3 to Top6,
this benefit ranges from 1 to 7.16, which is significant consider-
ing KAD = 9.23. Figure 2 depicts the classification error av-
eraged over the thresholds k = 40, 80, 120, 160, 200. BLE =
17.5%, RJE = 22.3%, KAE = 18.4%. The main results are
summarized as follows.

XY E − BLE: this is the loss of our method compared to the
unmodified data. In all the cases tested, XY E − BLE is at most
0.9%, with the error on the unmodified data being BLE = 17.5%.
This small error increase, for a wide range of privacy requirements,
suggests that the information utility is preserved while anonymiz-
ing the database in the presence of previous releases.

XY E−XY E(row): this is the loss due to providing anonymiza-
tion wrt Y = {K1} compared to anonymization wrt Y = {K1, K2}.
For the same threshold k, since aK1(x) ≤ aK1,K2(x), the for-
mer requires more generalization than the latter. However, this ex-
periment shows that the loss is no more than 0.2%. On the other
hand, the anonymization with Y = {K1, K2} failed to provide the
anonymity wrt K1. For example, for Top6 and k = 200, 5.5% of
the X values linked to more than 200 values on {K1, K2} were ac-
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Figure 1: Distortion for (X, Y )-anonymity, Set A
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Figure 2: Errors for (X, Y )-anonymity, Set A

tually linked to less than 200 distinct values on K1. This problem
cannot be easily addressed by a larger threshold k on the number
of values for {K1, K2} because the number of K1 values involved
can be arbitrarily low.

RJE − XY E: this is the benefit over the removal of join at-
tributes. It ranges from 3.9% to 4.9%, which is significant consid-
ering the base line error BLE = 17.5%. The benefit could be more
significant if there are more join attributes. Since the attacker typi-
cally uses as many attributes as possible for join, simply removing
join attributes is not a good solution.

KAE − XY E: this is the benefit over the k-anonymization on
T1. For Set A, this benefit is not very significant. The reason is
that T1 contains only 6 attributes, many of which are included in
X to ensure that the generalization is not on trivial attributes. As
a result, the privacy requirement becomes somehow similar to the
standard k-anonymization on all attributes in T1. However, Set B
where T1 contains more attributes, a more significant benefit was
demonstrated.

Results for Set B. Figure 3 shows the distortion reduction com-
pared to the k-anonymization of T1, KAD(cat)−XY D(cat) for
categorical attributes, and KAD(cont)−XY D(cont) for contin-
uous attributes. For both types of attributes, the reduction is very
significant. This strongly supports that the lossy join achieves pri-
vacy with less data distortion. Figure 4 depicts the classification
error. BLE = 14.7%, RJE = 17.3%, and averaged KAE =
18.2%. The main results are summarized as follows.

XY E − BLE: this loss is averaged at 0.75%, a slight increase
of error compared to the unmodified data.

XY E − XY E(row): We observed no loss for achieving the
more restrictive anonymization wrt Y = {K1} compared to wrt
Y = {K1, K2}. We noted that both methods bias toward continu-
ous attributes and all join (categorical) attributes are fully general-
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Figure 4: Errors for (X, Y )-anonymity, Set B

ized to the top value ANY . In this case, every record in T1 matches
every record in T2, which makes aK1(x) and aK1,K2(x) equal.

RJE − XY E: this benefit is smaller than in Set A. For Set
B, join attributes are less critical due to the inclusion of continuous
attributes, and the removal of join attributes results in a more gentle
loss.

KAE − XY E: this benefit is more significant than in Set A.
The k-anonymization of T1 suffers from a more drastic general-
ization on QID that now contains both continuous and categorical
attributes in T1. As a result, our benefit of not generalizing all at-
tributes in T1 is more evident in this data set.
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Figure 5: Scalability for (X, Y )-anonymity (k = 40)

Scalability. For all the above experiments, our algorithm took
less than 30 seconds, including disk I/O operations. To further eval-
uate its scalability, we enlarged Set A as follows. Originally, both
T1 and T2 contain 45,222 records. For each original record r in a
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table Ti, we created α−1 “variations” of r, where α > 1 is the ex-
pansion scale. For each variation of r in Ti, we assigned a unique
identifier for Ki, randomly and uniformly selected q attributes from
Xi, i = 1, 2, randomly selected some values for these q attributes,
and inherited the other values from the original r. The rationale
of variations is to increase the number of partitions in Tree1 and
Tree2. The enlarged data set has α × 45, 222 records in each ta-
ble. We employed the Top6 (X, Y )-anonymity requirement with
Y = K1 and k = 40 in Set A. Other choices require less runtime.

Figure 5 depicts the runtime distribution in different phases of
our method for 200K to 1M data records in each table. Our method
spent 885 seconds in total to transform 1M records in T1. Approx-
imately 80% of the time was spent on the preprocessing phase, i.e.,
sorting records in T1 by K1 and building Tree2. Generalizing T1 to
satisfy the (X, Y )-anonymity took less than 4% of the total time.

6.2 Results for (X,Y)-Linkability
In this experiment, we focused on the classification error be-

cause the distortion due to (X, Y )-Linkability is not comparable
with the distortion due to k-anonymity. For Set A, we specified
four (X, Y )-linkability requirements, denoted Top1, Top2, Top3
and Top4, such that Y contains the top 1, 2, 3 and 4 categorical
attributes in T1. The rationale is simple: if Y does not contain
important attributes, removing all attributes in Y from T1 would
provide an immediate solution. We specified the 50% least fre-
quent (therefore, most vulnerable) values of each attribute in Y as
the sensitive properties y. X contains all the attributes in T1 not
in Y , except T2.Ra and T2.Nc because otherwise no privacy re-
quirement can be satisfied. For Set B, T1 and X contain the 6
continuous attributes, in addition to the categorical attributes in Set
A. Besides XY E, BLE and RJE in Section 6.1, RSE denotes
the error produced by removing all attributes in Y from T1.

Results for Set A. Figure 6 shows the averaged error over thresh-
olds k = 10%, 30%, 50%, 70%, 90%. BLE = 17.5% and RJE =
22.3%. XY E − BLE is no more than 0.7%, a small loss for a
wide range of (X, Y )-linkability requirement compared to the un-
modified data. RSE −XY E is the benefit of our method over the
removal of Y from T1. It varies from -0.2% to 5.6% and increases
as more attributes are included in Y . RJE − XY E spans from
4.1% to 4.5%, showing that our method better preserves informa-
tion than the removal of join attributes.

Results for Set B. Figure 7 depicts the averaged XY E and
RSE. BLE = 14.7% and RJE = 17.3%. XY E is 15.8%,
1.1% above BLE. RSE − XY E spans from 0.1% to 1.9%, and
RJE−XY E spans from 0.7% to 2.6%. These benefits are smaller
than in Set A because continuous attributes in Set B took away clas-
sification from categorical attributes. In other words, the removal
of join attributes or attributes in Y , all being categorical attributes,
causes less error. However, XY E consistently stayed below RSE
and RJE.

Scalability. Our algorithm took less than 20 seconds in Set A
and less than 450 seconds in Set B, including disk I/O operations.
The longest time was spent on Set B for (X, Y )-linkability because
the interval for a continuous attribute is typically split many times
before the maximum linkability is violated. For scalability eval-
uation, we used the Top1 requirement described above for Set A
and k = 90%. We enlarged Set A as described in Section 6.1, but
the values for Y are inherited from the original r instead of being
assigned unique identifiers. Figure 8 depicts the runtime distribu-
tion of our method with 200K to 1M data records in each table.
Our method spent 83 seconds to transform 1M records in T1. The
preprocessing phase, i.e., building Tree2, took less than 1 second.
Generalizing T1 to satisfy the (X, Y )-linkability took 25 seconds.
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6.3 Summary
The proposed method pays a small data penalty to achieve a wide

range of (X, Y )-privacy in the scenario of sequential releases. The
method is superior to several obvious candidates, k-anonymization,
removal of join attributes, and removal of sensitive attributes, which
do not respond dynamically to the (X, Y )-privacy specification and
the generalization of join. The experiments showed that the dynam-
ical response to the generalization of join helps achieve the speci-
fied privacy with less data distortion. The proposed index structure
is highly scalable for anonymizing large data sets.

7. EXTENSIONS
We now extend this approach to the general case that more than

one previously released tables T2, · · · , Tp. One solution is first
joining all previous releases T2, · · · , Tp into one “history table”
and then applying the proposed method for two releases. This his-
tory table is likely extremely large because all T2, · · · , Tp are some
generalized versions and there may be no join attributes between
them. A preferred solution should deal with all releases at their
original size. Our insight is that, as remarked at the end of Sec-
tion 4, Lemma 4.1-4.2 can be extended to this general case. Below,
we extend some definitions and modification required for the top-
down specialization in Section 5.

Let ti be a record in Ti. The Consistency Predicate states that,
for all releases Ti that have a common attribute A, ti.A’s are on
the same generalization path in the taxonomy tree for A. The In-
consistency Predicate states that for distinct attributes Ti.A and
Tj .B, ti.A and tj .A are not semantically inconsistent according
the “common sense”. (t1, t2, · · · , tp) is a match if it satisfies both
predicates. The join of T1, T2, · · · , Tp is a table that contains all
matches (t1, t2, · · · , tp). For a (X, Y )-privacy on the join, X and
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Y are disjoint subsets of att(T1) ∪ att(T2) ∪ · · · ∪ att(Tp) and if
X contains a common attribute A, X contains all Ti.A such that
Ti contains A.

DEFINITION 7.1 (SEQUENTIAL ANONYMIZATION). Suppose
that tables T2, · · · , Tp were previously released. The data holder
wants to release a table T1, but wants to ensure a (X, Y )-privacy
on the join of T1, T2, · · · , Tp. The sequential anonymization is to
generalize T1 on the attributes in X ∩ att(T1) such that the join
satisfies the privacy requirement and T1 remains as useful as possi-
ble.

We consider only (X, Y )-linkability for the top-down special-
ization; the extension for (X, Y )-anonymity can be similarly con-
sidered. For simplicity, we assume that previous releases T2, · · · , Tp

have a star join with T1: every Ti (i > 1) joins with T1. On per-
forming the winner specialization w, we use Treei, i = 1, · · · , p, to
probe matching partitions in Ti. Let Ji(j) denote the set of join at-
tributes in Ti with Tj . Let Xi = X∩att(Ti) and Yi = Y ∩att(Ti).
Tree1 is partitioned by X1∪J1(2)∪· · ·∪J1(p)). For i = 2, · · · , p,
Treei is partitioned by Ji(1) and Xi − Ji(1). As in Section 5,
we identify the partitions on Link[w] in Tree1. For each parti-
tion P1 on the link, we probe the matching partitions Pi in Treei
by matching Ji(1) and J1(i), 1 < i ≤ p. Let (P1, · · · , Pp) be
such that P1 matches Pi, 2 ≤ i ≤ p. If (P1, · · · , Pp) satisfies
both predicates, we update the X-tree for the value x represented
by (P1, · · · , Pp): increment a(x, y) by s1 × · · · × sp and incre-
ment a(x) by |P1| × · · · × |Pp|, where si = |Pi| if Yi = ∅, and
si = |Pi[yi]| if Yi 
= ∅.

8. CONCLUSION
Previous works on k-anonymization focused on a single release

of data. In reality, data is not released in one-shot, but released con-
tinuously to serve various information purposes. The availability
of related releases enables sharper identification attacks through a
global quasi-identifier made up of the attributes across releases. In
this paper, we studied the anonymization problem of the current re-
lease under this assumption, called sequential anonymization. We
extended the privacy notion to this case. We introduced the notion
of lossy join as a way to hide the join relationship among releases.
We addressed several computational challenges raised by the dy-
namic response to the generalization of join, and we presented a
scalable solution to the sequential anonymization problem.
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