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Abstract

The CRT-ACD problem is to find the primes p1, . . . , pn given polynomially many in-
stances of CRT(p1,...,pn)(r1, . . . , rn) for small integers r1, . . . , rn. The CRT-ACD problem is
regarded as a hard problem, but its hardness is not proven yet. In this paper, we analyze
the CRT-ACD problem when given one more input CRT(p1,...,pn)(x0/p1, . . . , x0/pn) for

x0 =
n∏

i=1

pi and propose a polynomial-time algorithm for this problem by using products

of the instances and auxiliary input.
This algorithm yields a polynomial-time cryptanalysis of the (approximate) multilinear

map of Coron, Lepoint and Tibouchi (CLT): We show that by multiplying encodings of
zero with zero-testing parameters properly in the CLT scheme, one can obtain a required
input of our algorithm: products of CRT-ACD instances and auxiliary input. This leads
to a total break: all the quantities that were supposed to be kept secret can be recovered
in an efficient and public manner.

We also introduce polynomial-time algorithms for the Subgroup Membership, Deci-
sion Linear, and Graded External Diffie-Hellman problems, which are used as the base
problems of several cryptographic schemes constructed on multilinear maps.

Keywords: Multilinear maps, Graded encoding schemes, Decision linear problem, Sub-
group membership problem, Graded external Diffie-Hellman problem.

1 Introduction

Cryptographic bilinear maps, which was made possible thanks to pairings over elliptic curves,
have led to a bounty of exciting cryptographic applications. In 2002, Boneh and Silverberg [7]
formalized the concept of cryptographic multilinear maps and provided two applications: a
one-round multi-party key exchange protocol and a very efficient broadcast encryption scheme.

∗A preliminary version of this paper appeared in the Proceedings of EUROCRYPT 2015, Lecture Notes in
Computer Science 9056, Springer-Verlag [12].
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However, these promising applications were only vague exercises as no realization of such
multilinear maps was known. This had changed around ten years later as Garg, Gentry and
Halevi proposed the first approximation of multilinear maps [21]. They introduced the concept
of (approximate) graded encoding scheme as a variant of multilinear maps and described a
candidate construction relying on ideal lattices (which we will refer to as GGH in this work).
Soon after, Coron, Lepoint and Tibouchi [15] proposed another candidate construction of a
graded encoding scheme relying on a variant of the approximate greatest common divisor
problem, for short, CLT.

The GGH and CLT constructions share similarities as they are both derived from a ho-
momorphic encryption scheme, Gentry’s scheme [25] and the van Dijk et al. scheme [36],
respectively. And both rely on extra public data called the zero-testing or extraction parame-
ter, which allow them to publicly decide whether the plaintext data hidden in a given encoding
is zero, as long as the encoding is not the output of a too deep homomorphic evaluation circuit.

Graded encoding schemes serve as a basis to define presumably hard problems. These
problems are then used as security foundations of cryptographic constructions. A major dis-
crepancy between GGH and CLT is that some natural problems seem easy when instantiated
with the GGH graded encoding scheme and hard with CLT. Such problems are subgroup
membership (SubM) and decision linear (DLIN). Briefly, SubM is to distinguish between en-
codings of elements of a group and encodings of elements one of its subgroup thereof whereas
DLIN is to determine whether a matrix of elements is singular, given input encodings of those
elements. Another similar discrepancy appears to exist between the asymmetric variants of
GGH and CLT; the Graded External Decision Diffie-Hellman (GXDH) problem seems hard
with CLT while it is easy for GGH. GXDH is exactly DDH for one of the components of the
asymmetric graded encoding scheme. These problems have been initially used in the context
of cryptographic bilinear maps [4, 5, 34].

For example, in [29], Gentry et al. provide a framework to prove the security of wit-
ness encryption schemes. They use computational assumptions involving graded encodings
to prove the security of their witness encryption scheme. Another important application of
multilinear maps is a construction of secure indistinguishability obfuscation. In [28], Gentry
et al. provide the first construction of indistinguishability obfuscation which is secure un-
der an instance independent computational assumption, the so-called Multilinear Subgroup
Elimination Assumption. These works rely on computational assumptions involving the CLT
multilinear maps that are variants of the SubM problem.

In the first public version of [21] (dated 29 Oct. 2012),1 the GGH construction was thought
to provide secure DLIN instantiation. It was soon realized that DLIN could be broken in
polynomial-time. The attack consists in multiplying an encoding of some element m by an
encoding of 0 and by the zero-testing parameter; this produces a small element (because
the encoded value is m · 0 = 0), which happens to be a multiple of m. This zeroizing

attack (also called weak discrete logarithm attack) is dramatic for SubM, DLIN and GXDH.
Fortunately, it does not seem useful against other problems, such as Graded Decision Diffie
Hellman (GDDH) and the adaptation of DDH to the graded encoding scheme setting. As
no such attack was known for CLT, the presumed hardness of the CLT instantiations of
SubM, DLIN and GXDH was exploited as a security grounding for several cryptographic
constructions [1–3,6, 23, 24,28,29,33,37,38].

Zeroizing Attack on GGH. Garg et al. constructed the first approximation to multilinear

1It can be accessed from the IACR eprint server.
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maps by using graded encoding scheme and zero-testing parameter [21] which is defined on
ring Rq = Zq[X]/〈Xn + 1〉. By exploiting a zero-testing parameter, any user can decide
whether two encodings encode the same value or not. More precisely, they publish a zero-
testing parameter pzt then the quantity [u · pzt]q is small if and only if u is a top encoding
of zero. This property creates a weakness in the scheme in case of “zeroizing attack”. When
u is a top level encoding of zero, the zero-testing value gives an equation which holds in
R = Z[X]/〈Xn + 1〉 not only in Rq. Using these equations, one can compute some fixed
multiples of secrets and solve some hardness problems associated with GGH scheme (For a
more detailed description, refer the reader to [21]).

Our Contributions. First, we abstract a hardness problem of the CLT scheme to CRT-

ACD with auxiliary input. The CRT-ACD with auxiliary input is to find η-bit primes pi for all
1 ≤ i ≤ n for given many samples in the form of CRT(p1,··· ,pn)(r1, · · · , rn) which is an integer

congruent to integer |ri| < 2ε, x0 =
n∏

i=1
pi and P̂ = CRT(p1,··· ,pn)(x0/p1, · · · , x0/pn).

Next, We describe an analysis of a CRT-ACD with auxiliary input. Moreover, we adapt
the method to the CLT graded encoding scheme. It runs in polynomial-time and allows one
to publicly compute all the parameters of the CLT scheme that were supposed to be kept
secret.

In addition, we introduce cryptanalytic algorithms on three related problems on CLT: the
SubM, DLIN, and GXDH. Since there is no known relation between the hardness of these
problems and GDDH, it is worth analyzing these problems. The computational complexity
is not less than that of computing the secret primes pi. However, our approach to solving
the SubM, DLIN and GXDH differs from analysis of GDDH on the CLT scheme, therefore it
needs to be considered when a new multilinear map candidate is proposed. We expect it to
catalyze further research of cryptanalysis and cryptographic constructions.

Impact of the Attack. The CLT candidate construction should be considered broken,
unless the low-level encodings of 0 are not made public. At the moment, there does not exist
any candidate multilinear map approximation for which any of SubM, DLIN and GXDH is
hard. Several recent cryptographic constructions can no longer be realized. This includes all
constructions from [2, 23, 24, 37], the one-round group password authenticated key exchange
construction of [1] for more than 3 users, one of the two constructions of password hashing
of [3], the alternative key-homomorphic pseudo random function construction from [6], and
the use of the latter in [33].

Our attack heavily relies on the fact that low-level encodings of 0 are made publicly avail-
able. It is not applicable when these parameters are kept secret. They are used in applications
to homomorphically re-randomize encodings so that their distributions are “canonicalize”. A
simple way to thwart the attack is not to make any low-level encodings of 0 public. This
approach was used in [22] and [9], for example. It appears that this approach can be used to
secure the construction from [38] as well.

Related and Follow-up Works. The zeroizing attack on the GGH scheme also leads to
break of the GGH scheme [31]. Soon after, a third candidate construction of a variant of
graded encoding schemes was proposed in [26]. Unfortunately, the scheme is also known to
be insecure [19].

Our attack was extended in [8, 14, 27] to settings in which no low-level encoding of 0 are
available. The extensions rely on low-level encodings of elements corresponding to orthogonal
vectors and impact [22, 28,29].
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After our attack was published in Eurocrypt’15, the draft [23] was update to propose a
candidate immunization against our attack (see [23, Se. 6]).2 Another candidate immunization
was proposed in [8]. Both immunizations have proved insecure in [16]. See also [14].

A further modification of CLT was proposed by Coron, Lepoint and Tibouchi in the
proceedings of CRYPTO’15 [18]. They claimed that our attack is thwarted since the modified
scheme keeps the modulus secret so that the zero-testing procedure depends on the CRT
components in a non-linear way. However, it turned out to be insecure as proved by Cheon et

al. in [11] who exploit an extension of eigenvalues and determinant techniques as in section
3 and 4.

In case of the obfuscation on CLT multilinear map, the security remained open problems
because the applications is not given an encodings of zero. Recently, Coron et al. provide a
new result [20] about it, which enables one to break the obfuscation on CLT multilinear map
in polynomial-time.

Notation. We use a ← A to denote the operation of uniformly choosing an element a
from a finite set A. We define [n] = {1, 2, . . . , n}. We let Zq denote the ring Z/(qZ). For
pairwise coprime integers p1, p2, . . . , pn, we define CRT(p1,p2,...,pn)(r1, r2, . . . , rn) (abbreviated

as CRT(pi)(ri)) as the unique integer in
(
−1

2

∏n
i=1 pi,

1
2

∏n
i=1 pi

]
which is congruent to ri mod pi

for all i ∈ [n]. We use the notation [t]p for integers t and p in order to denote the reduction
of t modulo p into the interval (−p/2, p/2].

We use lower-case bold letters to denote vectors whereas upper-case bold letters are em-
ployed to denote matrices. For matrix S, we denote the transpose of S by ST . We define
‖S‖∞ = maxi

∑
j∈[n] |sij |, where sij is the (i, j) component of S. Finally we denote by

diag(a1, . . . , an) the diagonal matrix with diagonal coefficients equal to a1, . . . , an.

Organization. In Section 2, we define the CRT-ACD problem and its analysis. In Section 3,
we recall the CLT multilinear maps and present our attack on this. In Section 4, we introduce
three related problems on the CLT multilinear map and their cryptanalysis. We conclude this
paper in Section 5.

2 CRT-ACD with auxiliary input

In this section, we introduce a CRT-ACD problem with auxiliary input and analyze the
problem. The approximate greatest common divisor problem (ACD) is initially introduced by
Howgrave-Graham [30]. It is a problem to find a secret prime p given many near-multiples of
p. One of the promising applications of this problem is a homomorphic encryption scheme [36].
The scheme has superiority in regard to conceptual simplicity compared to other homomorphic
encryption schemes based on lattice problems.

The ACD problem is naturally extended by using multiple primes rather than a single one.
An instance of the problem is an integer of the form piqi + ri for each prime pi. Therefore, it
can be defined by using Chinese Remainder Theorem (CRT). Now we give a precise definition
of an extended ACD problem, which is called CRT-ACD problem.

Definition 1. (CRT-ACD) Let n, η, ε ∈ N, and χε be a distribution over Z ∩ (−2ε, 2ε).
For given η bit primes p1, · · · , pn, the sampleable CRT-ACD distribution Dχε,η,n(p1, · · · , pn)
is defined as

Dχε,η,n(p1, · · · , pn) = {CRT(pi)(ri) | ri ← χε}.

2The former version that was impacted by our attack can still be accessed from the IACR eprint server.



2 CRT-ACD WITH AUXILIARY INPUT 5

The CRT-ACD problem is: For given many samples from Dχε,η,n(p1, · · · , pn) and x0 =
n∏

i=1
pi,

find pi for all i.

Cheon et al. gave a batch homomorphic encryption [10] based on a stronger variant of
CRT-ACD problems, where the size of p1 is larger than other pi’s and they take r1 from
uniform distribution over Zp1 . In that case, it can be reduced to the original ACD problem.

For proper parameters, the CRT-ACD problems are regarded to be hard. In this section,
however, we show that when the auxiliary input CRT(pi)(x0/pi) is given, the CRT-ACD is
solved in polynomial-time of n, η, ε. Now we define a variant of CRT-ACD, as CRT-ACD

problem with auxiliary input.

Definition 2. (CRT-ACD with auxiliary input) Let n, η, ε ∈ N, and χε be a distribution

over Z∩ (−2ε, 2ε). For given η bit primes p1, · · · , pn, define x0 =
∏n

i=1 pi and p̂i = x0/pi, for
1 ≤ i ≤ n. The sampleable CRT-ACD distribution Dχε,η,n(p1, · · · , pn) is defined as

Dχε,η,n(p1, · · · , pn) = {CRT(pi)(ri) | ri ← χε}.

The CRT-ACD with auxiliary input is: For given many samples from Dχε,η,n(p1, · · · , pn), x0
and P̂ = CRT(pi)(p̂i), to find pi for all i.

The auxiliary input P̂ has a special feature which can be written as a summation of its
CRT components in Zx0 . A key observation is that the equation holds over the integers when
log n+ 1 < η. Using this property, we obtain a following lemma.

Lemma 1. For a given P̂ = CRT(pi)(p̂i) and a = CRT(pi)(ri) ← Dχε,η,n(p1, · · · , pn), it

satisfies:

a · P̂ mod x0 = CRT(pi)(ri · p̂i) =
n∑

i=1

ri · p̂i

if ε+ log n+ 1 < η.

Proof. The first equality is correct by the definition of Chinese remainder theorem. To show
that the second equality is correct, we consider the equation modulo pi for each i. Then the
left hand side is ri · p̂i and the right hand side is also ri · p̂i, because p̂j = 0 mod pi, for j 6= i.

Finally, the size of
n∑

i=1
ri · p̂i is smaller than n · 2ε · 2(n−1)·η which is less than x0/2. Hence, by

the uniqueness of CRT, the second equality holds.

This lemma transforms the modulus equation to an integer equation of r1, · · · , rn with un-
known coefficients p̂1, · · · , p̂n. Our goal is to recover ri by using the integral equation.

Now we describe full details of solving the CRT-ACD with auxiliary input.

2.1 Constructing Matrix Equations over Z

Now we show how to compute p1, · · · , pn when given polynomially many samples of the CRT-
ACD from Dχε,η,n(p1, · · · , pn) with ε+ log n+1 < η and the auxiliary input P̂ = CRT(pi)(p̂i).

For given two instances of CRT-ACD a = CRT(pi)(ai) and b = CRT(pi)(bi), abP̂ mod x0 =
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∑
aibip̂i mod x0. If all of ai’s and bi’s are small enough, the right hand side equals to

∑
aibip̂i,

and so it can be written as the following matrix equation over the integers:

abP̂ mod x0 =
(
a1 a2 · · · an

)




p̂1 0 · · · 0
0 p̂2 · · · 0

0 0
. . . 0

0 0 · · · p̂n







b1
b2
...
bn




The matrix representations share the diagonal matrix diag(p̂1, · · · , p̂n) for any CRT-ACD

instances a and b. Hence, we can construct an (n × n)-matrix which is a multiple of
diag(p̂1, · · · , p̂n) by arranging abP̂ mod x0 for various a and b.

More precisely, we are given 2n + 1 number of samples from the distribution Dχε,η,n as
following:

ai = CRT(pk)(ak,i), b = CRT(pk)(bk), cj = CRT(pk)(ck,j) for 1 ≤ i, j ≤ n.

To adapt Lemma 1 to aibcj mod x0, we assume that the parameters of the problem satisfy
the condition: 3ε + log n + 1 < η. Then compute the following values by multiplying the
samples:

wi,j = ai · b · cj · P̂ mod x0 =

n∑

k=1

ak,i · bkp̂k · ck,j for 1 ≤ i, j ≤ n,

w′i,j = ai · cj · P̂ mod x0 =

n∑

k=1

ak,i · p̂k · ck.j for 1 ≤ i, j ≤ n.

They can be written as the the following matrix form:

wi,j =

n∑

i=1

ai · p̂ibi · ci =
(
a1,i a2,i · · · an,i

)




b1p̂1 0 · · · 0
0 b2p̂2 · · · 0

0 0
... 0

0 0 · · · bnp̂n







c1,j
c2,j
...

cn,j




w′i,j =
n∑

i=1

ai · p̂i · ci =
(
a1,i a2,i · · · an,i

)




p̂1 0 · · · 0
0 p̂2 · · · 0

0 0
... 0

0 0 · · · p̂n







c1,j
c2,j
...

cn,j




By collecting these values, we can construct two matrices W = (wi,j) and W′ = (w′i,j) ∈
Mn×n(Z), which can be written as

W = AT · diag(b1p̂1, · · · , bnp̂n) ·C,

W′ = AT · diag(p̂1, · · · , p̂n) ·C

for AT = (ak,i) and C = (ck,j) ∈Mn×n(Z).
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2.2 Disclosing all the Secret Quantities

Suppose A and C are invertible matrices over Q. We compute (W′)−1 over Q and the
following matrix:

V = W · (W′)−1 = AT · diag(b1, · · · , bn) · (A
T )−1.

Here the eigenvalues of the matrix V are exactly the set B = {b1, · · · , bn}.
The set B can be computed in polynomial-time of η, n, and ε from V (e.g., by factoring

the characteristic polynomial over Z). The prime pi is a common factor of both (b− bi) and
x0, and they have other common factor if and only if bj = bi for some j ∈ {1, · · · , n}. Hence
if bi’s are distinct , we can get all secret integers p1, · · · , pn.

{GCD(b− β, x0) | β ∈ B} = {pi | 1 ≤ i ≤ n}.

Remark. The probability prob1 that matrix A and C are invertible matrices depends on
the distribution χε. The probability prob2 that bi 6= bj for all 1 ≤ i < j ≤ n also depends on
the distribution χε. Our attack succeeds with probability of prob1 · prob2. For example, this
probability is overwhelming with respect to ε when χε is uniform distribution over (−2ε, 2ε).
Since our attack consists of a matrix multiplication, computing a characteristic polynomial
and finding roots of the polynomial, the overall cost is bounded by Õ(n2+ω ·η), with ω ≤ 2.38.
Hence, we obtain the following result:

Theorem 1. Let Uε be the uniform distribution over (−2ε, 2ε) ∩ Z. When ε + log n + 1 <

η and given O(n) CRT-ACD samples from DUε,η,n(p1, · · · , pn) with x0 =
n∏

i=1
pi, and P̂ =

CRT(pi)(p̂i), one can recover every secret primes p1, · · · , pn in time Õ(n2+ω · η) with ω ≤ 2.38
and overwhelming probability to ε.

3 Application to CLT multilinear maps

3.1 A Candidate Multilinear Map over the Integers

First, we briefly recall the Coron et al. construction. We refer to the original paper [15] for a
complete description. The scheme relies on the following parameters.

λ: the security parameter

κ: the multilinearity parameter

ρ: the bit length of the randomness used for encodings

α: the bit length of the message slots

η: the bit length of the secret primes pi

n: the number of distinct secret primes

τ : the number of level-1 encodings of zero in public parameters

ℓ: the number of level-0 encodings in public parameters
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ν: the bit length of the image of the multilinear map

β: the bit length of the entries of the zero-test matrix H

Coron et al. suggests to set the parameters so that the following conditions are met:

• ρ = Ω(λ): to avoid brute force attack (see also [32] for a constant factor improvement).

• α = λ : so that the ring of messages Zg1×. . .×Zgn does not contain a small subring Zgi .
3

• n = Ω(η · λ): to thwart lattice reduction attacks.

• ℓ ≥ n · α+ 2λ: to be able to apply the leftover hash lemma from [15, Le. 1].

• τ ≥ n · (ρ+ log2(2n)) + 2λ: to apply leftover hash lemma from [15, Se. 4].

• β = Ω(λ): to avoid the so-called gcd attack.

• η ≥ ρκ + α+ 2β + λ+ 8, where ρκ is the maximum bit size of the random ri’s a level-κ
encoding. When computing the product of κ level-1 encodings and an additional level-0
encoding, one obtains ρκ = κ · (2α+ 2ρ+ λ+ 2 log2 n+ 2) + ρ+ log2 ℓ+ 1.

• ν = η − β − ρf − λ− 3: to ensure zero-test correctness.

Instance generation: (params,pzt) ← InstGen(1λ,1κ). Set the scheme parameters as
explained above. For i ∈ [n], generate η-bit primes pi, α-bit primes gi, and compute x0 =∏

i∈[n] pi. Sample z ← Zx0 . Let Π = (πij) ∈ Zn×n with πij ← (n2ρ, (n + 1)2ρ) ∩ Z if i = j,
otherwise πij ← (−2ρ, 2ρ) ∩ Z. For i ∈ [n], generate ri ∈ Zn by choosing randomly and
independently in the half-open parallelepiped spanned by the columns of the matrix Π and
denote by rij the j-th component of ri. Generate H = (hij) ∈ Zn×n,A = (aij) ∈ Zn×ℓ such
that H is invertible and ‖HT ‖∞ ≤ 2β , ‖(H−1)T ‖∞ ≤ 2β for i ∈ [n], j ∈ [ℓ], aij ← [0, gi).
Then define:

y = CRT(pi)

(
rigi + 1

z

)
, where ri ← (−2ρ, 2ρ) ∩ Z for i ∈ [n],

xj = CRT(pi)

(rijgi
z

)
for j ∈ [τ ],

Πj = CRT(pi)

(πijgi
z

)
for j ∈ [n],

x′j = CRT(pi)(x
′
ij), where x′ij = r′ijgi + aij and r′ij ← (−2ρ, 2ρ) ∩ Z for i ∈ [n], j ∈ [ℓ],

(pzt)j =




n∑

i=1

[
hij · z

κ · g−1i

]
pi
·
∏

i′ 6=i

pi′




x0

for j ∈ [n].

Output params = (n, η, α, ρ, β, τ, ℓ, ν, y, {xj}, {x
′
j}, {Πj}, s) and pzt. Here s is a seed for a

strong randomness extractor, which is used for an “Extraction” procedure. We do not recall
the latter as it is not necessary to describe our attack.

Re-randomizing level-1 encodings: c′ ← reRand(params, c). For j ∈ [τ ], i ∈ [n], sample
bj ← {0, 1}, b

′
i ← [0, 2µ)∩Z, with µ = ρ+α+λ. Return c′ = [c+

∑
j∈[τ ] bj ·xj+

∑
i∈[n] b

′
i ·Πi]x0 .

Note that this is the only procedure in the CLT multilinear map that uses the xj ’s.
4

3In fact, it seems that making the primes gi public may not lead to any specific attack [17].
4This procedure can be adapted to higher levels 1 < k ≤ κ by publishing appropriate quantities in params.
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Adding and multiplying encodings: Add(c1, c2)=[c1 + c2]x0 and Mul(c1, c2)=[c1 · c2]x0 .

Zero-testing: isZero(params, pzt, uκ) =
? 0/1. Given a level-κ encoding c, return 1 if ‖[pzt ·

c]x0‖∞ < x0 · 2
−ν , and return 0 otherwise.

Coron et al. also describes a variant where only one such (pzt)j is given out, rather than n
of them (see [15, Se. 6]). Our attack requires only one (pzt)j . In [29, App. B.3], Gentry
et al. describes a variant of the construction above that aims at generalizing asymmetric
cryptographic bilinear maps, which we briefly introduce in Section 4. Our attack can be
adapted to that variant.

3.2 A zeroizing attack on CLT

In this section, we adapt the analysis of CRT-ACD with auxiliary input to CLT multilinear
maps. The instances of the problem and the CLT multilinear map are quite similar. The
encodings of CLT resemble the instances of the problem except the secret constant z. The
zero-testing parameters (pzt)j also has a similar structure with P̂ but contains coefficients
with large size about pi. However, when we restrict zero-testing to encodings of 0, it behaves
similar to Lemma 1.

More precisely, let a be a top-level encoding of 0 and write a = CRT(pi)(rigi/z
κ). Hereafter

since we use only one zero-testing parameter, without loss of generality, we denote (pzt)1 as
pzt. As similar in Lemma 1,

pzt · a mod x0 = CRTpi(p̂ihiri) =

n∑

i=1

p̂ihiri

as long as the last quantity is smaller than x0/2. By zero-testing conditions, it is always true
for valid top level encodings of zero. Next, by replacing a by valid κ level encodings of zero
x′j · x

′
1 · xk · y

k−1 or x′j · xk · y
k−1 for 1 ≤ j, k ≤ n in the above equation, for 1 ≤ j, k ≤ n, we

have:

wjk = x′j · x
′
1 · xk · y

κ−1 · pzt mod x0 =
n∑

i=1

p̂i · hi · x
′
ij · (rigi + 1)κ−1 · x′i1 · rik

=
n∑

i=1

x′ij · x
′
i1 · h

′
i · rik, and

w′jk = x′j · xk · y
κ−1 · pzt mod x0 =

n∑

i=1

p̂i · hi · x
′
ij · (rigi + 1)κ−1 · rik

=
n∑

i=1

x′ij · h
′
i · rik,

where h′i = p̂i · hi · (rigi + 1)κ−1. By spanning 1 ≤ i, j ≤ n, we obtain the matrix W and W′:

W = X′T · diag(x′11 · h
′
1, · · · , x

′
n1 · h

′
n) ·R,

W′ = X′T · diag(h′1, · · · , h
′
n) ·R,
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for X′T = (x′ij) and R = (rik). By applying the same method in the section 2, we can recover

{x11, · · · , xn1} by computing the eigenvalues of W ·W′−1. Hence we can compute all secret
pi by computing GCD(x′1 − xi1, x0).

Consequently, we need W′ and W to be invertible. We argue that this is the case here.
We prove it for W. Note first that the x′i1’s and the h′i’s are all non-zero, with overwhelming
probability. Note that by design, the matrix (rij)i∈[n],j∈[τ ] has rank n (see [15, Section. 4]).
The same holds for the matrix (x′ij)i∈[n],j∈[ℓ] (see [15, Lemma. 1]). As we can compute the rank
of a W ∈ Zt×t obtained by using an X′ ∈ Zt×n and an R ∈ Zn×t obtained by respectively
using a t-subset of the x′j ’s and a t-subset of the xj ’s. Without loss of generality we may
assume that our X′,R ∈ Zn×n are non-singular. The cost of finding such a pair (X′,R) is
bounded as Õ((τ + ℓ) · (nω log x0)) = Õ(κ

ω+3λ2ω+6), with ω ≤ 2.38 (assuming all parameters
are set smallest possible so that the bounds of Subsection 3.1 hold). Here we used the fact
that the rank of a matrix A ∈ Zn×n may be computed in time Õ(nω log ‖A‖∞) (see [35]).
This dominates the overall cost of the attack.

After we know all the pi’s, we have xj/y = rijgi/(rigi +1) mod pi. As the numerator and
denominator are coprime and very small compared to pi, they can be recovered by the rational
reconstruction algorithm. We hence obtain (rijgi)’s for all j. The gcd of all the (rijgi)’s
reveals gi. As a result, we can also recover all the rij ’s and ri’s. As x1 = ri1gi/z mod pi and
the numerator is known, we can recover z mod pi for all i, and hence z mod x0. The hij ’s can
then be recovered as well, so can the r′ij ’s and aij ’s.

4 The Subgroup Membership, Decision Linear and Graded

External Diffie-Hellman Problems

We start by defining the SubM, DLIN and GXDH problems associated with the CLT multi-
linear map. We then describe how to solve these problems in polynomial-time. The attack
procedure consists of two steps. First, in Section 4.1, we show how to recover

∏
i gi. It is a

common procedure for solving the SubM and DLIN. Next, in Sections 4.2 and 4.3, we use that
quantity to recognize valid instances of the SubM and DLIN. In Section 4.4, we introduce a
method to solve the GXDH.

Let G = Zg1 × . . . × Zgn and Gi be the subgroup of order gi obtained by making the
components of the other Zgj ’s to be zero. For index set I ⊆ [n], we denote GI =

∏
i∈I Gi. We

let enc1(m) denote a properly generated level-1 encoding of m ∈ G. For integers L,N > 0,
we let Rki(Z

L×L
N ) denote the set of L × L matrices over ZN of rank i. If N is a product of

primes, we define the rank of a matrix as the maximum of the ranks of the matrices obtained
by reduction modulo all the prime divisors of N .

Definition 3. (The Subgroup Membership Problem) SubM is as follows. Given λ and κ,
generate params and pzt using InstGen and {enc1(gi) : i ∈ [ℓ]} where the gi’s are uniformly

and independently sampled in a strict subgroup GI of G, with ℓ sufficiently large so that the

gi’s generate GI with overwhelming probability. Given params, pzt, {enc1(gi) : i ∈ [ℓ]} and

u = enc1(m), determine whether m is sampled uniformly in GI or in G.

Definition 4. (L-Decisional Linear Problem) L-DLIN is as follows. Given λ and κ,
generate params and pzt using InstGen. Define N =

∏
i gi. Given params and pzt, the goal is

to distinguish between the distributions

{(enc1(m
(i,j)))i,j}(m(i,j))i,j←RkL−1(Z

L×L
N

) and {(enc1(m̃
(i,j)))i,j}(m̃(i,j))i,j←RkL(Z

L×L
N

).
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In one of the constructions of [1], the authors rely on the following particular case. The
problem is as follows. The algorithm is given params and pzt as well as {enc1(ai)}i∈[L] and
{enc1(aibi)}i∈[L] for some uniform and independent a1, . . . , aL, b1, . . . , bL ∈ G. It is also given
enc1(m), and it has to assess whether m is uniformly and independently sampled in G or
whether m = b1 + . . . + bL. This can be restated as a special case of Definition 4, by noting
that it requests to assess whether the matrix just below is full-rank.




a1b1 a1 0 . . . 0
a2b2 0 a2 . . . 0

...
aLbL 0 0 . . . aL
m 1 1 . . . 1




We recall asymmetric multilinear maps and the associated GXDH problem. By applying
the attacks described above, we can solve GXDH in polynomial-time.

Instance generation: (params,pzt)← InstGen(1λ, 1κ). The setting of the parameters pi, gi,
x0, {x

′
j},Π and H are as in the original scheme. For 1 ≤ t ≤ κ, sample zt uniformly in Zx0 .

Then define, for all 1 ≤ t ≤ κ:

y(t) = CRT(pi)

(
r
(t)
i · gi + 1

zt

)
, where r

(t)
i ← (−2ρ, 2ρ) ∩ Z, for 1 ≤ i ≤ n,

x
(t)
j = CRT(pi)

(
r
(t)
ij · gi

zt

)
, for 1 ≤ j ≤ τ.

Further, we define:

(pzt)j =

n∑

i=1

hij · (
∏

1≤t≤κ

zt · g
−1
i mod pi) ·

∏

i′ 6=i

pi′ mod x0, for 1 ≤ j ≤ n.

Output params = (n, η, α, ρ, β, τ, ℓ, ν, {y(t)}, {x
(t)
j }, {x

′
j}, {Πj}, s) and pzt. From now on, we

let enct(m) denote CRT(pi)(
mi+si·gi

zt
).

Since, as same as in section 3.2, we only use one zero-testing parameter, we denote (pzt)1
as pzt. We now define the CLT variant of the GXDH problem.

Definition 5. (Graded External DDH Problem) GXDH is as follows. Given λ and κ,
generate params and pzt using InstGen. Given params, pzt and enct(a), enct(b) and enct(c)
with a, b← G and for a given t ∈ [κ], the goal is to decide whether c = a · b or c is uniformly

and independently sampled in G.

This can be regarded as a variant of 2-DLIN problems by distinguishing the following
distributions

{(
enct(c) enct(a)
enct(b) enct(1)

)}
and

{(
enct(ab) enct(a)
enct(b) enct(1)

)}
,where c← G.
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Our main strategy to solve these three related problem of CLT scheme is that: For a given
level-1 encoding

E = (ei,j) = CRT(pk)

(
s
(i,j)
k gk +m

(i,j)
k

z

)
for 1 ≤ i, j ≤ t,

we can construct a matrix Wei,j = Wi,j as similar to section 3.2 by computing [x′k · ei,j · xl ·
yκ−2 · pzt]x0 for 1 ≤ k, l ≤ n:

Wi,j = X′ · (Si,jG+Mi,j) · diag(h̃1, · · · , h̃n) ·R

= X′ · (Si,jG+Mi,j) ·R
′,

for h̃i = hi · (rigi + 1)κ−2 · p̂i, Si,j = diag(s
(i,j)
1 , · · · , s

(i,j)
n ) and Mi,j = diag(m

(i,j)
1 , · · · ,m

(i,j)
n ).

By collecting these matrix W = (Wi,j) for 1 ≤ i, j ≤ t, we can get following matrix:

W = X′ ·







S1,1 ·G S1,2 ·G . . . S1,t ·G
S2,1 ·G S2,2 ·G . . . S2,t ·G

...
. . .

St,1 ·G St,2 ·G . . . St,t ·G


+




M1,1 M1,2 . . . M1,t

M2,1 M2,2 . . . M2,t
...

. . .

Mt,1 Mt,2 . . . Mt,t





 ·R

′.

Related problems are to distinguish problems for given matrix of encoding E, the size of
matrix is different depending on problem. Those related problems can be seen as following:

SubM: For t = 1 and a given E, determine m← GI or not.

L-DLIN: For t = L and a given E, determine (m(i,j))i,j ← RkL−1(Z
L×L
N ) or RkL(Z

L×L
N ).

GXDH: For t = 2 and a given E, determine

(
c a
b 1

)
is a full rank or not

In case of SubM, determining m = (mi)1≤i≤n is in GI or not is the same as computing factors
of gcd(

∏
(rigi + mi),

∏
gi). This value can be computed from determinant of W and

∏
gi.

In case of GXDH and L-DLIN, the determinant of W is a multiple of gi for any i, if the
middle term matrix M does not have a full rank. In other case, the determinant of M is not
a multiple of gi with a high probability. Hence, if one can recover the

∏
gi, one can solve the

related problems.
Remark. The important difference between cryptanalysis of these related problems and the
cryptanalysis of the CLT scheme is the form of the middle matrix of W. The previous attack
in Section 3 is based on the fact that the middle matrix is a diagonal matrix. For example,
in [8], the authors fixed the middle matrix into block diagonal matrix form.5 On the other
hand, the attack of related problems in this section does not depend on it.

4.1 Step 1: Computing
∏

i gi

The main step in the attack is to get
∏

i gi from (params,pzt). It may be admissible to assume
that the gi’s are public in which computing

∏
i gi is trivial. If for some reason the gi’s have

to stay secret, one must set their bit-sizes as Ω(λ2), so that they cannot be recovered by
combining the approach described below with the elliptic curve factorization algorithm.

5Soon after, it is also known to be insecure by Coron et al.’s extended attack
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Similarly, to compute wkl in the Section 3.2, we compute wkl :=
[
x′k · y · xl · y

κ−2 · pzt

]
x0
,

w
(i)
kl :=

[
x′k · xi · xl · y

κ−2 · pzt

]
x0

and obtain a matrix

Wy = X′ · diag(r1g1 + 1, . . . , rngn + 1) ·R′.

Wi = X′ · diag(ri1g1, . . . , ringn) ·R
′.

We can get a multiple of
∏

i gi by taking a ratio of gcd’s of determinants of appropriate subsets
of {W1, . . . ,Wm,Wy}:

gcd(detW1, . . . , detWm)

gcd(detW1, . . . , detWm, detWy)
=

gcd(
∏

i ri1, . . . ,
∏

i rim)

gcd(
∏

i ri1gi, . . . ,
∏

i rimgi,
∏

i(rigi + 1))
·
∏

i

gi

= ∆ ·
∏

i

gi,

for some integer ∆. We expect that ∆ consists of only small factors because it is a common
divisor of many random variables. These variables do not satisfy uniformity condition, because
rij is chosen in a half-open parallelepiped spanned by matrix Π. However the elements of
matrix Π are drawn from some interval that is independent of an arbitrary prime p. Therefore,
we may (heuristically) assume that the smoothness probabilities are the same as that of the
uniform case. Under this assumption, the integer ∆ is 2n-smooth (i.e., all its divisors are≤ 2n)
with probability ≥ 0.9, as we explain below. The more general results can be found in [13].

Lemma 2 (Heuristic). Let rij be a random integer for i ∈ [n], j ∈ [m] with m ≥ s log(2n) for
some positive integer s. Then gcd(

∏
i ri1, . . . ,

∏
i rim) is 2n-smooth with probability ≥ ζ(s)−1,

which is ≥ 0.9 when s ≥ 4.

Proof. Our heuristic assumption is that each rij is divisible by a prime p > 2n with proba-
bility ≤ 1/p, for all p’s. First, we observe that for each j, the integer

∏
i rij is divisible by p

with probability ≤ 1 − (1 − 1/p)n ≤ n/p. Then the probability that gcd(
∏

i ri1, . . . ,
∏

i rim)
is divisible by p is ≤ (n/p)m. As a result, the gcd is 2n-smooth with probability at least

∏

p>2n

(1− (n/p)m) ≥
∏

p>2n

(1− 1/ps) = ζ(s)−1
∏

p≤2n

(1− 1/ps)−1 ≥ ζ(s)−1.

Here the first inequality comes from (n/p)m ≤ (n/2n)m = (1/2)m ≤ 1/ps for m ≥ s log p.
The equality is Euler’s identity for the Riemann zeta function. The latter is decreasing and
ζ(4)−1 > 0.9. This completes the proof.

By Lemma 2, the integer ∆ is (2n)-smooth with probability > 0.9. We eliminate it by
trial division by all integers ≤ 2n. This costs Õ(κ2λ5) bit operations. This is dominated by
the cost of the operations described in Sections 3.2, which is Õ(κω+3λ2ω+6).

4.2 Solving the CLT SubM Problem

We compute wkl =
[
x′k · enc1(m) · xl · y

κ−2 · pzt

]
x0
:

W = X′ · diag(r1g1 + x1, . . . , rngn + xn) ·R
′,

with xi ∈ Zgi for all i. The attack consists in computing gcd(detW,
∏

i gi).
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If m is uniformly sampled in G, then we expect n/2α of the xi’s to be zero. Hence, in
that case, we have log gcd(detW,

∏
i gi) ≈ αn/2α. For the original setting of α = λ, this is

essentially 0.
If m is uniformly sampled in GI , then all the xi’s for i /∈ I are zero, and we expect

(n − |I|)/2α of the others to be zero. Hence, in that case, we have log gcd(detW,
∏

i gi) ≈
α|I|+ α(n− |I|)/2α.

4.3 Solving the CLT DLIN Problem

As we have seen, we assume that
∏

i gi is known. In DLIN, we are given a matrix of level-1

encodings E = (ei,j)i,j . We write ei,j = (s
(i,j)
k gk +m

(i,j)
k )/z mod pk. Using the same method

to above, we compute matrices Wi,j ∈ Zn×n for all ei,j . We define

W =




W11 W12 . . . W1L

W21 W22 . . . W2L
...

. . .

WL1 WL2 . . . WLL


 ∈ ZnL×nL.

We compute the determinant of W. It satisfies the following equation.

det(W) = det(X′)L · det(R′)L · det




B1,1 B1,2 . . . B1,L

B2,1 B2,2 . . . B2,L
...

. . .

BL,1 BL,2 . . . BL,L


 ,

whereBi,j = diag(s
(i,j)
1 ·g1+m

(i,j)
1 , · · · , s

(i,j)
n ·gn+m

(i,j)
n ) for all i, j. Let ∆ = det(X′)L·det(R′)L.

We have detW = ∆ ·
∏

k detQk, where Qk = (r
(i,j)
k · gk + m

(i,j)
k )i,j and it is congruent to

Pk = (m
(i,j)
k )(i,j) in modulo gk.

To distinguish among the instances of DLIN, we compute detW and check whether it
is divisible by

∏
k gk. If E is sampled from a full rank matrix, the determinant of Pk is

nonzero for some k. Hence detW cannot be multiple of
∏

k gk. In other case, then detPi =
0 for all i. Hence detW is a multiple of

∏
k gk. The total bit-complexity of the attack

is Õ(κω+3λ2ω+6 + κω+3Lω+1λ2ω+5).

4.4 Solving the CLT GXDH Problem

In the following, we assume that κ ≥ 3. Without loss of generality, we assume that t = 1 in
the GXDH problem. The first step in the attack is to get

∏
i gi from (params,pzt). Similar to

Section 4.1, we compute Wy(1) and the Wi’s by using (params), as follows (for 1 ≤ i ≤ m):

Wy(1) = ([y(1) · x
(2)
k x

(3)
l · y

(4) . . . y(κ) · pzt]x0)k,l

= R · diag(r
(1)
1 g1 + 1, . . . , r

(1)
n gn + 1) · diag(h′1, . . . , h

′
n) ·R

′,

Wi = ([x
(1)
i · x

(2)
k x

(3)
l · y

(4) . . . y(κ) · pzt]x0)k,l

= R · diag(r
(1)
i1 g1, . . . , r

(1)
in gn) · diag(h

′
1, . . . , h

′
n) ·R

′,

where R = (r
(2)
ki ) and R′ = (r

(3)
il ).
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Similar to Section 4.1, we obtain a multiple of
∏

i gi by taking a ratio of gcd’s of determi-
nants of appropriate subsets of {W1, . . . ,Wm,Wy(1)}:

gcd(detW1, . . . , detWm)

gcd(detW1, . . . , detWm, detWy(1))
= ∆ ·

∏

i

gi,

for some integer ∆. For the same reason as before, by Lemma 2, the integer ∆ is (2n)-smooth
with probability > 0.9. We eliminate it by trial division by all integers ≤ 2n. Thus, we can
get

∏
i gi in time Õ(κω+3λ2ω+6).

Next, we instantiate with y(1) = enc1(a), enc1(b), enc1(c), respectively. We get:

Wa = R · diag(r
(1)
a1 g1 + a1, . . . , r

(1)
an gn + an) · diag(h

′
1, . . . , h

′
n) ·R

′,

Wb = R · diag(r
(1)
b1 g1 + b1, . . . , r

(1)
bn gn + bn) · diag(h

′
1, . . . , h

′
n) ·R

′,

Wc = R · diag(r
(1)
c1 g1 + c1, . . . , r

(1)
cn gn + cn) · diag(h

′
1, . . . , h

′
n) ·R

′.

Then, we can compute:

W =

(
Wc Wa

Wb Wy(1)

)
∈ Z2n×2n and

detW = ∆′ ·
(
(r

(1)
ai gi + ai) · (r

(1)
bi gi + bi)− (r

(1)
ci gi + ci) · (r

(1)
i gi + 1)

)
,

where ∆′ = det(R)2 · det(R′)2 · (
∏

i h
′
i)
2. If c is equal to a · b, then the quantity above has∏

i gi as a large factor. If c is uniformly and independently sampled in G, then the quantity

above is independent from
∏

i gi. The cost of the attack is bounded by Õ(κω+3λ2ω+6).

5 Conclusion

In this paper, we propose polynomial-time attacks for CRT-ACD with auxiliary input, the
CLT scheme and its related problems.

Until now, the CRT-ACD is known to be hard problems. However, if an auxiliary input P̂ =
n∑

i=1

∏
j 6=i

pj = CRT(p1,··· ,pn)(
∏
j 6=1

pj , · · · ,
∏
j 6=n

pj) is given, we find quadratic equations for secret

parameters and construct a matrix. The matrix has eigenvalues as secret parameters and
reveals them by computing characteristic polynomial of the matrix. Adapting this methods
to the CLT scheme allows us to totally find every secret parameters.

In order to apply our attacks, it is important that the Lemma 1 is established for three
CRT instances. More precisely, for A = CRT(pi)(ai), B = CRT(pi)(bi) and C = CRT(pi)(ci),

if |ai · bi · ci| > pi, the product of A,B,C and P̂ does not give a linear integer equation for
ai, bi, ci so it is not easy to recover pi.

Unfortunately, it is possible only when low level encodings of zero and zero-testing pa-
rameter are given. Because some applications use the CLT scheme without the encoding of
zero, the hardness of the schemes remain interesting problems. When low level encodings
are not given in applications of the CLT graded encoding scheme, we only have zero-testing
parameter in the form of P̂ · CRT(pi)(

zκ

gi
). If multiplying it with top level encoding of zero

A = CRT(pi)(
ai·gi
zκ

), it is of the form A · P̂ · CRT(pi)(
zκ

gi
) =

n∑
i=1

aip̂i. However, the size of ai is
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too large to multiply other level zero encodings. In other case, when A is a product of low
level encodings, one can not reduce the CRT(pi)(

1
gi
). In many cases, the size of 1

gi
mod pi is

similar to that of pi. Hence, in this case too, it is not easy to recover the secret primes pi.
Therefore, natural proceedings of this research is to extend the range of applications of

graded encoding schemes for which the encodings of zero are not needed.
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