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Abstract— The increasing popularity of social networks has
initiated a fertile research area in information extraction and
data mining. Although such analysis can facilitate better under-
standing of sociological, behavioral, and other interesting phe-
nomena, there is a growing concern about personal privacy being
breached, thereby requiring effective anonymization techniques.
In this paper, we consider edge weight anonymization in social
graphs. Our approach builds a linear programming (LP) model
which preserves properties of the graph that are expressible as
linear functions of the edge weights. Such properties form the
foundations of many important graph-theoretic algorithms such
as shortest paths, k-nearest neighbors, minimum spanning tree,
etc. Off-the-shelf LP solvers can then be used to find solutions
to the resulting model where the computed solution constitutes
the weights in the anonymized graph. As a proof of concept, we
choose the shortest paths problem, and experimentally evaluate
the proposed techniques using real social network data sets.

I. INTRODUCTION

Social Networks have become increasingly popular appli-
cations in Web 2.0. Social networking sites such as MySpace,
and Facebook have millions of registered users, where each
user is associated with a number of others through friendship,
professional association (being members of communities), and
so on. The resulting graph structures have millions of vertices
(users or social actors) and edges (social associations). Recent
research has explored these social networks for understanding
their structure [1], [2], [3], advertising and marketing [4],
and others [5]. As a result, companies (such as Facebook)
hosting the data are interested in publishing portions of the
graphs so that independent entities can analyze the data. In
order to protect the privacy of users against different types
of attacks [6], [7], graphs should be anonymized before they
are published. Consequently, there has also been considerable
interest in the anonymization of graph structured data [8],
[9], [10]. But most of the existing research on anonymization
techniques tend to focus on unweighted graphs for node and
structural anonymization, with very little work concentrating
on edge weight anonymization [11].

Recently, there has been considerable interest in the analysis
of the weighted network model where the social networks
are viewed as weighted graphs. The weighted graph model
is used for analyzing the formation of communities within the
network [12], viral and targeted marketing and advertising [4],
modeling the structure and dynamics such as opinion forma-
tion [13], and for analysis of the network for maximizing the
spread of information through the social links [14], in addition
to the traditional applications on weighted graphs such as
shortest paths, spanning trees, k-Nearest Neighbors (kNN) etc.

The semantics of the edge weights depend on the application
(such as users in a social network assigning weights based on
“degree of friendship”, “trustworthiness”, “behavior”, etc.), or
the property being modeled (such as detection of communi-
ties [12] or modeling network dynamics [13]).
Edge-weight anonymization: why do we care? First, even
though in most cases node identities are anonymized, there are
a number of instances where they are public knowledge. For
example, in academic social networks [15], [9], node identities
and link structure are public knowledge, but edge weights are
sensitive. Second, even in the case where the node identities
are anonymized, edge weight anonymization is still important
since if an adversary re-identifies a node in the anonymized
graph, even more information will be revealed if edge weights
are not anonymized.
Privacy preserving modeling. Our solution to the problem
of edge weight anonymization is to model the weighted graph
based on the property to be preserved, and then reassign edge
weights to obtain the anonymized graph satisfying the model.
To be specific, we preserve linear properties of the graph:

Definition 1: A linear property of a graph is a property
expressible in terms of inequalities involving linear combina-
tions of edge weights.

If we consider that the anonymized graph preserves the
structure of the original graph, the objective of the privacy
preserving model can be formally stated as:

Objective 1: To construct a model that correctly captures
the inequalities that must be obeyed by the edge weights
for the linear property being modeled to be preserved.
Any solution to such a model would ensure anonymization
of edge weights, while preserving the linear property under
consideration.

II. ABSTRACT MODEL

Abstract model formulation. Our proposed model is based
on the observation that a gamut of interesting properties are
expressible in terms of linear combinations of edge weights.
We now introduce in abstract the technique used for modeling
linear properties and use Kruskal’s algorithm for minimum
spanning tree (MST) [16] as an example of the algorithm being
modeled. The goal of the model is to capture the dynamic
behavior of the algorithm using a system of linear inequalities.
Given the original weighted graph G = (V,E,W ) with
positive edge weights represented by variables x1, x2, . . . , xm

(where each xi corresponds to an edge i = (u, v) ∈ E), our
goal is to model the system of linear inequalities in terms
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of these variables. For example at every step of Kruskal’s
algorithm [16] for the MST, the edge with the minimum weight
amongst the set of remaining edges is selected, and if this edge
does not result in a cycle, it is added to the MST. Let (u, v)
be the edge selected in the ith iteration, and (u′, v′) be the
edge selected in the (i + 1)th iteration, then this implies that
w[u, v] ≤ w[u′, v′]. If x(u,v) and x(u′,v′) are the variables
representing these edges in the model, then this outcome is
modeled by the inequality x(u,v) ≤ x(u′,v′). Therefore, for
every pair of edges (u, v) and (u′, v′) selected in consecutive
iterations, the inequality x(u,v) ≤ x(u′,v′) can be added to the
model whenever the given weights satisfy w[u, v] ≤ w[u′, v′].

The algorithm makes decisions based on the actual numer-
ical values of the edge weights (or w[u, v]’s) and we model
this decision in terms of the variables x(u,v). Decisions made
at each step of the algorithm can similarly be expressed as
inequalities involving the edge-weights. Thus, the execution
of the algorithm processing the graph can be modeled as a set
of linear inequalities involving the edge weights as variables,
and this results in a system of linear inequalities:

⎛
⎜⎜⎜⎝

a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

ak1 ak2 · · · akm

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
A

⎛
⎜⎜⎜⎝

x1

x2

...
xm

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
X

≤

⎛
⎜⎜⎜⎝

b1
b2
...

bm

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
B

(1)

If the edge weights are reassigned as any solution of the
system of inequalities in (1), this would ensure that the
properties of the graph remain unchanged w.r.t the algorithm
being modeled. The model can therefore be formulated as a
Linear Programming (LP) problem

Minimize (or Maximize) F (x1, x2, . . . , xm)

subject to AX ≤ B

where F is a linear objective function. Any property that can
be expressed as a function of a linear combination of edge
weights can be expressed as a Linear Optimization problem,
and hence this abstract modeling technique can be used for
any such property. Once the model has been developed, any
off-the-shelf LP solver package can be used to find a solution
to the set of inequalities (constraints) that optimizes F . The
model is said to be correct if the property being modeled
is preserved across anonymization, i.e., any solution to the
model ensures that the property being modeled is the same
in the original graph as well as the anonymized graph. The
complexity of the model is the number of inequalities nec-
essary to define the model. Columns in matrix A correspond
to variables in the system, i.e., the number of edges in the
graph, and rows correspond to the inequalities produced by
the model. The fewer the constraints required by the model,
the more efficient it is. Note that most social network graphs
are sparse, and hence matrix A is also sparse, and LP solvers
optimized for such large systems can be used. We remark
that our technique is not dependent on the semantics of edge-
weights, and is general enough to encompass any algorithm
based on linear properties of the graph.

III. SINGLE SOURCE SHORTEST PATHS

In this section, we demonstrate how the abstract model
described in Section II can be used for single source shortest
paths tree. Given a weighted graph G = (V,E,W ), and
a source vertex v0, a single source shortest paths tree is a
spanning tree of the graph where the path from the source to
any other vertex in the tree is the shortest path between the
pair in G. Dijkstra’s algorithm [17] is a well known greedy
algorithm for single source shortest paths tree. Given a start
vertex v0, at every step the algorithm selects the vertex u with
the smallest known cost from v0. The algorithm tries to “relax”
the neighbors of u by checking if the cost from the source has
now decreased because of the selection of u. Due to space
limitations, the pseudocode and proofs of the theorems have
been moved to an extended version of the paper [18]. In the
following discussion, the cost of the path from the vertex u to
v is denoted as D[u, v] , and f(u, v) is

∑
(u′,v′)∈P [u,v] x(u′,v′),

where P [u, v] denotes the path from u to v in G.

A. Linear model

Dijkstra’s algorithm [17] makes a number of decisions based
on the outcome of comparisons of linear combinations of edge
weights. These decisions can be modeled using the following
three categories of inequalities:
• Category I: When processing edge (u, v), if D[v0, v] can be
improved, then D[v0, v] > D[v0, u] + w[u, v], add constraint
f(v0, v) > f(v0, u) + x(u,v).
• Category II: When processing edge (u, v), if D[v0, v] can
not be improved, then D[v0, v] ≤ D[v0, u] + w[u, v], add
constraint f(v0, v) ≤ f(v0, u) + x(u,v).
• Category III: When extracting the minimum weight edge
u for the next iteration, if u′ is the previous vertex processed,
then D[v0, u

′] ≤ D[v0, u], add constraint f(v0, u
′) ≤ f(v0, u).

This captures the order in which the vertices are selected.
Theorem 1: A model built from all the inequalities of Cat-

egories I, II, and III combined will correctly model Dijkstra’s
algorithm, i.e., any solution to the model used to anonymize
edge weights in the graph results in the same shortest paths
tree in the original as well as the anonymized graph.
Complexity of the Model. Category I and Category II com-
bined will result in O(dn) inequalities. This is because, when
an edge is processed, either the path to its neighbor is improved
(Category I), or it remains unchanged (Category II), and hence
every edge results in at least one inequality. Since the average
degree per node is d, the resulting number of inequalities is
O(dn). The number of inequalities for Category III is O(n)
since one inequality of Category III is generated for every
vertex processed. Thus, the complexity of the model is O(dn).
Since most large real graphs are sparse, i.e., d � n (generally
d is of the order of tens or hundreds), we refer to this model
as the Linear model with complexity growing linearly with n.

B. Reduced model

We now improve the performance of the model explained by
reducing its complexity. Note that even though Dijkstra’s al-
gorithm tries to relax the neighbors when processing a vertex,
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the ultimate goal is to select an appropriate vertex for the next
iteration, i.e., the vertex with the smallest known cost from
the source. It does not matter how many times the cost of the
path to a particular vertex is improved, the minimum amongst
these costs determines its order of selection, and hence the
shortest path from the source. Category III inequalities model
this information in an efficient way, and hence ideally, only
Category III are needed. However Category III inequalities
only include the edges that are part of the shortest paths tree.
Therefore, if only Category III inequalities are considered in
the model, then only part of the total number of edges are
modeled. Such a model does not put constraints on non-tree
edges, and thus, if no care is taken while reassigning edge
weights in the anonymized graph, it can lead to violations of
the order in the anonymized graph. For instance, if edge (u, v)
is a non-tree edge, then a model using only Category III would
not impose any constraint on (u, v). Hence a reassignment
of weights in the anonymized graph might assign the edge
(u, v) a weight such that Dijkstra’s algorithm executing on the
anonymized graph selects (u, v) as a tree edge. Therefore, to
ensure correctness, the model must be augmented to make sure
that the non-tree edges are not included in the tree when the
algorithm executes on the anonymized graph. The following
theorem formalizes this proposition.

Theorem 2: A model which ensures that (i) the order of se-
lection of vertices remains the same even after anonymization,
and (ii) non-tree edges in the original graph are not included in
the tree constructed on the anonymized graph, will also ensure
that the shortest paths tree in the original and anonymized
graph are also same, i.e., the model is correct.

Augmenting the model – Complexity and Correctness.
Category III inequalities enforce condition (i) of Theorem 2.
A simple solution to ensure that condition (ii) is also satisfied
is to add all the non-tree edges into the constraints of the
model. This can be done as follows: let vl be the last vertex
to be processed by Dijkstra’s algorithm, and let Ts represent
the shortest paths tree obtained as output from the algorithm,
then add all inequalities of the form:

∀(u, v) ∈ E ∧ (u, v) /∈ Ts,

AddConstraint(x(u,v) > f(vs, vl)) (2)

This ensures that any path which includes these non-tree
edges will have a cost greater than the corresponding path
involving only the edges in Ts, and hence all such paths with
non-tree edges will not be selected by Dijkstra’s algorithm
running on the anonymized graph. The O(n) edges in Ts

are modeled by Category III inequalities, and the remaining
O(dn) edges are modeled by the inequalities in (2). Thus,
the complexity of the model still remains O(dn), even after
eliminating inequalities of Categories I and II. Note that the
inequalities in (2) add very little to the model except for
ensuring that any non-tree edge should be assigned a weight
that is greater than D′[vs, vl], and it does not really matter
what weight is assigned to these edges as long as the above
condition is satisfied. Therefore, the edges not in Ts need not

TABLE I

SUMMARY OF THE SOCIAL GRAPHS.

Data Set No. of Vertices No. of Edges Avg. Degree
Flickr-user-3 55,803 6,662,377 119.39
LJ-user-3 15,508 384,947 24.82
Orkut-user-3 26,110 899,638 34.46
Youtube-user-3 237,469 2,457,206 10.35

be part of the model, as long the edges in Ts are tracked, and
when assigning weights to the anonymized graph, non-tree
edges are assigned weights greater than the shortest path with
the largest weight. This captures the information as modeled
by the constraints in (2), without adding to the complexity of
the model to be solved by the LP solver. Thus, Category III
inequalities along with some additional information can model
Dijkstra’s algorithm, and the complexity of the modified model
becomes O(n) (n−1 to be exact). The asymptotic complexity
of the models in this section and in Section III-A are the
same: both grow linearly with n (assuming that d is a constant
compared to n). But considering the fact that d is generally
of the order of 10 or 100 (as shown in our experiments using
social network graphs), the model suggested in this section
provides 1 to 2 orders of magnitude reduction in the number
of inequalities.

IV. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the two mod-
els presented in this paper, compare their performance, and
validate our analysis. All the algorithms were implemented in
Java, and the experiments were run on an Intel Core 2 Quad
Q6600 processor operating at a clock speed of 2.4GHz. The
machine has 3GB main memory and runs Fedora Core Linux
with kernel 2.6.26.6-49.fc8. We used four real social network
data sets obtained from the authors of [3]. In our experiments,
we used a free open-source LP Solver (lp solve 5.5) [19]. We
report the time taken to generate the model, complexity of the
model, and the time taken to solve the models. The model is
written to disk, and the system solving the model reads the
model from disk, and generates the solution, which is then
used to anonymize the model. The reported times therefore
include the disk access latencies. More experiments can be
found in the extended version of the paper [18].

A. Datasets

Mislove et al. [3] crawled a number of social network
sites for analyzing the properties of these large social graphs,
and have made their data sets publicly available. Their data
sets include the graphs for a number of popular social net-
working sites: Flickr, LiveJournal, Orkut, and Youtube.
We model the graphs of these networks as directed graphs
where edges have positive weights, but the models can be
extended for undirected graphs. The published graph data sets
are unweighted, but since our model is not dependent on
the semantics of the weights or their magnitude, we assign
randomly generated weights (real numbers in the range 1 to
100) to the edges of the graph. We used different distributions
for assigning edge weights, but no considerable change in
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TABLE II

EXPERIMENTAL EVALUATION OF SINGLE SOURCE SHORTEST PATHS TREE.

Linear Model Reduced Model Summary
Number Inequalities Time Number of Time Times Reduction % Reduction

Data Sets Cat I Cat II Cat III Total Taken (s) Inequalities Taken (s) in Complexity in Time
Flickr-user-3 204,626 6,457,751 55,802 6,718,179 98.81 55,802 2.835 120.39 97.13
LJ-user-3 39,030 345,917 15,507 400,454 4.783 15,507 0.938 25.83 80.39
Orkut-user-3 72,130 827,508 26,109 925,747 15.735 26,109 1.752 35.47 88.87
Youtube-user-3 417,526 2,039,680 237,468 2,694,674 44.943 237,468 8.226 11.35 81.7

complexity was observed. In our experiments, we used user
driven graph structures where we select a vertex in the graph
as the root, and extract the graph induced by the vertices
which are within k degrees of separation from the root (a
vertex v is the first degree connection of the root v0 if there
exists an edge (v0, v)). We use the user suffix for referring to
the user data sets, and for our experiments, we consider 3rd

degree of separation (e.g., Orkut-user-3). Table I summarizes
the different graphs in the data set in terms of the number of
vertices, number of edges, and average out-degrees.

B. Single source shortest paths

We experimentally evaluate the two models for single source
shortest paths tree. We compare the Linear model to the
Reduced model in terms of the complexity of the model, and
the time taken to build the model and write it to the disk.

Table II provides the result from these experiments along
with a detailed breakup of the number of inequalities, as
well as the reduction in complexity and time of the Reduced
model compared to the Linear model. For the Linear model,
the categories of inequalities in Table II correspond to the
categories defined in Section III-A. As is evident from Table II,
the Reduced model provides about O(d) times improvement
in complexity of the models for all the graphs. Depending
on the graph, the value of d varies, and so does the factor
of improvement. For example, for the Flickr-user-3 data set,
d is 119.39, and the complexity of the Reduced model is
about 120 times less than that of the Linear model. The
large reduction in the number of inequalities also affects the
time for generating the model, since in the Linear model,
fewer number of inequalities need to be generated, and more
importantly, fewer number of inequalities need to be written
to the disk. This is illustrated by the almost 90% improvement
in time to generate the Reduced model.

V. CONCLUSION

In this paper, we provided a solution for effective
anonymization of weighted social network graphs. We first
presented an abstract model that effectively preserves any
linear property of the graphs. As a proof of concept, we
considered the shortest paths problem and showed how off-
the-shelf linear programming libraries can be used to effec-
tively anonymize the graphs. We analyze the complexity of
the models, and experimentally validate our analysis using real
social network data.
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