
Anonymous Hierarchical Identity-Based
Encryption with Constant Size Ciphertexts

Jae Hong Seo1,�, Tetsutaro Kobayashi2, Miyako Ohkubo2,
and Koutarou Suzuki2

1 Department of Mathematical Sciences and ISaC-RIM, Seoul National University,
Seoul, Korea

jhsbhs@gmail.com
2 NTT Information Sharing Platform Labs, Tokyo, Japan

{kobayashi.tetsutaro,ookubo.miyako,suzuki.koutarou}@lab.ntt.co.jp

Abstract. We propose an anonymous Hierarchical Identity-Based En-
cryption (anonymous HIBE) scheme that has constant size ciphertexts.
This means the size of the ciphertext does not depend on the depth of the
hierarchy. Moreover, our scheme achieves the lowest computational cost
because during the decryption phase the computational cost of decryp-
tion is constant. The security can be proven under reasonable assump-
tions without using random oracles because it is based on the composite
order bilinear group. Our scheme achieves selective-ID security notion.

1 Introduction
Identity-Based Encryption (IBE) is a topic of focus as a useful technique. Studies
are proceeding in various directions, and numerous applications using IBE have
been presented. A searchable encryption scheme has been discussed. At first,
schemes allowed keywords that were not encrypted. However, in such schemes,
an anonymous request for a keyword cannot be satisfied by using simple IBE
schemes. To provide this function, anonymous IBE was proposed. The anony-
mous IBE scheme provides a very useful function, i.e., anonymity of ID. An
anonymous IBE ciphertext does not leak any information about the receiver’s
identity. Such a useful property can be applied to keyword searchable encryption
while maintaining anonymity of the keyword [1,5,11].

AnonymousHierarchical Identity-BasedEncryption (anonymousHIBE),which
handles IDs hierarchicallymaintaining the anonymity of an ID andkeys, canbedel-
egated even if a blinding ID is used. Anonymous HIBE allows some protocols using
anonymous HIBE to be extended; for example, by applying keyword-searchable
encryption, keywords can be treated hierarchically while maintaining anonymous
keyword information.
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1.1 Related Works: ID-Based Encryption Algorithms

After Horwitz and Lynn defined the notion of Hierarchical ID-Based Encryp-
tion (HIBE)[18], many efficient and provably secure HIBE schemes were pro-
posed. Gentry and Silverberg proposed an efficient and secure HIBE scheme,
that achieves full-ID CPA (chosen plaintext attack) security; however, it was
proven with a random oracle (GS-HIBE)[17]. Canetti, Halevi and Katz[13] sug-
gested a weaker security notion, called selective-ID, and they also proposed a
selective-ID secure HIBE without using random oracles; however, their scheme
is an inefficient one. An efficient and selective-ID secure HIBE scheme in the
standard model was proposed by Boneh and Boyen (BB-HIBE) [2]. However the
ciphertext of the BB-HIBE scheme is depends on the depth of the hierarchy.
To improve the efficiency, HIBE with constant size ciphertexts was presented by
Boneh, Boyen and Goh (BBG-HIBE)[3]. In their scheme, a private key can be
delegated while maintaining a constant ciphertext size. BBG-HIBE was proven
without using random oracles, and it achieves selective-ID security. Full-ID se-
cure schemes that do not use random oracles were presented by Waters[23], Chat-
terjee and Sarkar [15]. All of the above mentioned HIBE schemes were proposed
assuming that IDs are known to everyone, so they cannot provide anonymity of
ID. We call such HIBE schemes non-anonymous HIBE schemes.

On the other hand, the concepts of anonymous IBE and anonymous HIBE
were shown by Abdalla et al. [1], and formal definitions of them were also given
in that paper. However, a concrete construction of anonymous HIBE was not
proposed. A concrete constructions of anonymous IBE in the standard model
was proposed by Gentry[16] and a concrete construction of anonymous HIBE
was proposed by Boyen and Waters (BW-HIBE)[12]. Both of these schemes
were proposed in the standard model and are selective-ID CPA secure, which
can be proven without using random oracles. Shi and Waters proposed a dele-
gatable hidden-vecor encryption (dHVE) whose definition is a generalization of
anonymous HIBE, i.e., anonymous HIBE is a special case of the dHVE scheme
(SW-dHVE) [22]. The scheme takes a composit order bilinear group, which was
introduced by Boneh, Goh, and Nissim [7], to obtain property of anonoymity.
However, in the BW-HIBE and SW-dHVE schemes, the ciphertext size depends
on the hierarchy depth. The ciphertext size has a great impact on practicality,
so while their results are very interesting, efficiency remains an open problem.

1.2 Our Results

Motivation: The size of ciphertext affects the efficiency and feasibility of vari-
ous applications using HIBE schemes, and if the ciphertext size depends on the
depth the hierarchy depth, the efficiency and feasibility of applications also de-
pend on the hierarchy depth. The HIBE scheme with constant size ciphertexts
can extend the feasibility and convenience of applications. Additionally, some
applications need anonymity of ID. For example, Keyword-search encryption is
one of such applications. In keyword-search encryption scheme, each keyword
needs a ciphertext, therefore totally the size of ciphertexts for many keywords
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is significant impact on the efficiency of keyword search. In such a case the
size of ciphertext is serious problem. However, none of the previous results for
anonymous HIBE could provide constant size ciphertexts.

Contribution: We present an anonymous HIBE scheme with constant size ci-
phertexts. Our scheme achieves selective-ID CPA security without using random
oracles, and is based on a new assumption, the �-composite Diffie-Hellman as-
sumption The details are shown in section 2.3. The technical highlight of our
paper is the technique for achieving constant size ciphertexts even though the
number of layers is increased in HIBE, keeping anonymity of IDs, and security
proofs using game-based proof techniques. The difficulties in devising an efficient
anonymous HIBE scheme are constructing a length of ciphertext that is inde-
pendent of hierarchy depth and maintaining the anonymity of key delegation
hierarchical ID. Our idea is effected by BBG-HIBE [3], which provides constant
size ciphertexts. However, [3] does not satisfy the requirement of an anonymous
ID. To attain ID anonymity, we need a randomizing method, keeping the prop-
erty of key deligation. Therefore the proposed scheme takes a composite order
bilinear group, and is using a technique improved upon that of in [11]. The HVE
scheme in [11] is not anonymous HIBE; it is a scheme for keyword searchable
encryption. However, the technique for providing keyword anonymity offers us
a key idea for solving key delegation for anonymous HIBE.

There were two anonymous HIBE schemes, BW-HIBE and SW-dHVE1 be-
fore our HIBE scheme. Comparing our construction with these previous two
anonymous HIBE schemes, we see that the ciphertexts in both those schemes
are O(L) group elements, and private keys are O(L2) group elements, where L
is the maximum hierarchy depth. In constract, our scheme uses only four group
elements for a ciphertext, and the private key uses O(L) group elements.

2 Background

2.1 Security Models

We briefly explain the informal security notions of anonymous HIBE. The formal
security definitions may be found in the literature [6,1]. We use a weaker notion
of security introduced by [13,14] in which the adversary commits ahead of time
to the public params that it will attack; i.e., we use the selective security notion.

Semantic security(IND-sID(indistinguishability against selective identity)): The
adversary outputs target identity ID∗ before public parameters are gener-
ated. It can make a private key derivation query for ID such that the ID is
not a prefix of or equal to target identity ID∗. It publishes target message
Msg∗. No poly-time adversary can distinguish between a ciphertext of target
message Msg∗ with target identity ID∗ and a ciphertext of random message
with target identity ID∗.

1 The dHVE and anonymous HIBE schemes were proposed as anonymous HIBE
schemes [22]. Anonymous HIBE has a flaw, but since we can consider dHVE as
an anonymous HIBE scheme, we compare dHVE with our scheme.
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Anonymity(ANON-sID(anonymity against selective identity)): The adversary
outputs target identity ID∗ before public parameters are generated. It can
make private key derivation query for ID such that the ID is not a prefix of or
equal to target identity ID∗. It publishes target message Msg∗. No poly-time
adversary can distinguish between a ciphertext of target message Msg∗ with
target identity ID∗ and a ciphertext of target message Msg∗ with random
identity.

2.2 Bilinear Groups of Composite Order

We will use a bilinear group of composite order pq. Bilinear groups of composite
order were introduced by Boneh, Goh, Nissim [7].

Let G be a group generation algorithm that takes security parameter 1λ as
input and outputs tuple (p, q, G, GT , e) where p and q are distinct primes, G and
GT are cyclic groups of order n = pq, and e: G × G → GT is a non-degenerate
bilinear map; i.e., e satisfies the following properties:

bilinear: For ∀g1, h1 ∈ G and ∀a, b ∈ Z, e(ga
1 , hb

1) = e(g1, h1)ab.
non-degenerate: For generator g1 of G, e(g1, g1) generates GT .

We assume that group multiplication in G, GT and bilinear map e are all polyno-
mial time computable in λ. Furthermore, we assume that descriptions of G and GT

contain generators as well as identity elements 1G, 1GT of G and GT , respectively.
If there is no confusion, we use 1 for identity irrespective of the group.

We will use the notation Gp and Gq to denote the subgroups of G of order
p and q, respectively, and we will use the notation GT,p and GT,q to denote
subgroups of GT of order p and q, respectively. Then G = Gp × Gq and GT =
GT,p × GT,q. If g1 is a generator of G, then gq

1 and gp
1 are generators of Gp and

Gq, respectively. We use the notation gp and gq to denote generators of Gp and
Gq, respectively.

Note that e(hp, hq) = 1 for all random elements hp ∈ Gp and hq ∈ Gq

because e(hp, hq) = e(ga
p , gb

q) for some integers a, b, and e(ga
p , gb

q) = e(gqa
1 , gpb

1 ) =
e(g1, g1)pqab = 1 for some generator g1 in G.

2.3 Complexity Assumptions

�-weak Bilinear Diffie-Hellman Inversion∗ assumption. The �-Bilinear
Diffie-Hellman Inversion (�-BDHI) assumption has been used for constructing
cryptographic schemes [21,2,3,4]. Boneh, Boyen and Goh introduced a slightly
weaker assumption, �-weak BDHI∗, denoted by �-wBDHI∗ to design HIBE with
constant size ciphertexts in [4]. Our scheme use Decision �-wBDHI∗ in bilinear
groups of composite order to prove semantic security. We say that group gener-
ator G satisfies the (ε, t)-Decision �-wBDHI∗ assumption if no t-time algorithm
has advantage at least ε in solving the Decision �-wBDHI∗ problem in groups
generated by G.

(prime : {p, q}, group : {G, GT}, bilinearmap : {e}) R← G(λ),
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n ← pq, gp, h
R← Gp, gq

R← Gq, a
R← Zn

Z ← ((n, G, GT , e), gq, gp, h, ga
p , ga2

p , · · · , ga�

p ),

T ← e(gp, h)a�+1
, d

R← {0, 1}.
Let T ′ = T if d is 1; otherwise set T ′ to be a uniformly and independently chosen
element from GT,p. We call (Z, T ′) the challenge pair of the Decision �-wBDHI∗.
Give the challenge pair to adversaryA. Then A outputs d′, and succeeds if d = d′.
The advantage of A in solving Devision �-wBDHI∗ problem in groups generated
by G is |Pr[A(Z, T ) = 1]−Pr[A(Z, R) = 1]|, where the probability is over random
coins in G, a random choice of R ∈ GT,p and the random coins of A.

�-composite Diffie-Hellman assumption. The anonymity of our construc-
tion is based on a new complexity assumption that we call the �-composite Diffie-
Hellman assumption (�-cDH) in bilinear groups with composite order n = pq.
We say that group generator G satisfies the (ε, t)-�-cDH assumption if no t-time
algorithm has advantage at least ε in solving the �-cDH problem in groups gen-
erated by G.

(prime : {p, q}, group : {G, GT}, bilinearmap : {e}) R← G(λ),

n ← pq, gp
R← Gp, gq, R1, R2, R3

R← Gq a, b
R← Zn

Z ← ((n, G, GT , e), gq, gp, g
a
p , ga2

p , · · · , ga�

p , ga�+1

p · R1, g
a�+1b
p · R2),

T ← gb
p · R3, d

R← {0, 1}.
Let T ′ = T if d is 1; otherwise set T ′ to be a uniformly and independently
chosen element from G. We call (Z, T ′) the challenge pair of the �-cDH. Give
the challenge pair to adversary A. Then A outputs d′, and succeeds if d = d′.
The advantage of A in solving the �-cDH problem in groups generated by G is
|Pr[A(Z, T ) = 1]−Pr[A(Z, R) = 1]|, where the probability is over random coins
in G, a random choice of R ∈ G and the random coins of A.

Our assumption holds in a generic model if the factorization of n is hard.
According to the Master Theorem [20], in a generic model, if there is an algo-
rithm A issuing at most qs instructions and having advantage Adv in the above
experiment, then A can be used to find a non-trivial factor of n with probability
at least Adv − O(q2

s(� + 2)/(n1/2)). Therefore, if the factorization of n is hard,
any polynomial time algorithm A has a negligible advantage in n.

Bilinear Subset Decision assumption. This assumption is implied by the
�-cDH assumption and was introduced by Boneh, Sahai, and Waters [10]. We
say that group generator G satisfies the (ε, t)-Bilinear Subset Decision (BSD)
assumption if no t-time algorithm has advantage at least ε in solving the BSD
problem in groups generated by G.

(prime : {p, q}, group : {G, GT}, bilinearmap : {e}) R← G(λ),
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n ← pq, gp
R← Gp, gq

R← Gq,

Z ← ((n, G, GT , e), gq, gp),

T
R← GT,p, d

R← {0, 1}.
Let T ′ = T if d is 1; otherwise set T ′ to be a uniformly and independently
chosen element from GT . We call (Z, T ′) the challenge pair of the BSD problem.
Give the challenge pair to adversary A. Then A outputs d′, and succeeds if
d = d′. The advantage of A in solving BSD problem in groups generated by G
is |Pr[A(Z, T ) = 1] − Pr[A(Z, R) = 1]|, where the probability is over random
coins in G, a random choice of R ∈ GT and the random coins of A.

3 Anonymous HIBE with Constant Size Ciphertexts

In this section, we propose an anonymous hierarchical ID-based encryption with
constant size ciphertexts secure under the Decision �-wBDH∗ assumption and �-
cDH assumption. Our construction is based on BBG-HIBE. To attain anonymity,
we construct HIBE over a bilinear group with composite order as HVE in [11]
which can be considered as an anonymous IBE scheme. All non-random elements
of our HIBE scheme are embedded in Gp or GT,p. A private key consists of
only elements in Gp. Public parameters and ciphertexts are blinded by random
elements in Gq or GT,q. Since a pairing result between elements in Gp and
elements in Gq is 1, blinding factors of ciphertexts are removed by calculating a
pairing with a private key in the decryption procedure.

In delegation procedure of the BBG-HIBE scheme, the private key is re-
randomized by using public parameters. However, we cannot use public param-
eters for private key re-randomization in our construction since a private key
must be composed of only elements in Gp. If we use public parameters which
have blinding factors in Gq to re-randomize the private key, then the resulting
private key will also be blinded by elements in Gq. This private key can not
decrypt any ciphertext because the blinding factors of ciphertexts cannot be re-
moved by pairing with the private key in the decryption procedure. Therefore
we add a re-randomization subkey, which is composed of elements in Gp, to the
private key, and the re-randomization procedure uses not only public parameters
but also the re-randomization subkey.

3.1 Construction

Here, we present our HIBE construction.

Setup(λ, L): The setup algorithm generates public system parameters, denoted
by params , and the corresponding master secret key, denoted by MK by using a
security parameter and the maximum hierarchy depth L. First, the setup algo-
rithm generates (p, q, G, GT , e), as explained in the section 2.2. Next, it selects
random elements

g, f, v, h1, · · · , hL, w ∈ Gp, Rg, Rf , Rv, R1, · · · , RL, gq ∈ Gq.
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It then, computes G = gRg, F = fRf , V = vRv, H1 = h1R1, · · · , HL = hLRL

and E = e(g, w), and it publishes the description of a group G and params as:

params ← [gq , gp ,G,F ,V ,H1 , · · · ,HL,E ]

and retains MK as the secret values:

MK ← [p, q, g, f , v , h1 , · · · , hL, w ]

The group description contains n but not p, q.

KeyGenerate(MK , ID): To generate a private key corresponding to ID =
[I1, I2, · · · , Ik] ∈ (Zn)k, the KeyGenerate algorithm first takes MK and ID as
input. Next, it picks random integers r1, r2, s1, s2, t1, t2 ∈ Zn satisfying equa-
tions s1 · t2 − s2 · t1 �≡ 0 mod p and �≡ 0 mod q. The algorithm randomly
chooses integers and checks whether or not the equation holds. If it does not,
the algorithm chooses other random integers and repeats this procedure until
the equation does hold. Since the equation holds without probability p+q−1

n , this
iteration will finish immediately. The private key PvkID consisting of two sub-
keys PvkID

d ∈ (Gp)L−k+3 and PvkID
r ∈ (Gp)2(L−k+3) is output. PvkID

d is used for
decryption and delegation, and PvkID

r is used for re-randomization.

PvkID
d ← [w(v

k∏
i=1

hIi
i )r1f r2 , gr1 , gr2 , hr1

k+1, · · · hr1
L ].

PvkID
r ← [[(v

k∏
i=1

hIi
i )s1fs2 , gs1 , gs2 , hs1

k+1, · · ·hs1
L ], [(v

k∏
i=1

hIi
i )t1f t2 , gt1 , gt2 , ht1

k+1, · · ·ht1
L ]].

Derive(PvkID|k−1 , ID|k): The private key for ID|k ∈ (Zn)k, where 2 ≤ k ≤ L, is
derived from a given private key for the parent,

PvkID|k−1 = [PvkID|k−1

d , PvkID|k−1
r ]

= [ [a0, a1, a2, bk, · · · , bL], [ [α0, α1, α2, βk, · · · , βL], [α′
0, α

′
1, α

′
2, β

′
k, · · · , β′

L] ] ].

To generate PvkID|k , pick random integers γ1, γ2, γ3, δ1, δ2, δ3 ∈ Zn satisfying
equations gγ2·δ3−γ3·δ2

p �≡ 1 and gγ2·δ3−γ3·δ2
q �≡ 1 holds. To select four integers

satisfying the equations, uniformly and independently choose four integers from
Zn and check the equation. If the equation does not hold, then choose four other
integers and repeat the procedure. Since four randomly chosen integers γ2, γ3,
δ2 and δ3 satisfy the above equations without negligible probability p+q−1

n , this
iteration will finish immediately. Therefore we consider four randomly chosen
integers satisfying above equations as a random element in GL2 (Zn). Lastly the
Derive algorithm outputs PvkID|k

d and PvkID|k
r as follows.

Step 1 (delegation procedure):

[ ζ0, ζ1, ζ2, ηk+1, · · · , ηL ] ← [ a0 · bIk
k , a1, a2, bk+1, · · · , bL ]



222 J.H. Seo et al.

[ θ0, θ1, θ2, φk+1, · · · , φL ] ← [α0 · βIk
k , α1, α2, βk+1, · · · , βL],

[ θ′0, θ
′
1, θ

′
2, φ

′
k+1, · · · , φ′

L ] ← [α′
0 · β′Ik

k , α′
1, α

′
2, β

′
k+1, · · · , β′

L].

Step 2 (re-randomization procedure):

PvkID|k
d ← [ ζ0θ

γ1
0 θ′δ10 , ζ1θ

γ1
1 θ′δ11 , ζ2θ

γ1
2 θ′δ12 , ηk+1φ

γ1
k+1φ

′δ1
k+1, · · · , ηLφγ1

L φ′δ1
L ]

PvkID|k
r ← [ [θγ2

0 θ′δ20 , θγ2
1 θ′δ21 , θγ2

2 θ′δ22 , φγ2
k+1φ

′δ2
k+1, · · · , φγ2

L φ′δ2
L ],

[θγ3
0 θ′δ30 , θγ3

1 θ′δ31 , θγ3
2 θ′δ32 , φγ3

k+1φ
′δ3
k+1, · · · , φγ3

L φ′δ3
L ] ].

We note that private keys generated by the Derive algorithm have the same
structure and distribution as those generated by the KeyGenerate algorithm.
Two random integers r1 and r2 of PvkID|k−1

d are re-randomized as follows:(
r1
r2

)
+

(
s1 t1
s2 t2

)
·
(

γ1
δ1

)
Since we choose γ1 and δ1 uniformly and independently from ∈ Zn, the above
value is also distributed uniformly in (Zn)2. Therefore, PvkID|k

d has the same
distribution as that of the private key generated by the KeyGenerate algorithm.

Random integers of PvkID|k−1
r are re-randomized as follows:

A · B where A =
(

s1 t1
s2 t2

)
, B =

(
γ2 γ3
δ2 δ3

)
Since A ∈ GL2 (Zn) and B are uniformly chosen from GL2 (Zn), A · B is also
uniformly distributed in GL2 (Zn). Therefore, the private key generated by the
Derive algorithm has the same distribution as that of the private key generated
by the KeyGenerate algorithm.

Encrypt(params , ID, Msg): First, pick a random integer s ∈ Zn and random
elements Z1, Z2, Z3 ∈ Gq to encrypt message Msg ∈ GT for a given identity
ID = [I1, · · · , Ik] ∈ (Zn)k. A random element of Gq can be chosen by raising
gq to random exponents from Zn. Next, the Encrypt algorithm outputs the
ciphertext

CT ← [Msg · Es, Gs · Z1, F s · Z2, (V
k∏

i=1

HIi)s · Z3] ∈ GT × G3.

Decrypt(PvkID, CT): Consider ID = [I1, · · · , Ik]. To decrypt ciphertext CT =
[C1, C2, C3, C4], using the first three elements of subkey PvkID

d = [a0, a1, a2, bk+1,
· · · , bL] of the private key PvkID, output

Msg ← C1 · e(a1, C4) · e(a2, C3)
e(a0, C2)

.

We can easily check the correctness of the Decrypt algorithm for valid cipher-
text as follows.
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C1
e(a1, C4)e(a2, C3)

e(a0, C2)
= Msg · e(g, w)s e(gr1 , (V

∏k
i=1 HIi)sZ3)e(gr2 , F sZ2)

e(w(v
∏k

i=1 hIi
i )r1f r2 , GsZ1)

= Msg · e(g, w)s e(gr1 , (V
∏k

i=1 HIi)s)e(gr2 , fs)

e(w(v
∏k

i=1 hIi
i )r1f r2 , gs)

= Msg

The second equality holds because e(hp, hq) = 1 for all hp ∈ Gp and hq ∈ Gq.

3.2 Proof of Security

In this section, we explain the security of our construction. Our construction
is similar to that of BBG-HIBE except for the blinding factors and the re-
randomization subkey of the private key. Since the re-randomization subkey
does not contain an element of the master key, w, adding the re-randomization
subkey does not effect the semantic security. Therefore, we can demonstrate the
semantic security of our construction in a similar manner to that for BBG-HIBE.

To prove anonymity, we use hybrid steps similar to that of [11]. The security
of HVE is based on the composite 3-party Diffie-Hellman assumption, however
we use the L-cDH which is a stronger assumption than c3DH, where L is the
maximum hierarchy depth. The reason we introduce and use the L-cDH assump-
tion is like that the semantic securities of our scheme and BBG-HIBE scheme are
based on the Decision L-BDHI∗ assumption which is a stronger assumption than
the Decision BDH assumption and depends on the maximum hierarchy depth
L. The private key of BBG-HIBE has delegation key elements whose number
depends on the maximum hierarchy depth. Therefore it may be that an adver-
sary attacking the BBG-HIBE scheme or our scheme can get more information
from the private key extraction queries than from other HIBE schemes in which
the private key does not contain delegation key elements and is secure under the
Decision BDH assumption, for example, GS-HIBE and BB-HIBE. The Decision
L-BDHI assumption and the L-cDH assumption guarantee that any computa-
tionally bounded adversary can get no information about the message and the
identity, respectively, from the chosen private keys and the challenge ciphertext
with reasonable constraints.

Theorem 1. If group generator algorithm G satisfies the (t, ε1)-Decision
L-wBDHI∗ assumption and (t, ε2)-L-cDHassumption, then our HIBE scheme with
maximum hierarchy depth L is (qs, t̂1, ε̂1)-IND-sID-CPA secure and (qs, t̂2, ε̂2)-
ANON-sID-CPA secure with t̂1, t̂2 = Θ(t), ε̂1 = Θ(ε1 + ε2), and ε̂2 = Θ(ε1 +
ε2/(1 − p+q−1

n )qs).

We prove Theorem 1 using hybrid experiments under the Decision L-wBDHI∗

assumption and L-cDH assumption.

Game1 : CT1 = [C1, C2, C3, C4]
Game2 : CT2 = [C1 · Rp, C2, C3, C4]
Game3 : CT3 = [C1 · R = R1, C2, C3, C4]
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Game4 : CT4 = [R1, R2, C3, C4]
Game5 : CT5 = [R1, R2, R3, R4]

where Rp is a randomly chosen element from GT,p; R, R1 are uniformly dis-
tributed in GT ; and R2, R3, R4 are uniformly distributed in G.

We show that under the Decision L-wBDHI∗ assumption and L-cDH assump-
tion, there are no algorithms that distinguish between Game1 and Game2, or be-
tween Game2 and Game3, or between Game3 and Game4, or between Game4 and
Game5. Challenge ciphertext CT5 is composed of four random group elements,
so it does not leak any information about the message or the identity. Therefore
indistinguishability between games prove Theorem 1. First, we prove the indistin-
guishability between games, and next we complete the proof of Theorem 1.

Indistinguishability between Game1 and Game2.

Lemma 1. If group generator algorithm G satisfies the (t, ε)-Decision L-wBDHI∗

assumption, there is no adversary with running time t that distinguishes between
Game1 and Game2 with advantage ε.

Proof. We assume that there exists adversary A that distinguishes between
Game1 and Game2 with advantage ε. We show that there is a simulator B using
A to solve the Decision L-wBDH∗ problem with advantage ε. The proof is simi-
lar to the proof of the semantic security of BBG-HIBE except for the treatment
of the re-randomization key in our proof.

The challenger makes a challenge pair (Z, T ′) of the Decision L-wBDHI∗ as-
sumption. which is defined in Section 2.3 and gives the challenge pair to simulator
B. Let Ai = gai

p where gai

p is defined in Z for 1 ≤ i ≤ L + 1.

Initialization. Adversary A chooses challenge identity ID = [I1, I2, · · · , Im], and
sends it to simulator B. Then, B sets Im+1 = · · · = IL = 0. Hence, a simulator
can always consider the length of the challenge identity as L.

Setup. B chooses random integers and random elements

γ, x, y, z, x1, · · · , xL ∈ Zn, Rg, Rf , Rv, Rh,1, · · · , Rh,l ∈ Gq.

A random element of Gp(Gq) can be chosen by raising gp(gq, respectively)
to random exponents from Zn. B sets G = gpRg, F = gz

pRf , V = (gy
p ·∏L

i=1(AL−i+1)Ii)Rv, Hi = gxi
p /AL−i+1Rh,i for 1 ≤ i ≤ L, and E = e(A1, AL ·gγ

p ).
Then, B publishes system parameters as

params ← [gq ,G,F ,V ,H1 , · · · ,HL,E ]

where params generated by B has the same distribution as that of an actual
scheme. The master key w corresponding to the system parameters is (AL ·gγ

p )a =
AL+1 · Aγ

1 . Since B does not have AL+1, B does not know the master key.

Query Phase1. A queries the private key for ID∗ = [I∗1, I
∗
2, · · · , I∗u], where u ≤

L is distinct from ID and all its prefixes. This private query is carried on an
adaptively chosen identity by A. Let k be the smallest integer such that Ik �= I∗k.
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Then, first B generates the private key corresponding to [I∗1, I
∗
2, · · · , I∗k] and runs

the Derive algorithm to make ID∗. B first chooses random integers r1, r2 ∈ Zn.
We posit r̂1 = r1 + ak

I∗k−Ik
. Next, it generates PvkID∗

= [PvkID∗
d , PvkID∗

r ]. We

observe the first component of PvkID∗
d .

w(v
k∏

i=1

hIi∗
i )r̂1f r2 = w · (v

k∏
i=1

hIi∗
i )r1f r2 · (v

k∏
i=1

hIi∗
i )

ak

I∗k−Ik

Since v is gy
p · ∏L

i=1(AL−i+1)Ii and hi is gxi
p /AL−i+1 and f is gz

p which can be
obtained by removing the blinding factor from V , Hi and F , respectively, and
r1, r2 are chosen by simulator, B can compute the second term in the above
expression. We focus on the product of the first and third terms in the above

expression, w · (v ∏k
i=1 hIi

i )
ak

I∗k−Ik . Then

w · (v
k∏

i=1

hIi∗
i )

ak

I∗k−Ik = AL+1A
γ
1 · (gy

p

L∏
i=1

(AL−i+1)Ii
k∏

i=1

(gxi
p /AL−i+1)Ii

∗
)

ak

I∗k−Ik

= AL+1A
γ
1 · (gy

pA
Ik−I∗k
L−k+1

L∏
i=k+1

(AL−i+1)Ii
k∏

i=1

g
xiI∗i
p )

ak

I∗k−Ik

= AL+1A
γ
1 · (Ay

kA
Ik−I∗k
L+1

L∏
i=k+1

(AL+k−i+1)Ii
k∏

i=1

A
xiI∗i
k )

1
I∗k−Ik

= Aγ
1 · (Ay

k

L∏
i=k+1

(AL+k−i+1)Ii
k∏

i=1

A
xiI∗i
k )

1
I∗k−Ik

Since B knows all the terms in the above expression, it can compute the first
component of PvkID∗

d . Since the remaining elements in PvkID∗
d do not involve

AL+1, B can compute all of them. PvkID∗
d is distributed as if r̂1 = r1 + ak

Ik−I∗k
and

r2 are the randomness of PvkID∗
d . Since r̂1 and r2 are uniformly and indepen-

dently distributed in Zn, PvkID∗
d has the same distribution as that of the actual

key distribution.
To generate PvkID∗

r , B choose s1, s2, t1, t2 ∈ Zn. Since no elements in PvkID∗
r

associate with master key w, B can compute PvkID∗
r using s1, s2, t1, t2 as its

randomness. Since the random integers used in PvkID∗
r have to satisfy equation

s1 · t2 − s2 · t1 �≡ 0 mod p and �≡ 0 mod q, the simulator has to check equation
gs1·t2−s2·t1

p �≡ 1 and gs1·t2−s2·t1
q �≡ 1. If the random integers used in PvkID∗

r do not
satisfy the equation, then the simulator chooses other random integers s1, s2, t1
and t2 and repeats the same procedure until the equation does hold. Since the
equation holds without probability p+q−1

n , this iteration will finish immediately.
Therefore PvkID∗

has the same distribution as that of the actual key distribution.



226 J.H. Seo et al.

Challenge. A sends a message Msg ∈ G to B. Then, B picks random elements
Z1, Z2 and Z3 from Gq and outputs a challenge ciphertext

CT = [Msg · T ′ · e(A1, h
γ), h · Z1, hz · Z2, hy+ΣL

i=1Iixi · Z3],

where h and T ′ are given from challenge pair (Z, T ′) We consider h as gc
p for

some unknown c ∈ Zn.
If T ′ = T , then CT is equal to

[Msg·e(gp, g
c
p)

aL+1
e(ga

p , gcγ
p ), gc

pZ1, (gz
p)cZ2,(

L∏
i=1

(gxi
p /AL−i+1)Iigy

p

L∏
i=1

AIi
L−i+1)

cZ3]

= [Msg · e(A1, ALgγ
p )c, GcZ ′

1, F cZ ′
2, (V

L∏
i=1

HIi
i )c Z ′

3]

= [Msg · e(A1, ALgγ
p )c, GcZ ′

1, F cZ ′
2, (V

m∏
i=1

HIi
i )cZ ′

3].

Therefore, CT is a ciphertext of Game1. Otherwise, T is a uniformly and indepen-
dently chosen element from GT . In that case, the first component of ciphertext
is random from the adversarial point of view. Therefore, CT is a ciphertext of
Game2.

Query Phase2. A adaptively queries B with the same constraints as in Query
Phase 1. B sends corresponding private keys as before.

Guess. B outputs the same bit as A; i.e., if A outputs 1 (Game1), then B also
outputs 1 (T ′ = T ). Since B played Game1 with T ′ = T and played Game2
with T ′ as a random element from Gp, B’s advantage in the L-wBDHI∗ game is
exactly ε, the same as A’s. ��
Indistinguishability between Game2 and Game3.

Lemma 2. If group generator algorithm G satisfies the (t, ε)-BSD assumption,
there is no adversary with running time t that distinguishes between Game2 and
Game3 with advantage ε.

Proof. We assume that there exists adversary A distinguishing between Game2
and Game3 with ε advantage. We show that there is a simulator B using A to
solve the BSD problem with advantage ε.

The challenger makes a challenge pair (Z, T ′) of the BSD problem, which is
defined in Section 2.3 and give the challenge pair to simulator B.

Initialization. A sends a challenge identity ID to B.
Setup. B generates system parameters as an actual setup algorithm. B can
choose all random elements from Gp and Gp by using gp and gq.

Query Phase1. A queries B and B responds to queries as the actual key gen-
eration center.



Anonymous Hierarchical Identity-Based Encryption 227

Challenge. A sends message Msg, to B. B outputs a normal ciphertext with
the exception that the its first component is multiplied by T ′.

Query Phase2. A adaptively queries B with the same constraints as in Query
Phase 1. B sends corresponding private keys as before.

Guess. B outputs the same bit as A; i.e., if A outputs 1 (Game2), then B also
outputs 1 (T ′ = T ). Since B played Game2 with T ′ is a random element from
Gp and played Game3 with T ′ as a random element from G, B’s advantage in
the BSD game is exactly ε, the same as A’s. ��

Indistinguishability between Game3 and Game4

Lemma 3. If group generator algorithm G satisfies the (t, ε)-L-cDH assump-
tion, there is no adversary with running time t that makes at most qs key ex-
traction queries and distinguishes between Game3 and Game4 with advantage
ε/(1 − p+q−1

n )qs .

Proof. We assume that there exists an adversaryA distinguishing between Game3
and Game4 with advantage ε′. We show that there is a simulatorB usingA to solve
the L-cDH problem with advantage ε′ · (1 − p+q−1

n )qs .
The challenger makes a challenge pair (Z, T ′) of L-cDH which is defined in

Section 2.3 and gives the challenge pair to simulator B. Let Ai = gai

p , B =
AL+1R

′
1 and C = Ab

L+1R
′
2 where gai

p , R′
1 and R′

2 are defined in Z for 0 ≤ i ≤
L + 1.

Initialization. A chooses a challenge ID = [I1, I2, · · · , Im] and sends it to sim-
ulator B.

Setup. B chooses random integers and random elements

x, y, z, x1, · · · , xL ∈ Zn, w ∈ Gp, Rg, Rf , Rv, Rh,1, · · · , Rh,l ∈ Gq.

B puts G = BxRg, F = gz
pRf , Hi = Axi

i Rh,i for 1 ≤ i ≤ L, V = (gy
p/

∏m
j=1 H

Ij

j )
Rv, and E = e(Bx, w). Then, B publishes system parameters as

params ← [gq ,G,F ,V ,H1 , · · · ,HL,E ]

Query Phase1. A queries the private key for ID∗ = [I∗1, I
∗
2, · · · , I∗u] where u ≤ L

distinct from ID and all its prefixes. This private query of an adaptively chosen
identity is carried out by A. Let k be the smallest integer such that Ik �= I∗k.
Then, first B generates the private key corresponding to [I∗1, I

∗
2, · · · , I∗k] and runs

Derive algorithm to make ID∗. B first choose random integers r1, r2 ∈ Zn. We
posit r̂1 = z

ak r1 + z
ak+1 r2, r̂2 = − y

ak r1− (xk(I∗k−Ik)
a + y

ak+1 )r2. Next, the algorithm
generates PvkID∗

= [PvkID∗
d , PvkID∗

r ]. We observe the first component of PvkID∗
d ,

w(v
∏k

i=1 hIi∗
i )r̂1f r̂2 . Since we know that v, hi, f are the same as elements by

removing blinding factors from V , Hi, F , respectively, we can rewrite the above
component as follows:
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w(v
k∏

i=1

hIi∗
i )r̂1f r̂2 = w((gy

p/

m∏
j=1

A
xjIj

j )
k∏

i=1

A
xiI∗i
i )r̂1gzr̂2

p

We focus on the exponent of gp in ((gy
p/

∏m
j=1 A

xjIj

j )
∏k

i=1 A
xiI∗i
i )r̂1gzr̂2

p . It is

(y −
m∑

j=1

ajxjIj +
k∑

i=1

aixiI
∗
i )r̂1 + zr̂2

= (y −
m∑

j=k+1

ajxjIj + akxk(I∗k − Ik))r̂1 + zr̂2

= (y−
m∑

j=k+1

ajxjIj+akxk(I∗k−Ik))(
z

ak
r1+

z

ak+1 r2)+z(− y

ak
r1−(

xk(I∗k − Ik)
a

+
y

ak+1 )r2)

= (−
m∑

j=k+1

aj−kxjIjz + xk(I∗k − Ik)z)r1 −
m∑

i=k+1

ai−k−1xiIizr2

Since the exponent involves a1, · · · , am−k, xj , z, r1, r2, ID and ID∗, B can
compute the first component of PvkID∗

d . The remaining elements in PvkID∗
d are

gr̂1 , gr̂2 and hr̂1
i for k +1 ≤ i ≤ L. Note that g and hi are Ax

L+1 and Axi

i , respec-
tively, which are elements with blinding factors removed from G and Hi, respec-

tively. Since the second component gr̂1 is equal to Axr̂1
L+1 = A

x( z

ak r1+ z

ak+1 r2)
L+1 =

Axzr1
L−k+1A

xzr2
L−k, B can compute the second component of PvkID∗

d . Similarly, B can
compute all the remaining elements of PvkID∗

d . Since r̂1 and r̂2 are uniformly
and independently distributed in Zn, PvkID∗

d has the same distribution as an
actual key distribution.

Next, B generates PvkID∗
r . Every component in PvkID∗

r is the same as in
PvkID∗

d except for w of the first and (L − k + 4)th components and for us-
ing different randomness. Since the procedure for generating PvkID∗

d will work
without w, B can generate PvkID∗

r in a similar manner to generating PvkID∗
d .

The details of this are highly similar to those of PvkID∗
r , so they are omit-

ted. We let s1, s2, t1, t2 ∈ Zn be random integers used for generating PvkID∗
r

and let ŝ1 = z
ak s1 + z

ak+1 s2, ŝ2 = − y
ak s1 − (xk(I∗k−Ik)

a + y
ak+1 )s2, t̂1 =

z
ak t1 + z

ak+1 t2, t̂2 = − y
ak t1 − (xk(I∗k−Ik)

a + y
ak+1 )t2. Then PvkID∗

r is distributed
as if ŝ1, ŝ2, t̂1, and t̂2 are the randomness of PvkID∗

r . Since ŝ1, ŝ2, t̂1, and t̂2 are
uniformly and independently distributed in Zn, four integers satisfy equations
ŝ1 · t̂2− ŝ2 · t̂1 �≡ 0 mod p and �≡ 0 mod q with probability 1− p+q−1

n . Therefore,
the private key PvkID∗

generated by the simulator has the same structure and
distribution as that of actual private key with probability 1 − p+q−1

n .

Challenge. A sends message Msg to B. B discards Msg and selects random
elements R ∈ G and Z1, Z2, Z3 ∈ Gq. B sends ciphertext CT=[R, CxZ1, T ′zZ2,
T ′yZ3].
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If T ′ = T , then CT is equal to

[R, (Ab
L+1R

′
2)

xZ1, (gb
pR

′
3)

zZ2, (gb
pR

′
3)

yZ3] = [R, GbZ ′
1, F

bZ ′
2, (

m∏
i=1

HIi
i V )bZ ′

3].

Therefore CT is a ciphertext of Game3. Otherwise, T can be written by gr
pR′′

3
as an element from G where r is a random integer chosen from Zn and R′′

3 is a
random element chosen from Gq. Then, CT is equal to

[R, (Ab
L+1R

′
2)

xZ1, (gr
pR′′

3 )zZ2, (gr
pR′′

3 )yZ3] = [R, GbZ ′
1, F

rZ ′
2, (V

m∏
i=1

HIi
i )rZ ′

3].

From an adversarial viewpoint, b and r first appear in ciphertext CT and both
are integers uniformly and independently chosen from Zn. The third and fourth
components in CT share the same random r. However, the second component
uses random b independent from r. Therefore the second component of CT is
a random element from the adversarial viewpoint, and CT is a ciphertext of
Game4.

Query Phase2. A adaptively queries B with the same constraints in Query
Phase 1. B sends corresponding private keys as before.

Guess. B outputs the same bit as A, i.e., if A outputs 1 (Game3), then B
also outputs 1 (T ′ = T ). If A queried qs times in total in Query Phase1 and
Query Phase2 , then B responded with corresponding private keys having the
same distribution as that of actual keys with probability (1− p+q−1

n )qs . Therefore
B’s advantage in the L-cDH game is ε′ · (1 − p+q−1

n )qs . ��

Indistinguishability between Game4 and Game5

Lemma 4. If group generator algorithm G satisfies the (t, ε)-L-cDH assump-
tion, there is no adversary with running time t that makes at most qs key ex-
traction queries and distinguishes between Game4 and Game5 with advantage
ε/(1 − p+q−1

n )qs .

Proof. We assume that there exists adversary A distinguishing between Game4
and Game5 with non-negligible advantage ε′. We show that there is a simulator
B using A to solve the L-cDH problem with advantage ε′ · (1 − p+q−1

n )qs .
The challenger makes a challenge pair (Z, T ′) of L-cDH which is defined in

Section 2.3 and give the challenge pair to simulator B. Let Ai = gai

p , B = AL+1R
′
1

and C = Ab
L+1R

′
2 where gai

p , R′
1 and R′

2 are defined in Z for 0 ≤ i ≤ L + 1.

Initialization. A chooses a challenge ID = [I1, I2, · · · , Im] and sends it to sim-
ulator B.

Setup. B chooses random integers and random elements

x, y, z, x1, · · · , xL ∈ Zn, w ∈ Gp, Rg, Rf , Rv, Rh,1, · · · , Rh,l ∈ Gq.
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B puts G = gx
pRg, F = BzRf , V = (gy

p/
∏m

j=1 H
Ij

j )Rv, Hi = Axi

L+1−iRh,i for
1 ≤ i ≤ L, and E = e(gx

p , w). Then, B publishes system parameters as

params ← [gq ,G,F ,V ,H1 , · · · ,HL,E ].

Query Phase1. A queries the private key for ID∗ = [I∗1, I∗2, · · · , I∗u] where u < L
is distinct from ID and all its prefixes. This private query is carried out on
an identity adaptively chosen by A. Let k be the smallest integer such that
Ik �= I∗k. Then, first B generates the private key corresponding to [I∗1, I∗2, · · · , I∗k]
and runs the Derive algorithm to make ID∗. B first chooses random integers
r1, r2 ∈ Zn. We posit r̂1 = akzr1 + r2, r̂2 = −xk(I∗k − Ik)r1. Next, the algo-
rithm generates PvkID∗

= [PvkID∗
d , PvkID∗

r ]. We observe the first component in
PvkID∗

d , w(v
∏k

i=1 hIi∗
i )r̂1f r̂2 . Since we know that v, hi, f are same as elements

by removing blinding factor from V , Hi, F , respectively, we can rewrite above
component as follows:

w(v
k∏

i=1

hIi∗
i )r̂1f r̂2 = w((gy

p/

m∏
j=1

A
xjIj

L+1−j)
k∏

i=1

A
xiI∗i
L+1−i)

r̂1Azr̂2
L+1

We focus on the exponent of gp in ((gy
p/

∏m
j=1 A

xjIj

L+1−j)
∏k

i=1 A
xiI∗i
L+1−i)

r̂1Azr̂2
L+1.

It is

(y −
m∑

j=1

aL+1−jxjIj +
k∑

i=1

aL+1−ixiI
∗
i )r̂1 + aL+1zr̂2

= (y −
m∑

j=k+1

aL+1−jxjIj + aL+1−kxk(I∗k − Ik))r̂1 + aL+1zr̂2

= (y−
m∑

j=k+1

aL+1−jxjIj+aL+1−kxk(I∗k−Ik))(akzr1+r2)+aL+1z(−xk(I∗k−Ik)r1)

= (yakz−
m∑

j=k+1

aL+k+1−jxjIjz)r1+(y−
m∑

j=k+1

aL+1−jxjIj+aL+1−kxk(I∗k−Ik))r2

Since the exponent involves a1, · · · , aL, xj , z, r1, r2 and identities, B can compute
the first component of PvkID∗

d . The remaining elements in PvkID∗
d are gr̂1 , gr̂2

and hr̂1
i for k + 1 ≤ i ≤ L. Note that g and hi are gx

p and Axi

L+1−i, respectively,
which are elements with blinding factors removed from G and Hi, respectively.
Since the second component gr̂1 is equal to gxr̂1

p = Axzr1
k gxr2

p , B can compute
the second component of PvkID∗

d . Similarly, B can compute all the remaining
elements of PvkID∗

d . Since r̂1 and r̂2 are uniformly and independently distributed
in Zn, PvkID∗

d has the same distribution as an actual key distribution.
Next, B generates PvkID∗

r . Every component in PvkID∗
r is the same as in

PvkID∗
d except for w of the first and (L − k + 4)th components and for using

different randomness. Since generating procedure of PvkID∗
d will work without
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w, B can generate PvkID∗
r is a similar manner to generating PvkID∗

d . The de-
tails of this are highly similar to those of PvkID∗

r , so they are omitted. We let
s1, s2, t1, t2 ∈ Zn be random integers used for generating PvkID∗

r and let

ŝ1 = akzs1 +s2, ŝ2 = −xk(I∗k− Ik)s1, t̂1 = akzt1 + t2, and t̂2 = −xk(I∗k− Ik)t1.

Then PvkID∗
r is distributed as if ŝ1, ŝ2, t̂1, and t̂2 is the randomness of PvkID∗

r .
Since ŝ1, ŝ2, t̂1, and t̂2 are uniformly and independently distributed in Zn, four
integers satisfy equations ŝ1 ·t̂2−ŝ2 ·t̂1 �≡ 0 mod p and �≡ 0 mod q with probabil-
ity 1− p+q−1

n . Therefore, the private key PvkID∗
generated by the simulator has

the same structure and distribution as that of actual private key with probability
1 − p+q−1

n .

Challenge. A sends message Msg to B. B discards Msg and selects random
elements R, R′ ∈ G, Z1, Z2 ∈ Gq. B sends ciphertext CT = [R, R′, CzZ1, T

′yZ2].
If T ′ = T , then

CT = [R, R′, (Ab
L+1R

′
2)

zZ1, (gb
pR

′
3)

yZ2] = [R, R′, F bZ ′
1, (V

m∏
i=1

HIi
i )bZ ′

2].

Therefore, CT is a ciphertext of Game4. Otherwise, T can be written by gr
pR′′

3
as an element from G, where r is a random integer chosen from Zn, and R′′

3 is a
random element chosen from Gq. Then,

CT = [R, R′, (Ab
L+1R

′
2)

zZ1, (gr
pR

′′
3 )yZ2] = [R, R′, F bZ ′

1, (V
m∏

i=1

HIi
i )rZ ′

2].

From an adversarial viewpoint, b and r first appear in ciphertext CT and both are
integers uniformly and independently chosen from Zn. Therefore, the third and
fourth components of CT are independent random elements from the adversarial
viewpoint, and CT is a ciphertext of Game5.

Query Phase2. A adaptively queries B with the same constraints as in Query
Phase 1. B sends corresponding private keys as before.

Guess. B outputs the same bit as A, i.e., if A outputs 1 (Game4), then B
also outputs 1 (T ′ = T ). If A queried qs times in total in Query Phase1 and
Query Phase2 , then B responded with corresponding private keys having the
same distribution as that of actual keys with probability (1− p+q−1

n )qs . Therefore
B’s advantage in the L-cDH game is ε′ · (1 − p+q−1

n )qs . ��
Proof of Theorem 1. If group generator algorithm G satisfies the (t, ε1)-
Decision L-wBDHI∗ assumption and the (t, ε2)-L-cDH assumption, then Lemma
1 and 2 show that there is no adversary with running time Θ(t) that makes
at most qs key extraction queries and distinguishes Game1 and Game3 with
advantage ε1 + ε2. CT3 does not leak any information about the message since
there is no element involve in the message in CT3. Therefore, if group generator
algorithm G satisfies the (t, ε1)-Decision L-wBDHI∗ assumption and the (t, ε2)-L-
cDH assumption, our proposed HIBE scheme is (qs, t̂1, ε̂1)-IND-sID-CPA secure
with t̂1 = Θ(t), ε̂1 = ε1 + ε2.
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If group generator algorithm G satisfies the (t, ε2)-L-cDH assumption, then
Lemma 3 and 4 show that there is no adversary with running time Θ(t) that
makes at most qs key extraction queries and distinguishes Game3 and Game5
with advantage 2ε2/(1 − p+q−1

n )qs .
CT5 does not leak any information about the identity since all components

of CT5 are random group elements. Therefore, if group generator algorithm G
satisfies the (t, ε1)-Decision L-wBDHI∗ assumption and the (t, ε2)-L-cDH as-
sumption, then our proposed HIBE scheme is (qs, t̂2, ε̂2)-ANON-sID-CPA secure
with t̂2 = Θ(t) and ε̂2 = ε1+ε2+2ε2/(1− p+q−1

n )qs . This completes the proof. ��

4 Comparison

The parameters of previous HIBE schemes, anonymous HIBE schemes and our
proposed scheme are compared in table 1.

Table 1. HIBE schemes

# of group # of group # of group # of pairing
anonymity elements elements elements in security

in public in private key in ciphertext decryption
parameter

GS-HIBE [17] Non 2 k k + 1 k w RO, f-ID

BB-HIBE [2] Non L + 3 k + 1 k + 2 k + 1 w/o RO, s-ID

BBG-HIBE [3] Non L + 3 L − k + 2 3 2 w/o RO, s-ID

BW-HIBE [12] Ano L2+5L+7 3L2 + (14 − k)L 2L + 6 2(L + 2) w/o RO, s-ID
−3k + 15

SW-dHVE [22] Ano 2L + 6 (L − k)(k + 5) L + 4 k w/o RO, s-ID
+k + 3 composit

This paper Ano L + 4 3(L − k + 3) 4 3 w/o RO, s-ID
composit

L : the maximum depth of hierarchy, k : a depth of a corresponding identity,
Non: non-anonymous ID, Ano: anonymous ID

w/ RO : with random oracle, w/o RO : without random oracle
f-ID : full-ID, s-ID : selective-ID

Our scheme is the first reported constant size ciphertext anonymous HIBE
scheme. Moreover, the computational cost is achieved the cheapest computa-
tional cost because during the decryption phase the computational cost is con-
stant. The security proof can be shown without random oracles and our scheme
achieves selective-ID CPA security.

5 Conclusion

We proposed an efficient anonymous Hierarchical Identity-Based Encryption
scheme. The ciphertext of our scheme is only four group elements without de-
pending on the depth of the hierarchy. Moreover, the computational cost of
decryption is also efficient, just three bilinear pairings without depending on the
hierarchy depth. The number of group elements in the public parameter as well
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as the private key of our anonymous HIBE are also the smallest among existing
anonymous HIBE schemes.

The security of our scheme for a hierarchy depth L is selective-ID secure
against a CPA adversary that was shown under the Decision L-wBDHI∗ assump-
tion and the new L-composite Diffie-Hellman assumption without using random
oracles. CCA2 security can be achieved by using techniques that are method of
transforming from CPA-secure HIBE to CCA-secure HIBE, for example [14,8,9].
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