
Anonymous Credentials on a Standard Java Card

Patrik Bichsel
IBM Research

pbi@zurich.ibm.com

Jan Camenisch
IBM Research

jca@zurich.ibm.com

Thomas Groß
IBM Research

tgr@zurich.ibm.com

Victor Shoup
New York University

shoup@cs.nyu.edu

ABSTRACT

Secure identity tokens such as Electronic Identity (eID)
cards are emerging everywhere. At the same time user-
centric identity management gains acceptance. Anony-
mous credential schemes are the optimal realization of user-
centricity. However, on inexpensive hardware platforms,
typically used for eID cards, these schemes could not be
made to meet the necessary requirements such as future-
proof key lengths and transaction times on the order of
10 seconds. The reasons for this is the need for the hardware
platform to be standardized and certified. Therefore an im-
plementation is only possible as a Java Card applet. This
results in severe restrictions: little memory (transient and
persistent), an 8-bit CPU, and access to hardware accelera-
tion for cryptographic operations only by defined interfaces
such as RSA encryption operations.

Still, we present the first practical implementation of an
anonymous credential system on a Java Card 2.2.1. We
achieve transaction times that are orders of magnitudes
faster than those of any prior attempt, while raising the
bar in terms of key length and trust model. Our system is
the first one to act completely autonomously on card and
to maintain its properties in the face of an untrusted termi-
nal. In addition, we provide a formal system specification
and share our solution strategies and experiences gained and
with the Java Card.

Categories and Subject Descriptors

E.3 [Data]: Data Encryption—Public key cryptosystems

General Terms

Algorithms, Design, Performance, Security

Keywords

Anonymous credential systems, Java Card, privacy-
enhancing systems, smart card

c⃝ACM, 2009. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
devinitive version will appear in the proceedings of the ACM Conference
on Computer and Communications Security (CCS) 2009.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice a d the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09, November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

1. INTRODUCTION
Electronic authentication tokens are spreading rapidly.

Applications today already include ticketing, access to build-
ings, and road tolls. A number of countries have issued elec-
tronic ID (eID) cards or are about to do so. All these existing
or emerging solutions have in common that the user is fully
identifiable in the transactions involving the token. Indeed,
many of them offer strong cryptographic identification or
qualified digital signatures. The resulting loss of privacy is
subject to discussion as pointed out by Huysmans [19], but
it is not a severe problem for e-government applications.
However, a government-issued root of trust is very attrac-
tive for secondary use by (commercial) service providers.
Here, privacy becomes a real issue. Indeed, in many com-
mercial applications, unique identification is inappropriate,
attribute-based authentication highly desired, and suitable
privacy protection essential to make the services sustainable.

For instance, consider a teenager accessing an online chat
room by eID. Here, the aim is to restrict access to teenagers
only. It is crucial that no data other than the age range
of the teenager is revealed to the chat provider. Indeed, if
all the eID card’s information is revealed and gets into the
wrong hands, more damage is done than protection gained.
Furthermore, consider a citizen using the eID throughout
her entire lifetime and with various third parties. Without
sufficient privacy protection, service providers could trace
and profile the citizen across organizations. This would lead
to an erosion of the citizens’ trust and result in the non-
sustainability of the entire system. We believe that sustain-
able secondary use is a is a make-or-break requirement for
eID systems as well as for any identity token that supports
authentication with third parties.

The ability to build comprehensive user profiles in the
context of attribute-based authentication carries the need
for strong privacy protection further than mere trust erosion
would. It implies the need for full anonymity, which includes
unlinkability. Examining identity tokens, and in particular
eID cards, over a long time period, then the monotonous
growth of identity information at service providers can only
be overcome by full anonymity by default. This requirement
entails further goals by implication: firstly, we need privacy-
enhanced credential systems, namely, anonymous credential
systems. Secondly, no (unnecessary) trusted third parties
should be involved in transactions, i.e., the credential system
must be autonomous. Optimally, the user shall only trust
her own identity token and no other principal. Thirdly, if one

considers linkability by timing, the credential system must
be able to operate offline, based on long-term certificates.

Let us expand these three thoughts before we analyze the
trust model and and hardware setting, in particular, typical
smart cards as used to realize eID cards. Luckily, there exist
privacy-enhancing technologies addressing our requirement
of full anonymity, and allow for attribute-based access con-
trol. Anonymous credential systems [22, 9] allow an identity
provider to issue an anonymous credential to a user. This
credential contains attributes such as the user’s address or
date of birth but also her rights or roles. Using the creden-
tial, the user can prove to a third party that she possesses
a credential containing a given attribute or role without re-
vealing any other information. For example, in the child-
protection example described earlier, the youngster could
use a government-issued credential to prove that she fulfills
the requirement on the age range. Thus, it seems that what
is urgently needed is an implementation of anonymous cre-
dentials on tokens, such as smart cards.

The anonymous credential systems proposed by Brands [6]
or Camenisch and Lysyanskaya [9] can be implemented on
ordinary computers as described in [11] without difficulties.
However, it seems they are not suited for implementation
on smart cards or USB tokens. Bichsel [3] and Balasch [2]
conclude that only systems using joint computation with the
terminal can be implemented given the hardware restrictions
for the eID scenario. This statement especially holds, if
future proof key lengths of at least 1400 bits are considered.
But even tremendously reduced systems did not meet the
expected transaction times of production eID cards, which
are defined to be in the order of 10 seconds.

Beyond the transaction times and key length, there are
three more mundane requirements on eID cards imposed
by governments and eID technology providers. Firstly, the
smart card platform should be standardized, for govern-
ments and eID technology providers shy away from propri-
etary technology lock-ins.1 Also, we envision the anonymous
credential system to be deployed as a complement to ex-
isting eID systems and not to replace other authentication
mechanisms. Even though one could achieve much more
efficient solutions with a native card implementation, this
would severely hamper the acceptance for the proposal. We
therefore base our work the Java Card 2.2.1 standard [26].

Secondly, the eID card must be certified, for instance in a
Common Criteria for Information Technology Security Eval-
uation [14]. Clearly, we need to aim at making the certifica-
tion gap as small as possible and, therefore, use an off-the-
shelf smart card with comprehensive certification.

Thirdly, the smart card platform must be well-established
and cheap. We therefore restrict ourselves to smart cards
that are 3–4 years old and in production in current eID sys-
tems. We also follow the standard operation procedures of
these smart cards, e.g., to avoid write-operations to EEP-
ROM whenever possible.

The main obstacle to implementing anonymous credential
systems on such cards seems to be twofold. Firstly, we need
to execute fast modular exponentiations, which requires the
use of the card’s cryptographic co-processor. However, the
interfaces offered by the (off-the-shelf) cards’ operating sys-
tem do not give direct access to this, but only offer high-
level functionality such as RSA encryption. Consequently,

1Of course, this requirement also transfers to the standard-
ization of anonymous credential systems.

we will use the limited interfaces that standard Java Cards
provide. Secondly, typical smart cards are rather limited
in the amount of RAM that can be used for computations.
This makes it, for instance, hard to store all intermediary
results during an authentication transaction.

1.1 Related Work
There have even been several approaches to implement

anonymous credential systems on smart cards. Bichsel [3]
and Balasch [2] focus on providing the arithmetic function-
ality required by anonymous credential systems, i.e., fast
modular arithmetic. Balasch implements the arithmetic us-
ing AVR microcontrollers, whereas Bichsel uses the JCOP
platform. Danes [16] provides an analysis of different trust
models and compares them with respect to security and pri-
vacy. He projects computation times using the hardware
specification, implicitly assuming a custom operating sys-
tem, and obtains an execution time of 6 seconds for his
preferred protocol. This protocol still assumes trust in the
terminal. We provide a comparison of the measurements of
the three approaches with ours in Table 1. Note that the
table focuses on the computation times of the core anony-
mous credential system and does not account for additional
computations such as revocation equations.

Given that the authors use very different systems, we want
to analyze the systems on the basis of single exponentiations.
The difference to Bichsel [3] is apparent and does not need
further explanation. The implementation by Balasch [2] can
be compared by extrapolation of his measurements. An ex-
ponentiation of a base/modulus bit length of 1984 with an
exponent of 1024 bits accounts to roughly 270 seconds. We
are able to compute such an exponentiation in 1.3 seconds.

1.2 Our Contributions
In this paper, we overcome the technical limitations to im-

plement the Camenisch-Lysyanskaya (CL) anonymous cre-
dential system on a standard Java Card. We do this by ex-
ploiting the RSA encryption interface in a number of ways
and by clever management of the available resources (es-
pecially RAM). In fact, our implementation can execute a
proof of possession of a credential in a few seconds, which
is fast enough for a multitude of eID use cases. Thus, we
believe to have overcome the possibly final technical barrier
for privacy-protecting electronic identity tokens.

Our contributions are twofold. Firstly, we discuss the
challenges of actually implementing the CL credential sys-
tem on a Java Card. In particular, we consider the severe
platform restrictions, which entails concise analysis of the
available interfaces as well as careful treatment of the hard-
ware resources. In addition, we share our experiments, ex-
periences, and strategies to overcome these limitations. Our
solutions enabled us to outperform all prior anonymous cre-
dential system proposals on smart cards by several orders
of magnitude. Moreover, our insights and tricks can be of
merit for other implementations of advanced cryptographic
primitives on Java Cards.

Secondly, we report the first practical implementation of
an anonymous credential system on a standardized, off-the-
shelf Java Card, a JCOP v2.2/41. We use a variant of the
standardized Direct Anonymous Attestation (DAA) proto-
col [7], and demonstrate the feasibility of such a system for
actual eID cards. In contrast to prior proposals, our smart
card credential system is autonomous, that is, it forgoes any

Table 1: Overview of different approaches to establish anonymous credential systems on a smart card. We
compare the implementations in terms of the transaction time, even though prior systems only execute a
partial proof and use smaller key length. We denote the system parameters with base bit length ℓ!, modulus
bit length ℓ" and maximal exponent bit length of ℓ# by ℓ!

ℓ!(ℓ").

Danes [16] Bichsel [3] Balasch [2] This Paper

Date 2007 2007 2008 2009

Bit Length — 72344(72) 10241752(1024) 1280735(1280) 1536895(1536) 19841152(1984)

Transaction Time — 450s 133.5s 7.4s 10.5s 16.5s

Trust Model trust terminal trust terminal trust terminal autonomous

Implementation none, prediction on Java Card AVR 8-Bit RISC on Java Card
of transaction time JCOP v2.2/41 microcontroller JCOP v2.2/41

joint computation with the terminal. Our system not only
guarantees the secrecy of the user’s master key during the
card’s complete life cycle, but also protects user’s privacy
in face of an untrusted terminal. Our system goes far be-
yond a pure demonstration as it achieves production-quality
parameters for eID cards. This includes strong key length
of 1536 bits for the strong RSA modulus, transaction times
on the order of seconds, and very modest hardware require-
ments (see Table 1). In fact, it could be applied to eID
Java Cards currently being rolled out in various European
countries.

1.3 Outline
The remainder of the paper is structured as follows. We

begin with a discussion of the requirements in Section 2,
where we start with requirements that are imposed by the
eID scenario and continue with functional requirements that
rise in the context of secondary use of eID cards. Section 3
elaborates on the underlying cryptographic system, design
decisions and concludes with the protocol specification. In
Section 4, we illustrate the main obstacles we encountered
when realizing the system we specified, the solutions we de-
veloped, the architecture we built, and the measurements
we performed. We discuss the results of our implementation
with respect to the requirements in Section 5 and conclude
with Section 6, where we provide an outlook on future devel-
opment of anonymous credential systems on smart cards.

2. REQUIREMENTS
We base our requirements discussion on the scenario of

eID cards for three reasons. Firstly, eID technology is likely
to pervade entire societies and to affect the life of many
citizens. Secondly, its actual hardware platform is particu-
larly challenging for implementing an anonymous credential
system. Thirdly, it allows us to intuitively motivate require-
ments that abstractly hold for any application involving per-
sonal tokens with severe resource restrictions.

2.1 Application Requirements
Let us begin with the requirements dictated when using

an eID card for applications having non-government organ-
isations as service providers.

Sustainable Secondary Use. The users must be able to
use their eID card over their entire lifetime without privacy
or trust degradation. A continuous strong privacy protection
for all transactions is crucial. This is a key requirement
that we are going to meet by using an anonymous credential
system.

Autonomous Trust Root. A wide range of trust sce-
narios must be supported without drawbacks on security or
privacy. Particularly, the card must act securely in face of
an untrusted or malicious terminal2. Therefore, the anony-
mous credential system must protect the citizen’s security
and privacy autonomously and cannot (easily) delegate com-
putations to the terminal.

The privacy discussion gains in complexity with the intro-
duction of variable attribute policies, as the terminal may
attempt to send the eID card multiple policy requests—
without the citizen’s knowledge or consent—to infer a profile
of the citizen. As the eID card is in principle stateless, it is
at the mercy of the terminal. The terminal can easily reset
the card and send another policy request. Naive solutions
to store the card’s state or create an audit log of the ter-
minal’s requests are not easily feasible because of the cards
limitations in write/erase cycles on persistent memory. Pro-
posals that certify card readers as well as applicable policies
are used to confine a potential exposure, be it in terms of
obtainable attribute set or of potentially malicious readers.3

Long-term Certificates. An eID card must forgo short-
term updates, particularly of the keys and certificates, be it
because some countries support offline4 applications (such
as vending machines), or because some countries ban card
updates outside of a trusted environment. In privacy terms,
this allows to prevent a linking by timing.

Performance. An anonymous credential system for eID
cards faces stiff performance requirements, notably, the need
to complete transactions in mere seconds.

Future Proof Key Length. Currently, lengths of an
SRSA modulus size greater than or equal to 1400 bits are
considered future proof.

2.2 Functional Requirements
Clearly, unique identification, qualified signatures, and

disclosure of the citizen’s full address are important func-

2From a user perspective, sharing data with the own device
has different implication compared to sharing with a third-
party terminal, e.g., at a bar, or an Internet cafe.
3Our system can easily realize a check of the terminal’s at-
tribute policy and restrict the disclosable attributes for un-
certified terminals. However, these proposals do not con-
stitute a real solution of the problem at hand, and further
research is required in this area.
4Offline, here, refers to the terminal being able to serve the
request of the card without an online connection to the au-
thorities or to an identity provider.

tional requirements for eID cards; however, we focus on
functional requirements with stronger privacy properties.

Proof of Possession. The card must be able to issue a
proof of possession of a credential. Thus, proving the value
of an attribute without leaking any information about the
attribute value.

Age proof. Nowadays, eID cards are often used as basis
for a proof of age, mostly in the area of youth protection.
Contrary to the common perception of an age proof as a
means to show adulthood and to obtain restricted goods
(medias, alcohol, cigarettes), age proofs are also important
to establish protection zones for youngsters on the Internet.

Finite-set Attributes. Also, eID cards contain a vari-
ety of binary or finite-set attributes that are particularly
privacy-sensitive [8]. Consider, for instance, attributes of
health and special status: visually or hearing impaired, so-
cial benefit recipient, unemployed, or elderly. Undoubtedly,
these attributes need to be disclosed only selectively, or even
only issue a proof certifying that the citizen is entitled to re-
ceive social welfare by holding one out of many attributes.

Revocation. Revocation is of central importance for eID
systems. The card needs to be revoked when the owner
declares her eID card lost or stolen. As the traditional ap-
proach of revocation lists implies privacy hazards for honest
citizens, we need to explore privacy-preserving revocation
mechanisms.

2.3 Hardware Requirements
Let us summarize our hardware challenge: Our goal is

to establish an autonomous credential system on a smart
card with the following properties: (i) a standardized Java
Card with comprehensive security certification, (ii) used by
existing eID systems in production, and (iii) with restricted
write/erase-cycles. We use the Java Card 2.2.1 standard [26]
interface, which prevents direct access to the cryptographic
co-processor, fast multiplication, and exponentiation primi-
tives. It only offers the use of well-defined primitives such as
RSA encryption. In addition, transient memory is severely
restricted (750 bytes heap, 200 bytes stack), which makes
the implementation of multi-base exponentiation and many
pre-computation techniques virtually impossible.

These severe limitations explain why prior proposals [3, 2]
could only achieve transaction times on the order of minutes,
despite the fact that they delegated most computations to
the terminal.

3. PROTOCOL DESIGN
Let us consider the protocol design for a standard Java

Card in stages. Firstly, we review the cryptographic variants
of anonymous credential systems. Secondly, we discuss the
options for hardware trust. Thirdly, we present out design
decisions that follow these arguments.

3.1 Cryptographic Alternatives
Anonymous credential systems were introduced by Chaum

in [12, 13] and subsequently improved, in particular, by
Brands [6] as well as Camenisch and Lysyanskaya [9, 10].
Relations based on blind signatures such as those by Brands
have a severe drawback when it comes to implementations on
a smart card: Proving possession of a credential in an unlink-
able, i.e., privacy-maintaining, way requires the issuance of
a new credential, which would exhaust the EEPROM write

cycles quickly. Identity mixer, developed by Camenisch et
al. [21], does not suffer from this limitation, i.e., one creden-
tial can be used repeatedly to prove its possession without
these proofs becoming linkable.

Therefore, we have chosen the Camenisch-Lysyanskaya
(CL) [9] signature scheme as basis for our lightweight cre-
dential system on Java Card. Let us first consider the vari-
ants of Camenisch-Lysyanskaya itself: The most common
one is based on the Strong RSA assumption and specified
in the Identity Mixer protocol suite [21]. Subsequently, Ca-
menisch and Lysyanskaya proposed alternatives based on bi-
linear maps that rely on the LRSW assumption [9], and one
that build on the Boneh-Boyen-Shacham group signature
scheme [4]. The latter was improved upon by Au, Susilo,
and Mu [1]. The bilinear map variants of the CL signature
scheme can operate in smaller prime-order groups, whereas
the SRSA variant requires a large composite modulus. Thus,
the bilinear map variant is advantageous in general, par-
ticularly as the SRSA variant has the client operate with
unknown group order. Nevertheless, we dismiss the bilin-
ear maps based variant as the smart cards considered do
not offer suitable algebraic support for the required elliptic
curves.

3.2 Hardware Resilience
We need to consider an important balance question for eID

cards: To what extent can we trust the hardware’s resilience
and how much do we need to rely on cryptographic protec-
tion? We note that typical eID cards are tamper-resistant
and equipped to protect their private keys for identification
and qualified signatures. Thus, we can assume that it is
costly to break/clone a single eID card, and that an attack
of the tamper-resistance of one card does not easily transfer
to attacks of other cards. Thus, the damage is local as oth-
erwise the system of eID cards would be broken as a whole.

As a means of mitigating the damage of broken or stolen
cards, an eID system needs provisions for revocation. Typ-
ically the issuing authority would be in charge of revoking
cards once a local breach has been detected. The eID sce-
nario holds more potential impact associated with breaking
the tamper-resistance of identification and qualified signa-
tures than the attribute-based authentication. Therefore, it
is, in principle, sufficient to have the same protection stan-
dards as for the other pillars of eID functions and, by exten-
sion, good enough to trust the hardware resilience for our
use cases.

Finally, we conclude that the resilience of eID cards is
an important protection feature that mitigates potential
breaches. Under the condition of a sufficient revocation sys-
tem, it is possible to choose more efficient cryptographic
mechanisms while maintaining the same level of protection.

3.3 Design Decisions
Implementing the full-fledged CL anonymous credential

system would not be feasible on current cards. That is,
features such as an age-proof (i.e., proving that the date of
birth contained in the credential issued has a distance of
at most # years from the current date) or encoding all the
more than 20 typical fields of a standard identity card and
allowing selective disclosure for each of them would result
in a computation time on the order of 70–100 seconds. As
this would not be suited for practice, we rely on the tamper
resistance of the hardware for such attribute-related proofs.

Thus, similarly to the model the Trusted Computing
Group has taken for their TPM chips with the Direct Anony-
mous Attestation (DAA) protocol [7], we have a two-stage
approach. We use anonymous credentials to have the smart
card prove that it is a valid (and intact) card and therefore
can be trusted to make statements about its bearer. These
statements, e.g., an age proof, are then made by the card it-
self. Consequently, the correctness of these statements is not
enforced cryptographically but by the tamper resistance of
the card. Thus, we will have to protect ourselves against the
case when a card is broken open and the cryptographic cre-
dentials are extracted. In this case, the extracted credential
can be used to back any attribute-related statement. How-
ever, breaking a card is costly and will mostly be done for
economical reasons. Thus, employing techniques that pro-
tect from massive sharing might be the most appropriate
action.

Our proposed solution is therefore as follows. We issue a
Camenisch-Lysyanskaya credential [9] with a secret key $0

on an eID card and store all attribute information about
the citizen in the card independently of the credential.5

When the citizen wants to use the cards for some privacy-
protecting authentication, we let the eID card compute a
valid attribute statement (based on the attribute informa-
tion stored on the card) and sign it with the Fiat-Shamir
heuristic [17] during a proof of possession of the issued cre-
dential. On top of that, the card provides a discrete log
commitment, i.e., % = &%0

& on the secret key $0 with a ran-
dom base && during each transaction (where it is ensured by
the proof of possession that this is chosen correctly).6 This
commitment is a pseudo-random value with computational
hiding properties. However, it allows for the detection of
revoked cards as authorities can check % against &%̂0

& for
each $̂0 retrieved from the revocation list and, if there is a
match, decline the transaction (or take legal action).

3.4 Protocol Specification
The system setup starts with the initialization of the

smart card, which can only be executed once. It contin-
ues with the issuance of at least one credential. From that
point on, a proof of possession can be executed. Additional
credentials can be issued and bound to the card at any point
later on.

Smart Card Setup. The master secret $0 can only be
set once for each card with $0 ∈ {0, 1}ℓ" . It will be used
to bind all certificates issued to a card together and to the

5Our implementation is capable of including more attributes
in the credential as well as handling them in zero-knowledge
proofs of knowledge and selective disclosure. Each addi-
tional attribute exponent comes at a cost of 1684ms trans-
action time at a modulus bit length of 1536 bits. This ac-
counts for the modular exponentiation, required multiplica-
tions, additions and PRNG calls. Of this, 1016ms are pre-
computation, 668ms are policy-dependent. We have tested
this functionality, yet do not propose it as primary solution.
6This discrete log commitment needs to be computed sep-
arately from the performance measurements we provide in
Table 3. The card needs to generate a random base and
compute the commitment as well as prove its representation
in zero-knowledge. This costs several calls to the PRNG
to generate 1536 bits for a pseudo-random base and two
ModExp. The response for the zero-knowledge proof of $0

can be reused. With a 1536-bit modulus, this makes an
additional transaction time of 1474ms, which can be fully
handled at pre-computation time.

card. It is generated by the card and released only compu-
tationally hidden.

After the setup of the smart card, a credential is issued
to it. During this process the issuer public key comprising
a modulus # = (), where (,) are safe primes that fulfill
(= 2(′ +1 and) = 2)′ +1, and (′,)′ are primes, is needed.
This key also contains bases *, +2, ,0, . . . , ,' ∈(⟨+1⟩ where
+1 is an arbitrarily chosen quadratic residue modulo # and
⟨+1⟩ denotes the group generated by +1. A more detailed
description of the issuer key generation can be found in [21].
We chose the relevant bit lengths as follows: ℓ" = 1536,
ℓ% = 256, ℓ# = 592, ℓ′# = 120, ℓ) = 768, ℓ* = 80 and ℓℋ =
160. In general, ℓ+ denotes the bit length of parameter -.
The bit lengths ℓ′#, ℓ* and ℓℋ define the length .′, the bit
length used to achieve statistical zero knowledge, and the
bit length of the hash values, respectively. Note that the
parameter ℓ) is much shorter than suggested in the Identity
Mixer specification [21] because two blinding bases are used.

After having run the issuance protocol successfully, the
smart card holds a valid CL signature (/, 0, .). We want
to discuss the proof protocol. The issuance protocol en-
tails similar challenges and benefits from the same solution
strategies. We leave the details to the full paper.

Proof of Possession Protocol. Proving possession of a
certificate follows the lines of argumentation of the Identity
Mixer protocol. As the card cannot handle exponents that
are larger than the modulus, we split the long exponents
into two shorter ones at the cost of computing an extra ex-
ponentiation. More precisely, instead of computing +) we

compute +)1
1 +

)2
2 with +1 = +, +2 = +2ℓ and 0 = 01 + 022ℓ

for a suitable ℓ. The verifier starts the protocol by sending
a nonce #1 ∈({0, 1}ℓℋ to the prover, which guarantees the
freshness of the proof. The prover continues by first choos-
ing 0∗1 , 0

∗
2 , 1,$ ∈({0, 1}ℓ%+ℓ& and subsequently computing

the following values.

/′ := /+)1∗
1 +)2∗

2 (mod #)

0̄' := 0' − 0
∗
' ., 2 ∈ {1, 2}

.′ := .− 2ℓ!−1

&(:= +
&'$
1 (mod #)

% := &%0
((mod #)

The card sends /′, (&(, %) to the terminal, which for-
wards it to the verifier. In addition, the card calculates
.̂, $̂0, 0̂1, 0̂2 and the hash 3, and sends those values to the
terminal. For the calculation mentioned, the card chooses
.̃ ∈(±{0, 1}ℓ

′
!+ℓℋ+ℓ& , $̃0 ∈(±{0, 1}ℓ"+ℓℋ+ℓ&+1 and

˜̄01, ˜̄02 ∈(±{0, 1}ℓ%+ℓℋ+ℓ& at random. To continue with the
calculation of the proof, the following values are computed:

4̃ := /′#̃,%̃0
0 +

˜̄)1
1 +

˜̄)2
2 (mod #)

%̃ := &%̃0
((mod #)

3 := ℋ
(

565(717$, 4̃ , %̃, #1

)

.̂ := .̃+ 3.′

$̂0 := $̃0 + 3$0

0̂' := ˜̄0' + 30̄', 2 ∈ {1, 2}

The verifier can check that the smart card possesses a
valid credential by computing the challenge 3̂ and comparing
it with the submitted challenge 3.

4̂ :=

(

*

/′2ℓ!−1

)−-

/′#̂,%̂0
0 +)̂1

1 +
)̂2
2 (mod #)

%̂ := %−-&%̂0
((mod #)

3̂ := ℋ
(

565(717$, 4̂ , %̂, #1

)

Subsequently the lengths of $̂0 and .̂ have to be verified
with $̂0 ∈ {0, 1}ℓ"+ℓ&+ℓℋ+1 and .̂ ∈ {0, 1}ℓ

′
!+ℓ&+ℓℋ+1. It

is straightforward to verify that 4̃ equals 4̂ .
Finally, checking whether the certificate has been revoked

is done as follows. Assume that ($(0,1), . . . ,$(0,/)) for some
8 is the list of revoked secret keys (i.e., the list of the secret
keys that have been extracted from tokens). For each $(0,0)

check that % ∕= &
%(0,))

((mod #) .
This proof protocol does not disclose any attributes and

thus implements the DAA case. The extension of adding
either disclosed or hidden attributes is straightforward [21].

4. REALIZATION ON A SMART CARD
Given the cryptographic design decisions and the formal

system specification, we now elaborate on the realization on
an actual off-the-shelf Java Card in four steps: firstly, an
analysis of the JCOP environment, secondly, strategies that
can partially overcome the limitations, thirdly, integration
of these aspects in a sketch of our high-level system design,
and, finally, a report of the performance achieved.

Our system requires modular multi-base exponentiation,
multiplication, and addition, all with a large composite mod-
ulus and without being privy of the group order. Further-
more, we need random numbers, digests for Fiat-Shamir,
and a cache for intermediary results. We analyze the obsta-
cles presented by the card, and derive optimizations meth-
ods. We achieve much by tunneling computations to the
card’s hardware accelerator and reducing other operations
to the accelerated ones. Unfortunately, this hardware accel-
erator is well encapsulated behind the Java Card’s high-level
crypto interface, so that we resort to disguising credential
system computations as RSA encryption operations.

In the following, we discuss the limitations of a Java
Card, be it in terms of interfaces or be it in implementa-
tion environment (e.g., available RAM). We then show how
our lightweight credential system can nevertheless be imple-
mented, highlight key architecture concepts, and conclude
with a discussion of the performance of our implementation.
This last part shows that privacy-protection tokens are prac-
tical today.

4.1 JCOP Environment
The Java Card 2.2.1 standard [26] offers a well-defined set

of interfaces to implement custom applications. We used a
standard-compliant JCOP smart card [20], which imposes
further limitations when it comes to low-level operations.
We discuss the interfaces that are most relevant for our im-
plementation. We start with basic restrictions such as RAM
and 8-bit arithmetic, and continue with cryptographic prim-
itives.

RAM Restrictions. On top of the restricted access to its
crypto acceleration, a smart card has scarce transient mem-
ory. Our JCOP v2.2/41 card is equipped with 2304 bytes
of RAM. This transient memory is distributed among the
JavaTMstack, APDU buffer (used for communication be-
tween card and environment), atomic transaction buffer, and
Java heap. For the calculations we can only make use of the
transient heap, which is 750 bytes.

Evaluation 1. As we aim at reasonable modulus sizes
of at least 1400 bit, each group element already requires at
least 175 bytes of transient memory. Moreover, to compute
the zero-knowledge proofs as specified in Section 3.4, we need

to juggle multiple group elements in RAM at the same time.
Therefore, transient memory is a highly limiting factor.

8-bit Arithmetic. The JCOP v2.2/41 Java Card comes
with an 8-bit processor/ALU. All arithmetic operations such
as addition, subtraction, and multiplication are delegated to
it. Whereas the built-in arithmetic operates on byte and
short values, we require operations of arbitrary-length in-
tegers. This is either supported by BigInteger libraries in
newer smart cards or custom-implemented in the applica-
tion layer. In any case, it is very costly. Our particular
hardware contains a FAME-X (Fast Accelerator for Mod-
ular Exponentiation - Extended) crypto co-processor that
features support for modular exponentiations. It is not di-
rectly accessible from the application layer of Java Cards.

Evaluation 2. Any attempt to have the exponentiations
or multiplications computed by the 8-bit ALU is bound to
fail, and will result in transaction times as highlighted by
Bichsel [3] for Java Cards and Balasch [2] for AVR mi-
crocontrollers. Our best result for a pure application layer
implementation of a 248-byte addition was 76ms. Projecting
resulting exponentiation times indicates that we need to do
better than that.

Random Number Generation. The JCOP v2.2/41
smart card offers true random number generation (TRNG)
and pseudo random number generation (PRNG). Note that
the PRNG expects a strong random seed and infuses further
randomness sources, i.e., a standard-compliant PRNG does
not produce the same outputs deterministically if seeded
with the same number.

Evaluation 3. The proofs specified in Section 3.4 re-
quire the generation and reuse of multiple random exponents.
The severe RAM limitations deny us the option to store
the randomness and the non-deterministic behavior of the
PRNG denies its re-computation using the provided func-
tionality.

SHA-1 Interface. The SHA-1 interface allows the hashing
of messages of up to 264 − 1 bit length to a 160-bit string.
SHA-1 is implemented in software on the JCOP v.2.2/41
that we use, and therefore, relatively slow. In addition, di-
gest updates have to respect the block size of 64 bytes, which
makes certain key lengths, i.e., 1984 bits, less favourable as
we would need to hash 2048 bits.

Evaluation 4. The SHA-1 primitive is only a
second-rate candidate to generate and recompute pseudo-
randomness. We shy away from its slow software imple-
mentation and the transient memory impact.

DES/3DES Interface. The symmetric encryption inter-
face offers a variety of modes, be it in terms DES, 2 key
3DES or 3 key 3DES, in terms of cipher block chaining mode
(CFB) or electronic codebook mode (ECB), or in terms of
the padding scheme.

Evaluation 5. For us, it is of particular importance
that the JCOP v2.2/41 card offers hardware acceleration for
3DES operations and that there exist efficient and secure
pseudo-random number generators based on 3DES.

DSA Interface. The DSA signing primitive uses various
exponentiations that might be leveraged for our purposes.
In particular, it executes a multi-base exponentiation with
configurable bases.

Evaluation 6. The DSA key interface allows us to spec-
ify the public key and private key, but not the value of the
exponents. We perceive the involvement of the hash func-
tion as obstacle to using the DSA interface for our intended
acceleration of arithmetic operations.

RSA Interface. The Java Card 2.2.1 standard [26] of-
fers RSA [25] encryption and decryption, either in normal
mode or with Chinese Remainder Theorem (CRT) support
for private key operations with known factorization. The
RSA public key consists of the modulus # and the pub-
lic exponent ., whereas the private key contains the secret
exponent 9 = .−1 (mod ((− 1)() − 1)) and modulus fac-
torization # = (⋅). The parameters (and) are chosen as
random prime numbers that are of similar length and not
equal. A message $ is encrypted to 3 = $# (mod #) us-
ing the public key. The decryption uses the private key and
retrieves $′ = 31 (mod #).

For the Java Card 2.2.1 standard, the public exponent .
is usually quite small (4 bytes) and often fixed to common
exponents such as 3 or Fermat-4. Whereas the JCOP envi-
ronment allows us to set exponents and moduli of the RSA
keys in a wider value range, it still limits the bit length of
exponent (ℓ#) and base (ℓ!) to at most equal the bit length
of the modulus ℓ".

Moreover, the Java Card 2.2.1 standard only allows com-
putations on persistent keys (EEPROM), as normal RSA
encryption operates on long-term keys.

Evaluation 7. In principle, the RSA primitive sounds
like a good candidate to tunnel computations for the creden-
tial system to the hardware acceleration. We face three lim-
itations: firstly, the constraint to small standard exponents
for encryption may foil our endeavor altogether. Secondly,
the limitation to modulus-size exponents conflicts with the
blinding of the credential system: it must be larger than the
modulus to stay provably secure. Thirdly, the restriction to
persistent keys bars us from exploiting the interface directly:
we need to update the keys frequently to obtain exponenti-
ations with random values and would therefore cause many
write cycles—slow death—to the EEPROM.

Summary. We have seen that, firstly, a Java Card—and
in particular the JCOP v2.2/41 card—imposes severe lim-
itations in terms of transient memory and 8-bit arithmetic
on credential system operations, such that a delegation to
hardware acceleration is unavoidable. Secondly, the exposed
cryptographic interfaces are well encapsulated, either com-
pletely unusable for our endeavor or posing further techni-
cal obstacles. Thirdly, the RSA interface is promising, but
requires a new implementation of transient keys with long
public exponents to serve our purpose. Also, it would con-
flict with compliance with the Java Card 2.2.1 standard.

4.2 Our Solution Strategies
In general, one can solve most of the restrictions indicated

using the computation time versus storage trade-off. Bal-
asch shows in [2] some results in this direction. However, we
could not allow ourselves this luxury: given the very tight
bounds on all relevant metrics with our Java Card, we had
to look for other solution strategies.

Multi-base Exponentiations. Undoubtedly, multi-base
exponentiations are the most important operation in our
protocol. The combination of not having an interface to ex-
ploit hardware-accelerated multi-base exponentiation, and

computing multi-base exponentiations in the application
layer consuming too much transient memory, we dismissed
this option altogether. Also, it falls back on a custom im-
plementation on the 8-bit ALU that is too slow. We resort
to hardware-accelerated modular exponentiations.

Modular Exponentiation. Modular exponentiation that
is implemented on the application layer exhibits a devastat-
ing performance, which when holds when using advanced
methods such as Montgomery reduction.

Idea 1. We delegate modular exponentiations to the RSA
encryption and overcome interface limitations (Section 4.1)
as follows:

∙ By creating a new transient RSA key design that sup-
ports public exponents in modulus length and a rapid
change of exponents in transient memory. This is
made possible by the use of special library and violates
the Java Card 2.2.1 standard. Note, that the Java Card
3.0 standard does allow RSA keys to be stored in tran-
sient memory.

∙ By modifying the credential system to execute the
blinding over two bases +1 and +2 instead of a single
base +, thus maintaining provable security with smaller
exponent sizes.

Let us consider this in detail: firstly, RSA keys normally re-
side in EEPROM, or even worse, in a protected EEPROM
section. Therefore, executing many exponentiations with
changing RSA keys, will deplete the write cycles of this par-
ticular EEPROM section very quickly. In addition, writ-
ing to EEPROM takes much longer than writing to RAM7.
We overcome this limitation by creating a new RSA key
structure that resides in transient memory. Although Java
Card 2.2.1 does not support RSA keys in transient memory,
JCOP actually does, and we exploit this in our implementa-
tion. Note, however, that the newer standard Java Card 3.0
does support RSA keys in transient memory, and so, looking
forward, our solution will be standard-compliant.

Secondly, we overcome the exponent and base length lim-
itations, which prevented us from carrying out the Identity
Mixer computations as defined in [21]. Specifically the ex-
ponent for blinding the certificate needs to be larger than
the modulus. The solution to this problem is the use of
two bases with two independently chosen exponents which
results in the equation given in Section 3.4.

Modular Multiplication. Modular multiplication is the
second most important primitive when it comes to imple-
menting the Identity Mixer anonymous credential system.
It is also too heavy-weight for the application layer. Luck-
ily, we succeeded in building an extremely efficient modular
squaring primitive that overcomes this issue.8

Idea 2. We reduce multiplications to highly efficient
squaring operations on the hardware acceleration by em-
ploying a binomial formula. In particular, we compute the
modular multiplication of 7 and : modulo # by computing
((7+ :)2 − 72 − :2)/2 (mod #) = 7: (mod #).

Because of the small exponent, the computation is very ef-
ficient. The subtraction is implemented naive, which makes
7Writing a page (1-64 bytes) to EEPROM typically takes
1.6ms according to [23].
8A modular squaring of a 1984-bit number with the hard-
ware acceleration takes 9ms.

it the predominant factor when it comes to computation
time. The final division translates to a simple shift opera-
tion. Using the optimizations outlined, we can reduce the
computation complexity in the application layer from <(ℓ2")
to <(ℓ"), where ℓ" is the length of the modulus.

Addition. Given our optimizations of exponentiation and
multiplication, the addition and subtraction become pre-
dominant when it comes to performance. As production
cards can be easily patched to expose a fast byte-array addi-
tion primitive, we base our smart card implementation on an
application-layer arbitrary position integer addition. How-
ever, the following optimization can lead to a considerable
protocol speed-up even with a standard card.

Idea 3. We could delegate the addition to the hard-
ware acceleration by tunneling it through the RSA-CRT de-
cryption operation. By carefully setting the base and ex-
ponent arguments the CRT algorithm produces an addi-
tion/subtraction in the decrypted message that can be ex-
tracted by inexpensive shifts. We refer to the full paper for
details on this method.

Randomness. The Java Card offers a true random num-
ber generator. However, we cannot store the randomness for
the proofs because of the severe memory limitations (see Sec-
tion 4.1). We therefore need to regenerate pseudo-random
values on demand. As the Java Card 2.2.1 standard specifies
that the pseudo-random generation with the same seed will
result in the same random number, we need an alternative
mechanism.

Idea 4. We create our own pseudo-random number gen-
erator that allows us to regenerate randomness identified by
variable names. We generate the seed with the true ran-
domness generation of the JCOP card and use the formal
state machine of Section 4.3 to enforce that a each proof is
executed with a fresh random seed.

In the current implementation, we use the SHA-1 hash func-
tion to generate pseudo-randomness, however, this leaves
much room for optimization: using the dedicated 3DES co-
processor as PRNG would enable an additional performance
gain. Considering the computation times of 3DES, which are
specified as < 35>s [20], and comparing to the measurements
in [2] (3ms per SHA-1 Op) as well as our experiments (22ms
per 100-byte PRNG data), it is safe to estimate the benefit
of this measure to roughly half the computation time of the
pseudo randomness.

Transient Memory. We mitigate the scarce resources
problem of transient memory by partially using memory
dedicated to a fixed component. In our example, we use the
card’s communication buffer. With a length of 255 bytes, it
has a reasonable size to be exploited. This approach carries
the major risk that the buffer might be read or changed by
other applets. Thus, we need to make sure that no sensitive
data resides in this memory.

Idea 5. We use the communication (APDU) buffer of the
smart card as additional transient memory. For security
reasons we enforce that any data written to buffer is non-
sensitive or already cryptographically blinded. This means
in particular that a proof ’s randomness, the user’s master
key, and the attribute values are never written to the APDU
buffer.

Summary. We created a toolbox for efficient computation
of various algorithmic components of credential systems. It

helped us to make the most of our situation, in view of its
high expectations (future-proof key length and short trans-
action times) and severe limitations (RAM, 8-arithmetic,
limited crypto interfaces). In particular, it enabled us to cre-
ate the credential system on card as specified in Section 3.4
with the architecture and performance as described below.

4.3 Architecture of the Full System
Whereas we dedicated the previous sections to overcoming

the low-level obstacles of the JCOP environment, we now
take a step back to present the high-level architecture of the
overall system. After all, realizing a full-fledged anonymous
credential system on a Java Card is not just algorithms and
tricks to achieve fast exponentiations, but requires serious
consideration at the system level.

Our main requirements on the architecture are twofold.
Firstly, it must strongly economize the Java Card’s re-
sources, and in particular, use transient memory optimally
and in a tightly controlled manner. Secondly, it must feature
strong security and robustness properties, i.e., justify its use
in high-trust areas such as eID. We briefly discuss these two
requirements by mentioning the core points of our architec-
ture and complementing them with a design overview.

Figure 1: Overview of the class design of the cre-
dential system for Java Card.

Let us start with the economy aspects, which we comple-
ment with the class design overview of Figure 1. Transient
memory clearly is the sparsest resource of the card, par-
ticularly because we juggle multiple large byte arrays with
group elements. We therefore first established an explicit
RamManager that owns most of the applet’s memory. It
governs byte arrays for group elements as well as exponents
and organizes the request and release of this memory. Sec-
ondly, we created most classes either in the singleton design
pattern [18] or as static, such that there exists either only one
instance with state or that the class does not have dynamic
state at all. This design is not only for economy but also
includes security features in terms of information flow/non-

interference: the RamManager, for instance, guarantees that
byte arrays are zeroed before reuse. Also, security-critical
memory, such as digest state and random seed for PRNG,
is completely separated from other computations and well
encapsulated in the corresponding classes.

Figure 2: State machine of the anonymous creden-
tial system applet.

The security properties of the applet go beyond informa-
tion flow control and, in particular, ensure consistency of
the card’s state. This can be on an atomic transaction level
or on the system-state level. We solve the first part mostly
through Factory design patterns [18]9 and prudence for all
write operations to the card’s EEPROM, which we realize
with the Java Card’s atomic transaction facility10 and con-
sistency checks before committing transactions. We solve
the latter part with a formal state machine, depicted in
Figure 2. It establishes tight control on setup and opera-
tional states, acceptable inputs, and potential transitions.
Even though we thoroughly tested the applet with white
and black box tests, we separated out all test functionality,
which are interfaced by the abstract method processTest()
and not compiled into the production version (similar to the
Visitor design pattern [18]).

4.4 Performance
We performed measurements executed on a JCOP v2.2/41

smart card. We first measured the performance of the arith-
metic operations. Especially, the modular exponentiation is
of interest to us. Running 500 consecutive executions of an
exponentiation using a base and a modulus with bit length
of 1984 bits and an exponent of length 1024 bit, we mea-
sured a computation time of 1.3 seconds for each exponenti-
ation. Cutting the exponent in half reduces the computation

9Factories, such as our CredentialFactory, are the focus and
control point for class instantiation and access. For instance,
Credential instances cannot be constructed directly, but need
to be created by the corresponding factory in a well-defined
robust process.

10The Java Card 2.2.1 standard [26] can make transactions
of multiple computations and write operations to persistent
memory atomic. Either the entire transaction finishes suc-
cessfully or the card is reset to the state before the transac-
tion.

time by a factor of 2. Furthermore, the computation time of
squaring a 1984-bit base using a modulus of the same length
results in a computation time of approximately 15ms.

Our main interest lies in the computation times of the
protocol proving holdership of a credential as described in
Section 3.4. Note that the exponentiation for the revoca-
tion as specified is not included in the measurements. The
computations of the credential issuance are less important
as there are only a few credentials issued to a card, but
possibly a large number of proofs of possession. Also, com-
putations of the credential recipient and an entity proving
possession of a credential are very similar, and timings can
be well approximated.

We analyzed the performance using different key lengths
starting with a 1280-bit modulus up to a modulus length
of 1984 bits. We chose the upper limit on the length of
the bases to be equal to the length of the modulus11. To
get a better overview, we split the computation time in
a pre-computation and a policy-dependent part. The pre-
computation consists of the computation of /′ and the com-
putation of ,%̃0

0 +)̃1
1 +

)̃2
2 as specified in Section 3.4. The tim-

ings presented are not only computations, but include com-
munication times, i.e., they represent a real interaction with
the card as it proves holdership of a credential. Communi-
cation time occurs while sending a number to the card or
receiving the result from the card. We outline the result of
these measurements in Table 2.

Table 2: Computation time comparison for different
bit lengths of the modulus.

Modulus length 1280 bit 1536 bit 1984 bit

Pre-computation 5203ms 7828ms 13250ms

compute /′ 2125ms 2906ms 5000ms
compute 41 3078ms 4922ms 8250ms

Policy dependent 2234ms 2625ms 3298ms

compute 5⋅ 562ms 656ms 828ms

Total 7437ms 10453ms 16548ms

To get an idea which operations need a significant amount
of the overall computation time we analyzed the time each
individual operation consumes. The result of this experi-
ment is listed in Table 3. We ran 1000 executions of the
protocol’s arithmetic operations to acquire the results. The
upper bound on the bit length of the base was 1536 and
the upper bound on the bit length of the exponent 895. We
used a random 1536-bit number as modulus. For simplicity
reasons, we rounded the percentages of computation times.

Table 3 shows that the addition, as a part of the multipli-
cation and in various locations in the protocol, accounts for
31% of the overall computation time. The pseudo random-
ness generation accounts for roughly 9% of the computation
time.

5. CONCLUSION
We present the first efficient implementation of an anony-

mous credential system on a standard Java Card. Our sys-

11In a setting with a large exponent (> 200 bits), the length
of the base has a negligible impact on the computation time.

Table 3: Computation time comparison split up into
the different low-level operations.

Operation Time # Ops % (time)

Multiplication 4653ms 9 40%

Addition 2988ms 36 26%
ModSquare 243ms 27 2%

ModExp 4308ms 10 37%
Pseudo RNG 1088ms 16 9%
True RNG 815ms 1 7%
Addition 581ms 7 5%
Digest 220ms 10 2%

Total 11665ms 100%

tem nurtures sustainable secondary use of the user’s iden-
tity because of the multi-use unlinkability of the credential
system. Our system performs the entire computation on
card and independently from a potentially malicious termi-
nal. Therefore, we fulfill our major requirement for an au-
tonomous trust root. In addition, our anonymous credential
system offers long-term certificates and, therefore, does not
require updates when doing many unlinkable proofs.

Our Java Card implementation is capable of efficient
proofs of possession of identity credentials. Even though
our implementation is able to include several attributes in a
credential, we opt to trust the hardware for attribute state-
ments, because this results in constant and low transaction
times. We present this method as means to handle range
proofs on a Java Card, as traditional Boudot range proofs
are beyond reach of current cards. We propose to combine
this with an efficient anonymous card revocation mechanism.

As limitations of our solution, we note that a terminal
can attempt to send multiple policy requests to infer the
user’s data (see the autonomous trust root discussion in Sec-
tion 2.1). We believe that this is orthogonal to the imple-
mentation of an anonymous credential system and requires
further research. Even though our anonymous credential
system provides multi-use unlinkability, we note the poten-
tial risk that a terminal may identify the Java Card by other
means. A card could, for instance, contain further applets
that disclose traceable information, such as a serial num-
ber. The card’s hardware may also be traced by low-level
information and finger printing.

In conclusion, we are confident that our solution has
overcome the final technical barrier to establish privacy-
preserving eID cards.

6. OUTLOOK
We present a possible extension of our approach that al-

lows for efficiently proving multiple finite-set attributes. In
addition, we throw a glance at the future of smart cards in
general, and Java Cards in particular.

6.1 Camenisch-Groß Attribute Encoding
Camenisch and Groß [8] proposed a first approach to

achieve higher efficiency with eID cards and CL signatures
by encoding binary and finite set attributes in a single at-
tribute base. This reduces the number of attribute bases
and, therefore, of exponentiations by the number of prime-
encodable attributes. In addition it allows for efficient not,
conjunction and disjunction proofs. To be precise, they en-

code binary and finite set attribute values as prime num-
bers .0 , and condense them in a dedicated attribute base as
product exponent @ =

∏

0 .0 , here at base ,1. To disclose a
conjunction of prime-encoded values, one discloses the prime
representation and proves knowledge of the remainder.

This method is currently realized for the Identity Mixer
library on the PC and also suitable for the anonymous cre-
dential system on Java Card. In this case, the system re-
quires one additional base for the prime-encoded attributes.
AND-proofs of any number of binary or finite-set attributes
will then cost one additional exponentiation.12

6.2 Future Smart Cards
Our system has very small hardware requirements. This

allows us to implement the anonymous credential system
on a smart card that is similar to those currently used in
eID production. Our hardware is far from the upper end of
the current technology spectrum. This supports our take-
home message that todays eID cards are powerful enough to
perform advanced privacy-preserving computations.

In addition, it gives us room to plan for the future.
Whereas our current implementation copes with 16KB of
EEPROM, 2KB of RAM, and a 3.57MHz 8-bit CPU13, most
recent cards are equipped with up to 1MB of EEPROM,
32KB of RAM and a 66MHz, 16-bit CPU14. Furthermore,
the trends in smart card technology let us predict what
smart cards may be chosen for future eID proposals. Those
smart cards are clearly able to host further credential sys-
tem features, such as verifiable encryption and e-cash-based
frequency boundaries.

6.3 Java Card 3.0 Standard
The Java Card 3.0 standard as released in April 2008 by

Sun Microsystems may also benefit our endeavor, because
it allows Java Cards to hold RSA private keys in transient
memory. Our current implementation makes use of a JCOP-
specific library that allows us to store RSA keys in RAM in-
stead of protected EEPROM, which has major influence on
the computation times. With cards implementing the new
standard, consequently, we can implement our construction
fully standard-compliant on Java Card 3.0 cards. Such cards
are to be released in 2009.

7. ACKNOWLEDGMENT
We would like to thank the BlueZ group from the IBM

Research Zurich Lab for their continuous support and ex-
tremely helpful insight. In particular, we valued the dis-
cussions with Michael Baentsch (eID scenarios), Thomas
Eirich (fast addition), Thorsten Kramp (fast computations
on JCOP), Michael Kuyper (JCOP environment), Michael
Osborne (eID scenarios, card support and personalization),
Tamas Visegrady (fast computations and crypto accelera-
tion on JCOP), and Thomas Weigold (JCOP environment,
fast addition). Without their expertise in the domain of

12Based on the performance measurements of Table 3, we
predict that the inclusion of Camenisch-Groß encoding and
its AND-proofs will add 1684ms transaction time at a mod-
ulus bit length of 1536 bits. This accounts for the modu-
lar exponentiation, required multiplications, additions and
PRNG calls. Of this, 1016ms are pre-computation, 668ms
are policy-dependent. Note that these are upper bounds for
the full exponent length.

13NXP JCOP v2.2/41
14Infineon, SLE88 family

smart cards and authentication solution, this work would
have not been possible. We also appreciated the support
of Doug Dykeman and Peter Buhler for this exploratory re-
search project.

This work has been funded by the European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement no. 216483. Also, Victor Shoup has
done his work at IBM Research and is supported by NSF
award number CNS-0716690.

8. REFERENCES
[1] M. H. Au, W. Susilo, and Y. Mu. Constant-size

dynamic --TAA. In Security and Cryptography for
Networks, vol. 4116 of LNCS, pages 111–125, Berlin,
2006. Springer.

[2] J. M. Balasch Masoliver. Smart card implementation
of anonymous credentials. Master’s thesis,
K.U.Leuven, Belgium, 2008.

[3] P. Bichsel. Theft and misuse protection for anonymous
credentials. Master’s thesis, ETH Zürich, Switzerland,
November 2007.

[4] D. Boneh, X. Boyen, and H. Shacham. Short group
signatures. In M. K. Franklin, editor, CRYPTO ’04,
vol. 3152 of LNCS, pages 41–55. Springer, 2004.

[5] F. Boudot. Efficient proofs that a committed number
lies in an interval. In B. Preneel, editor, EUROCRYPT
’00, vol. 1807 of LNCS, pages 431–444. Springer, 2000.

[6] S. Brands. Rethinking Public Key Infrastructures and
Digital Certificates: Building in Privacy. MIT Press,
2000.

[7] E. Brickell, J. Camenisch, and L. Chen. Direct
anonymous attestation. In Proc. 11th ACM CCS,
pages 225–234. ACM Press, 2004.

[8] J. Camenisch and T. Groß. Efficient attributes for
anonymous credentials. In Proc. 15th ACM CCS,
pages 345–356. ACM Press, Nov. 2008.

[9] J. Camenisch and A. Lysyanskaya. Efficient
non-transferable anonymous multi-show credential
system with optional anonymity revocation. In
B. Pfitzmann, editor, EUROCRYPT ’01, vol. 2045 of
LNCS, pages 93–118. Springer, 2001.

[10] J. Camenisch and A. Lysyanskaya. Signature schemes
and anonymous credentials from bilinear maps. In
M. K. Franklin, editor, CRYPTO ’04, vol. 3152 of
LNCS, pages 56–72. Springer, 2004.

[11] J. Camenisch and E. Van Herreweghen. Design and
implementation of the idemix anonymous credential
system. In Proc. 9th ACM CCS. ACM Press, 2002.

[12] D. Chaum. Security without identification:
Transaction systems to make big brother obsolete.
Comm. of the ACM, 28(10):1030–1044, Oct. 1985.

[13] D. Chaum and J.-H. Evertse. A secure and
privacy-protecting protocol for transmitting personal
information between organizations. In M. Odlyzko,
editor, CRYPTO ’86, vol. 263 of LNCS, pages
118–167. Springer, 1987.

[14] Common Criteria Portal. Common criteria for
information technology security evaluation. [online; 18
April 2009].
http://www.commoncriteriaportal.org/.

[15] I. Damg̊ard and E. Fujisaki. An integer commitment
scheme based on groups with hidden order.
http://eprint.iacr.org/2001, 2001.

[16] L. Danes. Smart card integration in the pseudonym
system Idemix. Master’s thesis, University of
Groningen, 2007.

[17] A. Fiat and A. Shamir. How to prove yourself:
Practical solutions to identification and signature
problems. In A. M. Odlyzko, editor, CRYPTO ’86,
vol. 263 of LNCS, pages 186–194. Springer, 1987.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, 1995. Elements of
reusable object-oriented software.

[19] X. Huysmans. Privacy-friendly identity management
in eGovernment. In The Future of Identity in the
Information Society, vol. 262/2008 of IFIP
International Federation for Information Processing,
pages 245–258. IFIP, Springer, June 2008.

[20] IBM. JCOP - the IBM GlobalPlatform
JavaCardTMimplementation. [online; 16 April 2009],
Feb. 2002. ftp://ftp.software.ibm.com/software/
pervasive/info/JCOP_Family.pdf.

[21] IBM. Cryptographic protocols of the Identity Mixer
library, v. 1.0. IBM Research Report RZ3730, IBM
Research, 2009. http://domino.research.ibm.com/
library/cyberdig.nsf/index.html.

[22] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf.
Pseudonym systems. In H. Heys and C. Adams,
editors, Selected Areas in Cryptography, vol. 1758 of
LNCS. Springer, 1999.

[23] Philips. mifare proX P8RF5016. [online; 18 April
2009], May 2003. http://smartdata.usbid.com/
datasheets/usbid/2005/2005-q2/sfs051814.pdf.

[24] M. O. Rabin and J. O. Shallit. Randomized
algorithms in number theory. Communications in Pure
and Applied Mathematics, 39:239–256, 1986.

[25] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key
cryptosystems. Comm. of the ACM, 21(2):120–126,
Feb. 1978.

[26] Sun Microsystems. Java card platform specification
2.2.1. [online; 18 April 2009], Oct. 2003.
http://java.sun.com/javacard/specs.html.

