
Anonymous Multi-Hop Locks for Blockchain
Scalability and Interoperability

Giulio Malavolta∗§, Pedro Moreno-Sanchez∗¶†, Clara Schneidewind†, Aniket Kate‡, Matteo Maffei†
§Friedrich-Alexander-University Erlangen-Nürnberg, †TU Wien, ‡ Purdue University

Abstract—Tremendous growth in cryptocurrency usage
is exposing the inherent scalability issues with permis-
sionless blockchain technology. Payment-channel networks
(PCNs) have emerged as the most widely deployed solution
to mitigate the scalability issues, allowing the bulk of
payments between two users to be carried out off-chain.
Unfortunately, as reported in the literature and further
demonstrated in this paper, current PCNs do not provide
meaningful security and privacy guarantees [30], [40].

In this work, we study and design secure and privacy-
preserving PCNs. We start with a security analysis of exist-
ing PCNs, reporting a new attack that applies to all major
PCNs, including the Lightning Network, and allows an
attacker to steal the fees from honest intermediaries in the
same payment path. We then formally define anonymous
multi-hop locks (AMHLs), a novel cryptographic primitive
that serves as a cornerstone for the design of secure and
privacy-preserving PCNs. We present several provably
secure cryptographic instantiations that make AMHLs
compatible with the vast majority of cryptocurrencies. In
particular, we show that (linear) homomorphic one-way
functions suffice to construct AMHLs for PCNs supporting
a script language (e.g., Ethereum). We also propose a
construction based on ECDSA signatures that does not
require scripts, thus solving a prominent open problem in
the field.

AMHLs constitute a generic primitive whose useful-
ness goes beyond multi-hop payments in a single PCN
and we show how to realize atomic swaps and interoper-
able PCNs from this primitive. Finally, our performance
evaluation on a commodity machine finds that AMHL
operations can be performed in less than 100 millisec-
onds and require less than 500 bytes of communication
overhead, even in the worst case. In fact, after acknowl-
edging our attack, the Lightning Network developers have
implemented our ECDSA-based AMHLs into their PCN.
This demonstrates the practicality of our approach and
its impact on the security, privacy, interoperability, and
scalability of today’s cryptocurrencies.

∗Both contributed equally and are considered to be co-first authors.
¶ This work was done while this author was at Purdue University.

I. INTRODUCTION

Cryptocurrencies are growing in popularity and are
playing an increasing role in the worldwide financial
ecosystem. In fact, the number of Bitcoin transactions
grew by approximately 30% in 2017, reaching a peak
of more than 420, 000 transactions per day in December
2017 [2]. This striking increase in demand has given
rise to scalability issues [20], which go well beyond the
rapidly increasing size of the blockchain. For instance,
the permissionless nature of the consensus algorithm
used in Bitcoin today limits the transaction rate to
tens of transactions per second, whereas other payment
networks such as Visa support peaks of up to 47,000
transactions per second [9].

Among the various proposals to solve the scalability
issue [22], [23], [38], [48], payment-channels have
emerged as the most widely deployed solution in prac-
tice. In a nutshell, two users open a payment channel
by committing a single transaction to the blockchain,
which locks their bitcoins in a deposit secured by a
Bitcoin (smart) contract. These users can then perform
several payments between each other without the need
for additional blockchain transactions, by simply locally
agreeing on the new deposit balance. A transaction is
required only at the end in order to close the payment
channel and unlock the final balances of the two parties,
thereby drastically reducing the transaction load on the
blockchain. Further research has proposed the concept
of payment-channel network [48] (PCN), where two
users not sharing a payment channel can still pay each
other using a path of open channels between them.
Unfortunately, current PCNs fall short of providing ad-
equate security, privacy, and interoperability guarantees.

A. State-of-the-art in PCNs

Several practical deployments of PCNs exist to-
day [5], [8], [10] based on a common reference descrip-
tion for the Lightning Network (LN) [6]. Unfortunately,
this proposal is neither privacy-preserving, as shown
in recent works [30], [40], nor secure, which stays in
contrast to what until now was commonly believed, as
we show in this work. In fact, we present a new attack,
the wormhole attack, which applies not only to the LN,

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23330
www.ndss-symposium.org

the most widely deployed PCN, but also other PCNs
based on the same cryptographic lock mechanism, such
as the Raiden Network [7].

PCNs have attracted plenty of attention also from
academia. Malavolta et al. [40] proposed a secure and
privacy-preserving protocol for multi-hop payments.
However, this solution is expensive as it requires to
exchange a non-trivial amount of data (i.e., around 5
MB) between the users in the payment path and it also
hinders interoperability as it requires the Hash Time-
Lock Contract (HTLC) supported in the cryptocurrency.

Green and Miers presented BOLT, a hub-based
privacy-preserving payment for PCNs [30]. BOLT re-
quires cryptographic primitives only available in Zcash
and it cannot be seamlessly deployed in Bitcoin. More-
over, this approach is limited to paths with a single
intermediary and the extension to support paths of
arbitrary length remains an open problem.

The rest of the existing PCN proposals suffer from
similar drawbacks. Apart from not formalizing provable
privacy guarantees, they are restricted to a setting with
a trusted execution environment [36] or with a Turing
complete scripting language [25], [26], [33], [43] so that
they cannot seamlessly work with prominent cryptocur-
rencies today (except for Ethereum).

Poelstra introduced the notion of scriptless scripts,
a modified version of a digital signature scheme so
that a signature can only be created when faithfully
fulfilling a cryptographic condition [47]. The resulting
signature is verifiable following the unmodified digital
signature scheme. When applied to script-based systems
like Bitcoin or Ethereum, they are accompanied by core
scripts (e.g., script to verify the signature itself). This
approach reduces the space required for cryptographic
operations in the script, saving thus invaluable bytes
on the blockchain. Moreover, it improves upon the
fungibility of the cryptocurrency as transactions from
payment channels no longer require a script different
from other payments.

Although interesting, current proposals [47] lack
formal security and privacy treatment and are based only
on the Schnorr signature scheme, thus being incompat-
ible with major cryptocurrencies like Bitcoin. Although
there exist early proposals for Schnorr adoption in
Bitcoin [51], it is unclear whether they will be realized.

In summary, existing proposals are neither generi-
cally applicable nor interoperable, since they rely on
specific features (e.g., contracts) of individual cryptocur-
rencies or trusted hardware. Furthermore, there seems
to be a gap between secure realization of PCNs and
what is developed in practice, as we demonstrate with
our attack, which affects virtually all deployed PCNs.

B. Our Contributions

In this work, we contribute to the rigorous under-
standing of PCNs and present the first interoperable,
secure, and privacy-preserving cryptographic construc-
tion for multi-hop locks (AMHLs). Specifically,

• We analyze the security of existing PCNs, reporting
a new attack (the wormhole attack) which allows
dishonest users to steal the payment fees from honest
users along the path. This attack applies to the LN,
as well as any decentralized PCN (following the
definition in [40]) where the sender does not know
in advance the intermediate users along the path to
the receiver. We communicated the attack to the LN
developers, who acknowledged the issue.

• In order to construct secure and privacy-preserving
PCNs, we introduce a novel cryptographic primi-
tive called anonymous multi-hop lock (AMHL). We
model the security of such a primitive in the UC
framework [18] to inherit the underlying compos-
ability guarantees. Then we show that AMHLs can
be generically combined with any blockchain to con-
struct a fully-fledged PCN.

• As a theoretical insight emerging from the wormhole
attack, we establish a lower bound on the communi-
cation complexity of secure PCNs (Section III) that
follow the definition from [40]: Specifically, we show
that an extra round of communication to determine
the path is necessary to have a secure transaction.

• We show how to realize AMHLs in different set-
tings. In particular, we demonstrate that (linearly)
homomorphic operations suffice to build any script-
based AMHL. Furthermore, we show how to realize
AMHLs in a scriptless setting. This approach is of
special interest because it reduces the transaction
size, and, consequently, the blockchain load. We
give a concrete construction based on the ECDSA
signature scheme, solving a prominent problem in
the literature [47]. This makes AMHLs compatible
with the vast majority of cryptocurrencies (including
Bitcoin and Ethereum). In fact, AMHLs have been
implemented and tested in the LN [28], [29].

• We implemented our cryptographic constructions and
show that they require at most 60 milliseconds to be
computed and a communication overhead of less than
500 bytes in the worst case. These results demonstrate
that AMHLs are practical and ready to be deployed.
In fact, AMHLs can be leveraged to design atomic
swaps and interoperable (cross-currency) PCNs.

Organization. Section II shows the background on
PCNs. Section III describes the wormhole attack. Sec-
tion IV formally defines AMHLs. Section V contains
our protocols for AMHLs and Section VI analyzes
their performance. Section VII describes applications
for AMHLs. Section VIII discusses the related work
and Section IX concludes this paper.

2

II. CONTEXT: PAYMENT CHANNEL NETWORKS

A. Payment Channels

A payment channel allows two users to exchange
bitcoin without committing every single payment to
the Bitcoin blockchain. For that, users first publish an
on-chain transaction to deposit bitcoin into a multi-
signature address controlled by both users. Such deposit
also guarantees that all bitcoin are refunded at a possibly
different but mutually agreed time if the channel expires.
Users can then perform off-chain payments by adjusting
the distribution of the deposit (that we will refer to as
balance) in favor of the payee. When no more off-chain
payments are needed (or the capacity of the payment
channel is exhausted), the payment channel is closed
with a closing transaction included in the blockchain.
This transaction sends the deposited bitcoin to each
user according the most recent balance in the payment
channel. We refer the reader to [22], [23], [42], [48] for
further details.

B. A Payment Channel Network (PCN)

A PCN can be represented as a directed graph G =
(V,E), where the set V of vertices represents the Bitcoin
accounts and the set E of weighted edges represents the
payment channels. Every vertex U ∈ V has associated
a non-negative number that denotes the fee it charges
for forwarding payments. The weight on a directed edge
(U1, U2) ∈ E denotes the amount of remaining bitcoin
that U1 can pay to U2.

A PCN is used to perform off-chain payments
between two users with no direct payment channel
between them but rather connected by a path of open
payment channels. For that, assume that S wants to pay
α bitcoin to R, which is reachable through a path of the
form S → U1 → . . .→ Un → R. For their payment to
be successful, every link must have a capacity γi ≥ α′i,
where α′i = α−

∑i−1
j=1 fee(Uj) (i.e., the initial payment

value minus the fees charged by intermediate users in
the path). If the payment is successful, edges from S
to R are decreased by α′i. Importantly, to ensure that
R receives exactly α bitcoin, S must start the payment
with a value α∗ = α +

∑n
j=1 fee(Uj). We refer the

reader to [30], [40], [42], [48] for further details.

The concepts of payment channels and PCNs
have already attracted considerable attention from
academia [23], [30], [31], [35], [40], [42], [43]. In
practice, the Lightning Network (LN) [6], [48] has
emerged as the most prominent example. Currently,
there exist several independent implementations of the
LN for Bitcoin [5], [8], [10]. Moreover, the LN is also
considered as a scalability solution in other blockchain-
based payment systems such as Ethereum [7].

C. Multi-Hop Payments Atomicity

A fundamental property for multi-hop payments is
atomicity: Either the capacity of all channels in the path
is updated or none of the channels is changed. Partial
updates can lead to coin losses for the users on the
path. For instance, a user could pay a certain amount
of bitcoin to the next user in the path but never receive
the corresponding bitcoin from the previous neighbour.
The LN tackles this challenge by relying on a smart
contract called Hash Time-Lock Contract (HTLC) [48].
This contract locks x bitcoin that can be released only if
the contract’s condition is fulfilled. The contract relies
on a collision-resistant hash function H and it is defined
in terms of a hash value y := H(R), where R is chosen
uniformly at random, the amount of bitcoin x, and a
timeout t, as follows: (i) If Bob produces the condition
R∗ such that H(R∗) = y before t days, Alice pays Bob
x bitcoin; (ii) If t days elapse, Alice gets back x bitcoin.

Fig. 1 shows an example of the use of HTLC in
a payment. For simplicity, we assume that every user
charges a fee of one bitcoin and the payment amount
is 10 bitcoin. In this payment, Edward first sets up the
payment by creating a random value R and sending
H(R) to Alice. Then, the commitment phase starts
by Alice. She first sets on hold 13 bitcoin and then
successively every intermediate user sets on hold the
received amount minus his/her own fee. After Dave sets
10 coins on hold with Edward, the latter knows that
the corresponding payment amount is on hold at each
channel and he can start the releasing phase (depicted in
green). For that, he reveals the value R to Dave allowing
him to fulfill the HTLC contract and settle the new
capacity at the payment channel. The value R is then
passed backwards in the path allowing the settlement of
the payment channels.

Privacy Issues in PCNs. Recent works [30], [40] show
that the current use of HTLC leaks a common identifier
along the payment path (i.e., the condition H(R)) that
can be used by an adversary to tell who pays to whom.
Current solutions to this privacy issue are expensive
in terms of computation and communication [40] or
incompatible with major cryptocurrencies [30]. This
calls for an in-depth study of this cryptographic tool.

Alice Bob Carol Dave Edward

2. HTLC(A, B ,y ,13 ,4)

1. y := H(R)

6. R

3. HTLC(B, C, y, 12, 3) 4. HTLC(C, D, y, 11, 2) 5. HTLC(D, E, y, 10, 1)

7. R

9. R

20 / 7 50 / 50 12 / 12 15 / 5

8. R 7. R

38
50

1
12

8. R 6. R

7
7

5
5

Fig. 1: Payment (with and without wormhole attack) from
Alice to Edward for value 10 using HTLC contract. The honest
(attacked) releasing phase is depicted in green (red). Non-bold
(bold) numbers show the capacity of payment channels before
(after) the payment. We assume a common fee of 1 coin.

3

III. WORMHOLE ATTACK IN EXISTING PCNS

In a nutshell, the wormhole attack allows two col-
liding users on a payment path to exclude intermediate
users from participating in the successful completion
of a payment, thereby stealing the payment fees which
were intended for honest path nodes.

In more detail, assume a payment path (U0, . . . , Ui,
. . . , Uj , . . . , Un) used by U0 to pay an amount α +∑
k γk to Un, where γk = fee(Uk) denotes the fee

charged by the intermediate user Uk as a reward for
enabling the payment. Further assume that Ui and Uj
are two adversarial users that may deviate from the
protocol if some economic benefit is at stake. The
adversarial strategy is as follows.

In the commitment phase, every user behaves hon-
estly. This, in particular, implies that every honest user
has locked a certain amount of coins in the hope
of getting rewarded for this. In the releasing phase,
honest users Uj+1, . . . , Un correctly fulfill their HTLC
contracts and settle the balances and rewards in their
corresponding payment channels.

The user Uj behaves honestly with Uj+1 effectively
settling the balance in their payment channel. On the
other hand, Uj waits until the timeout set in the HTLC
with Uj−1 is about to expire and then agrees with Uj−1
to cancel the HTLC and set the balance in their payment
channel back to the last agreed one. Note that from
Uj−1’s point of view, this is a legitimate situation (e.g.,
there might not be enough coins in a payment channel at
some user after Uj and the payment had to be canceled).
Moreover, the channel between Uj−1 and Uj does not
need to be closed, it is just rolled back to a previous
balance, a feature present in the Lightning Network.

As Uj−1 believes that the payment did not go
through, she also cancels the HTLC with Uj−2, who
in turns cancels the HTLC with Uj−3 and so on. This
process continues until Ui is approached by Ui+1. Here,
Ui cancels the HTLC with Ui+1. However, Ui gets
the releasing condition R from Uj and can use it to
fulfill the HTLC with Ui−1 and therefore settle the new
balance in that payment channel. Therefore, from the
point of view of users U1, . . . , Ui−1, the payment has
been successfully carried out. An illustrative example of
this attack is shown in Fig. 1 with the attacked releasing
phase depicted in red.

Discussion. An adversary controlling users Ui and Uj
in a payment path that carries out the attack described
in this section gets an overall benefit of

∑j
k=i+1 γk

bitcoins instead of only γi + γj bitcoins in the case he
behaves honestly. We make several observations here.
First, the impact of this attack grows with the number
of intermediate users between Ui and Uj as well as
the number of payments that take both Ui and Uj

in their path. While the Lightning Network is at its
infancy, other well-established networks such as Ripple
use paths with multiple intermediaries. For instance, in
the Ripple network, more than 27% of the payments use
more than two intermediaries [44]. Actually, paths with
three intermediaries (e.g., sender → bank → currency-
exchange→ bank→ receiver) are essential for currency
exchanges, a key use case in LN itself [1]. When the LN
grows to the scale of the Internet, routes may consist
of several intermediaries as in the Internet today. Given
these evidences, we expect long paths in the LN.

Second, honest intermediate users cannot trivially
distinguish the situation in which they are under attack
from the situation where the payment is simply unsuc-
cessful (e.g., there are not enough coins in one of the
channels or one of the users is offline). In both cases, the
view for the honest users is that the timeout established
in the HTLC is reached, the payment failed and they
get their initially committed coins reimbursed. In short,
the wormhole attack allows an adversary to steal the
fees from intermediate honest users without leaving a
inculpatory trace to them.

Third, fees are the main incentive for intermediary
users. The wormhole attack takes away this crucial
benefit. In fact, this attack not only makes honest users
lose their fees, but also incur collateral costs: Coins
locked for the payment under attack cannot be used for
another (possibly successful) payment simultaneously.

Responsible Disclosure. We notified this attack to the
LN developers and they have acknowledged this issue.
Additionally, they have implemented our ECDSA-based
construction (see Section V-D) and tested it for its
integration in the LN, having thereby a fix for the
wormhole attack and leveraging its privacy and practical
benefits [28], [29].

(In)evitability of the Wormhole Attack. The worm-
hole attack is not restricted to the LN, but generally
applies to PCNs with multi-hop payments that involve
only two rounds of communication. We assume a com-
munication round to consist of traversing the payment
path once, either forth (e.g., for setting up the payment)
or back (e.g., for releasing the coins). Additionally, we
assume that in PCNs the communication between nodes
is restricted to their direct neighbors, so in particular,
there is no broadcast.1 Consequently, using two rounds
of communication for a payment implies that the pay-
ment is not preceded by a routing phase in which path-
specific information is sent to nodes in the path. Under
these assumptions, we state the lower bound informally
in Theorem 1 and defer the formal theorem and the
proof to the extended version of the paper [41].

1This is the case in the setting of off-chain protocols where users
not sharing a payment channel do not communicate with each other.

4

Theorem 1 (Informal). For all two-round (without
broadcast channels) multi-hop payment protocols there
exists a path prone to the wormhole attack.

In this work we show that adding an additional
round of communication suffices to overcome this im-
possibility result.2 In particular, with one additional
round of communication, the sender of a payment can
communicate path-specific secret information to the
intermediate nodes. This information can then be used
to make the release keys unforgeable for an attacker. The
cryptographic protocols we introduce in the remainder
of this paper adopt this approach.

IV. DEFINITION

Here we introduce a new cryptographic primitive
called anonymous multi-hop lock (AMHL). This prim-
itive generalizes the locking mechanism used for pay-
ments in state-of-the-art PCNs such as the LN. In Sec-
tion VII we show that AMHL is the main cryptographic
component required to construct fully-fledged PCNs.
As motivated in the previous section, we model the
primitive such that it allows for an initial setup phase
where the first node of the path provides the other
nodes with some secret (path-specific) state. Formally,
an AMHL is defined with respect to a universe of users
U and it is a five-tuple of PPT algorithms and protocols
L = (KGen,Setup, Lock, Rel, Vf) defined as follows:

Definition 1. An AMHL L = (KGen,Setup, Lock,
Rel,Vf) consists of the following efficient algorithms:

{(ski, pk), (skj , pk)} ← 〈KGenUi
(1λ),KGenUj

(1λ)〉 :
On input the security parameter 1λ the key generation
protocol returns a shared public key pk and a secret key
ski (skj , respectively) to Ui and Uj .

{sI0, . . . , (sIn, kn)} ← 〈SetupU0
(1λ, U1, . . . , Un),

SetupU1
(1λ), . . . , SetupUn

(1λ)〉 : On input a vector of
identities (U1, . . . , Un) and the security parameter 1λ,
the setup protocol returns, for i ∈ [0, n], a state sIi to
user Ui. The user Un additionally receives a key kn.

{(`, sRi), (`, sLi+1)} ← 〈LockUi
(sIi , ski, pk),

LockUi+1
(sIi+1, ski+1, pk)〉 : On input two initial

states sIi and sIi+1, two secret keys ski and ski+1,
and a public key pk, the locking protocol is executed
between two users (Ui, Ui+1) and returns a lock ` and
a right state sRi to Ui and the same lock ` and a left
state sLi+1 to Ui+1.

k′ ← Rel(k, (sI , sL, sR)) : On input an opening key k
and a triple of states (sI , sL, sR), the release algorithm
returns a new opening key k′.

2A malicious sender can still bypass intermediate nodes, but he has
no incentive as it implies stealing coins from himself.

{0, 1} ← Vf(`, k) : On input a lock ` and a key k the
verification algorithm returns a bit b ∈ {0, 1}.

Correctness. An AMHL is correct if the verification
algorithm Vf always accepts an honestly generated lock-
key pair. For a more detailed and formal correctness def-
inition, we refer the reader to the extended version [41].

Key Ideas. Fig. 2 illustrates the usage of the different
protocols underlying the AMHL primitive. First, we
assume an (interactive) KGen phase that emulates the
opening of payment channels that compose the PCN.

In the setup phase (green arrows), the introduction
of the initial state at each intermediate user is crucial for
security and privacy. Intuitively, we can use this initial
state as “rerandomization factor” to ensure that locks in
the same path are unlinkable for the adversary.

Next, in the locking phase, each pair of users jointly
executes the Lock protocol to generate a lock `i. The
creation of this lock represents the commitment from
Ui to perform an application-dependent action if a
cryptographic problem is solved by Ui+1. In the case
of LN, this operation represents the commitment of
Ui to pay a certain amount of coins to Ui+1 if Ui+1

solves the cryptographic condition. Each user also learns
some extra state sRi (resp. sLi+1) that will be needed for
releasing the lock later on. While these extra states are
not present in the LN (i.e., every lock is based on the
same cryptographic puzzle H(R)), they are crucial for
security. They make the releasing of different locks in
the path independent and thus ensure that a lock `i can
only be released if `i+1 has been released before.

Finally, after the entire path is locked, the receiver
Un can generate a key for releasing its left lock. Then,
each intermediate node can derive a valid key for its
left lock from a valid key for its right lock using the
Rel algorithm. This last phase resembles the opening
phase of the LN where each pair of users settles the
new balances for their deposit at each payment channel
in the payment path.

A. Security and Privacy Definition

To model security and privacy in the presence
of concurrent executions we resort to the universal
composability framework from Canetti [18]. We al-
low thereby the composition of AMHLs with other
application-dependent protocols while maintaining se-
curity and privacy guarantees.

Attacker Model. We model the players in our protocol
as interactive Turing machines that communicate with
a trusted functionality F via secure and authenticated
channels. We model the attacker A as a PPT machine
that has access to an interface corrupt(·) that takes as

5

⊥ sI
0

sR
0

sL
1

sI
1

sR
1 sL

n−1
sI
n−1

sR
n−1 sLn sIn ⊥

Lock ,U0 U1

ℓ0 ℓn−1

kn−1

ℓn−2

kn−2 Release Release

(,… ,)SetupU0
U1 Un

U1U0 Un−1 Un

ℓ1

⋯

Lock ,Un−1 Un

Lock ,U1 U2 Lock ,Un−2 Un−1

k1k0 Release kn

Fig. 2: Usage of the AMHL primitive. It is assumed that links between the users on the path have been created upfront (using
KGen) and that the resulting public and secret keys are implicitly given as argument to the corresponding executions of Lock.
Otherwise, the inputs (outputs) to (from) the Lock protocol and the Rel algorithm are indicated by blue (orange) arrows.

input a user identifier U and provides the attacker with
the internal state of U . All the subsequent incoming and
outgoing communication of U are then routed through
A. We consider the static corruption model, that is, the
attacker is required to commit to the identifiers of the
users he wishes to corrupt ahead of time.3

Communication Model. Communication happens
through the secure message transmission functionality
Fsmt that informs the attacker whenever some commu-
nication happens between two users and the attacker
can delay the delivery of the message arbitrarily (for
a concrete functionality see [18]). We also assume
the existence of a functionality Fanon (see [17] for
an example), which provides user with an anonymous
communication channel. In its simplest form, Fanon is
identical to Fsmt, except that it omits the identifier of
the sender from the message sent to the receiver. We
assume a synchronous communication network, where
the execution of the protocol happens in discrete rounds.
The parties are always aware of the current round and
if a message is created at round i, then it is delivered
at the beginning of the (i + 1)-th round. Our model
assumes that computation is instantaneous. In the real
world, this is justified by setting a maximum time bound
for message transmission, which is known by all users.
If no message is delivered by the expiration time, then
the message is set to be ⊥. We remark that such an
assumption is standard in the literature [25] and for an
example of the corresponding ideal functionality Fsyn

we refer the reader to [18], [32].

Universal Composability. Let EXECτ,A,E be the en-
semble of the outputs of the environment E when inter-
acting with the attacker A and users running protocol τ
(over the random coins of all the involved machines).

Definition 2 (Universal Composability). A protocol τ
UC-realizes an ideal functionality F if for any PPT

3Extending our protocol to support adaptive corruption queries is
an interesting open problem.

adversary A there exists a simulator S such that
for any environment E the ensembles EXECτ,A,E and
EXECF,S,E are computationally indistinguishable.

Ideal Functionality. We formally define the ideal
world functionality F for AMHLs in the following. For
a more modular treatment, our UC definition models
only the cryptographic lock functionality, rather than
aiming at a comprehensive characterization of PCNs.
In Section VII we show how one can construct a
full PCN (e.g., as defined in [40]) by composing this
functionality with time locks, balance updates, and
on-chain channel management. For ease of exposition
we assume that each pair of users establishes only
a single link per direction. The model can be easily
extended to handle the more generic case. F works
in interaction with a universe of users U and initial-
izes two empty lists (U ,L) := ∅, which are used to
track the users and the locks, respectively. The list
L represents a set of lock chains. The entries are of
the form (lidi, Ui, Ui+1, f, lidi+1) where lidi is a lock
identifier that is unique even among other lock chains
in L, Ui and Ui+1 are the users connected by the
lock, f ∈ {Init, Lock,Rel} is a flag that represents the
status of the lock, and lidi+1 is the identifier of the
next lock in the path. For sake of better readability,
we define functions operating on L extracting lock-
specific information given the lock’s identifier, such as
the lock’s status (getStatus(·)), the nodes it is connecting
(getLeft(·), getRight(·)), and the next lock’s identifier
(getNextLock(·)). In addition we define an update func-
tion updateStatus(·, ·) that changes the status of a lock
to a new flag.

The interfaces of the functionality F are specified
in Fig. 3. The KeyGen interface allows a user to
establish a link with another user (specifying whether
it wants to be the left or the right part of the link).
The Setup interface allows a user U0 to setup a path
(starting from U0) along previously established links.
The Lock interface allows a user to create a lock with

6

KeyGen(sid, Uj , {L,R})
Upon invocation by Ui:
sends (sid, Ui, {L,R}) to Uj
receives (sid, b) from Uj

if b = ⊥ send ⊥ to Ui and abort
if L insert (Ui, Uj) into U and sends (sid, Ui, Uj) to Ui
if R insert (Uj , Ui) into U and sends (sid, Uj , Ui) to Ui

Lock(sid, lid)
Upon invocation by Ui:
if getStatus(lid) 6= Init or getLeft(lid) 6= Ui then abort
sends (sid, lid, Lock) to getRight(lid)
receives (sid, b) from getRight(lid)
if b = ⊥ send ⊥ to Ui and abort
updateStatus(lid, Lock)
sends (sid, lid, Lock) to Ui

GetStatus(sid, lid)
Upon invocation by Ui:
return (sid, lid, getStatus(lid)) to Ui

Setup(sid, U0, . . . , Un)
Upon invocation by U0:
if ∀i ∈ [0, n− 1] : (Ui, Ui+1) /∈ U then abort
∀i ∈ [0, n− 1]: lidi ←$ {0, 1}λ

insert (lid0, U0, U1, Init, lid1), (lidn−1, Un−1, Un, Init,⊥)
into L
sendan (sid,⊥, lid0,⊥, U1, Init) to U0

sendan (sid, lidn−1,⊥, Un−1,⊥, Init) to Un
∀i ∈ [1, n− 1]: insert (lidi, Ui, Ui+1, Init, lidi+1) into L

sendan (sid, lidi−1, lidi, Ui−1, Ui+1, Init) to Ui

Release(sid, lid)
Upon invocation by Ui:
if getRight(lid) 6= Ui or getStatus(lid) 6= Lock or

getStatus(getNextLock(lid)) 6= Rel

and getNextLock(lid) 6= ⊥ then abort
updateStatus(lid, Rel)
sends (sid, lid,Rel) to getLeft(lid)

Fig. 3: Ideal functionality for cryptographic locks (AMHLs)

its right neighbor on a previously created path and the
Release algorithm allows a user to release the lock
with its left neighbor, in case that the user is either
the receiver or its right lock has been released before.
Finally, the GetStatus interface allows one to check the
current status of a lock, i.e., whether it is initialized,
locked or released. Internally, the locks are assigned
identifiers that are unique across all paths. We define
the interfaces sends and receives to exchange messages
through the Fsmt functionality and the interface sendan

to send messages via Fanon.

B. Discussion

We discuss how the security and privacy notions of
interest for AMHLs are captured by functionality F .

Atomicity. Loosely speaking, atomicity means that
every user in a path is able to release its left lock in
case that his right lock was already released. This is
enforced by F as i) it is keeping track of the chain
of locks and their current status in the list L and ii)
the Release interface of F allows one to release a lock
lid (changing the flag to Rel) if lid is locked and the
follow-up lock (getNextLock(lid)) was already released.

Consistency. An AMHL is consistent if no attacker
can release his left lock without its right lock being
released before. This prevents scenarios where some
AMHL is released before the receiver is reached and,

more generically, the wormhole attack described in Sec-
tion III. To see why our ideal functionality models this
property, observe that the Release interface allows a user
to release the left lock only if the right lock has already
been released or the user itself is the receiver. In this
context, no wormhole attack is possible as intermediate
nodes cannot be bypassed.

Relationship Anonymity. Relationship anonymity [12]
requires that each intermediate node does not learn any
information about the set of users in an AMHL beyond
its direct neighbors. This property is satisfied by F as
the lock identifiers are sampled at random and during
the locking phase a user only learns the identifiers of its
left and right lock as well as its left and right neighbor.
We discuss this further in the extended version [41].

V. CONSTRUCTIONS

A. Cryptographic Building Blocks

Throughout this work we denote by 1λ ∈ N+ the
security parameter. Given a set S, we denote by x←$S
the sampling of an element uniformly at random from S,
and we denote by x← A(in) the output of the algorithm
A on input in. We denote by min(a, b) the function that
takes as input two integers and returns the smaller of
the two. To favor readability, we omit session identifiers
from the description of the protocols. In the following
we briefly recall the cryptographic building blocks of
our schemes.

7

Homomorphic One-Way Functions. A function g :
D → R is one-way if, given a random element x ∈ R,
it is hard to compute a y ∈ D such that g(y) = x.
We say that a function g is homomorphic if D and R
define two abelian groups and for each pair (a, b) ∈ D2

it holds that g(a◦ b) = g(a)◦ g(b), where ◦ denotes the
group operation. Throughout this work we denote the
corresponding arithmetic group additively.

Commitment Scheme. A commitment scheme COM
consists of a commitment algorithm (decom, com) ←
Commit(1λ,m) and a verification algorithm {0, 1} ←
Vcom(com, decom,m). The commitment algorithm al-
lows a prover to commit to a message m without
revealing it. In a second phase, the prover can convince
a verifier that the message m was indeed committed by
showing the unveil information decom. The security of
a commitment scheme is captured by the standard ideal
functionality Fcom [18].

Non-Interactive Zero-Knowledge. Let R be an NP
relation and let L be the set of positive instances, i.e.,
L := {x | ∃w s.t. R(x,w) = 1}. A non-interactive
zero-knowledge proof [15] scheme NIZK consists of
an efficient prover algorithm π ← PNIZK(w, x) and an
efficient verifier {0, 1} ← VNIZK(x, π). A NIZK scheme
allows the prover to convince the verifier about the
existence of a witness w for a certain statement x with-
out revealing any additional information. The security
of a NIZK scheme is modeled by the following ideal
functionality FNIZK: On input (prove, sid, x, w) by the
prover, check if R(x,w) = 1 and send (proof, sid, x)
to the verifier if this is the case.

Homomorphic Encryption. One of the building blocks
of our work is the additive homomorphic encryption
scheme HE := (KGenHE,EncHE,DecHE) from Pail-
lier [45]. The scheme supports homomorphic opera-
tion over the ciphertexts of the form EncHE(pk,m) ·
EncHE(pk,m′) = EncHE(pk,m + m′). We assume
that Paillier’s encryption scheme satisfies the notion of
ecCPA security, as defined in the work of Lindell [37].

ECDSA Signatures. Let G be an elliptic curve group
of order q with base point G and let H : {0, 1}∗ →
{0, 1}|q| be a collision resistant hash function. The
key generation algorithm KGenECDSA(1λ) samples a
private key as a random value x←$Zq and sets the
corresponding public key as Q := x · G. To sign
a message m, the signing algorithm SigECDSA(sk,m)
samples some k←$Zq and computes e := H(m). Let
(rx, ry) := R = k · G, then the signing algorithm
computes r := rx mod q and s := e+rx

k mod q.
The signature consists of (r, s). The verification algo-
rithm VfECDSA(pk, σ,m) recomputes e = H(m) and
returns 1 if and only if (x, y) = e

s · G + r
s · Q and

r = x mod q. It is a well known fact that for every

valid signature (r, s), also the pair (r,−s) is a valid
signature. To make the signature strongly unforgeable
we augment the verification equation with a check that
s ≤ q−1

2 . We assume the existence of an interactive
protocol ΠECDSA

KGen executed between two users where the
one receives (x0, Q, sk), where sk is a Paillier secret
key and Q = x0 · x1 · G, whereas the other obtains
(x1, Q,EncHE(pk, x0)), where pk is the corresponding
Paillier public-key. For correctness, we require that the
Paillier modulus is N = O(q4). We assume that the par-
ties have access to an ideal functionality FECDSA

kgen (refer
to [41] for a precise definition) that securely computes
the tuples for both parties. An efficient protocol has been
recently proposed by Lindell [37].

Anonymous Communication. We assume an anony-
mous communication channel Πanon available among
users in the network, which is modelled by the ideal
functionality Fanon. It anonymously delivers messages
to users in the network (e.g., see [17]).

B. Generic Construction

An interesting question related to AMHLs is under
which class of hard problems such a primitive exists. A
generic construction using trapdoor permutations was
given (implicitly) in [40]. Here we propose a scheme
from any homomorphic one-way function. Examples
of homomorphic one-way functions include discrete
logarithm and the learning with errors problem [49].
Let g : D → R be a homomorphic one-way func-
tion, and let Fanon be the ideal functionality for an
anonymous communication channel. The algorithms of
our construction are given in Fig. 4. Note that KeyGen
simply returns the users identities and thus it is omitted.

In the setup algorithm, the user U0 initializes
the AMHL by sampling n values (y0, . . . , yn−1)
from the domain of g. Then it sends (via Fanon) a
triple (g(

∑i−1
j=0 yj), g(

∑i
j=0 yj), yi) to each interme-

diate user. The intermediate user Ui can then check
that the triple is well formed using the homomorphic
properties of g. Two contiguous users Ui and Ui+1 can
agree on the shared value of `i := Yi = g(

∑i
j=0 yj)

by simply comparing the second and first element of
their triple, respectively. Note that publishing a valid
opening key k such that g(k) = ` corresponds to
inverting the one-way function g. The opening of the
locks can be triggered by the last node in the chain
Un: The initial key kn :=

∑n−1
i=0 yi consists of a valid

pre-image of `n−1 := Yn−1. As soon as the “right”
lock is released, each intermediate user Ui has enough
information to release its “left” lock. To see this, observe
that g(ki+1 − yi) = g(

∑i
j=0 yi − yi) = g(

∑i−1
j=0 yi) =

Yi−1. For the security of the construction, we state the
following theorem. Due to space constraints, the proof
is deferred to the extended version [41].

8

SetupUi
(1λ) SetupU0

(1λ, U1, . . . , Un) SetupUn
(1λ)

y0 ←$D
Y0 := g(y0)

∀i ∈ [1, n− 1] : yi ←$D
if Yi 6= Yi−1 + g(yi) then abort(Yi−1, Yi, yi)←−−−−−−−− Yi := Yi−1 + g(yi) (Yn−1,kn:=

∑n−1
i=0 yi)−−−−−−−−−−−−−−→

return (Yi−1, Yi, yi) return y0 return ((Yn−1, 0, 0), kn)

LockUi(s
I
i , ski, pk) LockUi+1(s

I
i+1, ski+1, pk)

parse sIi as (Y ′i , Yi, yi) Yi−−−−−−−−→parse si+1 as (Y ′i+1, Yi+1, yi+1)

if Yi 6= Y ′i+1 then abort
return (Yi,⊥) return (Yi,⊥)

Rel(k, (sI , sL, sR))

parse sI as (Y ′, Y, y)

return k − y

Vf(`, k)

return g(k) = `

Fig. 4: Algorithms and protocols for the generic construction

Theorem 2. Let g be a homomorphic one-way function,
then the construction in Fig. 4 UC-realizes the ideal
functionality F in the (Fsyn,Fsmt,Fanon)-hybrid model.

The generic construction presented here requires a
cryptocurrency supporting scripts that define (linearly)
homomorphic operations. This construction is therefore
of special interest in blockchain technologies such as
Ethereum [4] and Hyperledger Fabric [11], where any
user can freely deploy a smart contract without re-
strictions in the cryptographic operations available. We
stress that any function with homomorphic properties
is suitable to implement our construction. For instance,
lattice-based functions (e.g., from the learning with
errors problem) can be used for applications where post-
quantum cryptography is required. However, many cryp-
tocurrencies, led by Bitcoin, do not support unrestricted
scripts and the deployment of generic AMHLs requires
non-trivial changes (i.e., a hard fork). To overcome this
challenge, we turn our attention to scriptless AMHLs,
where a signature scheme can simultaneously be used
for authorization and locking.

C. Scriptless Schnorr-based Construction

The crux of a scriptless locking mechanism is that
the lock can consist only of a message m and a public
key pk of a given signature scheme and can be released
only with a valid signature σ of m under pk. Scriptless
locks stem from an idea of Poelstra [46], who proposed
a way to embed contracts into Schnorr signatures. In this
work we cast Poelstra’s informal idea in our framework
and we formally characterize its security and privacy
guarantees. We further optimize this scheme in order to
save one round of communication.

Recall that a public key in a Schnorr signature
consists of an element Q := x · G and a signature
σ := (k·G, s) on a message m is generated by sampling
k←$Zq , computing e := H(Q‖k · G‖m), and setting

s := k − xe. On a very high level, the locking mecha-
nism consists of an “incomplete” distributed signing of
some message m: Two users Ui and Ui+1 agree on a
randomly chosen element R0 +R1 using a coin tossing
protocol, then they set the randomness of the signature
to be R := R0+R1+Yi. Next they jointly compute the
value s := r0 + r1 + e · (x0 + x1) as if Yi was not part
of the randomness, where e is the hash of the transcript
so far. The resulting (R, s) is not a valid signature on
m, since the additive term y∗ (where y∗ · G = Yi) is
missing from the computation of s. However, once the
discrete logarithm of Yi is revealed, a valid signature m
can be computed by Ui+1. Leveraging this observation,
we can enforce an atomic opening: The subsequent
locking (between Ui+1 and Ui+2) is conditioned on
some Yi+1 = Yi + yi+1 · G. This way, the opening of
the right lock reveals the value y∗+ yi+1 and Ui+1 can
immediately extract y∗ and open its left lock with a valid
signature on m. We defer the formal description and the
analysis of the scheme to the extended version [41].

D. Scriptless ECDSA-based Construction

The Schnorr-based scheme is limited to cryptocur-
rencies that use Schnorr signatures to authorize transac-
tions and thus is not compatible with those systems,
prominently Bitcoin, that implement ECDSA signa-
tures. Therefore, an ECDSA-based scriptless AMHL
is interesting both from a practical and a theoretical
perspective as to whether it can be done at all. Prior
to our work, the existence of such a construction was
regarded an open question [47]. The core difficulty is
that the Schnorr-based construction exploits the linear
structure of the signature, whereas the ECDSA signing
algorithm completely breaks this linearity feature (e.g.,
it requires to compute multiplicative shares of a key
and the inverse of elements within a group). In the
following, we show how to overcome these problems,
introducing an ECDSA-based construction for AMHLs:
Locks are of the form (pk,m) and can only be opened
with an ECDSA signature σ on m under pk.

9

SetupUi
(1λ) SetupU0

(1λ, U1, . . . , Un) SetupUn
(1λ)

y0 ←$Zq; Y0 = y0 ·G
∀i ∈ [1, n− 1] : yi ←$Zq
Yi := Yi−1 + yi ·G

stmti := {∃y s.t. Yi = y ·G} stmti := {∃y s.t. Yi = y ·G}
b← VNIZK(stmti, πi) (Yi−1,Yi,πi)←−−−−−−−− πi ← PNIZK

(∑i
j=0 yj , stmti

)
(Yn−1,kn:=

∑n−1
i=0 yi)−−−−−−−−−−−−−−→

if b = 0 then abort
Yi := Yi−1 + yi ·G
return (Yi−1, Yi, yi) return y0 return ((Yn−1, 0, 0), kn)

LockUi(s
I
i , ski, pk) LockUi+1(s

I
i+1, ski+1, pk)

parse sIi as (Y ′0 , Y0, y0) parse sIi+1 as (Y ′1 , Y1, y1)

parse ski as (x0, skHE) parse ski+1 as (x1, c)

r0 ←$Zq; R0 := r0 ·G; R′0 := r0 · Y0 r1 ←$Zq; R1 := r1 ·G; R′1 := r1 · Y ′1
stmt0 := {∃r0 s.t. R0 = r0 ·G and R′0 = r0 · Y0} stmt1 := {∃r1 s.t. R1 = r1 ·G and R′1 = r1 · Y ′1}
π0 ← PNIZK(r0, stmt0) π1 ← PNIZK(r1, stmt1)

com←−−(decom, com)← Commit(1λ, (R1, R
′
1, π1))

(R0,R
′
0,π0)−−−−−−−→if VNIZK(stmt0, π0) 6= 1 then abort

(rx, ry) := R = r1 ·R′0; ρ←$Zq2
if Vcom(com, decom, (R1, R

′
1π1)) 6= 1 then abort (decom,R1,R

′
1,π1,c

′)
←−−−−−−−−−−−−−c

′ := crx(r1)
−1x1 · EncHE(pk, H(m)(r1)

−1 + ρq)

if VNIZK(stmt1, π1) 6= 1 then abort
s← DecHE(skHE, c

′)

(rx, ry) := R = r0 ·R′1
if s ·R1 6= rx · pk+H(m) ·G then abort s′:=s·r−1

0 mod q
−−−−−−−−−−→if s′ · r1 ·R0 6= rx · pk+H(m) ·G then abort

return ((m, pk), (s′,m, pk)) return ((m, pk), (rx, s
′))

Rel(k, (sI , sL, sR))

parse sI as (Y ′, Y, y), k as (r, s), sL as (w0, w1), sR as (s′,m, pk)

t := w1 · (s
′

s
− y)−1; t′ := w1 · (− s

′

s
− y)−1

if VfECDSA(pk, (w0,min(t,−t)),m) = 1 return (r,min(t,−t))
if VfECDSA(pk, (w0,min(t′,−t′)),m) = 1 return (r,min(t′,−t′))

Vf(`, k)

parse ` as (m, pk)

parse k as (r, s)

return 1 iff (r, ·) = H(m)
s
·G+ r

s
·pk and s ≤ q−1

2

Fig. 5: Algorithms and protocols for the ECDSA-based construction.

Let G be an elliptic curve group of order q with
base point G and let H : {0, 1}∗ → {0, 1}|q| be a
hash function. The ECDSA-based construction is shown
in Fig. 5. Each pair of users (Ui, Uj) generates a shared
ECDSA public key pk = (xi · xj) · G via the FECDSA

kgen
functionality. Additionally, Ui receives a Paillier secret
key sk and his share xi, whereas and Uj receives the
share xj and the Paillier encryption c of xi. The key
generation functionality is fully described in [41].

The setup here is very similar to the setup of the
generic construction in Fig. 4 except that the one-way
function g is now instantiated with discrete logarithm
over elliptic curves. Each intermediate user Ui receives
a triple (Yi−1, Yi, yi) such that Yi := Yi−1+yi ·G, from
Fanon. For technical reasons, the initiator of the AMHL
also includes a proof of wellformedness for each Yi.

The locking algorithm is initiated by two users Ui
and Ui+1 who agree on a message m (which encodes a
unique id) and on a value Yi := y∗ ·G of unknown dis-
crete logarithm. The two parties then run a coin tossing
protocol to agree on a randomness R = (r0 · r1) · Yi.
When compared to the Schnorr instance, the crucial
technical challenge here is that the randomnesses are
composed multiplicatively due to the structure of the
ECDSA signature and therefore, the trick applied in
the Schnorr construction no longer works here. R is
computed through a Diffie-Hellman-like protocol, where
the parties exchange r0 · Yi and r1 · Yi and locally
recompute R. As before, the shared ECDSA signature
is computed by “ignoring” the term Yi, since the parties
are unaware of its discrete logarithm. The corresponding
tuple

(
rx, s

′ := rx·(x0·xi+1)+H(m)
r0·r1

)
is jointly computed

10

using the encryption of x0 and the homomorphic prop-
erties of Paillier encryption. This effectively means that
(rx, s

′) = (rx, s
∗ ·y∗), where (rx, s

∗) is a valid ECDSA
signature on m. In order to check the validity of s′,
the parties additionally need to exchange the value
R∗ := (r0 · r1) · G = (y∗)−1 · R. The computation
of R∗ (together with the corresponding consistency
proof) is piggybacked in the coin tossing. Given R∗,
the validity of s′ can be easily verified by both parties
by recomputing it “in the exponent”.

From the perspective of Ui+1, releasing his left lock
without a key for his right lock implies solving the
discrete logarithm of Yi. On the converse, once the
right lock is released, the value y∗ + yi+1 is revealed
(where yi+1 is part of the state of Ui+1) and a valid
signature can be computed as

(
rx,

s′

y∗

)
. The security of

the construction is established by the following theorem
(see [41] for a full proof).

Theorem 3. Let COM be a secure commitment scheme
and let NIZK be a non-interactive zero knowledge proof.
If ECDSA signatures are strongly existentially unforge-
able and Paillier encryption is ecCPA secure, then the
construction in Fig. 5 UC-realizes the ideal functionality
F in the (FECDSA

kgen ,Fsyn,Fsmt,Fanon)-hybrid model.

E. Hybrid AMHLs

We observe that, when instantiated over the same
elliptic curve G, the setup protocols of the Schnorr and
ECDSA constructions are identical. This means that the
initiator of the lock does not need to know whether
each intermediate lock is computed using the ECDSA
or Schnorr method. This opens the doors to hybrid
AMHLs: Given a unified setup, the intermediate pair of
users can generate locks using an arbitrary locking pro-
tocol. The resulting AMHL is a chaining of (potentially)
different locks and the release algorithm needs to be
adjusted accordingly. For the case of ECDSA-Schnorr
the user needs to extract the value y∗ from the right
Schnorr signature (R∗, s∗) and his state sR := s′ =
s∗−y∗+yi+1 and sI := (Yi, Yi+1, yi+1). Given y∗, he
can factor it out of its left state sL = ((r, s · y∗),m, pk)
and recover a valid ECDSA signature.

The complementary case (Schnorr-ECDSA) is han-
dled mirroring this algorithm. Similar techniques also
apply to the generic construction, when the one-way
function is instantiated appropriately (i.e., with discrete
logarithm over the same curve). This flexibility enables
atomic swaps and cross-currency payments (see Sec-
tion VII). The security for the hybrid AMHLs follows
similar to the standard case.

VI. PERFORMANCE ANALYSIS

A. Implementation Details

We have developed a prototypical Python implemen-
tation to demonstrate the feasibility of our construction
and evaluate its performance. We have implemented the
cryptographic operations required by AMHLs as de-
scribed in this work. We have used the Charm library [3]
for the cryptographic operations. We have instantiated
ECDSA over the elliptic curve secp256k1 (the one used
in Bitcoin) and we have implemented the homomorphic
one-way function as g(x) := x ·G over the same curve.
Zero-knowledge protocols for discrete logarithms have
been implemented using Σ protocols [21] and made
non-interactive using the Fiat-Shamir heuristic [27]. For
a commitment scheme we have used SHA-256 modeled
as a random oracle [13].

B. Evaluation

Testbed. We conducted our experiments on a machine
with an Intel Core i7, 3.1 GHz and 8 GB RAM. We
consider the Setup, Lock,Rel and Vf algorithms. We do
not consider KGen as we use off-the-shelf algorithms
without modification. Moreover, the key generation is
executed only once upon creating a link and thus does
not affect the online performance of AMHLs. We refer
to [37] for a detailed performance evaluation of the
ECDSA key generation. The results of our performance
evaluation are shown in Table I.

Computation Time. We measure the computation
time required by the users to perform the different
algorithms. For the case of two-party protocols (e.g.,
Setup and Lock) we consider the time for the two users
together. We make two main observations: First, the
script-based construction based on discrete logarithm is
faster than scriptless AMHLs. Second, all the algorithms
require computation time of at most 60 milliseconds on
a commodity hardware.

Generic Schnorr ECDSA
Setup Time (ms) 0.3 · n 1 · n 1 · n

Comm (bytes) 96 · n 128 · n 128 · n
Lock Time (ms) – 2 60

Comm (bytes) 32 256 416
Rel Time (ms) – 0.002 0.02

Comm (bytes) 0 0 0
Vf Time (ms) – 0.6 0.06

Comm (bytes) 0 0 0
Comp Cost (gas) 350849 · n 0 0
Lock size (bytes) 32 32 + |m| 32 + |m|
Open size (bytes) 32 64 64

TABLE I: Comparison of the resources required to execute
the algorithms for the different AMHLs. We denote by n the
length of the path. We denote the negligible computation times
by – (e.g., single memory read). We denote the size of an
application-dependent message by |m| (e.g., a transaction in
a payment-channel network).

11

Communication Overhead. We measure the com-
munication overhead as the amount of information
that users need to exchange during the execution of
interactive protocols, in particular, Setup and Lock.
As expected, the generic construction based on dis-
crete logarithm requires less communication overhead
than scriptless constructions. The scriptless construction
based on ECDSA requires a higher communication
overhead. This is mainly due to having the signing
key distributed multiplicatively and a more complex
structure of the final signature when compared to the
Schnorr approach.

Computation Cost. We measure the computation
cost in terms of the gas required by a smart contract
implementing the corresponding algorithm in Ethereum.
Naturally, we consider this cost only for the generic
approach based on discrete logarithm. We observe that
setting up the corresponding contract requires 350849
unit of gas per hop. At the time of writing, each AMHL
therefore costs considerably less than 0.01 USD.

Application Overhead. We measure the overhead
incurred by the application in terms of the memory re-
quired to handle application-dependent data, i.e., infor-
mation defining the lock and the opening. In tune with
the rest of measurements, the generic construction based
on discrete logarithms requires the smallest amount of
memory, both for lock and opening information. The
different scriptless approaches require the same amount
of memory from the application.

Scalability. We study the running time and communi-
cation overhead required by each of the roles in a multi-
hop lock protocol (i.e., sender, receiver and intermediate
user). We consider only the generic approach and the
ECDSA construction as representative of the scriptless
approach. In the absence of significant metrics from
current PCNs, we consider a path length of ten hops
as suggested for similar payment networks such as the
Ripple credit network [39].

Regarding the computation time, the sender requires
3ms with the generic approach and 10ms with the
ECDSA scriptless approach. The computation time at
intermediate users remain below 1ms for ECDSA and
negligible with the generic approach as they only have
to check the consistency of the locks with the predeces-
sor and the successor, independently of the length of the
path. Similarly, the computation overhead of the receiver
remains below 1ms as she only checks if a given key is
valid to open the lock according to the Vf algorithm. In
summary, a non-private payment over a path of 5 users
takes over 600ms as reported in [40]. Extending it with
the constructions presented in this work provides formal
privacy guarantees at virtually no overhead.

Regarding the communication overhead, the sender

must send a message of about 960 bytes for the generic
approach while about 1280 bytes are required instead
if ECDSA scriptless locks are used. Since Sphinx,
the anonymous communication network used in the
LN, requires padded messages at each node to ensure
anonymity, we foresee that every intermediate user must
forward a message of the same size.

Comparing these results with other multi-hop and
privacy-preserving PCNs available in the literature, we
make the following observations. First, the overhead for
the constructions presented in this work are in tune with
TeeChain [36], where the overhead per hop is about 0.4
ms in a setting where cryptographic operations required
for the multi-hop locks have been replaced by a trusted
execution environment. Second, our constructions sig-
nificantly reduce the communication and computation
overhead required by multi-hop HTLC [40]: While a
payment using multi-hop HTLC requires approximately
5 seconds and 17MB of communication, our approach
requires only few milliseconds and less than 1MB.

In summary, the evaluation results show that even
with an unoptimized implementation, our constructions
offer significant improvements on computation and
communication overhead and are ready to be deployed
in practice.

VII. APPLICATIONS

A. Payment-Channel Networks

AMHLs can be generically combined with a
blockchain B to construct a fully-fledged PCN. Loosely
speaking, the transformation works as follows: In the
first round the sender sets up the locks running the Setup
algorithm, then each pair of intermediate users executes
the Lock protocol and establishes the following AMHL
contract.

AMHL (Alice, Bob, `, x, t):
1) If Bob produces the condition k such that Vf(`, k) =
1 before t days, Alice pays Bob x coins.
2) If t days elapse, Alice gets back x coins.

Where ` is the output lock and x and t are chosen as
specified in Section II. Note that we have to assume
that B supports the Vf algorithm and time management
in its script language. The rest of the payment is
unchanged except that the intermediate users execute
the Rel algorithm to extract a valid key k to claim the
corresponding payment. In the extended version [41],
we provide the exact description of the algorithms and
we prove the following theorem.

Theorem 4 (Informal). Let B a secure blockchain and
let L be a secure AMHL, then we can construct a secure
PCN (as defined in [40]).

12

Note that even though we defined security of
AMHLs in the UC framework, the composition of
multiple AMHL instances in one protocol as needed for
realizing PCNs does not come for free if those instances
have shared state. Formally, such shared state can arise
from the use of a shared KGen algorithm. Consequently,
we need to show for the KGen algorithms of the
presented constructions that they behave independently
over multiple invocations and finally make use of the
JUC theorem [19] to obtain the composability result.

This shows that AMHLs are the only cryptographic
primitive (except for the blockchain) needed to construct
PCNs. The only limitation is that the blockchain needs
to support the verification of the corresponding contract
in their scripting language (see the discussion above).
For this reason, the scriptless-construction are preferred
for those blockchains where the scripting language does
not support the evaluation of a homomorphic one-way
function (such as Bitcoin).

Application to the Lightning Network. When applied
to the LN, the ECDSA AMHL construction conveys
several advantages: First, it eliminates the security is-
sues existing in the current LN due to the use of the
HTLC contract. Second, it reduces the transaction size
as a single signature is required per transaction. This
has the benefit of lowering the communication over-
head, the transaction fees, and the blockchain memory
requirements for closing a payment channel. In fact, we
have received feedback from the LN community indi-
cating the suitability of our ECDSA-based construction.
Moreover, results from the implementation and testing
done by LN developers are available [28], [29].

The applicability of our proposals are not restricted
to the LN or Bitcoin: There exist other PCNs that could
similarly take advantage of the scriptless AMHLs pre-
sented in this work. For instance, the Raiden Network
has been presented as a payment channel network for
solving the scalability issue in Ethereum. The adoption
of our ECDSA scriptless AMHLs would bring the same
benefits to the Raiden Network.

B. Atomic Swaps

Assume two users U0 and U1 holding coins in two
different cryptocurrencies and want to exchange them.
An atomic swap protocol ensures that either the coins
are swapped or the balances are untouched, i.e., the ex-
change must be performed atomically. The widely used
protocol for atomic swaps described in [16] leverages
the HTLC contract to perform the swap. In a nutshell, an
atomic swap can be seen as a multi-hop payment over a
path of the form (U0, U1, U0). This approach inherits the
security concerns of HTLC contract. Scriptless AMHLs
also enhance this application domain with formally
proven security guarantees.

Additionally, our constructions contribute to the
fungibility of the coins, a crucial aspect for any available
(crypto)currency. Current protocols rely on transactions
that are clearly distinguishable from regular payments
(i.e., one-to-one payments). In particular, atomic swap
transactions contain the HTLC contract, in contrast to
regular transactions. Scriptless AMHLs eliminate this
issue since even atomic swap transactions only require
a single signature from a public key, making them indis-
tinguishable from regular payments. Similar arguments
also apply for multi-hop payments in PCNs.

C. Interoperable PCNs

Among the cryptocurrencies existing today, an in-
teresting problem consists in performing a multi-hop
payment where each link represents a payment channel
defined in a different cryptocurrency. In this manner,
a user with a payment channel funded in a given
cryptocurrency can use it to pay to another user with
a payment channel in a different cryptocurrency. Cur-
rently, the InterLedger protocol [50] tackles this prob-
lem with a mechanism to perform cross-currency multi-
hop payments that relies on the HTLC contract, aiming
to ensure the payment atomicity across different hops.

However, apart from the already discussed issues
associated with HTLC, the InterLedger protocol man-
dates that all cryptocurrencies implement HTLC con-
tracts. This obviously hinders the deployment of this
approach. Instead, it is possible to use the different
AMHL constructions presented in this work on a single
path, as described in Section V-E, therefore expanding
the domain of cross-currency multi-hop payments.

VIII. RELATED WORK

A recent work [24] shows a protocol to compute
an ECDSA signature using multi-party computation.
However, it is not as efficient as Lindell’s approach [37].

There exists extensive literature proposing construc-
tions for payment channels [22], [23], [35], [48]. These
works focus on a single payment channel, and their
extension to PCNs remain an open challenge. Tum-
bleBit [31] and Bolt [30] support off-chain payments
while achieving payment anonymity guarantees. How-
ever, the anonymity guarantees of these approaches are
restricted to single-hop payments and their extension to
support multi-hop payments remains an open challenge.

State channels [25], [33], [43] and state channel
networks [26] cannot work with prominent cryptocur-
rencies except from Ethereum. TeeChain [36] requires
the availability of a trusted execution environment at
each user. Instead, our proposal can be seamlessly
deployed today in virtually all cryptocurrencies, includ-
ing Ethereum. In addition, AMHL enables operations

13

between different blockchains, which is clearly not
the case for Ethereum-only solutions. If we focus on
the specific setting of payment channels in Ethereum,
AMHL is more efficient (i.e., it requires less gas
and bytes) as payment conditions are encoded in the
signature and not in additional scripts. Finally, [25],
[26] provide a different privacy notion: two endpoints
can communicate privately but the intermediate nodes
know that a virtual channel is opened between them.
This information is instead concealed with AMHL.
Formalizing this privacy leakage and comparing it with
our privacy definition is an interesting future work.

The LN has emerged as the most promising ap-
proach for PCN in practice. Its current description [6] is
being followed by several implementations [5], [8], [10].
However, these implementations suffer from the security
and privacy issues with PCNs as described in this work.
Instead, we provide several constructions for AMHLs
that can be leveraged to have secure and anonymous
multi-hop payments.

Malavolta et al. [40] propose a protocol for secure
and anonymous multi-hop payments compatible with
the current LN. Their approach, however, imposes an
overhead of around 5 MB for the nodes in the network,
therefore hindering its deployability. Here, we propose
several efficient constructions that require only a few
bytes of communication.

In the recent literature, we can find proposals for
secure and privacy-preserving atomic swaps. Tesser-
act [14] leverages trusted hardware to perform real
time cryptocurrency exchanges. The Merkleized Ab-
stract Syntax Trees (MAST) protocol has been proposed
as a privacy solution for atomic swaps [34]. However,
MAST relies on scripts that are not available in the ma-
jor cryptocurrencies today. Moreover, specific contracts
for atomic swaps hinder the fungibility of the currency:
An observer can easily differentiate between a regular
payment and a payment resulting from an atomic swap.

IX. CONCLUSION

We rigorously study the cryptographic core func-
tionality for security, privacy, and interoperability guar-
antees in PCNs, presenting a new attack on today’s
PCNs (the wormhole attack) and proposing a novel
cryptographic construction (AMHLs). We instantiate
AMHLs in two settings: script-based and scriptless. In
the script-based setting, we demonstrate that AMHLs
can be realized from any (linear) homomorphic opera-
tion. In the scriptless setting, we propose a construction
based on ECDSA, thereby catering the vast majority of
cryptocurrencies deployed today. Our performance eval-
uation shows that AMHLs are practical: All operations
take less than 100 milliseconds to run and introduce a
communication overhead of less than 500 bytes.

We show that AMHLs can be combined in a single
path and are of interest in several applications apart
from PCNs, such as atomic swaps and interoperable
PCNs. In fact, LN developers have implemented and
tested AMHL for LN. In the future, we plan to devise
cryptographic instantiations of PCNs for the few cryp-
tocurrencies not yet covered, most notably Monero.

Acknowledgements. The authors would like to thank
Elizabeth Stark, Conner Fromknecht and Olaluwa Os-
untokun (Lightning Network Labs) for insightful discus-
sions on the writeup of this paper. They would also like
to thank Foteini Baldimitsi for her helpful comments on
Universal Composability.

This work has been partially supported by the Na-
tional Science Foundation under grant CNS-1719196,
the European Research Council (ERC) under the Eu-
ropean Unions Horizon 2020 research (grant agreement
No 771527-BROWSEC); by Netidee through the project
EtherTrust (grant agreement 2158) and PROFET (grant
agreement P31621); by the Austrian Research Promo-
tion Agency through the Bridge-1 project PR4DLT
(grant agreement 13808694); by COMET K1 SBA,
ABC; by Chaincode Labs and the Austrian Science
Fund (FWF) through the Meitner program; by the
German research foundation (DFG) through the collab-
orative research center 1223; by the German Federal
Ministry of Education and Research (BMBF) through
the project PROMISE (16KIS0763); and by the state
of Bavaria at the Nuremberg Campus of Technol-
ogy (NCT). NCT is a research cooperation between
the Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU) and the Technische Hochschule Nürnberg Georg
Simon Ohm (THN).

REFERENCES

[1] “5 potential use cases for bitcoin’s lightning network,” https:
//tinyurl.com/y6u4tnda.

[2] “Blockchain explorer information,” https://blockchain.info/.
[3] “Charm: A framework for rapidly prototyping cryptosystems,”

https://github.com/JHUISI/charm.
[4] “Ethereum website,” https://www.ethereum.org/.
[5] “Lightning network daemon,” https://github.com/

lightningnetwork/lnd.
[6] “Lightning network specifications,” https://github.com/

lightningnetwork/lightning-rfc.
[7] “Raiden network,” http://raiden.network/.
[8] “A scala implementation of the lightning network,” https://

github.com/ACINQ/eclair.
[9] “Stress test prepares visanet for the most

wonderful time of the year,” Blog entry,
http://www.visa.com/blogarchives/us/2013/10/10/
stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/
index.html.

[10] “c-lightning – a lightning network implementation in c,” Acce-
ses in May 2018, https://github.com/ElementsProject/lightning.

14

https://tinyurl.com/y6u4tnda
https://tinyurl.com/y6u4tnda
https://blockchain.info/
https://github.com/JHUISI/charm
https://www.ethereum.org/
https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lightning-rfc
https://github.com/lightningnetwork/lightning-rfc
http://raiden.network/
https://github.com/ACINQ/eclair
https://github.com/ACINQ/eclair
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://github.com/ElementsProject/lightning

[11] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Chris-
tidis, A. D. Caro, D. Enyeart, C. Ferris, G. Laventman,
Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen,
M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou,
M. Vukolic, S. W. Cocco, and J. Yellick, “Hyperledger fabric:
A distributed operating system for permissioned blockchains,”
in EuroSys, 2018, pp. 30:1–30:15.

[12] M. Backes, A. Kate, P. Manoharan, S. Meiser, and E. Moham-
madi, “Anoa: A framework for analyzing anonymous commu-
nication protocols,” in CSF, 2013, pp. 163–178.

[13] M. Bellare and P. Rogaway, “Random oracles are practical: A
paradigm for designing efficient protocols,” in CCS, 1993.

[14] I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breidenbach,
P. Daian, and A. Juels, “Tesseract: Real-time cryptocurrency
exchange using trusted hardware,” in ePrint Archive, 2017, p.
1153. [Online]. Available: http://eprint.iacr.org/2017/1153

[15] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-
knowledge and its applications,” in Symposium on Theory of
Computing, 1988, pp. 103–112.

[16] S. Bowe and D. Hopwood, “Hashed time-locked contract trans-
actions,” Bitcoin Improvement Proposal, https://github.com/
bitcoin/bips/blob/master/bip-0199.mediawiki.

[17] J. Camenisch and A. Lysyanskaya, “A formal treatment of
onion routing,” in CRYPTO, 2005.

[18] R. Canetti, “Universally composable security: A new paradigm
for cryptographic protocols,” in FOCS, 2001, pp. 136–.

[19] R. Canetti and T. Rabin, “Universal composition with joint
state,” in Annual International Cryptology Conference, 2003,
pp. 265–281.

[20] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels,
A. Kosba, A. Miller, P. Saxena, E. Shi, E. Gün Sirer, D. Song,
and R. Wattenhofer, “On Scaling Decentralized Blockchains,”
in FC, 2016, pp. 106–125.

[21] I. Damgård, “On σ-protocols,” Lecture Notes, University of
Aarhus, Department for Computer Science, 2002.

[22] C. Decker, R. Russel, and O. Osuntokun, “eltoo: A simple
layer2 protocol for bitcoin,” https://blockstream.com/eltoo.pdf.

[23] C. Decker and R. Wattenhofer, “A fast and scalable payment
network with bitcoin duplex micropayment channels,” in Sta-
bilization, Safety, and Security of Distributed Systems, 2015.

[24] J. Doerner, Y. Kondi, E. Lee, and a. shelat, “Secure two-party
threshold ecdsa from ecdsa assumptions,” in S&P, 2018.

[25] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski,
“Perun: Virtual payment hubs over cryptocurrencies,” in ePrint,
2017. [Online]. Available: https://eprint.iacr.org/2017/635

[26] S. Dziembowski, S. Faust, and K. Hostakova, “General state
channel networks,” in CCS, 2018.

[27] A. Fiat and A. Shamir, “How to prove yourself: Practical solu-
tions to identification and signature problems,” in Conference
on the Theory and Application of Cryptographic Techniques,
1986.

[28] C. Fromknecht, “Instantiating scriptless 2p-ecdsa: fungi-
ble 2-of-2 multisigs for bitcoin today,” Talk at Scaling-
Bitcoin 2018, https://tokyo2018.scalingbitcoin.org/transcript/
tokyo2018/scriptless-ecdsa.

[29] ——, “tpec: 2p-ecdsa signatures,” Github repository, https://
github.com/cfromknecht/tpec.

[30] M. Green and I. Miers, “Bolt: Anonymous payment channels
for decentralized currencies,” in CCS, 2017.

[31] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and
S. Goldberg, “TumbleBit: An untrusted bitcoin-compatible
anonymous payment hub,” in NDSS, 2017.

[32] J. Katz, U. Maurer, B. Tackmann, and V. Zikas, “Universally
composable synchronous computation,” in Theory of cryptog-
raphy, 2013, pp. 477–498.

[33] R. Khalil and A. Gervais, “Revive: Rebalancing off-blockchain
payment networks,” in CCS, 2017, pp. 439–453.

[34] J. Lau, “Merkelized abstract syntax tree,” Bitcoin Improvement
Proposal, https://tinyurl.com/yc9jh6lv.

[35] J. Lind, I. Eyal, P. R. Pietzuch, and E. G. Sirer, “Teechan:
Payment channels using trusted execution environments,” 2016,
http://arxiv.org/abs/1612.07766.

[36] J. Lind, O. Naor, I. Eyal, F. Kelbert, P. R. Pietzuch, and E. G.
Sirer, “Teechain: Reducing storage costs on the blockchain with
offline payment channels,” in Systems and Storage Conference,
2018, p. 125.

[37] Y. Lindell, “Fast Secure Two-Party ECDSA Signing,” in
CRYPTO, 2017, pp. 613–644.

[38] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and
P. Saxena, “A secure sharding protocol for open blockchains,”
in CCS, 2016, pp. 17–30.

[39] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei,
“SilentWhispers: Enforcing security and privacy in credit net-
works,” in NDSS, 2017.

[40] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and
S. Ravi, “Concurrency and privacy with payment-channel net-
works,” in CCS, 2017.

[41] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate,
and M. Maffei, “Privacy-preserving multi-hop locks for
blockchain scalability and interoperability,” Cryptology ePrint
Archive, Report 2018/472, 2018, https://eprint.iacr.org/2018/
472.

[42] P. McCorry, M. Möser, S. F. Shahandashti, and F. Hao, “To-
wards bitcoin payment networks,” in ACISP, 2016.

[43] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry, “Sprites:
Payment channels that go faster than lightning,” in FC, 2019.

[44] P. Moreno-Sanchez, N. Modi, R. Songhela, A. Kate, and
S. Fahmy, “Mind your credit: Assessing the health of the ripple
credit network,” in WWW, 2018, pp. 329–338.

[45] P. Paillier, “Public-key cryptosystems based on composite de-
gree residuosity classes,” in International Conference on the
Theory and Applications of Cryptographic Techniques, 1999,
pp. 223–238.

[46] A. Poelstra, “Lightning in scriptless scripts,” Mailing list post,
https://lists.launchpad.net/mimblewimble/msg00086.html.

[47] ——, “Scriptless scripts,” Presentation slides,
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/
2017-05-milan-meetup/slides.pdf.

[48] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable
off-chain instant payments,” Technical Report, https://lightning.
network/lightning-network-paper.pdf.

[49] O. Regev, “On lattices, learning with errors, random linear
codes, and cryptography,” Journal of the ACM, vol. 56, no. 6,
p. 34, 2009.

[50] E. S. Stefan Thomas, “A Protocol for Interledger Payments,”
Whitepaper, https://interledger.org/interledger.pdf.

[51] P. Wuille, “Schnorr Bitcoin Improvement Proposal,” https:
//github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki.

15

http://eprint.iacr.org/2017/1153
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://blockstream.com/eltoo.pdf
https://eprint.iacr.org/2017/635
https://tokyo2018.scalingbitcoin.org/transcript/tokyo2018/scriptless-ecdsa
https://tokyo2018.scalingbitcoin.org/transcript/tokyo2018/scriptless-ecdsa
https://github.com/cfromknecht/tpec
https://github.com/cfromknecht/tpec
https://tinyurl.com/yc9jh6lv
http://arxiv.org/abs/1612.07766
https://eprint.iacr.org/2018/472
https://eprint.iacr.org/2018/472
https://lists.launchpad.net/mimblewimble/msg00086.html
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://interledger.org/interledger.pdf
https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki
https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki

	Introduction
	State-of-the-art in PCNs
	Our Contributions

	Context: Payment Channel Networks
	Payment Channels
	A Payment Channel Network (PCN)
	Multi-Hop Payments Atomicity

	Wormhole Attack in Existing PCNs
	Definition
	Security and Privacy Definition
	Discussion

	Constructions
	Cryptographic Building Blocks
	Generic Construction
	Scriptless Schnorr-based Construction
	Scriptless ECDSA-based Construction
	Hybrid AMHLs

	Performance Analysis
	Implementation Details
	Evaluation

	Applications
	Payment-Channel Networks
	Atomic Swaps
	Interoperable PCNs

	Related Work
	Conclusion
	References

