
Anonymizing Unstructured Data

Rajeev Motwani

rajeev@cs.stanford.edu

Shubha U. Nabar

sunabar@cs.stanford.edu

Abstract

In this paper we consider the problem of anonymizing
datasets in which each individual is associated with a
set of items that constitute private information about
the individual. Illustrative datasets include market-
basket datasets and search engine query logs. We for-
malize the notion of k-anonymity for set-valued data
as a variant of the k-anonymity model for traditional
relational datasets. We define an optimization prob-
lem that arises from this definition of anonymity and
provide a constant factor approximation algorithm
for the same. We evaluate the efficacy of our algo-
rithms on the America Online query log dataset.

1 Introduction

Consider a dataset containing detailed information
about the private actions of individuals, e.g., a
market-basket dataset or a dataset of search engine
query logs. Market-basket datasets contain informa-
tion about items bought by individuals and search
engine query logs contain detailed information about
the queries posed by users and the results that were
clicked on. There is often a need to publish such data
for research purposes. Market-basket data, for in-
stance, could be used for association rule mining and
for the design and testing of recommendation sys-
tems. Query logs could be used to study patterns of
query refinement, develop algorithms for query sug-
gestion and improve the overall quality of search.

The publication of such data, however, poses a
challenge as far as the privacy of individual users is
concerned. Even after removing all personal charac-
teristics of individuals such as actual usernames and
ip addresses, the publication of such data is still sub-
ject to privacy attacks from attackers with partial
knowledge of the private actions of individuals. Our
work in this paper is motivated by two such recent
data releases and privacy attacks on them.

In August of 2006, America Online (AOL) released
a large portion of its search engine query logs for re-
search purposes. The dataset contained 20 million
queries posed by 650, 000 AOL users over a 3 month

period. Before releasing the data, AOL ran a sim-
plistic anonymization procedure wherein every user-
name was replaced by a random identifier. Despite
this basic protective measure, the New York Times [3]
demonstrated how the queries themselves could es-
sentially reveal the identities of users. For exam-
ple, user 4417749 revealed herself to be a resident
of Gwinnett County in Lilburn, GA, by querying for
businesses and services in the area. She further re-
vealed her last name by querying for relatives. There
were only 14 citizens with her last name in Gwin-
nett County, and the user was quickly revealed to be
Thelma Arnold, a 62 year old woman living in Geor-
gia. From this point on, researchers at the New York
Times could look at all of the queries posed by Ms.
Arnold over the 3 month period. The publication of
the query log data thus constituted a very serious
privacy breach.

In October of 2006, Netflix announced the $1-
million Netflix Prize for improving their movie rec-
ommendation system. As a part of the contest Net-
flix publicly released a dataset containing 100 mil-
lion movie ratings created by 500, 000 Netflix sub-
scribers over a period of 6 years. Once again, a
simplistic anonymization procedure of replacing user-
names with random identifiers was used prior to the
release. Nevertheless, it was shown that 84% of the
subscribers could be uniquely identified by an at-
tacker who knew 6 out of 8 movies that the subscriber
had rated outside of the top 500 [15].

The commonality between the AOL and Netflix
datasets is that each individual’s data is essentially a
set of items. Further this set of items is both identify-
ing of the individual as well as sensitive information
about the individual, and partial knowledge of this
set of items is used in the privacy attack. In the case
of the Netflix data (representative of market-basket
data), for instance, it is the set of movies that a sub-
scriber rated, and in the case of the AOL data, it is
the set of queries that a user posed, also called the
user session.

Motivated by these examples, as well as by the
very real need for releasing such datasets for research
purposes, we propose a notion of anonymity for set-

1

valued data in this paper. Informally, a dataset is
said to be k-anonymous if every individual’s “set of
items” is identical to those of at least k − 1 other in-
dividuals. So a user in the Netflix dataset would be
k-anonymous if at least k−1 other users rated exactly
the same set of movies; a user in the AOL query logs
would be k-anonymous if at least k − 1 other users
posed exactly the same set of queries.

One simple way to achieve k-anonymity for a
dataset would be to simply remove every item from
every user’s set, or to add every item from the uni-
verse of items to every single set. Naturally this
would radically distort the dataset rendering it use-
less for analyses. So instead, to preserve utility, we
seek to make the minimal number of changes possi-
ble to the dataset in order to achieve the anonymity
requirements. We provide O(k log k) and O(1)-
approximation algorithms for this optimization prob-
lem. Further we demonstrate how these algorithms
can be scaled for application to massive modern day
datasets such as the AOL query logs. To summarize
our contributions.

• We define the notion of k-anonymity for set-
valued data and introduce an optimization prob-
lem for minimally achieving k-anonymity in Sec-
tion 3.

• We provide algorithms with approximation fac-
tors of O(k log k) and O(1) for the optimization
problem in Section 4.

• In Section 5, we demonstrate how our algorithms
can be scaled for application to massive datasets
and evaluate them on the AOL logs .

Before proceeding further, note that illustrative
datasets used as motivating examples above also con-
tain further user information: time stamp informa-
tion for when a rating was given and the actual rating
itself in the Netflix data; time stamp information for
when a query was posed and the query result that was
clicked on in the AOL data. However in this paper,
we will ignore these other attributes of the datasets1

while noting that our techniques can be extended to
encompass these attributes as well.

We will next briefly review related work where
we distinguish our problem from the traditional k-
anonymity problem that has been studied for rela-
tional datasets.

1Indeed the privacy attacks mentioned in this section did
not involve knowledge of these other attributes.

2 Related Work

There has been considerable prior work on anonymiz-
ing traditional relational datasets such as medical
records. The most widely studied anonymity def-
initions for such datasets are k-anonymity [2, 14,
16, 18, 11] and its variants, l-diversity [13] and t-
closeness [12]. In all these definitions, certain non-
sensitive attributes of the dataset are initially deter-
mined to be “quasi-identifiers”. For instance, in a
dataset of medical records, attributes such as Date-
of-Birth, Gender and Zipcode would qualify as quasi-
identifiers since in combination they can be used to
uniquely identify 87% of the U.S. population [18].
A dataset is then said to be k-anonymous if every
record in the dataset is identical to at least k−1 other
records on its quasi-identifying attribute values. The
idea is that privacy is achieved if every individual is
hidden in a crowd of size at least k. Anonymization
algorithms achieve the k-anonymity requirement by
suppressing and generalizing the quasi-identifying at-
tribute values of records. A trivial way to achieve k-
anonymity would be to simply suppress every single
attribute value in the dataset, but this would com-
pletely destroy the utility of the dataset. Instead, in
order to preserve utility, the algorithms attempt to
achieve the anonymity requirement with a minimum
number of suppressions and generalizations.

The kinds of datasets that we consider in this pa-
per differ from traditional relational datasets in two
ways. First, each record in our scenario essentially
corresponds to a set of items. The database records
could thus be of variable length and high dimension-
ality. Further, there is no longer a clear distinction
between sensitive attributes and quasi identifiers. A
user’s queries are both sensitive information about
the user as well as identifying of the user himself.
Similarly, in the case of market-basket data, the set
of items bought by an individual are sensitive infor-
mation about the individual and at the same time
can be used to identify the individual. Our defini-
tion of anonymity and anonymization algorithms are
applicable for such set-valued data.

In [20] the authors study the problem of anonymiz-
ing market-basket data. They propose a notion of
anonymity similar to k-anonymity and propose gen-
eralization algorithms to achieve the anonymity re-
quirements. In contrast, the techniques we propose
consider additions and deletions to the dataset in-
stead of generalizations, and further, we demonstrate
applicability of our algorithms to search engine query
log data as well.

With regards to search engine query logs, there
has been work on identifying privacy attacks both

2

on users [10] as well as on companies whose websites
appear in query results and get clicked on [17]. We do
not consider the latter kind of privacy attack in this
paper. [10] considers an anonymization procedure
wherein keywords in queries are replaced by secure
hashes. The authors show that such a procedure is
susceptible to statistical attacks on the hashed key-
words, leading to privacy breaches. There has also
been work on defending against privacy attacks on
users in [1]. This line of work considers heuristics
such as the removal of infrequent queries and devel-
ops methods to apply such techniques on the fly as
new queries are posed. In contrast, we consider a
static scenario wherein a search engine would like to
publicly release an existing set of query logs.

3 Definitions

Let D = {S1, . . . , Sn} be a dataset containing n

records. Each record Si is a set of items. For-
mally Si is a non-empty subset of a universe of items,
U = {e1, e2, . . . , em}. We can then define an anony-
mous dataset as follows.

Definition 1 (k-Anonymity for Set-Valued Data).
We say that D is k-anonymous if every record Si ∈ D

is identical to at least k − 1 other records.

Given this definition, we can now define an opti-
mization problem that asks for the minimum number
of transformations to be made to a dataset to obtain
an anonymized dataset.

Definition 2 (The k-Anonymization Problem
for Set-Valued Data). Given a dataset D =
{S1, . . . , Sn}, find the minimum number of items
that need to be added to or deleted from the sets
S1, . . . , Sn to ensure that the resulting dataset D′ is
k-anonymous.

We illustrate the k-anonymization problem with an
example.

Example 1. Consider the dataset in Figure 1(a).
The dataset in Figure 1(b) represents a 2-anonymous
transformation that is obtained by making 2 additions
and 1 deletion. The items e3 and e2 are added to
records S2 and S3 respectively while the item e6 is
deleted from record S4. The resulting dataset con-
sists of two 2-anonymous groups: {S1, S2, S3} and
{S4, S5}.

As a more concrete example, in the case of market-
basket data, the dataset consists of records, where
each record is a basket of items purchased by an indi-
vidual. The k-anonymization problem then is to add

ID Contents
S1 {e1, e2, e3}
S2 {e1, e2}
S3 {e1, e3}
S4 {e4, e5, e6}
S5 {e4, e5}

(a) Original Dataset

ID Contents
S1 {e1, e2, e3}
S2 {e1, e2, e3}
S3 {e1, e2, e3}
S4 {e4, e5}
S5 {e4, e5}

(b) 2-Anonymous
Transformation

Figure 1: 2-Anonymization

or delete items to individuals’ baskets so that every
basket is identical to at least k − 1 other baskets.

In the case of search engine query logs, the records
correspond to user sessions. Instead of treating each
user session as a set of queries, we relax our problem
and treat each user session as a set of query terms
or keywords. See Section 5 for the details. The k-
anonymization problem then becomes one of adding
or deleting keywords to or from user sessions to en-
sure that each user session becomes identical to at
least k − 1 other user sessions. Since no two user
sessions are likely to be similar on all the queries,
we consider a slightly modified problem in our ex-
periments. Each user session is first separated into
“topic-based” threads, and our goal becomes one of
anonymizing these threads instead of the original ses-
sions. The result is an increase in the utility of the
released dataset at little cost to privacy. Again, Sec-
tion 5 elaborates on the details.

More generally, the dataset can be thought
of as a bipartite graph, with sets (user ses-
sions/baskets/individuals) represented as nodes on
the left hand side and items of the universe (keywords
searched for/items purchased/movies rated) as nodes
on the right hand side. The k-anonymization problem
then is to add or delete edges in the bipartite graph
so that every node on the left hand side is identical
to at least k − 1 other nodes.

Depending on the application, it may make sense
to restrict the set of permissible operations to only
additions or only deletions, however in this paper we
consider the most general version of the problem that
permits both.

4 Approximation Algorithms

Given these definitions, we are now ready to devise
algorithms for optimally achieving k-anonymity. We
first draw connections between the k-anonymization
problem for set-valued data and other optimization
problems that have previously been studied in litera-
ture, namely, the suppression-based k-anonymization
problem for relational data and the load-balanced fa-

3

ID e1 e2 e3 e4 e5 e6

S1 1 1 1 0 0 0
S2 1 1 0 0 0 0
S3 1 0 1 0 0 0
S4 0 0 0 1 1 1
S5 0 0 0 1 1 0

Figure 2: Data set from Figure 1(a) as a relational
dataset

cility location problem. The reductions to these prob-
lems automatically give us the approximation algo-
rithms we desire. In what follows we do not describe
the algorithms themselves due to space constraints,
rather only the reductions. The algorithms can be
found in [14, 2, 16, 6, 9, 19].

A natural question that arises is whether tradi-
tional k-anonymity algorithms that involve suppres-
sions and generalizations can be used for the k-
anonymization problem for set-valued data as defined
in Section 1. To this end, we first translate the set-
valued dataset to a traditional relational dataset.

4.0.1 Transforming D to RD

A dataset D = {S1, . . . , Sn} can be transformed to a
traditional relational dataset RD by creating a binary
attribute for every item ei in the universe and a tuple
for every set Si. Each tuple will then be a vector in
{0, 1}m. The 1’s correspond to items in the universe
that a set contains and the 0’s correspond to those
that it does not2. For example, the dataset from
Figure 1(a) translates to the dataset in Figure 2.

The k-anonymization problem over D now trans-
lates to the following problem over RD:

Definition 3 (k-Anonymization via Flips). Given a
dataset RD over a binary alphabet {0, 1}, flip as few
0’s to 1’s and 1’s to 0’s in RD as possible so that
every tuple is identical to at least k − 1 other tuples.

It is trivial to see that there is a one-to-one cor-
respondence between feasible solutions for the k-
anonymization problem over D and the flip-based k-
anonymization problem over RD.

Proposition 1. Any feasible solution, Sflip, to the
flip-based k-anonymization problem over RD can be
converted to a feasible solution, S±, of the same cost

2Note that at no point do our approximation algorithms
ever explicitly construct these bit vectors. Rather they operate
directly on the set representations of the tuples, computing
intersections of pairs of sets. The algorithms therefore scale
with the maximum set size rather than m. The bit vector
representations have only been used here for ease of exposition.

for the k-anonymization problem over D and vice
versa.

Proof Sketch. For every 0 that is flipped to a 1
in Sflip, simply add the corresponding item to the
corresponding set in S±, and for every 1 that is
flipped to a 0, delete the item from the set.

Now the flip-based k-anonymization problem can
be solved using suppression-based k-anonymization
techniques for traditional relational datasets studied
in [14, 2, 16]. The problem studied here essentially
boils down to the following.

Definition 4 (k-Anonymization via Suppressions).
Given a dataset RD over a binary alphabet {0, 1},
what are the minimum number of 0′s and 1′s in RD

that need to be converted to *’s to ensure that every
tuple is identical to at least k − 1 other tuples.

Now it is easy to see that the following holds.

Proposition 2. Any feasible solution S∗ to the
suppression-based k-anonymization problem can be
converted to a feasible flip-based solution Sflip using
Algorithm 1.

Algorithm 1 Converting S∗ to Sflip

1: //input: RD, S∗

2: for every k-anon group of tuples G in S∗ do

3: for every column C do

4: //CG = C values for rows in G in RD

5: if number of 1’s in CG > number of 0’s then

6: flip the 0’s in CG to 1’s
7: else

8: flip the 1’s in CG to 0’s
9: end if

10: end for

11: end for

The algorithm essentially takes every k-anonymous
group of tuples in S∗. Then for any column in the
group that is suppressed (*ed out), it replaces the
column for that group entirely with 1’s or entirely
with 0’s depending on which action would involve a
fewer number of flips in the original dataset RD.

Example 2. Figure 3 shows an example of an orig-
inal dataset, a 2-anonymous dataset S∗ obtained via
suppressions, and a flip-based 2-anonymous dataset
Sflip obtained by applying Algorithm 1 to S∗. In
both the solutions, the two 2-anonymous groups are
{S1, S4, S5} and {S2, S3, S6}.

Now we can show the following about Algorithm 1.

4

ID e1 e2 e3

S1 1 1 0
S2 0 0 1
S3 1 0 1
S4 1 0 0
S5 1 0 0
S6 1 0 1
(a) Original dataset

ID e1 e2 e3

S1 1 * 0
S2 * 0 1
S3 * 0 1
S4 1 * 0
S5 1 * 0
S6 * 0 1

(b) S∗

ID e1 e2 e3

S1 1 0 0
S2 1 0 1
S3 1 0 1
S4 1 0 0
S5 1 0 0
S6 1 0 1

(c) Sflip

Figure 3: Sflip is obtained from S∗ via Algorithm 1

Theorem 1. For a given dataset RD, let the cost
of a feasible solution S∗ to the suppression-based k-
anonymization problem be within a factor α of the
cost of the optimal solution. Then the cost of Sflip

obtained by applying Algorithm 1 to S∗ is within a
factor of O(kα) of the cost of the optimal solution
for the flip-based k-anonymization problem.

Proof. Let OPT∗ and OPTflip be the optimal so-
lutions to the suppression-based and flip-based k-
anonymization problems over RD respectively. Then
it is easy to see that Cost(OPT∗) ≤ (2k −
1)Cost(OPTflip). This is because every k-anonymous
group of tuples in OPTflip consists of at most 2k− 1
tuples. Further, this group can be converted to a k-
anonymous group obtained by suppressions by *ing
out any column that contains a flip (essentially the
reverse of Algorithm 1).

It is also easy to see that the cost of any solution
Sflip obtained by applying Algorithm 1 to a solution
S∗ is less than the cost of S∗. This gives us the fol-
lowing set of inequalities and our desired result.

Cost(Sflip) ≤ Cost(S∗) ≤ αCost(OPT∗) ≤ α(2k −
1)Cost(OPTflip)

The best possible suppression-based k-
anonymization algorithm thus gives us a good
flip-based anonymization algorithm through the
application of Algorithm 1. Since the suppression-
based algorithm from [16] has an approximation ratio
of O(log k), Theorem 1 together with Proposition 1
gives us the following result.

Corollary 1. There exists an O(k log k)-
approximation algorithm to the k-anonymization

problem for set-valued data.

The suppression algorithm from [16] essentially
considers all possible partitions of the dataset into
k-anonymous groups and chooses a good one using a
set-cover type greedy algorithm.

The translation of D to RD also enables the insight
that the k-anonymization problem over set-valued
data is essentially a clustering problem. Each set can
be viewed as vector in {0, 1}m. The optimal solution
to the following clustering problem then gives us an
optimal solution to the k-anonymization problem for
set-valued data.

Definition 5 (The k-Group Clustering Problem).
Given a set of points in {0, 1}m, cluster the points
into groups of size at least k and assign cluster centers
in {0, 1}m so that the sum of the Hamming distances
of the points to their cluster centers is minimized.

The following proposition tells us that there is
a one-to-one correspondence between feasible solu-
tions to the k-group clustering problem and the k-
anonymization problem for set-valued data.

Proposition 3. Given a solution, Sgroup, to the
k-group clustering problem over a dataset RD, we
can obtain a solution S± of the same cost to the k-
anonymization problem over D and vice versa.

Proof Sketch. For every cluster in Sgroup, create
a k-anonymous group of the sets corresponding to
the cluster points in S±. k-anonymity is achieved
by adding or deleting items as necessary so that
every set in the group becomes identical to the set
corresponding to the cluster center. The sum of the
Hamming distances of points to their cluster centers
in Sgroup thus corresponds to the total number
of additions and deletions of items to obtain the
solution S±.

Given Proposition 3, we can now focus on solving
the k-group clustering problem from here on. In this
regard, the following result tells us that it suffices to
consider potential cluster centers from amongst the
data points themselves.

Theorem 2. The cost of the optimal solution to
the k-group clustering problem when the cluster cen-
ters are chosen from amongst the set of data points
themselves is at most twice the cost of the optimal
solution to the k-group clustering problem when the
cluster centers are allowed to be arbitrary points in
{0, 1}m.

Proof. Let OPT be the optimal solution to the k-
group clustering problem when the cluster centers are

5

allowed to be arbitrary points in {0, 1}m. Now con-
sider a solution Srand that maintains the same cluster
groups as OPT , but replaces each cluster center with
a randomly chosen data point from within the cluster.
The expected cost of this solution is given below.

E[Cost(Srand)] =
∑

G∈G

∑

C∈C

2NCG

1
NCG

0

NCG

1
+ NCG

0

Here G is the set of all clusters in Srand (which is
the same as the set of clusters in OPT). C is the
columns/dimensions of the dataset RD. NCG

1
and

NCG

0
are the number of 1’s and number of 0’s respec-

tively that the points in a cluster G have in column
C. The cost of the optimal solution on the other hand
is given by

Cost(OPT) =
∑

G∈G

∑

C∈C

min(NCG

1
, NCG

0
).

By simple algebraic manipulation, it is easy to see
that

E[Cost(Srand)] ≤ 2Cost(OPT).

Since the expected cost of Srand is less than twice
the cost of OPT , there must exist some clustering
solution where the cluster centers are chosen from
the data points themselves whose cost is less than
twice the cost of OPT . This completes the proof of
the theorem.

Theorem 2 considerably simplifies the clustering
problem since there is now only a linear number of
potential cluster centers that need be considered (as
opposed to 2m). We can now frame this modified
k-group clustering problem as an integer program.

min
∑

i,j xijdij

s.t xij ≤ yj ∀ i, j
∑

i xij ≥ kyj ∀ j

xij , yj ∈ {0, 1} ∀ i, j

Here yj is an indicator variable that indicates
whether or not data point Sj is chosen as a clus-
ter center. xij is an indicator variable that indicates
whether or not data point Si is assigned to cluster
center Sj and dij is the Hamming distance between
data points Si and Sj . This integer programming for-
mulation is exactly equivalent to the load-balanced
facility location problem studied in [6, 9, 19]. The
cluster centers can be thought of as facilities, and the
data points as demand points. The task then is to
open facilities and assign demand points to opened

facilities so that the sum of the distances to the fa-
cilities is minimized and every facility has at least
k demand points assigned to it. The algorithms for
this problem work by solving a modified instance of
a regular facility location problem (without the load
balancing constraints), and then grouping together
facilities that have fewer than k demand points as-
signed to them. The result from [19] in conjunction
with Theorem 2 and Proposition 3, gives us the fol-
lowing result.

Theorem 3. There exists an O(1)-approximation
algorithm for the k-anonymization problem for set-
valued data.

To reemphasize the earlier footnote, the approxi-
mation algorithms for suppression-based anonymiza-
tion or load-balanced facility location never need to
explicitly compute and operate on the bit vector rep-
resentations of the records. They can operate directly
on the set representations, computing distances be-
tween pairs of sets. Algorithm 1 need not operate on
the bit-vector representations either. It can simply
take every k-group of sets and add every majority
item in the group to all the sets in the group, while
deleting other items.

5 Experiments

We experimentally evaluated the proposed
anonymization techniques3 on the AOL query
log dataset. Recall (Definition 1) that in this dataset
records correspond to user sessions and items corre-
spond to the query terms/keywords. As mentioned
earlier, the query log dataset also contains other
attributes that we ignore for the purposes of this
paper. Our goal then is to add or delete keywords
from user sessions so that every session becomes
identical to at least k − 1 others.

The anonymization algorithms from Section 4 can-
not be directly applied to the AOL dataset for several
reasons: (1) No two users in the dataset are likely to
be similar on all their queries since each user ses-
sion is fairly large, representing 3 months of queries.
The algorithms when directly applied to the user ses-
sions would thus result in a large number of addi-
tions and deletions. (2) The dataset consists of mil-
lions of users. The algorithms from Section 4 have a
quadratic running time and therefore cannot be prac-
tically applied to such real world datasets directly.
And (3) Different keywords from different users could
often be misspellings of each other or derivations from

3The suppression algorithm from [2] followed by Algo-
rithm 1, and the clustering algorithm from [9].

6

a common stem. The conditions for considering two
user sessions to be “identical” thus need to be relaxed.

We describe below the steps we took to overcome
these three problems.

5.1 Separating User Sessions into

Threads

To deal with the issue of large user sessions, we con-
sidered a slightly modified problem definition: Each
user session was first divided into smaller threads and
a different random identifier was assigned to each
thread. We then considered the anonymization prob-
lem over these threads as opposed to the original ses-
sions. Each user thread was treated as a set of key-
words and our goal was modified to add or delete
keywords from user threads so that every user thread
became identical to threads from at least k − 1 other
distinct users.

One trivial way to divide sessions into threads is
to treat every single query from a user as a thread of
its own and assign a random identifier to it. However
this would render the data nearly useless for many
forms of analysis (e.g., studying patterns of query
refinement). Instead “topic-based” threads were de-
termined on the basis of the similarity of constituent
queries. For this purpose we employed two simple
measures to determine query similiarity:

• Edit distance: Two queries were deemed similar
if the edit distance between them was less than
a threshold.

• Overlapping result sets: Two queries were
deemed similar if the result sets returned for each
query by a search engine had a large overlap in
the top 50 results.

Using these similarity measures, each user session
was separated into multiple threads: Queries in a user
session were considered in the order of their time
stamps. A query that was similar to one seen be-
fore was assigned the same identifier as the previous
query. A query that was very different from any of
the previously seen queries was assigned a new iden-
tifier. This was followed by another round where con-
secutive threads that contained similar queries were
collapsed and so on. This algorithm for determining
threads was run on a random sample of ∼ 82K users
who posed a total of ∼ 412K queries. The 82K user
sessions were split into ∼ 165K threads. Each thread
had on average 2.55 unique keywords.

There may of course exist more sophisticated
techniques for separating sessions into topic-based
threads, however this is not the focus in this paper.

Note that the shift in goal from anonymizing sessions
to anonymizing threads, enhances the utility of the
released dataset (anonymizing entire sessions would
require far too many additions and deletions), with-
out affecting privacy too much. In fact, as we shall
see in Section 5.4, the separation into threads itself
helps in anonymization.

5.2 Pre-clustering User Threads

As mentioned earlier, the algorithms from Section 4
have a quadratic running time, and cannot be prac-
tically applied to our dataset of user threads. To
make them more scaleable, we first performed a pre-
liminary clustering step where we clustered similar
user threads together using a simple, fast clustering
algorithm, and then applied the k-anonymization al-
gorithms from Section 4 to the threads within each
cluster. If a cluster had fewer than k user threads,
we simply deleted these threads altogether. Running
the k-anonymization algorithms within these small
clusters was much more efficient than running them
directly on all the user threads at once.

To do the preliminary clustering, we used the
Jaccard coefficient as a similarity measure for user
threads. Recall that each thread Si is a subset of the
universe of keywords U = {e1, . . . , em}. Under the
Jaccard measure, the similarity of two user threads,
Si and Sj is given by

Sim(Si, Sj) =
|Si ∩ Sj |

|Si ∪ Sj |

A straightforward clustering algorithm would in-
volve a comparison between every pair of user threads
and would thus be very ineffcient. Instead, to quickly
cluster all the user threads, we used Locality Sensitive
Hashing (LSH). The LSH technique was introduced
in [8] to efficiently solve the nearest-neighbour search
problem. The key idea is to hash each user thread
using several different hash functions, ensuring that
for each function, the probability of collision is much
higher for threads that are similar to each other than
for those that are different. The Jaccard coefficient
as a similarity measure admits an LSH scheme called
Min-Hashing [5, 4].

The basic idea in the Min-Hashing scheme is to ran-
domly permute the universe of keywords U , and for
each user thread Si, compute its hash value MH(Si)
as the index of the first item under the permutation
that belongs to Si. It can be shown [5, 4] that for
a random permutation the probability that two user
threads have the same hash function is exactly equal
to their Jaccard coefficient. Thus Min-Hashing is a
probabilistic clustering algorithm, where each hash

7

bucket corresponds to a cluster that puts together two
user threads with probability proportional to their
Jaccard coefficient. The LSH algorithm [8] concate-
nates p hash-keys for users so that the probability
that any two users Si and Sj agree on their concate-
nated hash-keys is equal to Sim(Si, Sj)

p. The con-
catenation of hash-keys thus creates refined clusters
with high precision. Typical values for p that we tried
were in the range 2 − 4.

Clearly generating random permutations over the
universe of keywords and storing them to compute
Min-Hash values is not feasible. So instead, we gener-
ated a set of p independent, random seed values, one
for each Min-Hash function and mapped each user
thread to a hash-value computed using the seed. This
hash-value serves as a proxy for the index in the ran-
dom permutation. The approximate Min-Hash values
thus computed have properties similar to the ideal
Min-Hash value [7]. See [7] for more details on this
technique.

As a result of running the LSH-based clustering
algorithm on our user threads, we otained a total of
∼ 84K clusters. Each cluster contained an average
of 2 user threads. The largest cluster contained ∼
2800 threads and corresponded to the queries that
searched for ‘Google’ !

Again, there may exist more sophisticated tech-
niques for clustering similar user threads together,
however this is not the focus of this paper, which is
meant to be more of a proof of concept.

5.3 k-Anonymity within Clusters

Now within each cluster generated using the LSH
scheme above, we ran the k-anonymization algo-
rithms from Section 4.

Before proceeding further, we need to clarify the
criterion that was used for deeming two user threads
to be identical. As mentioned earlier, different user
threads might contain keywords that are actually just
misspellings of each other or derivations from a com-
mon stem. To deal with this issue, we once again re-
sorted to LSH. We treated each user thread as a set
of Locality Sensitive Hashes [5, 4] of its constituent
keywords, i.e., a user thread Si = {e1, . . . , eℓ} now
became Si = {LSH(e1), . . . , LSH(eℓ)} where LSH(ej)
is a concatenation of Min-Hashes of the keyword ej

4.
Two user threads were considered identical if they
had the same set of hashes.

Now if a k-anonymous solution for a particular
cluster deemed that a certain LSH value must be
deleted from a particular user thread, we simply
deleted all the keywords from the user thread that

4Each keyword can be treated as a multiset of characters

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 c

ha
ng

es
 (

x
10

3)

k

Number of Additions
Number of Deletions

Total Cost

Figure 4: Cost of achieving k-anonymity

generated that LSH value. If the solution asked for a
LSH value to be added to a user thread, we added to
the thread one of the keywords from its cluster that
generated the LSH value. Threads in clusters of size
less than k were entirely deleted.

Figure 4 shows the total number of additions and
deletions of keywords that were made for different
values of k. As would be expected, as k increases,
the total number of additions and deletions that need
to be made to achieve k-anonymity increases. The
number of additions is a small fraction of the total
cost, and surprisingly goes down as k increases.

5.4 Case Study

As anecdotal evidence of the effectiveness of our al-
gorithms in anonymizing query logs, we looked at the
query logs of user 4417749 who had been previously
been identified as Ms. Thelma Arnold from Lilburn,
Georgia.

Figure 5(a) shows a sample of user 4417749’s query
logs. Misspellings have been maintained, however re-
peated queries have been removed. As can be seen,
the user searched for some fairly generic queries such
as the “effects of nicotine on the body”. However she
also posed several identifying queries. For instance,
she queried for humane societies and animal shelters
in Gwinnett county in Georgia, revealing herself to
be an animal lover in Gwinnett county. Further, she
queried for pine straw delivery in Lilburn, Gwinnett,
thereby revealing herself to be a resident of Lilburn,
Gwinnett. Finally, her queries for relatives in Oregon
revealed that her last name was “Arnold”.

Figure 5(b) shows the result of running our k-
anonymization algorithm for k = 3. Notice first that
the division of Ms. Arnold’s session into threads it-
self goes some way in anonymization by decorrelating

8

4417749 pine straw lilburn delivery
4417749 pine straw delivery in gwinnett county
4417749 pine straw in lilburn ga.
4417749 atlant humane society
4417749 atlanta humane society
4417749 dekalb animal shelter
4417749 dekalb humane society
4417749 gwinnett animal shelter
4417749 doraville animal shelter
4417749 humane society
4417749 gwinnett humane society
4417749 seffects of nicotine
4417749 effects of nicotine
4417749 nicotine effects on the body
4417749 jarrett arnold
4417749 jarrett t. arnold
4417749 jarrett t. arnold eugene oregon
4417749 eugene oregon jaylene arnold
4417749 jaylene and jarrett arnold eugene or.
...

(a) User 4417749’s Session

1 4417749 pine straw lilburn delivery mulch

1 4417749 pine straw delivery in gwinnett county
1 4417749 pine straw in lilburn ga.
———————————————
2 4417749 atlant humane society county

2 4417749 atlanta humane society
2 4417749 dekalb animal shelter
2 4417749 dekalb humane society
2 4417749 gwinnett animal shelter
2 4417749 doraville animal shelter
2 4417749 humane society
2 4417749 gwinnett humane society
———————————————
3 4417749 seffects of nicotine
3 4417749 effects of nicotine
3 4417749 nicotine effects on the body
———————————————
4 4417749 jarrett arnold
4 4417749 jarrett t. arnold
4 4417749 jarrett t. arnold eugene oregon
4 4417749 eugene oregon jaylene arnold
4 4417749 jaylene and jarrett arnold eugene or.
...

(b) User 4417749’s anonymized threads

Figure 5: User 4417749’s Query Logs

her various query topics. The session sample was di-
vided into a thread for pine straw delivery, a thread
for animal shelters and humane societies, a thread
for the effects of nicotine and a thread for the queries
about relatives in Oregon. Each thread was assigned
a separate identifier.

The threads were treated as sets of unique key-
words (not depicted in the figure) and were then
clustered with the threads of other users using LSH.
The anonymization algorithms were run within the
resulting clusters. If a particular keyword was to be
deleted from a particular thread, we deleted every
occurence of that keyword from the original queries
of the thread. If a keyword was to be added to a
thread, we added it to one of the original queries of
the thread. The result was that some threads such as
the nicotine thread were left relatively untouched. In
the thread for pine straw delivery, the keywords ‘lil-
burn’, ‘delivery’, ‘gwinnett’, ‘county’ and ‘ga.’ were
deleted, and the keyword ‘mulch’ was added instead.
This is because other users in the thread’s cluster,
querying for ‘pine straw’, queried for it in conjunction
with the keyword ‘mulch’. Similarly, in the thread
for animal shelters and humane societies, the key-
words ‘gwinnett’ and ‘doraville’ were removed, while
the keyword ‘county’ was added. Finally, the thread
for the relatives in Oregon was deleted altogether be-
cause not a sufficient number of threads from other
users got clustered together with it. Plenty of users
queried for ‘arnold schwarzenegger’, however none of
their threads fell in the same cluster!

This example shows that our algorithm does the
intuitively right thing. Identifying keywords are re-
moved and keywords that commonly occur in con-
junction with other keywords are added to a user’s
threads. The guarantee is that every user thread will
look like the threads of at least k − 1 other users,
and this guarantee is achieved while making a close
to minimal number of additions and deletions.

6 Summary and Future Work

In this paper we introduced the k-anonymization
problem for set-valued data. Algorithms with ap-
proximation factors of O(k log k) and O(1) for the
problem were developed. We demonstrated the ef-
ficacy of these algorithms in anonymizing the AOL
query log dataset. In order to scale the algorithms
to deal with the size of the dataset, we proposed
a division of the dataset into clusters, followed by
the application of anonymization algorithms within
the clusters. An interesting avenue for future work
would be to develop scaleable algorithms for such
massive modern day datasets with provable approx-

9

imation guarantees. Experimentally measuring the
utility of the anonymized datasets is also an interest-
ing research direction. Another important question
is how such algorithms can be applied in an online
fashion to anonymize datasets on the fly as records
get added to them. For example, as a search engine
receives new queries, how should it anonymize them
in an online fashion before storing them.

7 Acknowledgements

We would like to thank Tomas Feder, Evimaria Terzi
and An Zhu for many useful discussions.

References

[1] E. Adar. User 4XXXXX9: Anonymizing Query
Logs. In Proceedings of the Workshop on Query
Log Analysis: Social and Technological Chal-
lenges, 2007.

[2] G. Aggarwal, T. Feder, K. Kenthapadi, R. Mot-
wani, R. Panigrahy, D. Thomas, and A. Zhu.
Anonymizing Tables. In Proceedings of the
International Conference on Database Theory
(ICDT), 2005.

[3] M. Barbaro and T. Zeller Jr. A face is exposed
for AOL searcher no. 4417749. New York Times,
August 2006.

[4] A. Broder. On the Resemblance and Con-
tainment of Documents. In Proceedings of the
Compression and Complexity of Sequences (SE-
QUENCES), 1997.

[5] E. Cohen. Size-estimation Framework with Ap-
plications to Transitive Closure and Reachabil-
ity. Journal of Computer and System Sciences,
55(3):441–453, 1997.

[6] S. Guha, A. Meyerson, and K. Munagala. Hi-
erarchical Placement and Network Design Prob-
lems. In Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS),
2000.

[7] P. Indyk. A Small Approximately Min-wise In-
dependent Family of Hash Functions. In Pro-
ceedings of the Annual ACM-SIAM Symposium
on Discrete Algorithms(SODA), 1999.

[8] P. Indyk and R. Motwani. Approximate Nearest
Neighbors: Towards Removing the Curse of Di-
mensionality. In Proceedings of the Annual ACM
Symposium on Theory of Computing (STOC),
1998.

[9] D. Karger and M. Minkoff. Building Steiner
Trees with Incomplete Global Knowledge. In
Proceedings of the IEEE Symposium on Foun-
dations of Computer Science (FOCS), 2000.

[10] R. Kumar, J. Novak, B. Pang, and A. Tomkins.
On Anonymizing Query Logs via Token-based
Hashing. In Proceedings of the International
World Wide Web Conference (WWW), 2007.

[11] K. Lefevre. Anonymity in data publishing and
distribution. Ph.d. thesis, University of Wiscon-
sin at Madison, 2007.

[12] N. Li, T. Li, and S. Venkatasubramanian. t-
Closeness: Privacy Beyond k-Anonymity and l-
Diversity. In Proceedings of the International
Conference on Data Engineering (ICDE), 2007.

[13] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-Diversity: Privacy
Beyond k-Anonymity. In Proceedings of the
International Conference on Data Engineering
(ICDE), 2006.

[14] A. Meyerson and R. Williams. On the Complex-
ity of Optimal k-Anonymity. In Proceedings of
the ACM Symposium on Principles of Database
Systems (PODS), 2004.

[15] A. Narayanan and V. Shmatikov. Robust De-
anonymization of Large Sparse Datasets. In Pro-
ceedings of the IEEE Symposium on Security and
Privacy, 2008.

[16] H. Park and K. Shim. Approximate Algorithms
for k-Anonymity. In Proceedings of the ACM In-
ternational Conference on Management of Data
(SIGMOD), 2007.

[17] B. Poblete, M. Spiliopoulou, and R. Baeza-
Yates. Website Privacy Preservation for Query
Log Publishing. In Proceedings of the 1st In-
ternational Workshop on Privacy, Security and
Trust in KDD, 2007.

[18] P. Samarati and L. Sweeney. Generalizing Data
to Provide Anonymity when Disclosing Informa-
tion. In Proceedings of the ACM Symposium on
Principles of Database Systems (PODS), 1998.

[19] Z. Svitkina. Lower-Bounded Facility Location.
In Proceedings of the Annual ACM-SIAM Sym-
posium on Discrete Algorithms(SODA), 2008.

[20] M. Terrovitis, N. Mamoulis, and P. Kalnis.
Anonymity in Unstructured Data. In Proceed-
ings of the International Conference on Very
Large Databases (VLDB), 2008.

10

