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Abstract

We study the Ruelle and Selberg zeta functions for Cr Anosov
flows, r > 2, on a compact smooth manifold. We prove several re-
sults, the most remarkable being: (a) for C∞ flows the zeta function
is meromorphic on the entire complex plane; (b) for contact flows
satisfying a bunching condition (e.g. geodesic flows on manifolds of
negative curvature better than 1

9 -pinched) the zeta function has a pole
at the topological entropy and is analytic in a strip to its left; (c) under
the same hypotheses as in (b) we obtain sharp results on the number
of periodic orbits. Our arguments are based on the study of the spec-
tral properties of a transfer operator acting on suitable Banach spaces
of anisotropic currents.
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1 INTRODUCTION

1 Introduction

In 1956, Selberg introduced a zeta function for a surface of constant curvature
κ = −1 formally defined to be the complex function

ζSelberg(z) =
∏
γ

∞∏
n=0

(
1− e−(z+n)λ(γ)

)
, z ∈ C (1.1)

where λ(γ) denotes the length of a closed geodesic γ. This converges to a
non-zero analytic function on the half-plane Re(z) > 1 and Selberg showed
that ζSelberg has an analytic extension to the entire complex plane, by using
the trace formula which now bears his name [66]. Moreover, he also showed
that the zeros of ζSelberg correspond to the eigenvalues of the Laplacian. In
fact, the trace formula connects the eigenvalues of −∆ with the information
provided by the geodesics, their lengths and their distribution.1 The def-
inition (1.1) was subsequently adapted to more general settings, including
surfaces of variable curvature, thus giving birth to a new class of zeta func-
tions which we refer to as dynamical zeta functions. However, due to the
lack of a suitable generalized trace formula, few results are known on their
meromorphic extension, the location of their zeros or their relationships with
appropriate operators.

In 1976, Ruelle [61] proposed generalizing the definition by replacing the
closed geodesics in ζSelberg by the closed orbits of an Anosov flow φt : M →M ,
where M is a C∞, d-dimensional Riemannian compact manifold. We recall
that an Anosov flow is a flow such that there exists aDφt-invariant continuous
splitting TM = Es ⊕ Eu ⊕ Ec, where Ec is the one-dimensional subspace
tangent to the flow, and constants C0 ≥ 1 and λ̄ > 0, such that for all x ∈M

‖Dφt(v)‖ ≤ ‖v‖C0e
−λ̄t if t ≥ 0, v ∈ Es,

‖Dφ−t(v)‖ ≤ ‖v‖C0e
−λ̄t if t ≥ 0, v ∈ Eu,

C−1
0 ‖v‖ ≤ ‖Dφt(v)‖ ≤ C0‖v‖ if t ∈ R, v ∈ Ec.

(1.2)

We will denote by du
.
= dim(Eu) and ds

.
= dim(Es). The geodesic flow

on manifolds with negative sectional curvatures are very special examples of
mixing Anosov flows (see [67], [59] and references therein).

1 See [49], and references therein, for a precise, yet friendly, introduction to the Selberg
Trace formula and its relationship with the Selberg zeta function.
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In this context Ruelle defined a zeta function by

ζRuelle(z) =
∏
τ∈Tp

(
1− e−zλ(τ)

)−1
, z ∈ C (1.3)

where Tp denotes the set of prime orbits and λ(τ) denotes the period of the
closed orbit τ .2 Since it is known that the number of periodic orbits grows
at most exponentially in the length [48], it is easy to see that the above
zeta functions are well defined for <(z) large enough. Also we can relate the
Ruelle and Selberg zeta functions by

ζRuelle(z) =
ζSelberg(z + 1)

ζSelberg(z)
, ζSelberg(z) =

∞∏
i=0

ζRuelle(z + i)−1

when they are both defined. Here we study ζRuelle.
It is known, for weak mixing Anosov flows, that ζRuelle(z) is analytic and

non zero for <(z) ≥ htop(φ1) apart for a single pole at z = htop(φ1), where by
htop(φ1) we mean the topological entropy of the flow (see [15], or [53, Page
143] for more details). Also it is long known that on the left of htop(φ1) there
exists a strip in which ζRuelle(z) is meromorphic ([53] and references therein).
It is interesting to notice that the poles of dynamical zeta functions (called
also resonances) are often computationally accessible and of physical interest
(see [18, Chapter 17] for a detailed discussion).

In the very special case of analytic Anosov flows with real analytic stable
and unstable foliations, Ruelle already showed that his zeta function has
a meromorphic extension to C. This result was generalized first by Rugh
[64], for three dimensional manifolds, and then by Fried [27], in arbitrary
dimensions, but still assuming an analyticity of the flow. Here we extend
such results to the C∞ setting. More precisely, for Cr flows we obtain a strip
in which ζRuelle(z) is meromorphic of width unboundedly increasing with r.
Note that this is consistent with a previous example of Gallavotti [28], where
ζRuelle is not meromorphic in the entire complex plane.

An additional knowledge of the location of the zeroes of ζRuelle allows one
to gain information on the distribution of the periodic orbits. For example

2 A periodic orbit τ , of period λ(τ), is a closed curve parametrized by the flow, i.e.
τ : [0, λ(τ))→M such that τ(t) = φt(τ(0)). A periodic orbit τ is prime if it is one-to-one
with its image. The range of τ is indicated again by τ . If τp is the prime orbit related to
τ , then µ(τ) is the unique integer such that λ(τ) = µ(τ)λ(τp).
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1 INTRODUCTION

it is known that if a negatively curved Riemannian manifold has dimension
2 [21] or the sectional curvatures are 1

4
-pinched [69], then the number N(T )

of closed orbits of period less than T satisfies N(T ) = li(ehtop(φ1)T ) + O(ecT )
where c < htop(φ1), and li(x) =

∫ x
2

1
ln(s)

ds. Note that either the assumption

that M is two dimensional or that the sectional curvatures are 1
4
-pinched

imply that the horocycle foliation is C1. One might then conjecture that
such a foliation regularity is necessary in order to obtain the above estimate
of the error term. However, we show that this is not the case and, although
we cannot prove it in full generality, we conjecture that the above bound
holds for all contact Anosov flows. As is usual for number theoretic zeta
functions, a key ingredient in this analysis is showing that ζRuelle is analytic
in a strip to the left of its first pole. This result was stated in ([22]) for
geodesic flows for which the sectional curvatures are 1

4
-pinched, although the

proof there was only sketched and is incomplete. An earlier paper ([57])
addressing the same question contains a more serious flaw in the approach.

The general plan of the proof is explained in the next section, here we
anticipate a few ideas and give a bit of their history. The basic idea goes
back to Ruelle [61] and consists of relating the properties of the zeta function
to the dynamical determinant of some appropriate operator. Classically such
a program has been implemented by first coding the dynamics via Markov
partitions and then defining appropriate operators acting on functions of
the resulting subshift. As such a coding is, in general, only Hölder, all the
properties connected to the smoothness of the dynamics are annihilated in
the process. Yet, the work of Ruelle in the case of expanding maps and
the seminal work of Kitaev [40] for Anosov diffeomorphisms showed that the
smoothness properties of the map are exactly the ones responsible for larger
domain of analyticity of the zeta function. The above cited works of Ruelle,
Rugh and Fried for analytic flows made this even clearer.

The turning point in overcoming this problem was [12] where it is shown
how to construct Banach spaces in which the action of an Anosov map gives
rise to a quasi compact operator (often called Ruelle Transfer operator) al-
lowing to completely bypass the need of a Markov coding. This opened the
door to the possibility of dispensing with the analyticity hypothesis while still
retaining the relevant smoothness properties of the dynamical systems. Since
then a considerable amount of work has been done to implement such a goal.
In particular, [30, 44, 9, 31] and especially [10] have clarified the relation be-
tween the smoothness of the map and the essential spectral radii of transfer

4



1 INTRODUCTION

operators as well as connected dynamical determinants to appropriate “flat
traces”3 of transfer operators (see [6, 7, 10]). On the other hand, [43, 16]
illustrated how this approach can be applied also to flows by showing that
the resolvent of the generator of the flow is quasi compact on such spaces.
More recently some beautiful work, although limited to the case of contact
flows, allows one to study directly the transfer operator associated to the
time one map of the flow [73, 74, 25, 24]. Note that, for such types of result,
some condition on the flow is necessary. Indeed, the quasi compactness of
the operator associated to the time one map plus mixing implies exponential
mixing, while there are known examples of Axiom A flows, constructed as
piecewise constant ceiling suspensions, that are mixing but enjoy arbitrarily
slow rates of decay correlations [62, 55]).

Given such a state of the art, it looked like all the ingredients needed
to tackle the present problems were present even though quite a lot work
remained to be done. It remained to choose a precise line of attack. Given
the complexity of the task, we chose to follow the path of least resistance
at the cost of obtaining possibly suboptimal results. In particular, here we
extend the results of [30, 16] to allow the study of the action of the flow
on the space of exterior forms (similarly to the original Ruelle approach for
expanding maps [61]). Next, to study the relation between the spectra of
such operators and the dynamical determinants we extend to the case of
flows a suboptimal, but very efficient, trick introduced in [45] for the case
of maps and inspired by the work of Margulis (as explained to Liverani by
Dolgopyat). It is likely that, at the price of some more work, one could
adapt alternative approaches to the present case. For example defining the
operator on different Sobolev-like spaces or replacing the tensor trick by
a strategy based on kneading determinants, as in Baladi-Tsujii [10]. Such
alternatives might allow one to obtain sharper estimates in the case of finite
differentiability.

Next, we show that the zeta function has a pole free strip at the left of the
topological entropy and we obtain bounds for the growth of the zeta function
on such a strip provided a Dolgopyat type estimate for the action of the flow
on ds-external forms holds true, ds being the dimension of the strong stable
manifold. To do so we use the simple strategy put forward in [44]. Finally, to

3 Such terminology has also been adopted by the dynamical system community, fol-
lowing the work of Atiyah and Bott ([3], [5]), since, as the reader will see, it is morally a
regularization, or a flattening, of the trace.
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establish the Dolgopyat estimate in the present context we follow the strat-
egy developed in [42, 43, 8] for the action on functions. Note that to look at
ds-forms corresponds, in the old Markov based strategy, to studying the sta-
tistical properties of the flow with respect to the measure of maximal entropy.
The extension of the geometric part of the original Dolgopyat argument to
this situation presents two difficulties. One, well known, related to the lack
of regularity of the foliations that is solved, following [43], by restricting the
study to the contact flows. The second (here treated in Lemma 7.9), was
unexpected (at least to us) and is related to having (morally) the measure of
maximal entropy, rather than Lebesgue, as a reference measure. This we can
solve only partially, hence the presence of a bunching (or pinching) condition
in our results.

The structure of the paper is as follows. In section 2 we present the
statements of the main results in this paper. We also explain the strategy
of the proofs assuming several Lemmata and constructions detailed in later
sections. In section 3 we construct the spaces on which our operators will act.
Sections 4, 5 and 6 contain estimates for transfer operators and their “flat
traces”. In sections 7 and 8 we restrict ourself to the case of contact flows.
In particular, in section 7 we exclude the existence of zeroes in a vertical
strip to the left of the topological entropy by the means of a Dolgopyat like
estimate. In section 8 we obtain a bound on the growth of ζRuelle in this strip.

In Appendix A we collect together, for the reader’s convenience, several
facts from differential geometry, while in Appendix B we discuss the ori-
entability of the stable distribution. In Appendix C we relate the topological
entropy and the volume growth of manifolds. In Appendix D we detail some
facts about mollificators acting on the Banach spaces of interest. Finally, in
Appendix E, we recall some necessary facts concerning holonomies.
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2 Statement of Results

2.1 Some notation

We use Bd(x, r) to designate the open d-dimensional ball with center x and
radius r.

We will use C# to represent a generic constant (depending only on the
manifold, the flow, the choice of the charts and the partition of unity made in
Section 3) which could change from one occurrence to the next, even within
the same equation. We will write Ca1,...,ak for generic constants depending
on the parameters a1, . . . , ak, which could still change at every occurrence.
Finally, numbered constants C0, C1, C2, . . . are constants with a fixed value
thruought the paper.

2.2 Theorems and Proofs

Our first result applies to all Anosov flows φt on a connected, compact and
orientable C∞ Riemannian manifold M .4

4 One could easily extend the result to Cr manifolds, but we avoid it to ease notation.
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2.2 Theorems and Proofs 2 STATEMENT OF RESULTS

Theorem 2.1. For any Cr Anosov flow φt with r > 2, ζRuelle(z) is mero-
morphic in the region

<(z) > htop(φ1)− λ

2

⌊
r − 1

2

⌋
where λ, is determined by the Anosov splitting, and bxc denotes the integer
part of x. Moreover, ζRuelle(z) is analytic for <(z) > htop(φ1) and non zero

for <(z) > max{htop(φ1)− λ
2

⌊
r−1

2

⌋
, htop(φ1)−λ}. If the flow is topologically

mixing then ζRuelle(z) has no poles on the line {htop(φ1) + ib}b∈R apart from
a single simple pole at z = htop(φ1).

Corollary 2.2. For any C∞ Anosov flow the zeta function ζRuelle(z) is mero-
morphic in the entire complex plane.5

Note that if the flow is not topologically mixing then the flow can be
reduced to a constant ceiling suspension and hence there exists b > 0 such
that ζRuelle(z + ib) = ζRuelle(z) (for more details see [52]).

Corollary 2.3. ζRuelle(z) and ζSelberg(z) are meromorphic in the entire com-
plex plane for smooth geodesic flows on any connected compact orientable Rie-
mannian manifold with variable strictly negative sectional curvatures. More-
over, the zeta functions ζRuelle(z) and ζSelberg(z) have no zeroes or poles on
the line {htop(φ1) + ib}b∈R, except at z = htop(φ1) where both ζRuelle(z)−1 and
ζSelberg(z) have a simple zero.

Next, we specialize to contact Anosov flows. Let λ+ ≥ 0 such that
‖Dφ−t‖∞ ≤ C0e

λ+t for all t ≥ 0.

Theorem 2.4. For any Cr, r > 2, contact flow with λ
λ+

> 1
3

there exists

τ∗ > 0 such that the Ruelle zeta function is analytic in {z ∈ C : <(z) ≥
htop(φ1)− τ∗} apart from a simple pole at z = htop(φ1).

5 This provides an answer to an old question of Smale: “Does ζSelberg(z) have nice
properties for any general class of flows?” cf. pages 802-803, of [68]. Smale also specifi-
cally asked if for suspension flows over Anosov diffeomorphisms close to constant height
suspensions the zeta function ζSelberg(z) has a meromorphic extension to all of C. The
above corollary answers these questions in the affirmative for C∞ Anosov flows, despite
Smale’s comment “I must admit that a positive answer would be a little shocking”.
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2.2 Theorems and Proofs 2 STATEMENT OF RESULTS

Remark 2.5. Note that the bunching condition 2λ
λ+

> 2
3

implies that the

invariant foliations are at least 2
3
-Hölder continuous. Also remember that an

a-pinched geodesic flow is (2
√
a+ ε)-bunched, that is a ≤

(
λ
λ+

)2

+ ε, see [33]

for more details.

The above facts have several important implications. We begin with
some low-hanging fruits. The proof will be obvious once the reader goes
over the construction explained later in this section and remembers that
the dynamical determinants for 0-forms and d-forms have their first zeros at
<(z) = 0 (since they are exactly the dynamical determinants of the usual
Ruelle transfer operator).

Corollary 2.6. For a volume preserving three dimensional Anosov flow we
have that the zeta function ζRuelle(z) is meromorphic in C and, moreover,

• ζRuelle(z) is analytic for <(z) ≥ htop(φ1) − τ∗, except for a pole at
htop(φ1);

• ζRuelle(z) is non-zero for <(z) > 0.

Theorem 2.4 has the following simple consequence for the rate of mixing
with respect to the measure of maximal entropy.

Corollary 2.7. The geodesic flow φt : T1M → T1M for a compact manifold
M with better than 1

9
-pinched negative sectional curvatures (or more gener-

ally any contact Anosov flow satisfying the hypothesis of the Theorem 2.4)
is exponentially mixing with respect to the Bowen-Margulis measure µ, i.e.,
there exists α > 0 such that for f, g ∈ C∞(T1M) there exists C > 0 for which
the correlation function

ρ(t) =

∫
f ◦ φtgdµ−

∫
fdµ

∫
gdµ

satisfies |ρ(t)| ≤ C#e
−α|t|, for all t ∈ R.

Proof. Consider the Fourier transform ρ̂(s) =
∫∞
−∞ e

istρ(t)dt of the correlation
function ρ(t). By ([56], Theorem 2) and ([63], Theorem 4.1), the analytic
extension of ζRuelle(z) in Theorem 2.4 implies that there exists 0 < η ≤ τ∗ such
that ρ̂(s) has an analytic extension to a strip |=(s)| < η. Moreover, adapting
the argument in ([43], proof of Theorem 2.4) we can use the smoothness of
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2.2 Theorems and Proofs 2 STATEMENT OF RESULTS

the test functions to allow us to assume without loss of generality that for
each fixed value −η < t < η we have that the function σ 7→ ρ̂(σ + it) is in
L1(R). Finally, we apply the Paley-Wiener theorem ([60], Theorem IX.14)
to deduce the result.

Moreover, Theorem 2.4 allows us to extend results of Huber-Selberg (for
constant sectional curvatures), Pollicott-Sharp (for surfaces of negative cur-
vature) and Stoyanov (for 1

4
-pinched geodesic flows). By a prime closed

geodesics we mean an oriented closed geodesic which is a closed curve that
traces out its image exactly once.

Theorem 2.8 (Prime Geodesic Theorem with exponential error). Let M be
a manifold better than 1

9
-pinched, with strictly negative sectional curvature.

Let π(T ) denote the number of prime closed geodesics on M with length at
most T , then there exists δ > 0 such that

π(T ) = li(ehtop(φ1)T ) +O(e(htop(φ1)−δ)T ) as T → +∞.

Remark 2.9. The above Theorems are most likely not optimal. The 1
9
-

pinching might conceivably be improved with some extra work (one would
need to improve, or circumvent the use of, Lemma 7.9) but we do not see
how to remove such conditions completely, even though we believe it to be
possible.

Let us start the discussion of the proofs. The basic objects we will study
are the dynamical determinants, following the approach introduced by Ruelle
[61], which arise naturally in the dynamical context and are formally of the
general form

D`(z) = exp

(
−
∑
τ∈T

tr
(
∧`(Dhypφ−λ(τ))

)
e−zλ(τ)

µ(τ)ε(τ)
∣∣det

(
1−Dhypφ−λ(τ)

)∣∣
)
, (2.1)

where ε(τ) is 1 if the flow preserves the orientation of Es along τ and −1
otherwise. The symbol Dhypφ−t indicates the derivative of the map induced
by two local transverse sections to the orbit (one at x, the other at φ−t(x))
and can be represented as a (d−1)× (d−1) dimensional matrix. By ∧`A we
mean the matrix associated to the standard `-th exterior product of A. Note
that, given any τ ∈ T , tr

(
∧`(Dhypφ−λ(τ))

)
, det

(
1−Dhypφ−λ(τ)

)
, as well as

det(Dφ−λ(τ)

∣∣
Es

) that will be used shortly, when computed at a point x ∈ τ ,
depend only on τ (see comments before equation 5.18 for more details).
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2.2 Theorems and Proofs 2 STATEMENT OF RESULTS

The sum in (2.1) is well defined provided <(z) is large enough.
Note that ε(τ) = sign

(
det(Dφ−λ(τ)

∣∣
Es

)
)
. Hence, from the hyperbolicity

conditions (1.2), we have

sign
(
det
(
1−Dhypφ−λ(τ)

))
=(−1)dssign

(
det(Dφ−λ(τ)

∣∣
Es

)
)

=(−1)dsε(τ).
(2.2)

Recall the linear algebra identity for a n×n matrix A (see, for example, [75,
Section 3.9] for more details),

det(1− A) =
n∑
`=0

(−1)` tr(∧`A). (2.3)

Note that

ζRuelle(z) =
∏
τ∈Tp

(
1− e−zλ(τ)

)−1
= exp

∑
τ∈Tp

∞∑
m=1

1

m
e−zmλ(τ)


= exp

(∑
τ∈T

1

µ(τ)
e−zλ(τ)

)
,

(2.4)

where µ(τ) is the multiplicity of the associated orbit τ and T is the whole
set of periodic orbits on M . From the equations (2.1), (2.2), (2.3) and (2.4)
it follows a product formula analogous to that of Atiyah-Bott for elliptic
differential operators [4]:

d−1∏
`=0

D`(z)(−1)`+ds+1

= exp

(
d−1∑
`=0

∑
τ∈T

(−1)`+dstr
(
∧`(Dhypφ−λ(τ))

)
e−zλ(τ)

µ(τ)ε(τ)
∣∣det

(
1−Dhypφ−λ(τ)

)∣∣
)

= exp

(∑
τ∈T

(−1)ds det
(
1−Dhypφ−λ(τ)

)
e−zλ(τ)

µ(τ)ε(τ)
∣∣det

(
1−Dhypφ−λ(τ)

)∣∣
)

= exp

(∑
τ∈T

e−zλ(τ)

µ(τ)

)
= ζRuelle(z).

(2.5)

Thus Theorem 2.1 follows by the analogous statement for the dynamical
determinants D`(z). To study the region in which the D`(z) are meromorphic
we will proceed in the following roundabout manner. First we define the
following objects.
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Definition 2.10. Given 0 ≤ ` ≤ d− 1, τ ∈ T let

χ`(τ)
.
=

tr
(
∧`(Dhypφ−λ(τ))

)
ε(τ)

∣∣det
(
1−Dhypφ−λ(τ)

)∣∣ . (2.6)

Moreover, for ξ, z ∈ C, we let

D̃`(ξ, z)
.
= exp

(
−
∞∑
n=1

ξn

n!

∑
τ∈T

χ`(τ)

µ(τ)
λ(τ)ne−zλ(τ)

)
. (2.7)

Note that the series in (2.7) trivially converges for |ξ| sufficiently small and
<(z) sufficiently large.

Lemma 2.11. Let 0 ≤ ` ≤ d− 1, ξ, z ∈ C, <(z) sufficiently large and |ξ− z|
sufficiently small. Then we can write

D̃`(ξ − z, ξ) =
D`(z)

D`(ξ)
. (2.8)

Proof. The proof is by a direct calculation

D̃`(ξ − z, ξ) = exp

(
−
∞∑
n=1

(ξ − z)n

n!

∑
τ∈T

χ`(τ)

µ(τ)
λ(τ)ne−ξλ(τ)

)

= exp

(
−
∑
τ∈T

χ`(τ)

µ(τ)

(
e−zλ(τ) − e−ξλ(τ)

))
=

D`(z)

D`(ξ)
.

Hence Theorem 2.1 is implied by the following.

Proposition 2.12. For any Cr Anosov flow, with r > 2, ξ, z ∈ C, D`(ξ) is
analytic and non zero in the region <(ξ) > htop(φ1)− λ̄|ds − `| and, for ξ in

such a region, the function D̃`(ξ − z, ξ) is analytic and non zero for z in the
region

|ξ − z| < <(ξ)− htop(φ1) + |ds − `|λ

and analytic in z in the region

|ξ − z| < <(ξ)− htop(φ1) + |ds − `|λ+
λ

2

⌊
r − 1

2

⌋
.

12



2.2 Theorems and Proofs 2 STATEMENT OF RESULTS

We can then freely move ξ along the line {a+ ib}b∈R and we obtain that

D̃`(ξ − z, ξ) is analytic for <(z) > htop(φ1)− |ds − `|λ− λ
2

⌊
r−1

2

⌋
.

Proof of Proposition 2.12. For all v, ` ∈ N, let Ω`
v(M) be the space of

`-forms on M , i.e. the Cv sections of ∧`(T ∗M). Let Ω`
0,v(M) ⊂ Ω`

v(M) be
the subspace of forms null in the flow direction (see (3.5)). In section 3 we
construct a family of Banach spaces Bp,q,`, p ∈ N, q ∈ R+, as the closure of
Ω`

0,v(M) with respect to a suitable anisotropic norm so that the spaces Bp,q,`
are an extension of the spaces in [30].6 Such spaces are canonically embedded
in the space of currents (see Lemma 3.10).

In Section 4 we define a family of operators indexed by positive real
numbers t ∈ R+ as

L(`)
t (h)

.
= φ∗−th, (2.9)

for h ∈ Ω`
0,v(M). Here we adopt the standard notation where f ∗ denotes the

pullback and f∗ indicates the push-forward.

Remark 2.13. Note that by restricting the transfer operator L(`)
t to the space

Ω`
0,v(M) we mimic the action of the standard transfer operators on sections

transverse to the flow, in fact we morally project our forms on a Poincaré
section.

Remark 2.14. In order to simplify a rather involved argument we chose
to give full details only for the case in which the invariant foliations are
orientable (i.e., ε(τ) = 1 for all τ). Notably, this includes some of the
most interesting examples, such as geodesic flows on orientable manifolds
with strictly negative sectional curvature (see Lemma B.1). To treat the non
orientable case it is often sufficient to slightly modify the definition of the
operator (2.9) by introducing an appropriate weight, see equation (B.1), and
then repeating almost verbatim the following arguments. Unfortunately, as
far as we can see, to treat the fully general case one has to consider more
general Banach spaces than the ones used here. This changes very little in
the arguments but makes the notation much more cumbersome. The reader
can find the essential details in Appendix B.

The operators (2.9) generalize the action of the transfer operator Lt on

the spaces Bp,q of [30]. We prove in Lemma (4.5) that the operators L(`)
t

satisfy a Lasota-Yorke type estimate for sufficiently large times. To take care

6 The indexes p, q measure, respectively, the regularity in the unstable and stable
direction.
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2.2 Theorems and Proofs 2 STATEMENT OF RESULTS

of short times we restrict ourself to a new space B̃p,q,` which is the closure of
Ω`

0,s(M) with respect to a slightly stronger norm |||·|||p,q,` (see (4.6)), in this
we follow [8]. We easily obtain Lasota-Yorke type estimate for all times in
the new norm (Lemma 4.7).

On B̃p,q,` the operators L(`)
t form a strongly continuous semigroup with

generatorsX(`) (see Lemma 4.7). We can then consider the resolventR(`)(z)
.
=

(z1−X(`))−1. The cornerstone of our analysis is that, although the operator

X(`) is an unbounded closed operator on B̃p,q,`, we can access its spectrum
thanks to the fact that its resolvent R(`)(z) is a quasi compact operator on
the same space. More precisely, in Proposition 4.9 we show that for z ∈ C,
<(z) > htop(φ1)−|ds−`|λ̄, the operator R(`)(z) ∈ L(B̃p,q,`, B̃p,q,`), p+q < r−1,
has spectral radius

ρ(R(`)(z)) ≤
(
<(z)− htop(φ1) + |ds − `|λ

)−1

and essential spectral radius

ρess(R
(`)(z)) ≤

(
<(z)− htop(φ1) + |ds − `|λ+ λmin{p, q}

)−1
.

We can then write the spectral decomposition R(`)(z) = P (`)(z) + U (`)(z)
where P (`)(z) is a finite rank operator and U (`)(z) has spectral radius arbi-
trarily close to ρess(R

(`)(z)). In section 5, we define a “flat trace” denoted by
tr[. In Lemma 5.1 we show that for <(z) > htop(φ1) − |ds − `|λ̄ and n ∈ N,
we have that tr[

(
R(`)(z)n

)
<∞ and

tr[
(
R(`)(z)n

)
=

1

(n− 1)!

∑
τ∈T

χ`(τ)

µ(τ)
λ(τ)ne−zλ(τ). (2.10)

Furthermore, in Lemma 6.10, we prove that, for each λ < λ and n ∈ N,∣∣tr[(R(`)(z)n)− tr
(
P (`)(z)n

)∣∣ ≤Cz,λ(<(z)− htop(φ1) + |ds − `|λ

+
λ

2
min{p, q}

)−n
.

(2.11)

where “tr” is the standard trace.

Remark 2.15. The loss of a factor 2 in the formula (2.11) is due to an
artifact of the method of proof. We live with it since it does not change
substantially the result and to obtain a sharper result might entail considerably
more work.

14



2.2 Theorems and Proofs 2 STATEMENT OF RESULTS

Remark 2.16. Given the two previous formulae one can have a useful heuris-
tic explanation of the machinery we are using. Indeed, (2.11) shows that
tr[(R(`)(z)) is essentially a real trace, then substituting formula (2.10) in

(2.1) and performing obvious formal manipulations we have that D̃`(ξ, z)
can be interpreted as the “determinant” of (1− ξR(`)(z))−1, while D`(z) can
be interpreted as the (appropriately renormalized)“determinant” of z1−X(`).

Note that if ν ∈ σ(P (`)(z)) \ {0}, then z − ν−1 ∈ σ(X(`)).7 Thus, ν =
(z−µ)−1 where µ ∈ σ(X(`)). Let ξ ∈ C such that a = <(ξ) is sufficiently large
so that D`(ξ) is well defined. Let ρp,q,` < a−htop(φ1)+ |ds−`|λ+ λ

2
min{p, q}.

Let λi,` be the eigenvalues of X(`). For each z ∈ B2(ξ, ρp,q,`),

D̃`(ξ − z, ξ) = exp

(
−
∞∑
n=1

(ξ − z)n

n
tr[(R(`)(ξ)n)

)
=

= exp

− ∞∑
n=1

(ξ − z)n

n

 ∑
λi∈B2(ξ,ρp,q,`)

1

(ξ − λi,`)n
+O

(
Cξ,λρ

−n
p,q,`

)
= exp

 ∑
λi∈B2(ξ,ρp,q,`)

log

(
1− ξ − z

ξ − λi,`

)
+
∞∑
n=1

(ξ − z)n

n
O
(
Cξ,λρ

−n
p,q,`

)
=

 ∏
λi,`∈B2(ξ,ρp,q,`)

z − λi,`
ξ − λi,`

ψ(ξ, z)

(2.12)

where ψ(ξ, z) is analytic and non zero for z ∈ B2(ξ, ρp,q,`). The results follows
by optimizing the choice of p, q.

Once Theorem 2.1 is established we can use the above machinery to obtain
more information on the location of the zeros.

Proof of Theorem 2.4. Equation (2.12) and Lemma 2.11 show that the
poles of ζRuelle are a subset of the eigenvalues of the X(`). Proposition 2.12
implies that ` = ds is the only term in (2.5) that can contribute a pole in the
relevant strip. Thus, it suffices to study the poles of D−1

ds
. In Lemma 7.8 we

prove that there exist γ0, a0, C1 > 0 such that, for 0 < q < min
{

λ
λ+
, 4λ

2

λ2
+

}
,

2a0 > <(z)− htop(φ1) > a0 and n ≥ C1C# ln |=(z)|,∣∣∣∣∣∣R(ds)(z)n
∣∣∣∣∣∣

1,q,ds
≤ C#(<(z)− htop(φ1))−n|=(z)|−γ0 .

7 As usual, we denote by σ the spectrum.
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In Lemma 4.8 we have, for each <(z) > htop(φ1) and n ∈ N,∣∣∣∣∣∣R(ds)(z)n
∣∣∣∣∣∣

1,q,ds
≤ C#(<(z)− htop(φ1))−n.

Accordingly, the resolvent identity R(ds)(z − a) =
∑∞

n=0 a
nR(ds)(z)n yields

‖R(ds)(z − a)‖ ≤
∞∑
n=0

|a|n(<(z)− htop(φ1))−n
[
C#|=(z)|−γ0

] n
C1C# ln |=(z)|−1

=
C#|=(z)|γ0

1− |a|(<(z)− htop(φ1))−1C
1

C1C# ln |=z|

# e
− γ0
C#C1

.

From the above the have the statement of Theorem for =(z) large enough.
The Theorem then follows by the spectral characterization of Proposition
4.9, since smooth contact flows on connected manifolds are mixing.

Proof of Theorem 2.8. Since there is an obvious bijection between prime
closed geodesics and prime closed orbits for the geodesics flow, π(T ) is pre-
cisely the number of prime closed orbits τ for the geodesic flow whose period
λ(τ) is at most T . The proof of the Theorem is based on the following
estimate, established in Lemma 8.3. For each z ∈ C, htop(φ1) ≥ <(z) >
htop(φ1)− τ∗

2
, |=(z)| ≥ 1, we have that∣∣∣∣ζ ′Ruelle(z)

ζRuelle(z)

∣∣∣∣ ≤ C#|z|. (2.13)

In particular, on the line <(z) = σ1 := htop(φ1)− τ∗
4

, say, we have the bound
(2.13). Moreover, on the line <(z) = σ2 := htop(φ1) + 1, say, we have a
uniform bound ∣∣∣∣ζ ′Ruelle(z)

ζRuelle(z)

∣∣∣∣ ≤ ∣∣∣∣ζ ′Ruelle(σ2)

ζRuelle(σ2)

∣∣∣∣ < +∞. (2.14)

By the Phragmén-Lindelöf Theorem ([71],§5.65) the bound on the logarith-
mic derivative on any intermediate vertical line is an interpolation of those
from (2.13) and (2.14). In particular, we have that∣∣∣∣ζ ′Ruelle(z)

ζRuelle(z)

∣∣∣∣ ≤ C#|z|γ1 (2.15)

for <(z) > σ3 := htop(φ1)− τ∗
8

, say, where 0 < γ1 := τ∗
2τ∗+4

< 1.

16



2.2 Theorems and Proofs 2 STATEMENT OF RESULTS

Starting from (2.15) we follow a classical approach in number theory. Let

ψ(T )
.
=

∑
enhtop(φ1)λ(τ)≤T

htop(φ1)λ(τ)

ψ1(T )
.
=

∫ T

1

ψ(x)dx =
∑

enhtop(φ1))λ(τ)≤T

htop(φ1)λ(τ)(T − enhtop(φ1)λ(τ))

π0(T )
.
=

∑
enhtop(φ1)λ(τ)≤T

1 and π1(T )
.
=

∑
ehtop(φ1)λ(τ)≤T

1,

where the finite summation in each case is over prime closed orbits τ ∈ Tp
for the associated geodesic flow, and n ≥ 1, subject to the bound in terms of
T . Next we recall the following simple complex integral: For d∗ > 1 we have
that

1

2πi

∫ d∗+i∞

d∗−i∞

yz+1

z(z + 1)
dz =

{
0 if 0 < y ≤ 1

y − 1 if y > 1
. (2.16)

If we denote ζ0(z) = ζRuelle(htop(φ1)z) then we can write

ψ1(T ) =

∫ d∗+i∞

d∗−i∞

(
−ζ
′
0(z)

ζ0(z)

)
T z+1

z(z + 1)
dz (2.17)

for any d∗ > 1 sufficiently large. This comes by a term by term application
of (2.16) to

−ζ
′
0(z)

ζ0(z)
=
∞∑
n=1

∑
τ

htop(φ1)e−znhtop(φ1)λ(τ).

(N.B. The summation over the natural numbers in this identity comes from
the second expression in (2.4), not non-primitive orbits which are not being
included in the counting). Moving the line of integration from <(z) = d∗ > 1
to <(z) = c gives

ψ1(T ) =
T 2

2
+

∫ c+i∞

c−i∞

(
−ζ
′
0(z)

ζ0(z)

)
T z+1

z(z + 1)
dz (2.18)

provided σ3/htop(φ1) < c < 1. In particular, we use (2.15) to guarantee

convergence of the integral in (2.18). Note that the term T 2

2
comes from the

line of integration crossing the pole for ζ0(z) (now at z = 1). Moreover, the
integral yields a factor T c+1 i.e. ψ1(T ) = 1

2
T 2 + O(T c+1). Next we have the

following asymptotic estimates.
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Lemma 2.17. We can estimate, provided 1 > c1 > c > 0, that

ψ(T ) = T +O(T (c+1)/2);

π0(T ) = li(T ) +O

(
T (c+1)/2

log T

)
;

π1(T ) = li(T ) +O(T (c1+1)/2).

Since the proof of the above Lemma is completely analogous to the case
of prime numbers, we omit it and refer the reader to [23, Chapter 4, Section
4]. Finally, we can write

π(T ) = π1

(
ehtop(φ1)T

)
= li(ehtop(φ1)T ) +O(e[htop(φ1)(c1+1)/2]T )

and the theorem follows with htop(φ1)(c1 + 1)/2 = htop(φ1)− δ.

3 Cones and Banach spaces

We want to introduce appropriate Banach spaces of currents8 over a d-
dimensional smooth compact Riemannian manifold M . We present a general
construction of such spaces based only on an abstract cone structure. This
is very convenient since later on we will apply this construction twice: once
on M to treat certain operators, and once on M2 to treat some related, but
different, operators.

The basic idea, going back to [12], is to consider “appropriate objects”
that are “smooth” in the unstable direction while being “distributions” in
the stable direction. This is obtained by defining norms in which such objects
are integrated, against smooth functions, along manifolds close to the stable
direction. Unfortunately, the realization of this program is fairly technical,
since we have to define first the class of manifolds on which to integrate, then
determine which are the relevant objects and, finally, explain what we mean
by “appropriate”.

3.1 Charts and Notation

We start with some assumptions and notation. More precisely, for any r ∈ N,
we assume that there exists δ0 > 0, such that, for each δ ∈ (0, δ0) and

8 See Federer [26, Sections 4.1.1 - 4.1.7] for a detailed presentation of currents.
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ρ ∈ (0, 4), there exists an atlas {(Uα,Θα)}α∈A, where A is a finite set, such
that9 

Θα(Uα) = Bd(0, 30 δ
√

1 + ρ2)
∪αΘ−1

α (Bd(0, 2δ)) = M
Θα ◦Θ−1

β (x̃, xd + t) = Θα ◦Θ−1
β (x̃, xd) + (0, t) , t ∈ R

‖(Θα)∗‖∞ + ‖(Θ−1
α )∗‖∞ ≤ 2 ; ‖Θα ◦Θ−1

β ‖Cr ≤ 2.

(3.1)

Note that the above is equivalent to the existence of a global Cr vector field
V such that Θα are flow box charts for the flow generated by V ; i.e. for all
α ∈ A, (Θ−1

α )∗(
∂
∂xd

) = V .10

Let {ψα}α∈A be a smooth partition of unity subordinate to our atlas such
that supp(ψα) ⊆ Θ−1

α (Bd(0, 2δ)) ⊂ Uα and ψα|Θ−1
α (Bd(0,δ)) = 1. In addition,

we assume d1 + d2 = dim(M) are given, and let

Cρ
.
= {(s, u) ∈ Rd1 × Rd2 : ‖u‖ ≤ ρ‖s‖}. (3.2)

Next, we assume that there exists 4 > ρ+ > ρ− > 0 such that, for all
α, β ∈ A,

C0 ⊂ (Θα)∗ ◦ (Θ−1
β )∗Cρ− ⊂ Cρ+ , (3.3)

when it is well defined. Note that, by compactness, there must exists ρ1 > 0
such that Cρ1 ⊂ (Θα)∗ ◦ (Θ−1

β )∗Cρ− .
This concludes the hypotheses on the charts and the cones. For each

` ∈ {0, . . . , d}, let ∧`(T ∗M) be the algebra of the exterior `-forms on M . We
write Ω`

r(M) for the space of Cr sections of ∧`(T ∗M). Let h =
∑

α∈A ψαh
.
=∑

α∈A hα so that hα ∈ Ω`
r(Uα).

Let {e1, . . . , ed} be the canonical basis of Rd. For all α ∈ A and x ∈
Uα consider the basis of TxUα given by

{
(Θ−1

α )∗
∂
∂x1
, . . . , (Θ−1

α )∗
∂
∂xd

}
. Let

{êα,1, . . . , êα,d} be the orthonormal basis of TxUα obtained from the first
one by applying the Gram-Schmidt procedure, setting as first element of the

algorithm êα,d = (Θ−1
α )∗

∂
∂xd

/
∥∥∥(Θ−1

α )∗
∂
∂xd

∥∥∥. Let ωα,1, . . . , ωα,d be the dual basis

9 The relations are meant to be valid where the composition is defined. The ‖ · ‖Cr
norm is precisely defined in (3.6). Note that the explicit numbers used (e.g. 2, 30, . . . ) are
largely arbitrary provided they satisfy simple relations that are implicit in the following
constructions.

10 Indeed, the first, second and last relation can always be satisfied (e.g. consider suffi-
ciently small charts determined by the exponential map). Given V , the third conditions
can be satisfied by applying the flow box Theorem.
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of 1-forms such that ωα,i(êα,j) = δi,j. Thus we can define a scalar product on
T ∗xUα by the expression 〈ωα,i, ωα,j〉 = δi,j. Note that the above construction
“respects” the special direction V .

Let I` = {̄i = (i1, . . . , i`) ∈ {1, . . . , d}` : i1 < i2 < · · · < i`} be
the set of `-multi-indices ordered by the standard lexicographic order. Let
eī

.
= ei1 ∧ · · · ∧ ei` in ∧`(Rd) and dxī

.
= dxi1 ∧ · · · ∧ dxi` ∈ ∧`(Rd)∗ so that

dxī(ej̄) = δī,j̄. Let {eα,̄i} ⊂ ∧`(TxUα) and {ωα,̄i} ⊂ ∧`(T ∗xUα) be defined in
the same way starting from `α,i, ωα,i.

Given h ∈ Ω`
r(Uα) and (Θ−1

α )∗h ∈ Ω`
r(Bd(0, 30δ

√
1 + ρ2)) we will write

h =
∑
ī∈I`

hα,̄iωα,̄i.

As usual we define the scalar product

〈h, g〉Ω`
.
=

∫
M

〈h, g〉xωM(x) (3.4)

where ωM is the Riemannian volume form on M and 〈h, g〉x is the usual
scalar product for forms11 (see (A.1) for a precise definition).

In the sequel we will often restrict ourselves to forms “transversal” to the
flow, that is

Ω`
0,r(M)

.
=
{
h ∈ Ω`

r(M) : h(V, . . .) = 0
}
. (3.5)

Remark 3.1. We use the convention Ω0
0,r = Ω0

r. Note that Ωd
0,r = {0}

and, more generally if h ∈ Ω`
0,r, then h =

∑
ī∈I−`

hα,̄iωα,̄i, where I−` = {̄i =

(i1, . . . , i`) ∈ {1, . . . , d − 1}` : i1 < i2 < . . . < i`}. See Remark 3.9 for
further comments.

For f : Bd(0, δ)→ Rd̄, d̄ ∈ N, we use the following Cr-norm

‖f‖Cr =


supx ‖f(x)‖ if r = 0

‖f‖C0 + supx,y∈Bd(0,δ)
‖f(x)−f(y)‖
‖x−y‖r if 0 < r < 1∑brc

i=0 2brc−i
∑

k1,...ki

∥∥∥∂xk1
· · · ∂xkif

∥∥∥
Cr−brc

if r ≥ 1.

(3.6)

Remark 3.2. The reader can check, by induction, that for such a Cr norm,
for r ∈ R+ and d̄ = 1, we have ‖fg‖Cr ≤ ‖f‖Cr‖g‖Cr and, for all d̄ ∈ N,
‖f ◦ g‖Cr ≤ C#

∑r
i=0 ‖f‖Cr‖Dg‖Cr−1 · · · ‖Dg‖Cr−i.

11 In the following we will drop the subscript x in the scalar product and the subindex
M in the volume form whenever it does not create confusion.
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3.2 Banach Spaces

Given the above setting, we are going to construct several Banach spaces.
The strategy is to first define appropriate norms and then close the space of
`-forms in the associated topology.

Fix L0 > 0. For each L > L0, let us define

Fr(ρ, L)
.
= {F :Bd1(0, 6δ)→ Rd2 : F (0) = 0;

‖DF‖C0(Bd1 (0,6δ)) ≤ ρ ; ‖F‖Cr(Bd1 (0,6δ)) ≤ L}.
(3.7)

For each F ∈ Fr(ρ, L), x ∈ Rd, ξ ∈ Rd1 , let Gx,F (ξ) : Bd1(0, 6δ) → Rd be
defined by Gx,F (ξ)

.
= x+ (ξ, F (ξ)).

Let us also define Σ̃(ρ, L)
.
= {Gx,F : x ∈ Bd1(0, 2δ), F ∈ Fr(ρ, L)}.

Remark 3.3. All the present constructions will depend on the parameters
ρ, L. We will often not make it explicit, to ease notation and since many
computations hold for any choice of the parameters, but we will state when a
particular choice of such parameters is made.

For each α ∈ A, and G ∈ Σ̃ we define the leaf12 Wα,G = {Θ−1
α ◦

G(ξ)}ξ∈Bd1 (0,3δ) and the enlarged leaf W+
α,G = {Θ−1

α ◦ G(ξ)}ξ∈Bd1 (0,6δ). For

each α ∈ A, G ∈ Σ̃ note that Wα,G ⊂ Ûα
.
= Θ−1

α (Bd(0, 6δ
√

1 + ρ2)) ⊆ Uα.
Finally, we define Σα = ∪G∈Σ̃α

{Wα,G}. We will be interested in the set of
manifolds Σ = ∪α∈AΣα (our sets of “stable” leaves).

Also, for each G ∈ Σ̃α we denote by Γ̂`,sc (α,G) the Cs sections of the fiber
bundle on W+

α,G, with fibers ∧`(T ∗M), which vanish in a neighborhood of
∂Wα,G. We define the norm

‖g‖Γ̂`,sc (α,G)

.
= sup

ī

‖gα,̄i ◦Θ−1
α ◦G‖Cs(Bd1 (0,2δ)). (3.8)

Consistent with this choice, we equip Ω`
r(M) with the norms, for s ≤ r,

‖h‖Ω`s
= sup

α∈A,̄i∈I`
‖hα,̄i ◦Θ−1

α ‖Cs(Rd). (3.9)

Let V̂s(α,G) be the set of Cs(Uα,G) vector fields, where Uα,G is any open set
such that Uα ⊃ Uα,G ⊃ W+

α,G.

12 These Wα,G are not to be confused with stable manifolds.
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To allow enough flexibility in the previous construction (flexibility that
will be essential in Section 6) we introduce the possibility of further choices:

we choose sets Γ`,sc (α,G) that are dense in Γ̂`,sc (α,G) in the Cs norm for

each s < r. Also we choose sets Vs(α,G) ⊆ V̂s(α,G) that contain the push
forward of any constant vector field under the coordinate map Θ−1

α and with
the property that there exists Cs > 0 such that, for each v, w ∈ Vs(α,G),
Cs · [v, w] ∈ Vs−1(α,G). Finally, we ask the following extension property:
there exists Cs ∈ (0, 1) such that for each

v ∈ Vs(α,G) =⇒ ∃ v̄ ∈ Vs(M) :

{
v̄|Uα,G = v

∀β ∈ A, G′ ∈ Σ̃, Csv̄ ∈ Vs(β,G′),
(3.10)

where by Vs(M) we mean the Cs vector fields on M .

Remark 3.4. The norms and the Banach spaces we are going to define
should have an index specifying their dependencies on the choices of {Γ`,sc (α,G)}
and {Vs(α,G)}. We choose to suppress them to ease notation, since this cre-
ates no confusion.

Let ωvol be the ds volume form induced on Wα,G by the push forward
of Lebesgue measure via the chart Θ−1

α . Write Lv for the Lie derivative
along a vector field v. Finally, for all α ∈ A, G ∈ Σα, g ∈ Γ`,0c (α,G),
v̄p = (v1, . . . , vp) ∈ Vs(α,G)p and h ∈ Ω`

r(M) we define

Jα,G,g,v̄p(h)
.
=

∫
Wα,G

〈g, Lv1 · · ·Lvph〉 ωvol ∈ R. (3.11)

Next, for all p ∈ N, q ∈ R+, p+ q < r − 1, ` ∈ {0, . . . , d}, let

Uρ,L,p,q,`
.
=

{
Jα,G,g,v̄p

∣∣ α ∈ A, G ∈ Σα(ρ, L), g ∈ Γ`,p+qc , vj ∈ Vp+q,

‖g‖Γ`,p+qc (α,G) ≤ 1, ‖vj‖Cq+p(Uα,G) ≤ 1

}
,

(3.12)

where, for v ∈ Vs(α,G), ‖v‖Cs(Uα,G) = supα,i ‖〈v, eα,i〉 ◦Θ−1
α ‖Cs .

Lastly, for all ρ ∈ [ρ−, ρ+], L ≥ L0, p ∈ N, q ∈ R+ and h ∈ Ω`
p+q(M) we

define the following norms

‖h‖−ρ,L,p,q,`
.
= sup

J ∈Uρ,L,p,q,`
J(h) and ‖h‖ρ,L,p,q,`

.
= sup

n≤p
‖h‖−ρ,L,n,q,`. (3.13)
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Remark 3.5. Let L+ be such that W ∈ Σα(ρ−, L0) and W ∩ Ûβ 6= ∅ imply
W ∈ Σα(ρ+, L+).13 We find it convenient to set ‖·‖−,p,q,` = ‖·‖ρ−,L0,p,q,`

and
‖·‖+,p,q,` = ‖·‖ρ+,L+,p,q,`

. In the above norms and objects we will suppress
systematically the indexes ρ, L,+,−, when it does not create confusion. In
particular, any statement about a norm without ± is either meant for each
ρ ∈ [ρ−, ρ+], L ∈ [L0, L+] or for the − norm. The introduction of these
annoying ±-norms has the only purpose to allow a simple use of mollificators,
which in general are not bounded operators (see Appendix D for details).

Definition 3.6. For all p ∈ N, q ∈ R+, ` ∈ {0, . . . , d − 1} we define the
spaces Bp,q,` to be the closures of Ω`

0,r(M) with respect to the norm ‖·‖−,p,q,`
and the spaces Bp,q,`+ to be the closures of Ω`

0,r(M) with respect to the norm
‖·‖+,p,q,`.

Remark 3.7. Note that, by definition, the forms in Bp,q,`,Bp,q,`+ are zero in
the flow direction. This retains the relevant properties of Poincaré sections
while working directly with the flow.

Remark 3.8. For the norms just defined the reader can easily check that

‖h‖p,q,` ≤ ‖h‖p+1,q,` and ‖h‖p,q+1,` ≤ ‖h‖p,q,`
Cp,q‖h‖−p,q,` ≤ sup

{v1,...,vp∈Vp+q : ‖vj‖Cp+q≤1}
‖Lv1 · · ·Lvph‖−0,p+q ≤ ‖h‖−p,q,`

‖h‖−,p,q,` ≤ ‖h‖+,p,q,` ; ‖h‖p,q,` ≤ C#‖h‖Ω`p
.

(3.14)

Remark 3.9. The above spaces are the natural extensions of the spaces Bp,q
in [30] to the case of `-forms. There the Banach spaces Bp,q were defined as
the closure of C∞(M,R) with respect to the following norm14

‖h‖p,q = sup
0≤k≤p

sup
α∈A
G∈Σ̃

sup
v1,...,vk∈Vp+k(α,G)

|vi|Cr≤1

sup
ϕ∈Cq0 (Wα,G,R)
|ϕ|

Ck+q≤1

∫
Wα,G

Lv1 · · ·Lvk(h) · ϕωvol.

In particular, we can construct an isomorphism between the Banach space
Bp,q in [30] and the present Banach space Bp,q,d−1. In fact, let iV : Ω`+1

r (M)→
Ω`

0,r(M) be the interior product defined by iV (h)(v1, . . . , v`) = h(V, v1, . . . , v`).

13 Such a L+ exists by the third equation of (3.1).
14 In [30] the coordinate charts are chosen with slightly different properties. However

for our purposes they are equivalent.
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3.2 Banach Spaces 3 CONES AND BANACH SPACES

If h ∈ Ω`
0,r(M), then (−1)`iV (h ∧ dV ) = h where dV is any one form such

that dV (V ) = 1. That is iV (Ω`+1
r (M)) = Ω`

0,r(M). Since iV (Ω`+1
0,r (M)) = 0,

we can define iV,0 : Ω`+1
r (M)/Ω`+1

0,r (M) → Ω`
0,r(M) and obtain by a standard

algebraic construction that iV,0 is a natural isomorphism. Next, we define

ω̃
.
= iV ω, (3.15)

where ω is the Riemannian volume, and the map i : Cr(M) → Ωd−1
0,r (M) by

i(f)
.
= f · ω̃. Note that i is an isomorphism since Ωd

0,r = {0}. It is easy
to check that i extends to an isomorphism between Bp,q and Bp,q,d−1. It is
even easier to construct an isomorphism between Bp,q and Bp,q,0. Yet, such
an isomorphism is not relevant here, indeed the reader can check that the
transfer operators defined in section 4.1 correspond to the transfer operators
studied in [30] only when acting on Bp,q,d−1.

We now prove some properties of the spaces Bp,q,`. To this end we will
use some estimates on how fast an element of the space can be approximated
by smooth forms. Such estimates are proven in Appendix D.

Given a form h ∈ Ω`, we can define a functional by

[(h)](g)
.
= 〈h, g〉Ω` where g ∈ Ω`

s(M). (3.16)

The space of such functionals, equipped with the ∗-weak topology of Ω`
s(M)′,15

gives rise to the space E `s of currents of regularity s.
The following extends [30, Proposition 4.1] and [30, Lemma 2.1].

Lemma 3.10. For each ` ∈ {0, . . . , d − 1}, there is a canonical injection
from the space Bp,q,` to a subspace of E `p+q.

Proof. Since we can foliate M by manifolds in Σ, given the definitions (3.16)
and (3.4) we have

[(h)](g) ≤ C# ‖h‖p,q,` ‖g‖Ω`p+q(M). (3.17)

Thus  can be extended to a continuous immersion of Bp,q,` in E `p+q.
To show injectivity consider a sequence {hn} ⊂ Ω`

0,p+q that converges
to h in Bp,q,` such that (h) = 0. Let Wα,G ∈ Σα. In the following it is

convenient to introduce the operators M̃α,ε defined as in Defintion D.1 with

15 As usual, given a Banach space B, by B′ we mean the dual space.
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3.2 Banach Spaces 3 CONES AND BANACH SPACES

Ψ̄(x, y)ī,j̄ = ψ̃α(Θ−1
α (x))δī,j̄, ψ̃α(ξ) = 1 if ‖ξ‖ ≤ 3

√
1 + ρ2

− and ψ̃α(ξ) = 0 if

‖ξ‖ ≥ 6
√

1 + ρ2
−. Note that, for each h′ ∈ Ω`

0,p+q,∫
Wα,G

〈g, M̃α,εh
′〉ωvol = [(h′)](gε) (3.18)

where

gε(x)
.
=
∑
ī

ωα,i(x)JΘα(x)

∫
Wα,G

ωvol(y) ψ̃α(y)κ(Θα(x)−Θβ(y))〈ωα,i, g〉y ∈ Ω`
r.

By Lemma D.2 and Remark D.4 we have that∫
Wα,G

〈g, hn〉ωvol = lim
ε→0

∫
Wα,G

〈g, M̃α,εhn〉ωvol = lim
ε→0

[(hn)](gε),

Moreover, by equation (3.18), Lemma D.2 and Remark D.4 it follows that

|[(hn)](gε)− [(hm)](gε)| =

∣∣∣∣∣
∫
Wα,G

〈g, M̃α,ε(hn − hm)〉ωvol

∣∣∣∣∣
≤ C#‖g‖Γ`,qc (α,G)‖hn − hm‖0,q,`.

Thus, we can exchange the limits with respect to n and ε to obtain∫
Wα,G

〈g, h〉ωvol = lim
n→∞

∫
Wα,G

〈g, hn〉ωvol

= lim
ε→0

lim
n→∞

[(hn)](gε) = lim
ε→0

[(h)](gε) = 0.

which implies ‖h‖0,q,` = 0. By similar computations, using equations (D.4)
and (D.7) to deal with the derivatives, we obtain ‖h‖p,q,` = 0. Thus  is
injective and we obtain the statement of the theorem.

We conclude this section by proving a compactness result which is essen-
tial in the implementation of the usual Lasota-Yorke strategy. The proof is
exactly as the proof of [30, Lemma 2.1].

Lemma 3.11. For each q, p > 0, p + q < r − 1, the unit ball of Bp,q,` is
relatively compact in Bp−1,q+1,`.
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4 TRANSFER OPERATORS

4 Transfer operators and Resolvents

Let φt : M →M be a Cr Anosov flow on a smooth Riemannian d-dimensional
compact manifold with r ≥ 2. The flow induces canonically an action φ∗t on
`-forms. Such an action has nice spectral properties only when acting on
Banach spaces of the type described in section 3. To apply Section 3 to the
present context it suffices to specify all the choices involved in the definition
of the norms ‖·‖p,q,`.

First of all, the “special” direction is obviously given by the vector field
V generating the flow. In addition, we note the following.

Remark 4.1. Without loss of generality, we can assume
D0Θ−1

α {(0, u, 0) : u ∈ Rdu} = Eu(Θ−1
α (0))

D0Θ−1
α {(s, 0, 0) : s ∈ Rds} = Es(Θ−1

α (0))
Θ−1
α ((s, u, t)) = φtΘ

−1
α ((s, u, 0)).

(4.1)

Let d1 = ds and d2 = du + 1. Given the continuity of the stable and
unstable distribution we can choose δ so that equations (3.2) and (3.3) are
satisfied with ρ− = 1, ρ+ = 2 and, for all α ∈ A and x ∈ Uα, (Θα)∗E

s(x) ⊂
C 1

2
. Choose L0 large enough so that all the stable manifolds belong locally

to Σ(1, L0/2). Note that there exists t0 > 0 such that, for all t ≥ t0,16

(Θβ ◦ φ−t ◦Θ−1
α )∗(C2) ⊂ C1. (4.2)

In addition, for each v ∈ (Θ−1
α )∗C2, t ∈ R+ we have ‖(φ−t)∗(v)‖ > C#e

λt‖v‖.
Finally, we set Vs = V̂s and Γ`,qc = Γ̂`,qc .

Lemma 4.2. With the above choices condition (3.10) is satisfied.

Proof. To prove the Lemma it suffices to have a uniform estimate on the
norm of an extension of a vector field. This is in general a hard problem,
but here we can exploit the peculiarities of our situation that allows to give
a simple proof based on the well known reflection method that goes back, at
least, to [41, 35, 65].

First, notice that, given Wα,G, we can make a uniformly bounded Cr

change of coordinates Ξ such that Ξ ◦ Θα(W+
α,G) = B(0, 6δ) × {0}. Given

16 Indeed, if x ∈ Uα, v ∈ Rd and v = vu + vs, vu ∈ (Θα)∗(E
u(x) × Ec(x)), vs ∈

(Θα)∗(E
s(x)), then ‖(φ−t ◦ Θ−1)∗(v

u)‖ ≤ C0 while ‖(φ−t ◦ Θ−1)∗(v
s)‖ ≥ C0e

λt and the
result follows by the fourth line of (3.1).
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4 TRANSFER OPERATORS

any vector field v ∈ V̂s(α,G) the domain Ξ ◦Θα(Uα,G) will always contain a
“cylinder” of the type Yā = B(0, 6δ) × (×d2

i=1[−ai, ai]), for some ā ∈ [0, δ]d2 ,
while v will be mapped into the extension of a function f ∈ Cs(Ya,Rd)
with C#‖v‖Cs(Uα,G) ≤ ‖f‖Cs(Ya) ≤ C#‖v‖Cs(Uα,G). Clearly it suffices that we
extend f to a fixed, sufficiently large, domain so that, after multiplying it by
a function equal one on Y(2δ,...,2δ) and supported in the image, under Ξ, of the
domain of the chart, we obtain the wanted vector field by the push forward
(Θ−1

α ◦ Ξ−1)∗ and setting it to zero on the rest of M .
Let Iā,β,i,±(x) = (x1, . . . , xi−1,−β(xi∓ ai)± ai, xi+1, . . . , xd). Then, given

g ∈ Cs(Yā), we can define, for i > d1,

gi(x) =


g(x) for x ∈ Yā∑bsc

k=0 bkf ◦ Iā,2k,i,+(x) for x ∈ Yāi , xi > 0∑bsc
k=0 bkf ◦ Iā,2k,i,−(x) for x ∈ Yāi , xi < 0

where aik = ak for k 6= i and aii = [1 + 21−p−bqc]ai and
∑bsc

k=0 bk2
kn = 1 for

all n ∈ {0, . . . , bsc}. Note that the previous condition determines the bk
uniquely since the Vandermonde determinant det(2ij) is well known to be
non zero. It is easy to check that gi ∈ Cs(Yāi) and ‖gi‖Cs(Yāi ) ≤ Cs‖g‖Cs(Yā).
Proceeding in such a way we can extend g to the domain Y(A,··· ,A) for any fixed
A > 0. We are left with the boundary of the domain determined by B(0, 6δ),
which is smooth. By localizing via a partition of unity and a smooth change
of coordinates we can reduce ourselves to the case of extending a function
from the half space to the all space, which can be handled as above [65]. This
concludes the proof.

Remark 4.3. By standard hyperbolicity estimates t0 in (4.2) can be chosen
so that, for all t ≥ t0, the image of a manifold in Σ can be covered by a
collections of manifolds in Σ with a uniformly bounded number of overlaps.
The fact that this may be false for small times is a little extra problem present
in the study of flows with respect to maps. We will handle such a problem by
a further modification of the Banach space, see (4.6).

This concludes the definition of the Banach spaces. Next we define the
action of the flow.
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4.1 Properties of the transfer operator

Let h ∈ Ω`
0,r−1(M), then ∀t ∈ R

φ∗th(V, v2, . . . , v`) = h(V, (φt)∗v2, . . . , (φt)∗v`) = 0. (4.3)

Thus φ∗t (Ω
`
0,r−1) = Ω`

0,r−1 for all t ∈ R. In (2.9) we defined the operators

L(`)
t : Ω`

0,r−1(M)→ Ω`
0,r−1(M), t ∈ R+, by

L(`)
t h

.
= φ∗−th.

Following the Remark 3.9, in the special case of a d − 1 form, for h ∈
Ωd−1

0,r−1(Uα) we have h = h̄ω̃ where h̄ ∈ Cs(M,R) and ω̃ is defined in (3.15).
Then17

L(d−1)
t h = h̄ ◦ φ−t det(Dφ−t)ω̃

.
= (Lth̄)ω̃. (4.4)

Thus we recover the transfer operator acting on densities studied in [16].

We begin with a Lasota-Yorke type inequality for L(`)
t .

Definition 4.4. Let p ∈ N, q ∈ R+, 0 ≤ ` ≤ d − 1 and 0 < λ < λ where λ
is as in the Anosov splitting. Let us define

σ`
.
= htop(φ1)− λ|ds − `|

σp,q
.
= min{p, q}λ .

Lemma 4.5. There exists t0 > 0 such that, for each p ∈ N, q ∈ R+, p+ q <

r − 1, ` ∈ {0, . . . , d − 1}, λ ∈ (0, λ) and t > t0 the linear operators L(`)
t can

be uniquely extended to a bounded operator18 L(`)
t ∈ L(Bp,q,`− ,Bp,q,`+ ). More

precisely, ∥∥∥L(`)
t h
∥∥∥

+,0,q,`
≤ Cqe

σ`t ‖h‖−,0,q,` .

In addition, if 0 < q ≤ r − 2,∥∥∥L(`)
t h
∥∥∥

+,0,q,`
≤ Cq,λe

(σ`−λq)t ‖h‖−,0,q,` + Cq,λe
σ`t ‖h‖−,0,q+1,`

and, if p, q > 0,∥∥∥L(`)
t h
∥∥∥

+,p,q,`
≤Cp,q,λe(σ`−σp,q)t ‖h‖−,p,q,` + Cp,q,λe

σ`t ‖h‖−,p−1,q+1,`

+ Cp,q,λe
σ`t
∥∥X(`)h

∥∥
−,p−1,q+1,`

.

17 Indeed, for ω ∈ Ωds(M) we have det(Dφt)ω = φ∗tω. Hence by (3.15) we have
φ∗t ω̃(v1, . . . , vd−1) = det(Dφt)ω̃(v1, . . . , vd−1). That is φ∗t ω̃ = det(Dφt)ω̃.

18 Which, by a harmless abuse of notation, we still designate by L(`)
t .
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The proof of this lemma is the content of Subsection 4.3. In particular,
note that from the first and last equations of the above Lemma and equation
(3.14) we have, ∥∥∥L(`)

t h
∥∥∥
p,q,`
≤ Cp,qe

σ`t ‖h‖p,q,` . (4.5)

Remark 4.6. Up to now we have extended, yet followed closely, the argu-
ments in [16]. Unfortunately, in Section 7 of [16], the authors did not take
into consideration that for t ≤ t0, φt(Wα,G) is not necessarily controlled by
the cones defined by (3.2), and thus could be an inadmissible manifold. Such
an issue can be easily fixed, in the present context, by introducing a dynam-
ical norm (similarly to [8]) as done below. This however is not suitable for
studying perturbation theory, to this end a more radical change of the Banach
space is required [17].

To take care of the t ≤ t0, we introduce the dynamical norm |||·|||p,q,`. For

each h ∈ Ω`
r(M), we set

|||h|||p,q,`
.
= sup

s≤t0

∥∥L(`)
s h
∥∥
p,q,`

. (4.6)

Thus we can define B̃p,q,` .= Ω`
0,r

|||·|||p,q,` ⊂ Bp,q,`.

Lemma 4.7. For each p ∈ N, q ∈ R+, p+q < r−1, ` ∈ {0, . . . , d−1}, λ < λ,

for each t ∈ R+, we have that L(`)
t ∈ L(B̃p,q,`, B̃p,q,`) and, more precisely,∣∣∣∣∣∣∣∣∣L(`)

t h
∣∣∣∣∣∣∣∣∣
p,q,`
≤ Cp,qe

σ`t |||h|||p,q,` .

Moreover, if p, q > 0,∣∣∣∣∣∣∣∣∣L(`)
t h
∣∣∣∣∣∣∣∣∣
p,q,`
≤Cp,q,λe(σ`−σp,q)t |||h|||p,q,` + Cp,q,λe

σ`t |||h|||p−1,q+1,`

+ Cp,qe
σ`t
∣∣∣∣∣∣X(`)h

∣∣∣∣∣∣
p−1,q+1,`

.

In addition, {Lt}t∈R+ forms a strongly continuous semigroup.

Proof. For h ∈ Ω`
0,r equations (4.5), (4.6) imply, for t < t0,∣∣∣∣∣∣∣∣∣L(`)

t h
∣∣∣∣∣∣∣∣∣
p,q,`
≤ max

{
|||h|||p,q,` , Cp,qe

|σ`|t0 |||h|||p,q,`
}
≤ Cp,q |||h|||p,q,` ,
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while for t ≥ t0 the required inequality holds trivially. The boundedness of
L(`)
t follows.

The second inequality follows directly from the above, for small times,
and from Lemma 4.5 for larger times.

To conclude, note that L(`)
t is strongly continuous on Ω`

r(M) in the Cr

topology. Let {hn} ⊂ Ω`
0,p such that limn→∞ |||hn − h|||p,q,` = 0, then, by the

boundedness of L(`)
t ,∣∣∣∣∣∣∣∣∣L(`)

t h− h
∣∣∣∣∣∣∣∣∣
p,q,`
≤ C# |||h− hn|||p,q,` + ‖L(`)

t hn − hn‖Ω`p

which can be made arbitrarily small by choosing n large and t small.

4.2 Properties of the Resolvent

By standard results, see for example [19], the semigroups L(`)
t have generators

X(`) which are closed operators on B̃p,q,` such that X(`)L(`)
t = d

dt
L(`)
t . Setting

R(`)(z) = (z1−X(`))−1 we have, for <(z) > σ`, the following identity

R(`)(z)n =
1

(n− 1)!

∫ ∞
0

tn−1e−ztL(`)
t dt, (4.7)

that can be easily verified by computing X(`)R(`)(z)n and R(`)(z)nX(`). The
next Lemma, which proof can be found at the end of Section 4.3, gives an
effective Lasota-Yorke inequality for the resolvent.

Lemma 4.8. Let p ∈ N, q ∈ R+, p+q < r−1, z ∈ C such that a = <(z) > σ`
then we have ∣∣∣∣∣∣R(`)(z)n

∣∣∣∣∣∣
p,q,`
≤ Cp,q,λ(a− σ`)−n,

and, for p, q > 0,

∣∣∣∣∣∣R(`)(z)nh
∣∣∣∣∣∣
p,q,`
≤ Cp,q,a,λ

{
(a− σ` + σp,q)

−n |||h|||p,q,` +
(|z|+ 1)

(a− σ`)n
|||h|||p−1,q+1,`

}
.

The operator R(`)(z) has essential spectral radius bounded by (a−σ`+σp,q)−1.

We are now in the position to obtain the required spectral properties.
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Proposition 4.9. For p + q < r − 1 the spectrum of the generator X(`) of
the semigroup L(`)

t acting on B̃p,q,` lies on the left of the line {σ` + ib}b∈R
and in the strip σ` ≥ <(z) > σ` − σp,q consists of isolated eigenvalues of
finite multiplicity. Moreover, for ` = ds, htop(φ1) is an eigenvalue of X.
If the flow is topologically transitive htop(φ1) is a simple eigenvalue. If the
flow is topologically mixing, then htop(φ1) is the only eigenvalue on the line
{htop(φ1) + ib}b∈R.

Proof. The first part of the Lemma is proven exactly as in [43, Proposition
2.10, Corollary 2.11]. Next, let us analyze the case ` = ds. As explained
in Remark 2.14, we restrict ourselves to the case in which Es is orientable.
Indeed, in the non orientable case we must study a slightly different oper-
ator (see Section B for more details). We can then choose in each Es(x) a
volume form ω̃s on Es normalized so that ‖ω̃s‖ = 1 and it is globally con-
tinuous. Also let πs(x) : TxM → Es(x) be the projections on Es(x) along
Eu(x) ⊕ Ec(x). Remember that πs is $-Hölder (see Appendix E). Next,
define ωs(v1, . . . , vds)

.
= ω̃s(πsv1, . . . , πsvds), by construction ωs ∈ Ωds

0,$. Note
that φ∗−tωs = Jsφ−tωs, where Jsφ−t is the Jacobian restricted to the sta-
ble manifold. Note that, setting ωs,ε = Mεωs, for ε small enough, we have
〈ωs,ε, ωs〉 ≥ 1

2
. Hence,∫

Wα,G

〈ωs,ε,Ltωs〉 ≥
∫
Wα,G

Jsφ−t
2
≥ C#

∫
Wα,G

JWφ−t ≥ C# vol(φ−tWα,G). (4.8)

Taking the sup on the manifolds and integrating in time, Appendix C (see in

particular Remark C.4) implies that the spectral radius of R(ds)(a) on B̃q,$,ds
is exactly (a− σds)−1.

By Lemma 4.8 R(ds)(a) is quasicompact on B̃p,q,ds and its peripheral spec-
trum does not contain Jordan blocks.19 In turn, this implies that

lim
n→∞

1

n

n−1∑
k=0

(a− σds)kR(ds)(a)k =

{
Π if (a− σds)−1 ∈ σB̃p,q,ds (R(ds)(a))

0 otherwise,

where Π is the eigenprojector on the associated eigenspace and the conver-
gence takes place in the strong operator topology of L(B̃p,q,ds , B̃p,q,ds). Also

19 A Jordan block would imply that
∥∥R(ds)(a)n

∥∥
p,q,ds

grows at least as C#n(a−σds)−n
contrary to the first inequality in Lemma 4.8.
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by the second inequality in the statement of Lemma 4.8 it follows that Π
extends naturally to an operator in L(B̃p−1,q+1,ds , B̃p,q,ds). Since, by (4.8),∫

Wα,G

〈ωs,ε,Πωs〉 > 0

we have that Π 6= 0 and (a − σds)
−1 belongs to the spectrum. The other

claimed properties follow by arguing as in [31, Section 6.2].

4.3 Proof of the Lasota-Yorke inequality

Proof of Lemma 4.5. For each a ∈ (0, 1), we introduce the norms

‖h‖ρ,L,p,q,`,a
.
=

p∑
℘=0

a℘‖h‖−ρ,L,℘,q,`,

From now on we will suppress the indexes ρ, L as their values will be clear
from the context. As the above norms are equivalent to ‖ · ‖p,q,`, it suffices
to prove the required inequality for some fixed a (to be chosen later).

For any ℘, q ∈ N, α ∈ A, G ∈ Σ̃(ρ+, L+), vi ∈ V℘+q(α,G), g ∈
Γ`,℘+q
c (α,G) such that ‖g‖Γ`,℘+q

c (α,G) ≤ 1, we must estimate∫
Wα,G

〈g, Lv1 · · ·Lv℘L
(`)
t h〉 ωvol. (4.9)

First of all, we consider the atlas introduced at the beginning of Section 3.
For β ∈ A and for each t ∈ R+, let {Vk,β}k∈Kβ , Kβ ⊂ N, be the collection

of connected components of Θβ(φ−t(Wα,G) ∩ Uβ). Let K̃β
.
= {k ∈ Kβ :

Vk,β ∩ B(0, 2δ) 6= ∅}. For all Vk,β, let Ṽk,β be the connected component of

Θβ(φ−t(W
+
α,G) ∩ Uβ) which contains Vk,β. Next, for each k ∈ K̃β choose

xk,β ∈ (Vk,β ∩B(0, 2δ)). We choose t0 as in Remark 4.3. Then, for all t ≥ t0,
there exists Fk,β ∈ Fr(1, L0) (see definition (3.7)) such that Gxk,β ,Fk,β(ξ) =
xk,β + (ξ, Fk,β(ξ)), ξ ∈ B(0, 6δ), and the graph of Gxk,β ,Fk,β is contained in

Ṽk,β. Next we consider the manifolds

{Wβ,Gxk,β,Fk,β
}k∈K̃β ⊂ Uβ. (4.10)

From now on let us write Wβ,Gk for Wβ,Gxk,β,Fk,β
. By the above construction

Wβ,Gk ∈ Σ−. Note that the above construction provides an explicit analogue
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of Lemma 7.2 in [16]. In particular, ∪β∈A ∪k∈K̃β Wβ,Gk ⊃ φ−tWα,G with a
uniformly bounded number of overlaps.

In the following it will be convenient to use the Hodge operator “∗”, see
Appendix A for details. Let us start with the case ℘ = 0. By using formula
(A.4), changing variables we obtain20∫

Wα,G

〈g,L(`)
t h〉ωvol =

∑
β∈A
k∈K̃β

∫
Wβ,Gk

(−1)(d−`)`ψβ
JWφt
Jφt
〈∗φ∗t (∗g), h〉ωvol , (4.11)

where JWφt is the Jacobian of the change of variable φt : Wβ,Gk 7→ Wα,G.
Note that

∗φ∗t (∗g) =
∑
ī,j̄∈I`

〈ωβ,̄i, ∗φ∗t ∗ωα,j̄〉gj̄ ◦ φt · ωβ,̄i

= (−1)(d−`)`Jφt
∑
ī,j̄∈I`

〈φ∗−tωβ,̄i, ωα,j̄〉 ◦ φt · gj̄ ◦ φt · ωβ,̄i ,

where we have used (A.4) again. Letting

g̃t = (−1)(d−`)`Jφt
∑
ī∈I−`

∑
j̄∈I`

〈φ∗−tωβ,̄i, ωα,j̄〉 ◦ φt · gj̄ ◦ φt · ωβ,̄i,

by Remark 3.1 if follows that 〈∗φ∗t (∗g), h〉 = 〈g̃t, h〉. Accordingly, we have

‖[Jφ−1
t JWφt · ψβ · g̃t] ◦Θ−1

β ◦Gk‖Cq ≤ C# sup
j̄ ,̄i

‖gj̄ ◦ φt ◦Θ−1
β ◦Gk‖Cq

× ‖[JWφt · 〈φ∗−tωβ,̄i, ωα,j̄〉 ◦ φt] ◦Θ−1
β ◦Gk‖Cq .

(4.12)

Next, we estimate the factors of the above product. Note that there exist
maps Ξt ∈ Cr(Rd,Rd) such that

Θα ◦ φt ◦Θ−1
β ◦Gk = G ◦ Ξt. (4.13)

Moreover, by the contraction properties of the Anosov flow, ‖DΞt‖Cr−1 ≤
C#e

−λt.21 Thus, by the properties of r-norms (see Remark 3.2),

‖gj̄ ◦ φt ◦Θ−1
β ◦Gk‖Cq ≤ C#‖g ◦Θ−1

α ◦G‖Cq . (4.14)

20 Since 〈g, h〉 can be seen as a function on M , we will often use the notation F ∗〈g, h〉
for 〈g, h〉 ◦F . Also, will use interchangeably the notations det(Dφt) and Jφt, since, for all
t ∈ R, det(Dφt) > 0.

21 See the Appendix in [16] for details.
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Next, note that |〈φ∗−tωβ,̄i, ωα,j̄〉| is bounded by the growth of `-volumes while
JWφt gives the contraction of ds volumes in the stable direction. Clearly, the
latter is simply the inverse of the maximal growth of |〈φ∗−tωβ,̄i, ωα,j̄〉| which
takes place for ds forms. By the Anosov property and Remark 3.1 follow that

‖JWφt ◦Θ−1
β ◦Gk · 〈φ∗−tωβ,̄i, ωα,j̄〉 ◦ φt ◦Θ−1

β ◦Gk‖C0 ≤ C#e
−|ds−`|λt. (4.15)

To compute the Cq norm, for q ≥ 1, we begin by computing the Lie derivative
with respect to the vector fields Zi = ∂ξi , i ∈ {1, . . . , ds}. Let us set Υt

.
=

φt ◦Θ−1
β ◦Gk. By (A.5) and (A.6) we have

LZi [〈φ∗−tv, w〉 ◦Υt] = Υ∗tLΥt∗Zi〈φ∗−tv, w〉
= −Υ∗t [div(Υt∗Zi)〈(φ∗−tv, w〉] + (−1)`(d−`)Υ∗t 〈∗LΥt∗Zi∗w, φ∗−tv〉

+ Υ∗t 〈w,L(Θ−1
β ◦Gk)∗Zi

v〉.
(4.16)

Hence, recalling again (3.6) and its properties, for q ∈ N,

‖〈φ∗−tv, w〉 ◦Υt‖Cq ≤ C# sup
i
‖LZi [〈φ∗−tv, w〉 ◦Υt]‖Cq−1

+ 2bqc+1‖〈φ∗−tv, w〉 ◦Υt‖C0

≤ Cq
{
‖ div(Υt∗Zi)〈φ∗−tv, w〉‖Cq−1 + ‖〈L(Θ−1

β ◦Gk)∗Zi
v, w〉‖Cq−1

+ ‖〈φ∗−tv, ∗LΥt∗Zi ∗ w〉‖Cq−1 + ‖〈φ∗−tv, w〉‖C0

}
,

which can be used inductively to show that the Cq norm is bounded by the C0

norm. The case q ∈ (0, 1) can be computed directly as well, but is also follow
by interpolation theory (e.g., see [72, (2),(4) page 201]). The computation
for the case q ∈ R+ easily follows. Finally, by (4.15), (4.14), and (4.12) we
have that

‖ψβJφ−1
t JWφt ∗ φt ∗ g‖Γ`,qc

≤ C#e
−λ|ds−`|t. (4.17)

This provides an estimate for each term in (4.11). We are left with the
task of estimating the number of manifolds. Note that such number at time
t is bounded by a constant times the volume of the manifold φ−t(Wα,G).
Moreover, it turns out that such volumes grow proportionally to ehtop(φ1)t

(see Appendix C). Thus∥∥∥L(`)
t h
∥∥∥−

0,q,`
≤ Cqe

−λ|ds−`|tehtop(φ1)t ‖h‖−0,q,` . (4.18)
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To establish the second inequality note that, by analogy with [30, Lemma
6.6], for each ε > 0 there exists gε ∈ Γ`,r0 (Wα,G) such that, setting q′ =
max{0, q − 1},

‖gε − g‖
Γ
`,q′
c

≤ Cqε
q−q′ ; ‖gε‖Γ`,qc

≤ Cq ; ‖gε‖Γ`,q+1
c
≤ Cqε

−1.

Thus, writing g = (g− gε) + gε we can estimate to the two pieces separately.
For gε we apply all the above computations using q + 1 instead of q. To
estimate the equivalent of (4.14) for the first piece, set ψt,k = φt ◦Θ−1

β ◦Gk.
For q 6∈ N, we have22

‖(g − gε)j̄ ◦ ψt,k‖Cq ≤ Cqε
q−q′ + sup

i1,...,ibqc

Hq−bqc
(
LZi1 . . . LZibqc [(g − gε)j̄ ◦ ψt,k]

)
≤ Cq(ε

min{1,q} + e−λqt),

the case q ∈ N being easier. Choosing ε depending on t yields the inequality∥∥∥L(`)
t h
∥∥∥−

0,q,`
≤ Cqe

(htop(φ1)−λ|ds−`|−λq)t‖h‖−0,q,` + Cq,t ‖h‖−0,q+1,` . (4.19)

The second inequality of the Lemma follows then by iterating (4.19) for time

steps t∗ > t0 such that Cqe
(σ`−λq)t∗ ≤ e(σ`−λq)t∗ and using (4.18).

We are left with the case ℘ > 0. We can apply Lemma 7.4 in [16] to
decompose each v ∈ V℘+q(φt(Wβ,Gxk,Fk

)) as v = vs + vu + vV where vs is

tangent to φt(Wβ,Gxk,Fk
), vu is “close” to the unstable direction and vV is the

component in the flow direction. Let σ ∈ {s, u, V }℘, then (4.9) reads∑
σ∈{s,u,V }℘

∫
Wα,G

〈g, Lvσ1
1
· · ·Lvσ℘℘ L

(`)
t h〉ωvol. (4.20)

Since LvLwh = LwLvh + L[v,w]h, we can reorder the derivatives so as
to have first those with respect to the stable components, then those with
respect to the unstable, and then finally those in the flow direction. By
permuting the Lie derivative in such a way we introduce extra terms with less
than ℘ derivatives, and these extra terms contribute only to weaker norms.
For each σ ∈ {s, u, V }℘ let ps(σ) = #{i |σi = s}, pu(σ) = #{i |σi = u} and
pV (σ) = #{i |σi = V }. For each p̄ = (ps, pu, pV ) ∈ N3, ps + pu + pV = ℘, let

22 By Hη(f) we mean the Hölder constant of f , i.e. sup‖x−y‖≤δ
‖f(x)−f(y)‖
‖x−y‖η .
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Σp̄ = {σ : ps = ps(σ), pu = pu(σ), pV = pV (σ)}. Next, for each σ ∈ Σp̄ we
define the permutation πσ by πσ(i) < πσ(i+ 1) for i 6∈ {ps, ps + pu}; σπ(i) = s
for i ∈ {1, . . . , ps}; σπ(i) = u for i ∈ {ps + 1, . . . , ps + pu} and σπ(i) = V for
i ∈ {℘− pV + 1, . . . , ℘}. We can then bound the absolute value of (4.20) by∑

ps+pu+pV =℘

∑
σ∈Σp̄

∣∣∣∣ ∫
Wα,G

〈g, Lvs
πσ(1)
· · ·Lvs

πσ(ps)
Lvu

πσ(ps+1)
· · ·Lvu

πσ(ps+pu)

× LvV
πσ(ps+pu+1)

· · ·LvV
πσ(℘)
L(`)
t h〉ωvol

∣∣∣∣+ a−℘+1C℘,q

∥∥∥L(`)
t h
∥∥∥
℘−1,q,`,a

.

(4.21)

To simplify the notation we define23

ṽi =


vsπσ(i) for i ≤ ps
vuπσ(i) for ps + 1 ≤ i ≤ ps + pu
vVπσ(i) for i ≥ ps + pu + 1.

We will analyze the terms of (4.21) one by one. First of all, suppose pV 6= 0,
then vi = γiV for i > ps + pu. Using equation (A.7),∣∣∣∣∣

∫
Wα,G

〈g, Lṽ1 · · ·Lṽ℘L
(`)
t h〉ωvol

∣∣∣∣∣
=

∣∣∣∣∣
∫
Wα,G

〈g, Lṽ1 · · ·Lṽ℘−1(γ℘L(`)
t X

(`)h)〉ωvol

∣∣∣∣∣
≤ C℘,q

∥∥∥L(`)
t X

(`)h
∥∥∥−
℘−1,q+1,`

+ a−℘+1C℘,q

∥∥∥L(`)
t h
∥∥∥
℘−1,q,`,a

.

(4.22)

Next, suppose pV = 0 but ps 6= 0. By (A.5),∣∣∣∣∣
∫
Wα,G

〈g, Lṽ1 · · ·Lṽ℘L
(`)
t h〉ωvol

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Wα,G

Lṽ1〈g, Lṽ2 · · ·Lṽ℘L
(`)
t h〉ωvol

∣∣∣∣∣+ C℘,q

∥∥∥L(`)
t h
∥∥∥−
℘−1,q,`

.

Then, by intrinsic differential calculus in the manifold Wα,G,

d(fivωvol) = Lv(fωvol) = (−1)ds+1(Lvf)ωvol + fd(ivωvol). (4.23)

23 We should write ṽσ,i. However, since the following arguments are done at fixed σ, we
drop the subscripts to ease the notation.
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Thus, by Stokes theorem, the integral is bounded by C℘,q

∥∥∥L(`)
t h
∥∥∥−
℘−1,q,`

and∣∣∣∣∣
∫
Wα,G

〈g, Lṽ1 · · ·Lṽ℘L
(`)
t h〉ωvol

∣∣∣∣∣ ≤C℘,q ∥∥∥L(`)
t h
∥∥∥−
℘−1,q,`

. (4.24)

Finally, suppose pu = ℘. Recalling (A.6) yields∫
Wα,G

〈g, Lṽ1 · · ·Lṽ℘L
(`)
t h〉ωvol =

∫
Wα,G

〈g,L(`)
t Lφ−t∗ṽ1 · · ·Lφ−t∗ṽ℘h〉ωvol.

By construction we have ‖φ−t∗ṽi‖C℘+q ≤ C#e
−λt. Hence, using (4.19) and

(3.14) yields, for ℘ < p, 24∣∣∣∣∣
∫
Wα,G

〈g, Lṽ1 · · ·Lṽ℘L
(`)
t h〉ωvol

∣∣∣∣∣ ≤ C℘,q,t‖Lφ−t∗ṽ1 · · ·Lφ−t∗ṽ℘h‖−0,q+℘+1,`

+ C℘,qe
(htop(φ1)−λ|ds−`|−qλ)t‖Lφ−t∗ṽ1 · · ·Lφ−t∗ṽ℘h‖−0,q+℘,`

≤ C℘,qe
(htop(φ1)−λ|ds−`|−(q+℘)λ)t‖h‖−℘,q,` + C℘,q,t‖h‖−℘,q+1,`.

(4.25)

Note that the last term can be estimated by the ‖ · ‖p−1,q+1,`,a norm, except
in the case ℘ = p. In such a case we use instead (4.18) which yields, for each
℘ ≤ p,∣∣∣∣∣

∫
Wα,G

〈g, Lṽ1 · · ·Lṽ℘L
(`)
t h〉ωvol

∣∣∣∣∣ ≤ C℘,qe
(htop(φ1)−λ|ds−`|−℘λ)t‖h‖−℘,q,`. (4.26)

Collecting together (4.19), (4.22), (4.24), (4.25) and (4.26) we have, for t > t0,

‖L(`)
t h‖p,q,`,a ≤ Cqe

(htop(φ1)−λ|ds−`|−qλ)t‖h‖−0,q,` + Cq,t‖h‖−0,q+1,`

+ Cp,qa
∥∥∥L(`)

t h
∥∥∥
p−1,q,`,a

+

p∑
℘=1

a℘C℘,q

∥∥∥L(`)
t X

(`)h
∥∥∥−
℘−1,q+1,`

+

p−1∑
℘=1

a℘C℘,qe
(htop(φ1)−λ|ds−`|−λ(q+℘))t‖h‖−℘,q,` + Cp,q,a,t‖L(`)

t h‖p−1,q+1,`,a

+ apCp,qe
(htop(φ1)−λ|ds−`|−λp)t‖h‖−p,q,`.

24 By an abuse of notation we use ṽi also for the extensions of the vector fields.
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Then

‖L(`)
t h‖p,q,`,a ≤Cp,qe(htop(φ1)−λ|ds−`|−min{p,q}λ)t‖h‖p,q,`,a

+ Cp,q,a,t‖h‖p−1,q+1,`,a + Cp,q,a,t‖L(`)
t h‖p−1,q+1,`,a

+ Cp,qa
∥∥∥L(`)

t X
(`)h
∥∥∥
p−1,q+1,`,a

+ Cp,qa
∥∥∥L(`)

t h
∥∥∥
p,q,`,a

.

(4.27)

While, if we do not use (4.19) and (4.25), we have, for a ∈ (0, 1),

‖Lth‖p,q,`,a ≤Cp,qe(htop(φ1)−λ|ds−`|)t‖h‖p,q,`,a
+ Cp,qa

∥∥∥L(`)
t X

(`)h
∥∥∥
p−1,q+1,`,a

+ Cp,q,a
∥∥∥L(`)

t h
∥∥∥
p−1,q,`,a

.

By induction, for which (4.18) is the initial step, it follows that, for all t ∈ R+,

‖Lth‖p,q,`,a ≤ Cp,qe
(htop(φ1)−λ|ds−`|)t‖h‖p,q,`,a. (4.28)

Next, we choose t∗ such that, for a given λ < λ, we have that25

Cp,qe
(htop(φ1)−λ|ds−`|)t∗ ≤ e(htop(φ1)−λ|ds−`|)t∗ .

Finally, choosing a = e−min{p,q}λt∗ , from (4.27) and (4.28) we have

‖Lt∗h‖p,q,`,a ≤ e(htop(φ1)−λ|ds−`|−min{p,q}λ)t∗‖h‖p,q,`,a
+ Cp,q,a,t∗‖h‖p−1,q+1,`,a + Cp,qa

∥∥∥L(`)
t∗ X

(`)h
∥∥∥
p−1,q+1,`,a

.
(4.29)

Iterating (4.29), recalling (4.28), and using (4.27) for the remaining t −
bt/t∗ct∗ time interval, the Lemma follows.

Proof of Lemma 4.8. By Lemma 4.7 and equation (4.7) we have 26

∣∣∣∣∣∣R(`)(z)nh
∣∣∣∣∣∣
p,q,`
≤ Cp,q,λ

(n− 1)!
|||h|||p,q,`

∫ ∞
0

dt e−at+σ`ttn−1 =
Cp,q,λ

(a− σ`)n
|||h|||p,q,` .

Thus, provided <(z) > σ` , we have that R(`)(z)n ∈ L(B̃p,q,`, B̃p,q,`).
Let us introduce a truncated resolvent

Rn,`(z)
.
=

1

(n− 1)!

∫ ∞
t0

tn−1e−ztL(`)
t .

25 In this case Cp,q refers exactly to the first constant in (4.27).
26 Note that for each a > 0, α ≥ 0, we have

∫∞
α
xne−axdx = e−aα

∑n
k=0

n!
k!

αk

an−k+1 .
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Then∣∣∣∣∣∣R(`)(z)n −Rn,`(z)
∣∣∣∣∣∣
p,q,`
≤
∫ t0

0

Cp,q,λt
n−1e−(a−σ`)t

(n− 1)!

≤ Cp,q,λ
t0
n

n!
≤ Cp,q,λ(a− σ` + σp,q)

−n,

(4.30)

provided n ≥ t0e(a−σ`+σp,q).27 To prove the second inequality of the Lemma
it suffices to estimate Rn,`(z). To this end we follow the same computation
used to estimate the norm ‖·‖p,q,` in Lemma 4.5. The only difference being

in the treatment of (4.22). Indeed, since XLt = d
dt
Lt, integration by parts

yields ∣∣∣∣∣
∫
Wα,G

∫ ∞
t0

tn−1e−zt

(n− 1)!
〈γ℘g, Lṽ1 · · ·Lṽ℘−1(L(`)

t X
(`)h)〉ωvol

∣∣∣∣∣
≤ C℘,q|z| ‖h‖℘−1,q+1,` .

Hence

‖Rn(z)h‖p,q,` ≤
Cp,q,a,λ ‖h‖p,q,`

(a− σ` + σp,q)n
+
Cp,q,a,λ(|z|+ 1)

(a− σ`)n
‖h‖p−1,q+1,` . (4.31)

The first part of the Lemma then follows as in Lemma 4.7.
To prove the bound on the essential spectral radius of R(`)(z)n we argue

by analogy with [43, Proposition 2.10, Corollary 2.11]. Nussbaum’s formula
[51] asserts that if rn is the infimum of the r such that {R(`)(z)nh}‖h‖≤1 can
be covered by a finite number of balls of radius r, then the essential spectral
radius of R(`)(z)n is given by lim infn→∞ n

√
rn. Let

B1
.
= {h ∈ B̃p,q,` | |||h|||p,q,` ≤ 1} ⊂ {h ∈ Bp,q,` | ‖h‖p,q,` ≤ 1} .= B2.

By Lemma 3.11, B2 is relatively compact in Bp−1,q+1,`. Thus, for each ε > 0
there are h1, . . . , hNε ∈ B2 such that B2 ⊆

⋃Nε
i=1 Uε(hi), where Uε(hi) = {h ∈

Bp−1,q+1,` | ‖h− hi‖p−1,q+1,` < ε}. For h ∈ B1 ∩ Uε(hi), computing as in
(4.31) we have

|||Rn(z)(h− hi)|||p,q,` ≤
Cp,q,a,λ

(a− σ` + σp,q)n
‖h− hi‖p,q,` +

Cp,q,a,λe
at0|z|

(a− σ`)n
ε.

Choosing ε appropriately and recalling (4.30) we conclude that for each n ∈ N
the set R(`)(z)n(B1) can be covered by a finite number of |||·|||p,q,` − balls of
radius Cp,q,a,λ(a− σ` + σp,q)

−n, which implies the statement.

27 Since n! ≥ nne−n.
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5 Flat Traces

In this section we define a flat trace and we prove some of its relevant prop-
erties. Formally, for A ∈ L(Bp,q,`,Bp,q,`) we would like to define a trace by∫

M

∑
α,̄i

〈ωα,̄i, Aδx,̄i〉x (5.1)

where, for x ∈ Uα, δx,̄i(f) = 〈ωα,̄i, f〉xωα,̄i(x), for each f ∈ Ω`
r. Unfortunately,

the δx,̄i do not belong to the space Bp,q,`. We are thus forced to employ an
indirect strategy. For each x ∈ M , ī ∈ I`, α ∈ A and ε > 0 small enough,
let28

jε,α,̄i,x(y)
.
=

{
JΘα(x)ψα(x)κε (Θα(x)−Θα(y))ωα,̄i(y) if y ∈ Uα
0 if y /∈ Uα,

(5.2)

where κε(x) = ε−dκ(ε−1x). At this stage we choose a particular κ (this refers
also to Definition D.1). Let κ be κ(x1, . . . , xd) = κd−1(x1, . . . , xd−1)κ1(xd).
Given an operator A ∈ L(Bp,q,`,Bp,q,`) we define the flat trace by

tr[(A)
.
= lim

ε→0

∫
M

∑
α,̄i

〈ωα,̄i, A(jε,α,̄i,x)〉xωM(x), (5.3)

provided the limit exists. To get a feeling for what we are doing, consider
the operator A acting on h ∈ Ω` defined by

Ah(x)
.
=

∫
M

a(x, y)[h(y)] (5.4)

where a(x, y) ∈ L(∧`T ∗yM,∧`T ∗xM) depends continuously on x, y. A direct
computation shows that

tr[(A) =

∫
M

tr(a(x, x)).

Also, one can verify directly that for a finite rank operator A we have tr[(A) =
tr(A), although we will not require this fact.

28 Note that the definition is, given the freedom in the choice of κ, quite arbitrary. We
are not interested in investigating the equivalence of the various possible definitions.
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5 FLAT TRACES

Lemma 5.1. For each s ∈ R+, 0 ≤ ` ≤ d − 1, <(z) > σ` and n ∈ N, we

have that tr[(R(`)(z)nL(`)
s ) is well defined. Moreover,

tr[(R(`)(z)nL(`)
s ) =

1

(n− 1)!

∑
τ∈T (s)

χ`(τ)

µ(τ)
[λ(τ)− s]n−1 λ(τ)e−z(λ(τ)−s),

where T (s)
.
= {τ ∈ T ; λ(τ) > s}, provided s 6∈ {λ(τ)}τ∈T .

Proof. By definitions (4.7), (5.2) and (5.3) we have

tr[(R(z)nLs) = lim
ε→0

∫
M×R+

ωM(x)dt
∑
α,̄i

tn−1e−zt

(n− 1)!
〈ωα,̄i, φ∗−t−sjε,α,̄i,x〉x

= lim
ε→0

∑
α,̄i

∫
Uα×R+

ωM(x)dt
tn−1e−zt

(n− 1)!
JΘα(x)ψα(x)

× κε(Θα(x)−Θα(φ−t−s(x)))〈ωα,̄i, φ∗−t−sωα,̄i〉x.

We find convenient to rewrite the above as

tr[(R(z)nLs) = lim
ε→0

∑
α,̄i

∫
Uα×[s,∞)

Fα,̄i,z(x, t− s)
κε(Θα(x)−Θα(φ−t(x)))

JΘα(x)−1

Fα,̄i,z(x, t)
.
=

tn−1

(n− 1)!
e−ztψα(x)〈ωα,̄i, φ∗−t−sωα,̄i〉x.

(5.5)

Note that the integrand is non zero only for κε(Θα(x) − Θα(φ−t(x))) 6= 0,
that is for d(x, φ−t(x)) < ε.

Our next step is to break up the domain of the above integral in a con-
venient way. To this end for each closed orbit τ ∈ T and ε > 0 we define

Ωε
τ
.
= {(x, t) ∈M × R+ | |t− λ(τ)| ≤ C4ε,

d(φ−t1(x), τ) ≤ C3ε ∀t1 ∈ (0, t)},

where C3, C4 are constant to be specified shortly.

Sub-Lemma 5.2. There exists ε0 > 0 such that, for all ε < ε0, the support
of the integrand in (5.5) is contained in ∪τ∈T Ωε

τ . In addition, if Ωε
τ ∩Ωε

τ ′ 6= ∅,
then τ = τ ′.

41



5 FLAT TRACES

Proof. Let us recall the shadowing theorem for flows (Bowen [14]), in the
formulation explicitly given by Pilyugin in [54, Theorem 1.5.1], adapted to
our case. First of all we define the (ε, T )-pseudo-orbits t(t) : R → M to be
maps such that for any t′ ∈ R we have d(φt(t(t

′)), t(t + t′)) ≤ ε if |t| < T .29

Then we have the following theorem.

Theorem 5.3 ([54]). Let M be a smooth manifold and φt a C2 Anosov flow.
There exists ε0 > 0, C3 ≥ 1 such that given a (ε, 1)-pseudo orbit t(t) with
ε < ε0 there exists an orbit τ , a point p ∈ τ and a reparametrization σ(t)
such that, for all t, s ∈ R,

d(t(t), φσ(t)(p)) ≤ C3ε where |σ(t)− σ(s)− t+ s| ≤ C3ε|t− s|.

Now we can start our proof. Given x ∈ M and t ∈ R such that
d(x, φ−t(x)) < ε, we can construct a closed (ε, 1)-pseudo orbit. Let S be a
codimension one manifold containing x and transversal to the flow. Then, by
Theorem 5.3, there exists a p ∈ S∩τ and a σ such that d(φσ(t1)(p), φ−t1+nt(x)) ≤
C3ε for all t1 ∈ [nt, (n + 1)t], n ∈ Z. Next, let t∗ be the time of first return
to S: i.e. φσ(t∗)(p) = q ∈ S. Since, for all t1 ∈ R, φt1(p), φt1(q) are always
C3ε close to the (ε, 1)-pseudo orbit, then they must belong to each other’s
weak stable and unstable manifolds, which implies p = q. Accordingly, there
exists a prime periodic orbit τp ∈ Tp that shadows the pseudo orbit. Also,
by the same argument, such an orbit is unique. It follows that

|σ(t)− λ(τp)| ≤ 2C3ε. (5.6)

Moreover, for each t1 ∈ [0, t], the trajectory of φ−t1(x) is C3ε close to τ for
a time at least min{t1, t − t1} both backward and forward in time. By the
hyperbolicity this implies that d(φ−t1(x), τ) ≤ C0C3εe

−λ̄min{t1,t−t1}. If q ∈ τ
is the closest point to z = φ− t

2
(x), let ξ(t1) = φσ̄(t1)(q) − φt1(z) where σ̄ is

defined by30

〈ξ(t1), V (φσ̄(t1)(q))〉 = 0,

where V is the vector field generating the flow. Differentiating we have

|1− σ̄′|‖V (φσ̄(t1)(q))‖2 ≤ C#‖ξ(t1)‖
29 Note that we do not require t(t) to be continuous.
30 Here we are really working in charts and using the euclidean structure, we do not

write this explicitly since it obvious (but a bit notationally unpleasant) how to proceed.
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which, by the integral Gronwald inequality, yields |σ̄(t1)− t1| ≤ C#ε. Hence,
for each t1 ∈ [0, t],

|φσ(−t1)(p)− φ t
2
−t1(q)| ≤ |φσ(−t1)(p)− φσ̄( t

2
−t1)(q)|+ C#ε

≤ |φ t
2
−t1(z)− φσ̄( t

2
−t1)(q)|+ C#ε ≤ C#ε.

Accordingly, there exists C4 > 0 such that |σ(t)−t| ≤ C4ε whereby improving
the bound in Theorem 5.3. Recalling (5.6) it follows that (x, t) ∈ Ωε

τ .
The above proves the first part of the Sub-Lemma, to prove the second

suppose (x, t) ∈ Ωε
τ ∩ Ωε

τ ′ . Let z ∈ τ be the closest point to x. Then,

d(x, φt(x)) ≤ 2C3ε+ d(z, φt(z)) ≤ (2C3 + C4)ε.

We can then construct a closed ((2C3 + C4)ε, 1) pseudo orbit. If ε is chosen
small enough, by the arguments above such a pseudo orbit can shadow a
unique prime orbit τp. Hence both τ and τ ′ are multiples of the same orbit,
but |λ(τ) − λ(τ ′)| ≤ 2C4ε. Hence if 2C4ε is smaller than the period of the
shortest periodic orbit, then τ = τ ′.

We can then rewrite (5.5) as∑
α,̄i,τ∈Tε(s)

∫
Ωετ

κε(Θα(x)−Θα(φ−t(x)))JΘα(x)Fα,̄i,z(x, t− s)ωM(x), (5.7)

where we have introduced the notation Tε(s)
.
= T (s − C4ε). Next, it is

convenient to pass to charts, (ξ, t)
.
= Θ̃α(x, t)

.
= (Θα(x), t), φα−t

.
= Θα ◦ φ−t ◦

Θ−1
α . Thus, part of the expression (5.7) can be rewritten as,∑

α,̄i,τ∈Tε(s)

∫
Θ̃α(Ωτ∩(Uα×R))

κε(ξ − φα−t(ξ))Fα,̄i,z ◦ Θ̃−1
α (ξ, t− s). (5.8)

Note that Θ̃α(Ωτ ∩ (Uα×R+)) is contained in the ε-neighborhood of a finite
number of lines (the connected pieces of Θα(τ ∩ Uα)). Let us call {Ωτ,α,m}
the collection of such connected components.

Let us set ξ = (ξ̃, ξd) and the map Ξτ,α,m : Ωτ,α,m → Rd+1 given by

Ξτ,α,m(ξ, t)
.
= (ξ1 − φα−t(ξ)1, . . . , ξd−1 − φα−t(ξ)d−1, ξd, t)
.
= (ζ1, . . . , ζd−1, ξd, t)

.
= (ζ, ξd, t).

(5.9)

Note that, if ξ ∈M belongs to a periodic orbit τ , then det(DΞτ,α,m(ξ, λ(τ))) 6=
0 by the hyperbolicity of the flow. Thus the map Ξτ,α,m is locally invertible.
What is not clear is if it is invertible on all Ωτ,α,m.
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Sub-Lemma 5.4. There exists ε0 > 0 such that, for all ε ≤ ε0 and α,m, τ ,
the map Ξτ,α,m is a diffeomorphism from Ωτ,α,m onto its image.

Proof. Suppose there exist (z, ξ, t), (y, η, t′) ∈ Ωτ,α,m such that Ξτ,α,m(z, ξ, t) =
Ξτ,α,m(y, η, t′). Then t = t′ and ξ = η and

z − y = f(z)− f(y) (5.10)

where f = φα−rτ,α,m(z) is the return map to the zero section. Let W s(v),W u(v)

be the local stable and unstable manifolds of f at v and Es(v), Eu(v) be the
stable and unstable spaces. For v ∈ Rd−1 let Π(v) be the projector on Es(v)
along Eu(v). Let x = W s(z)∩W u(y), then w = f(x) = W s(f(z))∩W u(f(y)).
By hyperbolicity,

‖f(z)− f(x)‖ ≤ C0e
−λ̄t‖z − x‖ ; ‖y − x‖ ≤ C0e

−λ̄t‖f(y)− f(x)‖. (5.11)

By the uniform bounds on the curvature of the invariant manifolds (see
Appendix E),

‖Π(x)(z − x)− (z − x)‖ ≤ C#‖z − x‖2;

‖(1− Π(f(x)))(f(z)− f(x))− (f(z)− f(x))‖ ≤ C#‖f(z)− f(x)‖2,
(5.12)

and the analogous for y. Indeed, we can argue in the plane containing the
triangle of vertices x, z and q = x + Π(x)(z − x). Let p be the orthogonal
projection of z on the x, q line. Since the side x, q is tangent to W s(x), and
the stable and unstable manifolds are uniformly transversal, at x, ‖z − q‖+
‖z− p‖ ≤ C#‖x− z‖2. Thus ‖z− x‖− ‖x− p‖ ≤ C#‖z− x‖3. On the other
hand ‖p− q‖ ≤ C#‖z − x‖2.

By the Hölder continuity of the foliations we have, for some $ ∈ (0, 1],

‖Π(x)(1− Π(f(x))‖+ ‖(1− Π(f(x))Π(x)‖ ≤ C#ε
$. (5.13)

Accordingly, by (5.12), (5.10), (5.11) and (5.13),

‖z − x‖ ≤ ‖Π(x)(z − x)‖+ C#‖z − x‖2

= ‖Π(x)[(y − x) + (f(z)− f(x))− (f(y)− f(x))]‖+ C#ε‖z − x‖
≤ C#[e−λ̄t + ε$](‖z − x‖+ ‖f(y)− f(x)‖).

If λ(τ) is large enough and ε small, then ‖z − x‖ ≤ 1
2
‖f(y) − f(x)‖. By a

similar argument we have ‖f(y)−f(x)‖ ≤ 1
2
‖z−x‖. This proves the Lemma

for all the periodic orbits with period larger than a fixed constant. For the
finitely many remaining orbits the statement follows trivially from the local
invertibility of the map by choosing ε0 small enough.
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Having established that (5.9) is a good change of coordinates, we can
consider some more of its properties. For each α,m, there exists a unique
pτ,α,m ∈ Rd−1 such that (pτ,α,m, 0) ∈ Θα(τ ∩Uα) and (pτ,α,m, 0, λ(τ)) ∈ Ωτ,α,m,
note that Ξτ,α,m(pτ,α,m, 0, t) = (0, 0, t). Next, define the (smooth) return time
function rτ,α,m(ξ̃) by [φα−rτ,α,m(ξ̃)

(ξ̃, 0)]d = 0 such that rτ,α,m(pτ,α,m) = λ(τ).

Note that φα−λ(τ)(pτ,α,m, 0) = (pτ,α,m, 0), moreover, for t close to λ(τ), we have

φα−t(ξ̃, ξd) = φα−rτ,α,m(ξ̃)
(ξ̃, 0) + (0,−t+ rτ,α,m(ξ̃) + ξd).

Also rτ,α,m ◦Ξ−1
τ,α,m(ζ, ξd, t) = r̃τ,α,m(ζ). It is then natural to define the return

map to the zero section Kτ,α,m = φα
rτ,α,m(ξ̃)

(ξ̃, 0). Clearly such a map is hy-

perbolic. It is convenient to set Λτ,α,m(ζ) = [DKτ,α,m]◦Ξ−1
τ,α,m(ζ, 0, r̃τ,α,m(ζ)).

In the sequel we will need several estimates on the regularity of the above
object that we summarize in the next result.31

Sub-Lemma 5.5. There exists ε0 > 0 such that, for all ε < ε0, τ ∈ T ,
α ∈ A and m ∈ N, we have

‖(1− Λτ,α,m)−1‖∞ ≤ C#

‖∂ζ r̃τ,α,m‖∞ ≤ C#

‖∂ζ det(1− Λτ,α,m)−1‖∞ ≤ C#‖ det(1− Λτ,α,m)‖∞.

Proof. Note that

Dφα−t(ξ) =

(
Λτ,α,m ◦ Ξτ,α,m(ξ̃, ξd, t) 0

gτ,α,m ◦ Ξτ,α,m(ξ̃, ξd, t) 1

)
where the left entries do not depend on ξd, t (hence Λτ,α,m, gτ,α,m depend only
on ζ). The first inequality of the Sub-Lemma follows by hyperbolicity. In
addition, gτ,α,m, by the existence of an invariant cone field, satisfies, for each
η ∈ Rd−1, |〈gτ,α,m, η〉| ≤ C#‖Λτ,α,mη‖. That is

‖[Λ−1
τ,α,m]∗gτ,α,m‖ ≤ C#. (5.14)

Also, we have

[DΞτ,α,m] ◦ Ξ−1
τ,α,m(ζ, ξd, t) =

1− Λτ,α,m(ζ) 0 0
0 1 0
0 0 1

 . (5.15)

31 In fact, Sub-Lemma 5.5 contains much more than what is presently needed (a rough
bound of the type eC#λ(τ) would suffice), yet its full force will be necessary in Lemma 8.2.
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Hence det([DΞτ,α,m] ◦ Ξ−1
τ,α,m(ζ, ξd, t)) = det(1− Λτ,α,m(ζ)) 6= 0 by hyperbol-

icity. By applying the implicit function theorem we then have

∂ζ r̃τ,α,m =
[
Λτ,α,m(1− Λτ,α,m)−1

]∗
[Λ−1

τ,α,m]∗gτ,α,m.

The above formula and (5.14) imply the second inequality of the Lemma. To
prove the last we adapt the arguments in [44, Sub-Lemma 3.2] (see also [58]).

We divide λ(τ) in l time intervals long enough so that the Poincaré map
is hyperbolic. Let {ti}l−1

i=1 be the times at which we insert a Poincaré section
while the first and last are our zero section. In each new section we can choose
coordinates so that the periodic orbit is at (0, 0) and, at such a point, {(ξ, 0)}
corresponds to the stable manifold and {(0, η)} to the unstable one. Let Λi

be the derivative of the map between the i and i+ 1 section. By hypothesis
each Λi expands vectors close to the {(ξ, 0)} subspace and contracts vectors
close to the {(0, η)} subspace. Also

Λτ,α,m =
l−1∏
i=0

Λi.

Given a point ξ̃ in the zero section, let ξ̃i be its image in the i-th section.
With this notation we can write

∂ζmΛτ,α,m =
d−1∑
p=1

∂ξ̃jp
∂ζm

l−1∑
j=0

PjΓj,pQj

Pj =
∏
i>j

Λi ; Qj =
∏
i≤j

Λi ; Γj,p = ∂ξ̃jpΛjΛ
−1
j .

Note that

∂ξ̃jp
∂ζm

= Qj(1− Λτ,α,m)−1 = Qj(1− PjQj)
−1 = (Q−1

j − Pj)−1

and, by the hyperbolicity, it follows that ‖ ∂ξ̃
j
p

∂ζm
‖ ≤ C#. On the other hand

∂ζm det(1− Λτ,α,m) = − tr
(
∂ζmΛτ,α,m(1− Λτ,α,m)−1

)
· det(1− Λτ,α,m).

We can then compute

| tr
(
∂ζmΛτ,α,m(1− Λτ,α,m)−1

)
| ≤ C# sup

p

l−1∑
j=0

∣∣tr (PjΓj,pQj(1− PjQj)
−1
)∣∣

= C# sup
p

l−1∑
j=0

∣∣tr (Γj,p(P−1
j Q−1

j − 1)−1
)∣∣ ≤ C#
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where we have used the hyperbolicity again. The last inequality of the Sub-
Lemma is thus proven.

By first performing the change of variables Ξτ,α,m, then using the prop-
erties of the chosen κ, and finally using the change of coordinates η = ε−1ζ,
v = ε−1(t− r̃τ,α,m(ζ)), we can write (5.8) as∑

α,̄i,m,τ∈Tε(s)

∫
Rd+1

Fα,̄i,z ◦ Θ̃−1
α ◦ Ξ−1

τ,α,m(εη, ξd, εv + r̃τ,α,m(εη)− s)

× κd−1(η)κ1(v)| det(1− Λτ,α,m(εη))|−1.

(5.16)

To continue we need to estimate the ε dependence in the integrand. Remem-
bering the definition (5.5), we see that the derivative of F is, in general, of
order C#e

C#|t|. Then, setting a = <(z), Sub-Lemma 5.5 yields

∑
α,̄i,m,τ∈Tε(s)

∫ δ

−δ

Fα,̄i,z ◦ Θ̃−1
α ◦ Ξ−1

τ,α,m(0, ξd, λ(τ)− s)
| det(1− Λτ,α,m(0))|

+O
(
ε|z| [λ(τ)− s]n−1eC#λ(τ)−a[λ(τ)−s]

(n− 1)!

)
.

(5.17)

Define Dhypφλ(τ) = Λτ,α,m(0). If we compute this matrix in a different chart
or at another point in the orbit we simply obtain a matrix conjugated to
Dhypφλ(τ). Thus | det(1 − Dhypφλ(τ))| depends only on τ . In addition, we
have32

tr(∧`Dφα−λ(τ)) =
∑
k̄∈I`

det(Dφα−λ(τ))k̄,k̄ =
∑
k̄∈I−`

det(Dhypφ−λ(τ))k̄,k̄

= tr(∧`(Dhypφ−λ(τ))),

(5.18)

which, again, depends only on the orbit τ . Accordingly,∑
ī

〈ωα,̄i, φ∗−λ(τ)ωα,̄i〉pτ,α,m = tr(∧`(Dhypφ−λ(τ)).

32 Given a vector space V d over R and a matrix representation of a linear operator
A : V d → V d, we can construct, by the standard external product, a matrix representation
of ∧`A : ∧`(V d)→ ∧`(V d) with elements aī,j̄ = det(Aī,j̄) (see definition (A.1) or [11]). By
det(A)k̄,k̄ we mean the determinant of the matrix (Aki,kj ). Note that det(Dφα−λ(τ))k̄,k̄ = 0

unless k` = d. See Remark 3.1 for the definition of I−` .
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To conclude, remember that the number of closed orbits with period between
t and t+1 is bounded by C#e

htop(φ1)t (see [39, Theorem 18.5.7]). In fact, there
exists an asymptotic formula, see [48], which we are substantially improving
in Theorem 2.8. Hence the error term in (5.17) is bounded by∑

k≥s

ε|z| [k − s]
n−1eC#k−a[k−s]

(n− 1)!
≤ C#ε|z|(a− C#)−neC#s

provided a > C#. By summing over the connected components of Ωτ,α,m,
taking into account the multiplicity of orbits, resumming on α and recalling
(2.6) we finally obtain that there exists C2, ε0 > 0 such that, for all ε ≤ ε0

and a > C2,∣∣∣∣∣∣
∫
M

∑
α,̄i

〈ωα,̄i, R(`)(z)nL(`)
s (jε,α,̄i,x)〉x −

∑
τ∈T (s)

χ`(τ) [λ(τ)− s]n−1 λ(τ)

(n− 1)!µ(τ)ez(λ(τ)−s)

∣∣∣∣∣∣
≤ C#ε|z|(a− C2)−ne

a
2
s.

(5.19)

Taking the limit ε → 0 yields the Lemma for a > C2. On the other hand
the above estimates show that both sides of the equation in the statement of
the Lemma are well defined analytic functions for a > σ`. Indeed, equation
(5.16) shows that the approximations to the flat trace, which are analytic, are
uniformly bounded in any region a ≥ a0 > σ` hence they have analytic accu-
mulation points that must agree since they agree for large a. The statement
of the Lemma follows.

By a direct computation using Lemma 5.1 we have the natural formula33∫ ∞
0

e−zs
sn−1

(n− 1)!
tr[(R(z)Ls) = tr[(R(z)n+1). (5.20)

6 Tensorial Transfer Operators

In this section we extend the methods of Liverani-Tsujii [45] to the case of
flows. The goal is to provide a setting in which a formula of the type (5.1)

33 Indeed,∫ ∞
0

e−zs
sn−1

(n− 1)!
tr[(R(z)Ls) =

∑
τ∈T

∫ λ(τ)

0

sn−1

(n− 1)!

χ`(τ)

µ(τ)
λ(τ)e−zλ(τ).
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makes sense and can be used to compute the trace (see Lemma 6.8 for the
exact implementation). The first step is to note that, by equation (A.4), the

adjoint (with respect to 〈·, ·〉Ω`) of L(`)
t is given by, for g ∈ Ω`

0,r,

L(`)

t g
.
= (−1)`(d−`) ∗(φ∗t (∗g)). (6.1)

Next we would like to take the tensor product of L(`)
t times L(`)

t , and define
a Banach space, connected to the product space Ω2`

r (M2),34 on which it acts
naturally. Note that, contrary to the discrete case, in the continuous setting
this procedure naturally yields a R2

+ action in the variables s, t ≥ 0 (rather
than a flow). We start with the construction of the Banach space.

6.1 Spaces and Operators

We use the construction developed in Section 3 applied to the manifold M2.
First of all consider the atlas {Uα,Θα}α∈A chosen at the beginning of

Section 4. We define the map I(u, s, t, u′, s′, t′) = (s, u′, u, s′, t, t′), u, u′ ∈ Rdu ,
s, s′ ∈ R(ds), t, t′ ∈ R, the atlas {Uα × Uβ, I ◦ (Θα × Θβ)}α,β∈A and the
partition of unity {ψα,β}α,β∈A, where ψα,β(x, y) = ψα(x)ψβ(y). We are thus
in the situation of Section 3 with d1 = du + ds = d− 1 and d2 = d+ 1. Note
that the conditions (3.1) are automatically satisfied.35 We choose the cones
given by the choice ρ+ = 2, ρ− = 1 and L0 as in Section 4 to define the set
of “stable” leaves, which we denote by Σ2.

Remark 6.1. From now on we will ignore the map I since it is just a trivial
permutation of the coordinates.

By appendix A we can consider the exterior forms Ω2`
r (M2) and the re-

lated scalar product. We define the projections πi : M2 →M , i ∈ {1, 2}, such
that π1(x, y) = x and π2(x, y) = y. For each pair of `-forms f, g in Ω`

r(M)
we have that π∗1f ∧ π∗2g ∈ Ω2`

r (M2). In addition, given a, b, f, g ∈ Ω`
r(M), by

equation (A.1), we have

〈π∗1a ∧ π∗2b, π∗1f ∧ π∗2g〉(x,y) = 〈a, f〉x〈b, g〉y. (6.2)

Moreover, by (A.2), it follows that

∗ (π∗1f ∧ π∗2g) = (−1)`(d−`)π∗1(∗f) ∧ π∗2(∗g). (6.3)

34 By M2 we mean the Riemannian manifold with the product metric.
35 Note that the third condition holds both for x2d and x2d−1.
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Next we define the vector space Ω`
2,r(M)

.
= span{π∗1f∧π∗2g : f, g ∈ Ω`

0,r(M)}
on which we intend to base our spaces. Note that locally the Cs closure of
Ω`

2,s(M) contains all the forms h such that i(V,0)h = i(0,V )h = 0 and that can
be written as

h =
∑
α,β

hα,β =
∑
α,β,̄i,j̄

ψα,β(x, y)hα,β
ī,j̄

(x, y)ωα,̄i(x) ∧ ωβ,j̄(y), (6.4)

where hα,β
.
= ψα,βh, and hα,β

ī,j̄
∈ C s̄(M2), for each s̄ > s.36

Lastly, we must choose an appropriate set of test functions and vector
fields. For the set of test functions we choose Γ`,s2,c(α, β,G), defined by the
restriction of span{π∗1f ∧ π∗2g : f, g ∈ Ω`

s(M), π∗1f ∧ π∗2g|∂Wα,β,G
= 0} to

Wα,β,G. The set of vector fields have only the restriction that37

(π1)∗(v) = 0 =⇒ w ∈ Vs(M2) and (π2)∗(w) = 0 −→ [w, v] = 0

(π2)∗(w) = 0 =⇒ v ∈ Vs(M2) and (π1)∗(v) = 0 −→ [v, w] = 0.
(6.5)

Note that this implies

[v, w] = ([(π1)∗v, (π1)∗w], [(π2)∗v, (π2)∗w]). (6.6)

The reader can easily check that the above choices satisfy all the condi-
tions specified in Section 3. In particular, Lemma 4.2 holds also in the present
context, since the arguments in its proof respects the property (6.5). Thus
we can apply the construction in Section 3 and call ‖·‖p,q,`,2 the resulting

norms and Bp,q,`2
.
= Ω`

2,r(M)
‖·‖p,q,`,2

the corresponding Banach spaces.

Finally, we define the required operators L(`)
t,s . For each f, g ∈ Ω`

r(M)

L(`)
t,s(π

∗
1f ∧ π∗2g)

.
= (π∗1(L(`)

t f)) ∧ (π∗2(L(`)

s g)) (6.7)

which extends by linearity to an operator L(`)
t,s : Ω`

2,r(M)→ Ω`
2,r(M).

To avoid the problem of small times, for which the cone contraction might
fail, we apply the same strategy used in the previous section: we define

|||h|||p,q,`,2 = sup
t,s≤t0

∥∥∥L(`)
t,sh
∥∥∥
p,q,`,2

,

36 This follows since C∞ is dense in C s̄ in the Cs topology and smooth functions can
be approximated by tensor functions, e.g. by Fourier series, in any Cs norm. Note that if
s ∈ N, then one can choose s = s̄ (for a more refined description, not used here, see the
theory of little Hölder spaces).

37 Let (x, y) ∈M2, then we are requiring v(x, y) = (v1(x), v2(y)).
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and we define the spaces B̃p,q,`2
.
= Ω`

2,r

|||·|||p,q,`,2 ⊂ Bp,q,`2 .
Following Remark 3.9, equation (A.4), setting ω2 = π∗1ω̃ ∧ π∗2ω̃, yields

L(d−1)
t,t (fω2) = f ◦ (φ−t × φt)Jφ−tω2.

That is, we recover the same type of operators studied in [45].

6.2 Lasota-Yorke inequalities

We can now obtain several results parallel to those in Sections 4.1, 4.2. As
the proofs are almost identical to those in Section 4.3 we will not give full
details and highlight only the changes that need to be made.

Lemma 6.2. For each 0 < p + q < r − 1, t, s ∈ R+, L(`)
t,s ∈ L(B̃p,q,`2 , B̃p,q,`2 ).

More precisely L(`)
t,s is an R2

+ action over B̃p,q,`. Moreover, L(`)
t,0 and L(`)

0,s

are strongly continuous semigroups with generators X1, X2, respectively. In
addition, we have38∣∣∣∣∣∣∣∣∣L(`)

t,sh
∣∣∣∣∣∣∣∣∣
p,q,`,2

≤Cp,qeσ`(t+s) |||h|||p,q,`,2∣∣∣∣∣∣∣∣∣L(`)
t,sh
∣∣∣∣∣∣∣∣∣
p,q,`,2

≤Cp,qeσ`(t+s)e−σp,q min{t,s} |||h|||p,q,`,2 + Cp,qe
σ`(t+s) |||h|||p−1,q+1,`,2

+
2∑
j=1

eσ`(t+s) |||Xjh|||p−1,q+1,`,2 .

Proof. As in Section 4, we first prove an analogue of Lemma 4.5, and then
we prove a stronger version of it, as in Lemma 4.7.

The proof contained in Subsection 4.3 can be followed almost verbatim.
By the same construction one obtains the equivalent of (4.11), that is∫

Wα,α′,G

〈g,L(`)
t,sh〉ωvol =

∑
β,β′∈A
k∈K̃β,β′

∑
ī,j̄ ,̄i,j̄′

∫
Wβ,β′,Gk

(−1)(d−`)`ψβ,β′Jφ
−1
t−s

× JW (φt × φ−s)gī′,j̄′ ◦ (φt × φ−s) · 〈ωβ,̄i, ∗φ∗t ∗ ωα,j̄〉〈ωβ,̄i′ , φ∗−sωα,j̄′〉ωvol.

38 Here and in the sequel we suppress the λ dependence in the constants to simplify the
notation.
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For the case ℘ = 0, the argument is exactly the same as in Section 4.3,
apart from the estimate of the volume of φ−t × φs(Wα,α′,G) to which Ap-
pendix C cannot be applied directly. To estimate such a volume, after set-
ting (z1, z2) = (Θα×Θα′)

−1(G(0)), let us consider W (z)
.
= W s

6δ(z1)×W u
6δ(z2)

and the holonomy from Wα,α′,G to W (z) determined by the weak unstable
foliation in the first coordinate and the weak stable in the second. Clearly
the distance between the corresponding points in the images of Wα,α′,G and
W (z) is uniformly bounded; hence the required volume is proportional to the
volume of φ−t × φs(W (z)), which is bounded by ehtop(φ1)(t+s).

For the case ℘ > 0, by equations (6.6), we can reorder the vector fields so
as to have first the vector fields tangent to Wβ,β′,Gk , then the vector fields in
the unstable direction of φt × φ−s and then the two neutral directions. We
can then proceed as in equation (4.21). All the following computations hold
verbatim apart from two issues.

First, in equation (4.23) the last term yields a multiplicative factor that
does not produce a new legal test function. Indeed, such a factor is the sum
of the a divergence of the vector field (which gives no problems) and the
scalar product of the vector field time a Cr−1 vector, call it A. As A comes
from taking derivatives of G, if follows that it may not be of the required
product structure. The problem is easily solved: since r− 1 > p+ q, we can
approximate A in the ℘−1+q topology by vectors An ∈ Γ`,℘−1+q

2,c (α, β,G) with
the appropriate tensor product structure. The required inequality follows.

Second, the weakest contraction is now given by the case in which all
the vector fields act on the component with the smallest time, hence the
min{t, s} factor.

Lemma 6.3. For each 0 < p + q < r − 1, ` ∈ {0, . . . , d − 1}, and for each
<(z)

.
= a > σ`, the operator

R
(`)
2 (z)n =

1

(n− 1)!2

∫ ∞
0

∫ ∞
0

(ts)n−1e−z(t+s)L(`)
t,s dtds (6.8)

satisfies∣∣∣∣∣∣∣∣∣R(`)
2 (z)n

∣∣∣∣∣∣∣∣∣
p,q,`,2

≤ Cp,q(a− σ`)−2n

∣∣∣∣∣∣∣∣∣R(`)
2 (z)nh

∣∣∣∣∣∣∣∣∣
p,q,`,2

≤ Cp,q,a

{ |||h|||p,q,`,2
(a− σ` + σp,q

2
)2n

+
(|z|+ 1)

(a− σ`)2n
|||h|||p−1,q+1,`,2

}
.

Hence R(`)(z) is a linear operator on B̃p,q,`2 with spectral radius bounded by
(<(z)− σ`)−2 and essential spectral radius bounded by (<(z)− σ` + σp,q

2
)−2.
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Proof. Again the proof follows closely Subsection 4.2, and more precisely
Lemma 4.8. The only difference rests in the need to decompose the domain
of integration of (6.8) into four pieces: A1 = {(t, s) ∈ R2

+ : t ≤ t0, s ≤ t0},
A2 = {(t, s) ∈ R2

+ : t ≤ t0, s > t0}, A3 = {(t, s) ∈ R2
+ : t > t0, s ≤ t0} and

A4 = {(t, s) ∈ R2
+ : t > t0, s > t0}.

The estimate of the integration over A4 follows verbatim the argument in
Lemma 4.8, except that one then obtains (instead of equation (4.31))∫ ∞

t0

∫ ∞
t0

Cp,q(ts)
n−1

(n− 1)!2e[a−σ`](t+s)+min{t,s}σp,q
|||h|||p,q,`,2 dtds

+
Cp,q(|z|+ 1)

(a− σ`)2n
|||h|||p−1,q+1,`,2 .

(6.9)

The integral in (6.9) is estimated as follows.∫ ∞
t0

∫ ∞
t0

e−[a−σ`](t+s)−min{t,s}σp,q(ts)n−1

(n− 1)!2
= 2

∫ ∞
t0

dt

∫ ∞
t

ds
e−[a−σ`](t+s)−tσp,q(ts)n−1

(n− 1)!2

≤
n−1∑
k=0

2

(n− 1)!k!

∫ ∞
0

dt
tn+k−1e−(2a−2σ`+σp,q)t

(a− σ`)n−k

= 2
n−1∑
k=0

(
n+ k − 1

n− 1

)
1

(a− σ`)n−k(2a− 2σ` + σp,q)n+k

≤ 2(2a− 2σ` + σp,q)
−n(a− σ`)−n

n−1∑
k=0

(
n+ k − 1

n− 1

)
(a− σ`)k

(2a− 2σ` + σp,q)k

≤ (a− σ` +
σp,q
2

)−n(a− σ`)−n.

Similarly, the integrals over A2, A3 are bounded by

2

∫ ∞
0

dt

∫ t0

0

ds
e−[a−σ`](t+s)−sσp,q(ts)n−1

(n− 1)!2
≤ Cp,qt0

n

(a− σ`)nn!
≤ Cp,q

(a− σ` + σp,q
2

)2n
,

provided n ≥ (a−σ`+
σp,q

2
)2t0e

(a−σ`)
, by analogy with (4.30). The estimate of the

integral over A1 is treated similarly.

6.3 Tensor representation of the trace

Following the scheme of [45], we define a suitable delta like functional acting

on B̃p,q,`2 and we construct an approximation scheme for such a functional.
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For each f, g ∈ Ω`
r(M), we define

δ`2(π∗1f ∧ π∗2g)
.
=

∫
M

〈f, g〉xωM(x) . (6.10)

Such a definition extends by linearity and density to all sections in the closure
of Ω`

2,r(M) with respect to the Cr topology. Thus we obtain

δ`2(h) =
∑
α,β

∑
ī,j̄

∫
M

ψα,β(x, x)hα,β
ī,j̄

(x, x)〈ωα,̄i(x), ωβ,j̄(x)〉ωM(x)

=
∑
α,̄i

∫
M

ψα(x)hα,α
ī,̄i

(x, x)ωM(x).

(6.11)

Given κε as in Definition D.1, we set Jε(x, y) = 0 if d(x, y) > δ, otherwise we
set

Jε(x, y)
.
=
∑
α,̄i

ψα(y) · JΘα(y) · κε(Θα(x)−Θα(y))ωα,̄i(x) ∧ ωα,̄i(y). (6.12)

Lemma 6.4. For each h ∈ Ω`
2,s(M), s < r,we have that

lim
ε→0
〈Jε, h〉Ω(2`) = δ`2(h). (6.13)

Proof. For f, g ∈ Ω`
∞(M), let h = π∗1f ∧ π∗2g, then

lim
ε→0
〈Jε, h〉Ω(2`) =

∫
M2

〈Jε, π∗1f ∧ π∗2g〉(x,y)ωM(x) ∧ ωM(y)

= lim
ε→0

∫
M2

∑
α

ψα(y)JΘα(y) · κε(Θα(x)−Θα(y))〈f, g〉xωM(x) ∧ ωM(y).

The result follows, for h of the above form, by integrating with respect to y.
We can extend this result to a generic h by linearity of the scalar product
and by density (see footnote 36).

Next we need the equivalent of Lemma 3.10, the proof is omitted since it
is exactly the same as before, starting from the space Ω`

2,r(M) and choosing
k appropriately.

Lemma 6.5. There exists an injective immersion 2 : B̃p,q,`2 →
(
Ω`

2,r(M)
)′

.
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Lemma 6.6. The current δ`2 extends uniquely to an element of
(
B̃p,q,`2

)′
.

Proof. Since B̃p,q,`2 is defined by the closure of the sections in Ω`
2,r, it suffices to

prove that there exists c > 0 such that δ`2(h) ≤ c |||h|||p,q,`,2 for each h ∈ Ω`
2,r.

Let WD
.
= {(x, y) ∈ M2 : x = y} and recall that δ`2 corresponds to

integrating on such a manifold by (6.11). If x ∈ Uα we can foliate WD, in

the local chart Vα, with the manifolds Wα,Gς ∈ Σ̃ given by the graph of the
functions Gς(x

s, yu) = (xs, yu, ς, xs, yu, ς). Accordingly,

δ`2(h) ≤
∑
α,̄i

∫
dς

∣∣∣∣∣
∫
Wα,Gς

〈ψα(x)ωα,̄i ∧ ωα,̄i, h〉

∣∣∣∣∣ ≤ C#‖h‖0,q,`,2.

At this point, we would like to make sense of the limit of Jε in B̃p,q,`2 .
Unfortunately, this can be done only at a price.

Lemma 6.7. For <(z) sufficiently large, the sequence R
(`)
2 (z)Lt0,t0Jε is a

Cauchy sequence in B̃p,q,`+,2 . We call δ̄`2(z) the limit of such a sequence.

Proof. Let us start by showing that the sequence is bounded in B̃0,q,`
+,2 . Let

Wα,β,G ∈ Σ2(2, L+) and g ∈ Γ`,r2,c, then by equations (A.4), (6.2) and (6.3) we
have that∫

Wα,β,G

〈g,R(`)
2 (z)Lt0,t0Jε〉 =

∫
R2

+

ds dt e−z(t+s)
∫
Wα,β,G

Jφ−t−t0(x)

× Jφs+t0(y)〈(∗φ∗t+t0∗ ×φ
∗
−s−t0)g, Jε)〉 ◦ φ−t−t0(x)× φs+t0(y).

(6.14)

Note that, provided t0 has been chosen large enough, the tangent spaces of
the manifold φ−t−t0×φs+t0(Wα,β,G) can be covered by manifolds in Σ2(1, L0).

Let p̃ ∈ C∞(R,R+), supp(p̃) ⊂ (−δ, δ), p̃(−t) = p̃(t), be such that∑
n∈Z p̃(t+ nδ) = 1 for all t ∈ R. Let

Fn,m(x, y, t, s)
.
= Jφ−t−t0(φnδ+t0(x))Jφs+t0(φ−mδ−t0(y))

× det
(
D (φ−nδ−t0 × φmδ+t0)|TWα,β,G

)−1

◦ φnδ+t0 × φ−mδ−t0(x, y).

By the change of variable (x′, y′)
.
= φ−nδ−t0 × φmδ+t0(x, y), (6.14) becomes∑

n,m∈N

∫
R2

+

ds dt p̃(−t+ nδ)p̃(s−mδ)e−z(t+s)

×
∫
φ−nδ−t0×φmδ+t0 (Wα,β,G)

Fn,m · 〈(∗φ∗t+t0 ∗ ×φ
∗
−s−t0)g, Jε〉 ◦ φ−t+nδ × φs−mδ.
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Note that if (x, y) ∈ φ−nδ−t0 × φmδ+t0(Wα,β,G) and y ∈ suppψγ, then the
integrand is different from zero only if x ∈ Uγ. Let {Wγ,γ,k}Kγ,n,m ⊂ Σ2(1, L0)
be a covering of φ−nδ−t0 × φmδ+t0(Wα,β,G). Recalling equation (6.12), we can
then rewrite the previous formula39 by setting t′ = t−nδ, s′ = s−mδ. Thus
we obtain∑

n,m∈N

∑
γ∈A,̄i∈I

∑
k∈Kγ,n,m

∫
R2

ds′ dt′ p̃(t′)p̃(s′)e−z(t
′+s′+(n+m)δ)

×
∫
Wγ,γ,k

Fn,m(x, y, t′ + nδ, s′ +mδ) · ψγ ◦ φs′(y)JΘγ ◦ φs′(y)

× κε(Θγ(φ−t′(x))−Θγ(φs′(y)))

× 〈(∗φ∗t′+t0+nδ ∗ ×φ∗−s′−t0−mδ)g, ωγ,̄i ∧ ωγ,̄i〉 ◦ φ−t′ × φs′ .

(6.15)

Recall that the manifolds Θγ(Wγ,γ,k) are graphs of the type40

Gk(x
s, yu)

.
= (xs + x̂s, Hu(xs, yu), Hs(xs, yu), yu + ŷu, H0

1 (xs, yu), H0
2 (xs, yu))

where, since TΘ−1
γ (Wγ,γ,k) ∈ C 1

2
, max{‖∂xHu‖+‖∂xHs‖, ∂yHu‖+‖∂yHs‖} ≤

1
2
. It is then natural to set Gk = Θ−1

γ ◦Gk and

F̂γ,n,m,k,̄i(x
s, yu, s′, t′) = Fγ,n,m(Gk(x

s, yu), t′ + nδ, s′ +mδ)

× [JΘγ · ψγ] ◦Θ−1
γ (Gk(x

s, yu) + (0, 0, 0, s′))

× 〈(∗φ∗t′+t0+nδ ∗ ×φ∗−s′−t0−mδ)g, ωγ,̄i ∧ ωγ,̄i〉 ◦Θ−1
γ (Gk(x

s, yu) + (0, 0,−t′, s′)).

We can then continue our computation and write∑
n,m∈N

∑
γ∈A,̄i∈I

∑
k∈Kγ,n,m

∫
R2

ds′ dt′ p̃(t′)p̃(s′)e−z(t
′+s′+(n+m)δ)

×
∫
Rd−1

dxsdyuF̂γ,n,m,k,̄i(x
s, yu, t′, s′)

× ε−dκd−1(ε−1(xs −Hs(xs, yu) + x̂s, Hu(xs, yu)− yu − ŷu))
× κ1(ε−1(H0,1(xs, yu)−H0,2(xs, yu)− t′ − s′)).

(6.16)

39 To be precise we should treat separately the terms with n = 0 or m = 0, but we
leave this as an exercise for the reader since it is quite simple to handle, although a bit
cumbersome.

40 We drop the subscript n,m, γ, k from x̂, ŷ, Hu, Hs, H0,1, H0,2 in the following equation
since it is clear that such graphs depend on all these choices. Moreover we drop n,m, γ
from Gk since it will always be clear which open set we are considering.
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Note that we have ‖F̂‖C0 ≤ C#‖g‖C0 as in equation (4.15). In addition, the
map Ξ defined by

ξ = xs −Hs(xs, yu) + x̂s,

η = Hu(xs, yu)− yu − ŷu,
τ = −H0,1(xs, yu) +H0,2(xs, yu) + t′ + s′,

ς = s′

(6.17)

is locally invertible, hence it can be used as a change of variables. Thus,
setting a = <(z), we can bound (6.16) by∑

n,m∈N

∑
γ∈A

∑
k∈Kγ,n,m

Cze
−a(n+m)δ‖g‖C0 ≤ Cz

∑
n,m∈N

e(htop(φ1)−a)(n+m)δ‖g‖C0

≤ Cz(a− htop(φ1))−2‖g‖C0 .

Which, taking the sup on the manifolds and test forms, yields∣∣∣∣∣∣∣∣∣R(`)
2 (z)L(`)

t0,t0Jε

∣∣∣∣∣∣∣∣∣
0,q,`,2

≤ Cz(a− htop(φ1))−2.

Next, given ε > ε′ > 0, by using equation (6.16), (6.17) and the intermediate
value theorem we have, for <(z) large enough,∣∣∣∣∣
∫
Wα,β,G

〈g,R(`)
2 (z)L(`)

t0,t0Jε −R
(`)
2 (z)L(`)

t0,t0Jε′〉

∣∣∣∣∣
≤ C#

∑
n,m∈N

∑
γ∈A,̄i∈I

∑
k∈Kγ,n,m

∫
Rd+1

dξ dη dτ dς e−z{τ+[H0,1−H0,2]◦Ξ−1(ξ,η,τ,ς)+(n+m)δ}

×
[
Fγ,n,m,k,̄i(ξ, η, t′, s′)− Fγ,n,m,k,̄i(0, 0, 0, s′)

]
· [κε((ξ, η, t′))− κε′((ξ, η, t′))]

≤ Cz,qε
min{q,1}‖g‖Cq(a− htop(φ1))−2

where Fγ,n,m,k,̄i = F̂ ◦Ξ−1 ·JΞ−1. Note that, as in (4.17), ‖Fγ,n,m,k,̄i‖Cq ≤ Cq.

This proves the Lemma for B̃0,q,`
2 . The extension to B̃p,q,`2 is treated similarly

after integrating by parts p times.

We can finally present a description of the trace that does not involve any
limit (although, unfortunately, not yet for the operators we are interested in).
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6.3 Trace representation 6 TENSORIAL OPERATORS

Lemma 6.8. For each z ∈ C, <(z) large enough, n ∈ N and s, t ∈ R+, we
have that

δ
(`)
2

(
R

(`)
2 (z)nL(`)

t,s δ̄
(`)
2 (z)

)
= tr[(R(`)(z)2nL(`)

t+s+2t0
). (6.18)

Proof. Let Rn(z, s, t)
.
= δ

(`)
2

(
R

(`)
2 (z)nL(`)

t,s δ̄
(`)
2

)
. From Lemmata 6.6, 6.7 and

equation (6.11) we obtain

Rn(z, s, t) = lim
ε→0

∑
α,̄i

∫
M

ωM(x)ψα(x)
(
R

(`)
2 (z)nL(`)

t+t0,s+t0Jε

)α,α
ī,̄i

(x, x)

= lim
ε→0

∑
α,β,̄i,j̄

∫
R2

+

ds′dt′
(t′s′)n−1e−z(t

′+s′)

[(n− 1)!]2

∫
M

ωM(x)ψα(x) [ψβJΘβ] ◦ φs′+s+t0(x)

× κε(Θβ(φ−t′−t−t0(x))−Θβ(φs′+s+t0(x)))

× (−1)`(d−`)〈φ∗−t′−t−t0ωβ,j̄, ωα,̄i〉x〈ωα,̄i, ∗φ
∗
s′+s+t0 ∗ ωβ,j̄〉x.

Next, we sum over ī, α and use (A.4) to obtain

R(z, s, t) = lim
ε→0

∑
β,j̄

∫
R2

+

ds′dt′
(t′s′)n−1e−z(t

′+s′)

[(n− 1)!]2

∫
M

[ψβJΘβ] ◦ φs′+s+t0(x)

× κε(Θβ(φs′+s+t0(x))−Θβ(φ−t′−t−t0(x)))

× Jφs′+s+t0〈φ∗−t′−t−s′−s−2t0
ωβ,j̄, ωβ,j̄〉 ◦ φs′+s+t0(x)

= lim
ε→0

∑
β,j̄

∫
R2

+

ds′dt′
(t′s′)n−1e−z(t

′+s′)

[(n− 1)!]2

∫
M

〈ωβ,j̄,L
(`)
t′+s′+t+s+2t0

jε,β,j̄,x〉,

where, in the last line, we have changed variables and used (5.2). Next, after
the change of variables v = t′ + s′, u = t′, we integrate in u (the integral
is given by the β-function) and recall (5.3) to obtain the statement of the
Lemma.

At last we can start harvesting the benefits of the previous results. For
fixed p, q > 0, p+q < r−1, by Lemma 6.3 we have R

(`)
2 (z) = P

(`)
2 (z)+U

(`)
2 (z)

where P
(`)
2 (z) is a finite rank operator and the spectral radius of U

(`)
2 (z)

is bounded by (<(z) − σ` + σp,q
2

)−2. Recall that by Lemma 4.8 we have
R(`)(z) = P (`)(z) + U (`)(z) where P (`)(z) is a finite rank operator and the
spectral radius of U (`)(z) is bounded by (<(z)− σ` + σp,q)

−1. In addition,

P (`)(z)U (`)(z) = U (`)(z)P (`)(z) = 0 ; P
(`)
2 (z)U

(`)
2 (z) = U

(`)
2 (z)P

(`)
2 (z) = 0.
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6.3 Trace representation 6 TENSORIAL OPERATORS

Lemma 6.9. There exists C5 > 0 such that, for each t, s ∈ R+, n ∈ N and
z ∈ C, a = <(z) ≥ C5, we have that

δ
(`)
2

(
P

(`)
2 (z)nL(`)

t,s δ̄
(`)
2 (z)

)
= tr

(
P (`)(z)2nL(`)

t+s+2t0

)
. (6.19)

Proof. Recalling (6.7) and (A.4) we can write, for <(z) sufficiently large,

〈R(`)
2 (z)nL(`)

t+t0,s+t0Jε, π
∗
1(f) ∧ π∗2(g)〉Ω(2`)

=

∫
R2

+×M2

ds′ dt′
(t′s′)n−1

(n− 1)!2ez(t′+s′)
〈Jε, π∗1(∗φ∗t′+t+t0∗f) ∧ π∗2(φ∗−s−s′−t0g)〉.

(6.20)

By taking the limit ε→ 0, since the integrals are uniformly convergent with
respect to time (as in equation (5.7), by a rough bound on the growth of the
number of orbits), using Lemma 6.4 we obtain

R
(`)
2 (z)nL(`)

t,s δ̄
`
2(π∗1(f) ∧ π∗2(g)) =

∫
R2

+×M

(t′s′)n−1〈∗φ∗t′+t+t0 ∗ f, φ
∗
−s′−s−t0g〉

(n− 1)!2ez(t′+s′)

= (−1)`(d−`)
∫
R2

+

ds dt
(t′s′)n−1e−z(t

′+s′)

(n− 1)!2

∫
M

〈f, φ∗−s−t−s′−t′−2t0
g〉

= (−1)`(d−`)
∫
R+

dτ

∫ 1

0

dη
τ 2n−1ηn−1(1− η)n−1

(n− 1)!2ezτ

∫
M

〈f, φ∗−τ−t−s−2t0
g〉

= (−1)`(d−`)
∫
R+×M

dτ
τ 2n−1〈f, φ∗−τ−t−s−2t0

g〉
(2n− 1)!ezτ

= (−1)`(d−`)〈f,R(z)2nL(`)
t+s+2t0

g〉Ω` ,

(6.21)

since the dη integral in the third line is given by the β-function. By the von
Neumann expansion, for <(z) and <(ξ) large enough, we have

(ξ1−R(`)
2 (z))−1L(`)

t,s δ̄
`
2(π∗1(f)∧π∗2(g)) = (−1)`(d−`)〈f, (ξ1−(R(z)(`))2)−1L(`)

t+s+2t0
g〉Ω` .

Since both expression are meromorphic in the region {|ξ| > (a−σ`+ σp,q
2

)−2},
it follows that they must agree on such a region. Given a curve γ surrounding
the region {|ξ| ≤ (a− σ` + σp,q

2
)−2}, we can use standard functional analytic

calculus (e.g., [37]) and recall Lemma 6.5 to obtain, for h = π∗1f ∧ π∗2g,{[
U

(`)
2 (z)

]m
L(`)
t,s δ̄

`
2

}
(h) =

1

2πi

∫
γ

ξm
(
ξ1−R(`)

2 (z)
)−1

L(`)
t,s δ̄

`
2(h)dξ

=
(−1)`(d−`)

2πi

∫
γ

ξm〈f,
(
ξ1−R(`)(z)2

)−1 L(`)
t+s+2t0

g〉Ω`dξ

= 〈f, U (`)(z)2mL(`)
t+s+2t0

g〉Ω` .
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6.3 Trace representation 6 TENSORIAL OPERATORS

Hence, we have{[
P

(`)
2 (z)

]m
L(`)
t,s δ̄

`
2

}
(h) = 〈f, P (`)(z)2mL(`)

t+s+2t0
g〉Ω` . (6.22)

Since P (`)(z)2m is a finite rank operator, it follows that P (`)(z)2mL(`)
t+s+2t0

=

L(`)
t0 P

(`)(z)2mL(`)
t+s+t0 is also finite rank on Bp,q,`. Thus there exist um,k ∈

B′−,p,q,`, vm,k ∈ B+,p,q,`, k ∈ {1, . . . , L} (see Lemma 4.5), such that

〈f, P (`)(z)2mL(`)
t+s+2t0

g〉Ω` =
L∑
k=1

〈f, vm,k〉Ω`um,k(g).

Next, we define the mollification of an element h ∈ Ω`
2,s by

M2,ε(h)(x, y) =
∑
α,β

∑
ī,j̄

ψα(x, y)ψβ(x, y)ωα,̄i(x) ∧ ωβ,j̄(y)

× ε−2d

∫
R2d

κε(Θα(x)− ξ)κε(Θβ(y)− η)hα,β
ī,j̄

(Θ−1
α (ξ),Θ−1

β (η)).

(6.23)

By duality, we can define the mollificator M′2,ε on the currents. Following

the same reasoning as in Lemma D.2 we have that M′2,ε, restricted to Bp,q,`2 ,
is a bounded operator which converges, in the sense of Lemma D.2, to the
identity when ε→ 0.

A direct computation shows that M2,ε(π
∗
1(f)∧π∗2(g)) = π∗1(Mεf)∧π∗2(Mεg),

hence (6.22) implies

M′2,ε
{[
P

(`)
2 (z)

]m
L(`)
t,s δ̄

`
2

}
(h) = 〈Mεf, P

(`)(z)2mL(`)
t+s+2t0

Mεg〉Ω` .

Note that the M′2,ε
{[
P

(`)
2 (z)

]m
L(`)
t,s δ̄

`
2

}
∈ E2`

s for s ≤ p + q. Thus its value

on the product sections determines it uniquely as a E2`
p+q current (see foot-

note 36). Accordingly, since M′2,ε[P
(`)
2 (z)]mL(`)

t,s δ̄
`
2 and

∑L
k+1 π

∗
1(M′εvm,k) ∧

π∗2(M′εum,k) agree on each element of the type π∗1(f) ∧ π∗2(g), they agree as

currents. Thus, by Lemma 6.5, they are the same element of Bp,q,`2 . Accord-
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6.3 Trace representation 6 TENSORIAL OPERATORS

ingly, by Lemmata D.2, 6.6 and equation (6.10), we finally obtain that

δ2

(
P

(`)
2 (z)mL(`)

t,s δ̄
`
2

)
= lim

ε→0
δ2

(
M′2,εP

(`)
2 (z)mL(`)

t,s δ̄
`
2

)
= lim

ε→0

L∑
k=1

δ2 (π∗1(M′εvm,k) ∧ π∗2(M′εum,k))

= lim
ε→0

L∑
k=1

〈M′εvm,k,M′εum,k〉 =
L∑
k=1

um,k(vm,k).

Thus we have reduced the computation of certain “flat trace” to that of
a trace of a matrix. This suffices to obtain the same type of result for the
operators we are interested in, at last.

Lemma 6.10. For each p + q < r − 1, z = a + ib ∈ C with a > C5,
µ > (a− σ` + σp,q

2
)−1, we have, for each n ∈ N, that∣∣tr[(R(`)(z)n)− tr(P (`)(z)n)

∣∣ ≤ Cp,q,z,µµ
n . (6.24)

Proof. Lemma 6.8 yields, for all n,m, k ∈ N, |m − k| ≤ C#, the following
ugly, but useful, formula∫ ∞

t0

dt

∫ ∞
t0

ds
sm−1tk−1e−z(t+s)

(m− 1)!(k − 1)!
δ

(`)
2

(
R

(`)
2 (z)nL(`)

t−t0,s−t0 δ̄
(`)
2

)
=

∫ ∞
2t0

dt

∫ t−t0

t0

ds
sm−1(t− s)k−1e−zt

(m− 1)!(k − 1)!
tr[(R(`)(z)2nL(`)

t )

= tr[(R(`)(z)2n+m+k)−
∫ 2t0

0

dt
tm+k−1

(m+ k − 1)!
e−zt tr[(R(`)(z)2nL(`)

t )

− 2

∫ ∞
2t0

dt

∫ t0

0

ds
sm−1(t− s)k−1e−zt

(m− 1)!(k − 1)!
tr[(R(`)(z)2nL(`)

t ).

(6.25)

On the other hand by the spectral decomposition of R2, as in Lemma 6.3,
and Lemma 6.9 it follows that, for each µ > µ1 > (a− σ` + σp,q

2
)−1,∫ ∞

t0

dt

∫ ∞
t0

ds
sm−1tk−1e−z(t+s)

(m− 1)!(k − 1)!
δ

(`)
2

(
R

(`)
2 (z)nL(`)

t−t0,s−t0 δ̄
(`)
2

)
=

∫ ∞
t0

dt

∫ ∞
t0

ds
sm−1tk−1e−z(t+s)

(m− 1)!(k − 1)!
δ

(`)
2

(
P

(`)
2 (z)nL(`)

t−t0,s−t0 δ̄
(`)
2

)
+O

(
Cp,q,z,µ1µ

2n
1

(a− σ`)m+k

)
=

∫ ∞
t0

dt

∫ ∞
t0

ds
sm−1tk−1e−z(t+s)

(m− 1)!(k − 1)!
tr
(
P (`)(z)2nL(`)

t+s

)
+O

(
Cp,q,z,µ1µ

2n
1

(a− σ`)m+k

)
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7 CONTACT FLOWS

Finally, recall again that the number of periodic orbits of length t grows
at most exponentially. Hence, by Lemma 5.1, there exists A ≥ σ` such

that | tr[(R(`)(z)2nL(`)
t )| ≤ C#(a − A)−2neAt while | tr

(
P (`)(z)2nL(`)

t+s

)
| ≤

C#(a − σ`)
−2neσ`t. We can use such estimates to evaluate the integrals in

(6.25) and obtain,

∣∣tr[(R(`)(z)2n+m+k)− tr
(
P (`)(z)2n+m+k

)∣∣ ≤ Cp,q,z,µ1µ
2n
1

(a− σ`)m+k
+

C#t0
m

(a− A)2n+km!

+
C#(2t0)m+k

(a− A)2n(m+ k)!
.

To conclude we choose m = ςn, |m − k| ≤ 1. Note that the last two terms

are smaller than µ2n+m+k provided n ≥ C#et0

ς(a−A)
1+ 2

ς µ
2+ 2

ς
, while the first term on

the left is bounded by C#µ
2n+m+k provided we choose ς =

lnµµ−1
1

µ−1(a−σ−1
` )

.

7 Contact flows

The results of the previous sections suffice to prove that the ζRuelle is mero-
morphic, yet they provide very little information on the location of its zeroes
and poles. Such a knowledge is fundamental to extract information from the
ζ functions (e.g. counting results or statistical properties of the flow). In
section 8 we provide an approach to gain such information, partially inspired
by [44], based on a Dolgopyat type estimate on the norm of the resolvent.
We are not aware of a general approach to gain such estimates apart for the
case of C1 or Lipschitz foliations [21, 69, 70] and the case of contact flows
([42, 73]). In the following we will restrict to the latter since it covers the
geometrically relevant case of geodesic flows in negative curvature. Our ap-
proach follows roughly [42, Section 6] but employs several simplifying ideas,
some from [8], some new.

In the case of contact flows d must be odd, du = ds and we can, and
will, assume that the contact form α in coordinates reads (see [8, section 3.2,
Appendix A] for details)

(Θ−1
β )∗α = dxd − 〈xs, dxu〉

.
= α0

where (xs, xu, xd) ∈ R(ds) × R(ds) × R = Rd is a point in the chart.
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7.1 Dolgopyat’s estimate 7 CONTACT FLOWS

Remark 7.1. The extra information that we need, and that can be gained
in the contact flow case, are bounds on the size of the resolvent R(ds)(z) for
=(z) large. See Lemma 8.3 for an explanation of why ` 6= ds need not be
studied. Since in the rest of this section we discuss only the case ` = ds we
will often drop the scripts ds in the relevant objects.

7.1 Dolgopyat’s estimate

Let a = <(z) > σds be fixed once and for all. For a fixed C6 ∈ (0, e−4), define
ca

.
= C6(a− σds)−1e−1 and

R̂n(z)h =

∫ ∞
can

dt e−zt
tn−1

(n− 1)!
L(ds)
t h.

Then, bounding e−σds t |||Lt|||0,q,ds by one, integrating and using Stirling for-
mula we have, for each q > 0,∣∣∣∣∣∣∣∣∣(R(ds)(z)n − R̂n(z))h

∣∣∣∣∣∣∣∣∣
0,q,ds

≤ C#(a− σds)−nCn
6 |||h|||0,q,ds . (7.1)

Moreover, for can > t0, by Lemma 4.5 it follows that∣∣∣∣∣∣∣∣∣R̂n(z)h
∣∣∣∣∣∣∣∣∣

0,q,ds
≤ C#(a− σds)−n ‖h‖0,q,ds

. (7.2)

Thus, it is natural to start estimating the latter norm.
In the following arguments it turns out to be convenient to introduce

norms similar to the one used in [42]. We did not use them in the previous
sections since they do not allow to keep track of the higher regularity of the
flow.

Definition 7.2. We define norms ‖·‖sq as with the norms ‖·‖0,q,ds
with the

only difference that the set Σ is replaced by the set Σs, defined as the elements
of Σ which are subsets of a strong stable manifold. Also, let Vu be the set
of continuous vector fields tangent to the strong unstable direction, of C0-
norm one, and C1 when restricted to any unstable manifold.41 We then
define ‖h‖u .

= supv∈Vu ‖Lvh‖0,0,ds
. To conclude we define the norm ‖·‖∗q

.
=

‖·‖sq + ‖·‖u.

41Note that such vector fields determine a unique flow on each unstable manifold, hence
a unique global flow, even if they are only continuous on the manifold. Thus the corre-
sponding Lie derivative is well defined.
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7.1 Dolgopyat’s estimate 7 CONTACT FLOWS

Note that the unstable foliation can be trivialized by a Hölder continuous
change of variables that is C1 when restricted to any leaf. In such coordinates
one can easily verify that (3.10) holds also in the present case by arguing as
in Lemma 4.2.

Before starting the real work let us fix some notation and recall some
facts. Let $ be the Hölder regularity of the strong foliations and $∗ the
Hölder regularity of the Jacobian of the associated holonomy. Then, in the
contact flow case, $ ≥ 2λ

λ+
and $∗ ≥ λ

λ+
(see Appendix E for more details).

For a manifold W ∈ Σ let W̃ = ∪|t|≤δφtW , W̃+ = ∪|t|≤2δφtW+. For each

two sufficiently nearby manifolds W,W ′ ∈ Σ, let HW,W ′ : W̃+ → W̃ ′
+ be the

strong unstable holonomy, then ‖JHW,W ′‖C$∗ + ‖HW,W ′‖C$ ≤ C#. We set

$̂ = 2λ
λ+

, $′ = min{1, $̂} and $∗ = min{λ/λ+, $̂
2}.

Lemma 7.3. For each q ≥ 1, α ∈ A, W,W ′ ∈ Σα such that HW,W ′(W̃ ) ⊂
W̃ ′

+, g ∈ Γds,qc (W̃ ′), there exists ḡ ∈ Γds,$∗c (W̃ ′
+), ‖ḡ‖Γds,$∗c (W̃ ′) ≤ C#‖g‖Γds,qc (W̃ ),

such that for all h ∈ Ωds
r we have∣∣∣∣∣

∫
W̃

〈g, h〉 −
∫
W̃ ′+

〈ḡ, h〉

∣∣∣∣∣ ≤ C#d(W,W ′) ‖h‖u ‖g‖Γds,qc (W̃ ).

Proof. Let {W ∗
τ }τ∈[0,1] be a smooth foliation interpolating between W̃ and

W̃ ′. Also let Hτ be the strong unstable holonomy from W̃ to W ∗
τ . Note that,

by performing the interpolation in the chart Θα, one can ensure that there
exists Wτ ∈ Σα such that W ∗

τ ⊂ W̃τ,+. Next, let ϕτ be a one parameter
family of forms, then∫

W ∗τ

〈ϕτ , h〉 =

∫
W̃

〈ϕτ , h〉 ◦HτJHτ =
∑
ī

∫
W̃

ϕτ,̄ihī ◦Hτ .

where ϕτ,̄i = ϕτ,̄i ◦HτJHτ . By the implicit function theorem it follows that
∂τhī ◦Hτ = (Lvhī) ◦Hτ for some v ∈ Vu, ‖v‖∞ ≤ C#d(W,W ′). In addition,

(Lvh)ī = Lvhj̄ +
∑
j̄

〈ωα,̄i, Lvωα,j̄〉hj̄.

Let Aī,j̄(τ) = 〈ωα,̄i, Lvωα,j̄〉 ◦Hτ and note that A is Cr in τ .

∂τ

∫
W ∗τ

〈ϕτ , h〉 =
∑
ī

∫
W̃

∂τϕτ,̄i −∑
j̄

Aj̄ ,̄iϕτ,j̄

hī ◦Hτ + ϕτ,̄i(Lvh)ī ◦Hτ .
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7.1 Dolgopyat’s estimate 7 CONTACT FLOWS

We can then choose ϕτ,̄i as the solution of the ordinary differential equation

(the variables on W̃ are treated as parameters)

d

dτ
ϕτ,̄i =

∑
j̄

Aj̄ ,̄i(τ)ϕτ,j̄

ϕ0,̄i = gī.

By the dependence on the parameters of the solution of an ODE we have,
for each τ ∈ [0, 1], ‖ϕτ,̄i‖C$′ ≤ C#‖g‖Γqc . Hence, ‖ϕτ‖Γ$∗c (W ∗τ ) ≤ C#‖g‖Γqc(W̃ ).∣∣∣∣∫

W̃ ′
〈ϕ1, h〉 −

∫
W̃

〈g, h〉
∣∣∣∣ ≤ ∫ 1

0

dτ

∣∣∣∣∣∑
ī

∫
W̃

ϕτ,̄i(Lvh)ī ◦Hτ

∣∣∣∣∣ .
=

∫ 1

0

dτ

∣∣∣∣∫
W ∗τ

〈ϕτ , Lvh〉
∣∣∣∣ ≤ C#d(W,W ′) ‖h‖u ‖g‖Γds,qc (W̃ ).

(7.3)

Lemma 7.4. For each η ∈ (0, $∗), t ∈ (t0,∞) and h ∈ Ωds
r we have

‖h‖0,η,ds
≥ ‖h‖sη ,∥∥∥R̂n(z)h
∥∥∥

0,1+η,ds
≤ C#

a− σds
‖h‖∗η .

Proof. The first inequality is obvious since the sup in the definition of the
norm is taken on a larger set. To prove the second note that∫

Wα,G

〈g, R̂n(z)h〉 =

∫ ∞
can

dt

∫
Wα,G

tn−1e−zt

(n− 1)!
〈g,Ldst h〉

which, by introducing a partition of unity in time as in (6.15) and changing
variables as in (4.11), can be seen as an integral on ds + 1 dimensional mani-
folds close to the weak stable foliation. If we consider the integral on a strong
stable leaf close to Wα,G we can split it similarly and apply Lemma 7.3 to
compare the integral on each manifold. The Lemma readily follows.

We can now state the main estimate of this section. As the proof is a bit
involved we postpone it at the end of the section so as not to break the flow
of the argument.
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Proposition 7.5 (Dolgopyat type estimate). Let φt be a contact flow such
that $′ > 2

3
. Then for each η ∈ (0, $∗), there exist constants C1, a0, b0 ≥ 1,

λC1C6 > 2ea0, and γ0 ∈ (0, 1) such that, for each h ∈ Ωds
0,1(M), z = a + ib

with 2a0 + σds ≥ a ≥ a0 + σds, |b| ≥ b0 and n ≥ C1 ln |b|, we have∥∥∥R̂n(z)h
∥∥∥∗
η
≤ Cη

(a− σds)n
‖h‖∗η ,∥∥∥R̂n(z)3h

∥∥∥∗
η
≤ Cη

(a− σds)3n
|b|−3γ0 ‖h‖∗η .

Remark 7.6. The bunching condition in the statement of Proposition 7.5
arises as follows: in the Dolgopyat estimate one reduces the problem to com-
paring certain integrals over a multitude of nearby manifolds. They are usu-
ally broken into two sets: the one that are sufficiently far apart to allow for
cancellations due to the non integrability of the foliations (this is the basic
Dolgopyat cancellation mechanism) and the ones that are too close for the
cancellation mechanism to be effective. The latter are shown to be too few
to contribute to the total estimate. In Lemma 7.10 we give explicit meaning
to “sufficiently far apart”, we believe this to be optimal. The remaining “too
close” manifolds are handled in Lemma 7.9. The estimate is reduced to the
growth rate of certain unstable disks that we can handle only if “too close” is
small enough. This is due to the possibility for a disk to grow in an extremely
elongated ellipses because of different expansion rates in the unstable direc-
tions. The two different meaning of “too close” are consistent only under
the above mentioned bunching conditions. This is the only place where such
a condition is used. It might be possible to improve Lemma 7.9, and hence
remove the bunching condition, by cleverly using some distortion estimate
but at the moment we do not see how.

Remark 7.7. The choice of stating the Lemma in terms of the norm ‖·‖∗η
is a bit arbitrary but very convenient in the present context. The estimate is
largely norm-independent as better shown in [8].

The goal of this section easily follows.

Lemma 7.8. If φt is a contact Anosov flow with $′ > 2
3
, then for each

η ∈ (0, $∗), there exist constants C1, a0, b0 ≥ 1, λC1C6 > 2ea0, such that for
each h ∈ B1,η,ds, z = a + ib with 2a0 + σds > a ≥ a0 + σds, |b| ≥ b0, and
n ≥ C#C1 ln |b|, holds true

|||R(z)nh|||1,η,ds ≤ Cη(a− σds)−nb−γ0 |||h|||1,η,ds .
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Proof. By Lemma 4.8 we have, for m = dC1 ln |b|e where C1 is given by
Proposition 7.5,∣∣∣∣∣∣R(z)(k+2)mh

∣∣∣∣∣∣
1,η,ds

≤ C#

(a− σds)(k+1)m(a− σds + λ)m
|||h|||1,η,ds

+
C#|b|

(a− σds)m
∣∣∣∣∣∣R(z)(k+1)mh

∣∣∣∣∣∣
0,1+η,ds

.

The first term is already small enough. By equations (7.1), (7.2)∣∣∣∣∣∣R(z)(k+1)mh
∣∣∣∣∣∣

0,1+η,ds
≤
C#kC

m
6 |||h|||0,1+η,ds

(a− σds)(k+1)m
+

C#

a− σds

∥∥∥R̂m(z)kh
∥∥∥

0,1+η,ds
.

The first term is small enough provided γ0 ≤ C1 lnC−1
6 −1− ln k

ln b0
. Accordingly,

to establish the Lemma it suffices to prove, for some k ∈ N,∥∥∥R̂m(z)kh
∥∥∥

0,1+η,ds
≤ Cη(a− σds)−kmb−1−γ0 ‖h‖1,η,ds

. (7.4)

Note that
∥∥∥R̂m(z)h

∥∥∥
+,1,η,ds

≤ Cη
a−σds

‖h‖−,1,η,ds . Hence, by Lemmata D.2, 7.4

and Proposition 7.5 we have∥∥∥R̂m(z)kh
∥∥∥

0,1+η,ds
≤
C#ε ‖h‖1,η,ds

(a− σds)kn
+ C#

∥∥∥R̂m(z)k−1MεR̂m(z)h
∥∥∥

0,1+η,ds

≤
C#ε ‖h‖1,η,ds

(a− σds)km
+

C#

a− σds

∥∥∥R̂m(z)k−2MεR̂n(z)h
∥∥∥∗
η

≤
C#ε ‖h‖1,η,ds

(a− σds)km
+ C#(a− σds)−(k−1)m|b|−(k−1)γ0

∥∥∥MεR̂m(z)h
∥∥∥∗
η

≤
C#ε ‖h‖1,η,ds

(a− σds)kn
+ C#(a− σds)−km|b|−(k−1)γ0ε−1−η−ds ‖h‖1,η,ds

,

which, after choosing ε = |b|−1−γ0 and k = C#γ
−1
0 , proves equation (7.4) and

hence the Lemma. Indeed, the condition γ0 ≤ C1 lnC−1
6 − 1 − ln k

ln b0
can be

satisfied by choosing b0 large enough.

We conclude with the missing proof.

Proof of Proposition 7.5. First note that, for each v ∈ Vu, Lvφ∗−th =

φ∗−tL(φ−t)∗vh and, by the Anosov property, ‖(φ−t)∗v‖C0 ≤ C#e
−λt‖v‖C0 .

‖Lth‖u ≤ C#e
−λt sup

v∈Vu
‖Lt(Lvh)‖0,0,ds

≤ C#e
(htop(φ1)−λ)t ‖h‖u . (7.5)
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Thus ∥∥∥R̂n(z)h
∥∥∥u ≤ C#(a− σds + λ)−n ‖h‖u . (7.6)

To continue note that the proof of Lemma 4.5 holds for the set of manifolds
Σs, indeed the only required property of the set of manifolds is the fact that
the image under the flow can be covered by manifolds in the set. Thus the
first two inequalities of Lemma 4.5 hold for the norms ‖·‖sη. By the first∥∥∥R̂n(z)h

∥∥∥s
η
≤ C#(a− σds)−n ‖h‖

s
η ,

which suffices to prove the first inequality of the Lemma. To prove the
second is much harder. The second inequality in Lemma 4.5 can be used, as
in Lemma 4.8, to yield∥∥∥R̂n(z)h

∥∥∥s
η
≤ Cη

(a− σds + λη)n
‖h‖sη +

Cη
(a− σds)n

‖h‖s1+η . (7.7)

It is then sufficient to consider the case h ∈ Ωds
0,r, g ∈ Γ`,1+η

c . In the following

we will set hs = L(`)
s h. It is convenient to proceed by small time steps of size

r > 0, to be fixed later. Let p(t) = p̃(δt) where p̃ is as in the proof of Lemma
6.7. For n ∈ N large enough, we must estimate (see (4.11))∫ ∞

can

dt

∫
Wα,G

tn−1e−zt

(n− 1)!
〈g, φ∗−ths〉 =

∑
k∈N

∫ ∞
can

dt
tn−1e−ztp(k − tr−1)

(−1)`(d−`)(n− 1)!

×
∫
φ−krWα,G

〈∗φ∗t ∗ g, hs〉 ◦ φ−t+krJWφkrJφ−t ◦ φkr.
(7.8)

Next, it is convenient to localize in space as well. To this end we need to
define a sequence of smooth partitions of unity.

For each i ∈ Zd, let us define xi = rd−
1
2 i. We then introduce the partition

of unity Φr,i(x) =
∏d

l=1 p(d
1
2 r−1xil − il) (limited to the set Bd(0, 30δ)). Note

that it enjoys the following properties

(i) Φr,i(z) = 0 for all z 6∈ Bd(xi, r);

(ii) the collection {Bd(x
i, r)}i∈Bd(0,10δ) covers Bd(0, 30δ) with a uniformly

bounded number of overlaps;

(iii) for each r, i we have ‖∇Φr,i‖L∞ ≤ C#r
−1.
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Note that the collection in (ii) has a number of elements bounded by C#r
−d.

For each k ∈ N let Wα,G,β,kr be the family of manifolds defined in (4.10),
with t = kr, and setWα,G,β,kr,i = {W ∈ Wα,G,β,kr : Θβ(W )∩Bd(x

i, r) 6= ∅}.
For simplicity, let us adopt the notationWk,β,i

.
=Wα,G,β,kr,i. For W ∈ Wk,β,i

let τW : W̃
.
= ∪t∈[−2r,2r]φtW → R be defined by φτW (x)(x) ∈ W . Also set

ϕk,β,i(x) = ψβ(x)Φr,i(Θβ(x))p(r−1τW (x))‖V (x)‖−1. (7.9)

Letting

ĝk,β,i = ϕk,β,i
(kr + τW )n−1JWφkr ◦ φτW

(−1)`(d−`)e−z(kr+τW )Jφkr+τW (n− 1)!
∗ φ∗kr+τW ∗ g, (7.10)

we can rewrite (7.8) as42∫ ∞
cn

dt

∫
Wα,G

tn−1〈g, φ∗−ths〉
ezt(n− 1)!

=
∑
k,β,i

∑
W∈Wk,β,i

∫
W̃

〈ĝk,β,i, hs〉. (7.11)

Recalling (4.17) and since the derivative of ĝk,β,i in the flow direction is
uniformly bounded, we have∥∥JWφkr ◦ φτW (Jφkr+τW )−1 ∗ φ∗kr−τW ∗ g

∥∥
Γ1+η
c (W̃ )

≤ C#. (7.12)

For each β, i we choose the reference manifold W s
δ (Θ−1

β (xi))
.
= W β,i ∈ Σs,

and define Wβ,i = W β,i ∩Θ−1
β (Bd(x

i, 2r)) and W̃β,i = ∪t∈[−4r,4r]φt(Wβ,i). Let
us set HW̃β,i,W̃

.
= Hβ,i,W . We can then rewrite the right hand side of (7.11)

multiplied by (−1)`(d−`) as∑
k,β,i

∑
W∈Wk,β,i

∫
W̃β,i

〈ĝk,β,i,W , hs〉+O
(
r1−η(kr)n−1e(σds−λ)s ‖h‖u

(n− 1)!e(a−σds )kr

)
, (7.13)

where ĝk,β,i,W is given by Lemma 7.3 and we have used (7.5).43 Then Lemma
7.3 and equations (7.9), (7.10), (7.12) imply

‖ĝk,β,i,W‖Γηc (W̃β,i)
≤ C#r

−η (kr)n−1e−akr

(n− 1)!
. (7.14)

42 First, for each k ∈ N, perform the change change of variables Lk : R × W → W̃
defined by Lk(t, y) = φ−t+kr(y) and then introduce the partition of unity in space. Note

that this implies t = kr − τW (x). Also, note that the same manifold W̃ appears several
times. Yet, given the support of the functions, the value of the integral is the correct one.

43 More precisely, rather than Lemma 7.3, we have used equation (7.3) and the fact
that, in the present case, the support of ϕτ , in the flow direction, is contained in a strip
of size C#r, which provides the extra factor r.
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It is then natural to define

gk,β,i
.
=

∑
W∈Wk,β,i

ĝk,β,i,W . (7.15)

To conclude we need a sharp estimate for the sup norm of gk,β,i, this will
follow from an L2 estimate and the inequality44∫

W̃β,i

‖gk,β,i‖2 ≥ C#‖gk,β,i‖
2+ ds+1

η

Γ0
c

‖gk,β,i‖
− ds+1

η

Γηc
.

Hence
‖gk,β,i‖Γ0

c
≤ C#‖gk,β,i‖p

L2(W̃ s
β,i)
‖gk,β,i‖1−p

Γηc
. (7.16)

where we have set p = 2η
2η+ds+1

. To compute the L2 norm it is convenient

to proceed as follows. Given W ∈ Wk,β,i let {xW}
.
= W̃ ∩ Θ−1

β ({xi +
(0, η)}η∈Bdu (0,r)) be its “central” point. Also, for each ρ > 0, consider the

disks D̃u
ρ (W ) = {Θβ(xW ) + (0, u, 0)}u∈Bdu (0,ρ). Then, for a fixed % ∈ (0, r) to

be chosen later, let Ak,β,i(W ) = {W ′ ∈ Wk,β,i : Θβ(W̃ ′) ∩ D̃u
% (W ) 6= ∅} and

Bk,β,i(W ) =Wk,β,i \ Ak,β,i(W ) and set

Gk,β,i,A
.
=

∑
W∈Wk,β,i

∑
W ′∈Ak,β,i(W )

〈ĝk,β,i,W , ĝk,β,i,W ′〉

Gk,β,i,B
.
=

∑
W∈Wk,β,i

∑
W ′∈Bk,β,i(W )

〈ĝk,β,i,W , ĝk,β,i,W ′〉,

note that 〈gk,β,i, gk,β,i〉 = Gk,β,i,A + Gk,β,i,B. We will estimate the two terms
by separate arguments, the first being similar to [43, Lemma 6.2], the second
being the equivalent of [43, Lemma 6.3].

To simplify the notation we set: Dk,β,i = (kr)n−1e−ark

(n−1)!
#Wk,β,i, where by

#A we mean the cardinality of the set A. Also, we assume

n ≥ C1 ln |b| (7.17)

where C1 is a constant to be chosen large enough.

44 To prove the inequality note that if f : Rν → R+ is a η-Hölder function and x0

satisfies f(x0) = ‖f‖C0 , then f(x) ≥ ‖f‖C0 − ‖f‖Cη |x0 − x|η, thus f(x) ≥ 1
2‖f‖∞ for all

x ∈ Bν(x0, ρ) where ρ = [‖f‖C0(2‖f‖Cη )−1]
1
η .
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Lemma 7.9. If C#|b|−
λ̄C1C6
2ea0 ≤ % < δr(1+ς) 2

$̂ , for some ς > 0, then there
exists ς0 > 0 s.t.

‖Gk,β,i,A‖∞ ≤C#D
2
k,β,ir

ς0 . (7.18)

Proof. Note that the number of elements in Ak,β,i(W ) must correspond to the
number of intersections between ∪t∈[−3δ,3δ]Wα,G and φkr(D

u
% (W )). Since each

intersection has a δ-neighborhood in φkr(D
u
% (W )) that cannot contain any

other intersection we have #Ak,β,i(W ) ≤ C#vol(φkr(D
u
2%(W ))), provided that

each point in φkr(D
u
% (W )) has a δ neighbourhood contained in φkr(D

u
2%(W )).

The latter condition is satisfied provided C#|b|λ̄
C6C1
2ea0 % ≥ δ, which is implied

by the first hypothesis in the Lemma. On the other hand, by the mixing
property,45 a disk in φkr(D

u
r (W )) with diameter larger than C# must intersect

∪t∈[−3δ,3δ]Wα,G, thus #Wk,β,i ≥ C#vol(φkr(D
u
r/2(W ))). We are thus reduced

to estimating the ratio of two volumes.
The simplest possible estimate is as follows: let t̄ ∈ R+ be such that

C0e
λt̄r = r−ς , now assume that 2eλ+ t̄% ≤ δ. It follows that at time t̄ the

image of Du
2%(W ) is contained in a disk of radius δ while the image of Du

r/2(W )

contains at least C#r
−ςdu such disks. By Lemmata C.1 and C.3 such a ratio

will persist at later times. Note that the above assumptions are verified only
if % < δr(1+ς) 2

$̂ .

Lemma 7.10. Setting |b| = %−2+$′−2ς and r = %1−$′+ς , for ς > 0, there
exists γ > 0 such that∣∣∣∣∣

∫
W̃β,i

Gk,β,i,B

∣∣∣∣∣ ≤ C#b
−6γrds+1D2

k,β,i. (7.19)

The proof of the above Lemma is postponed to Subsection 7.2.

Remark 7.11. Note that the conditions of the two Lemmata can be simul-
taneously satisfied, by choosing C1 large and ς small enough, only if $′ > 2

3
.

In addition, since $′ ≤ 1, ς must always be smaller than
√

3−1
2

.

Substituting in (7.16) the estimates given by (7.14), (7.18) and (7.19), we
obtain that there exists γ0 ∈ (0, γ] such that

‖gk,β,i‖Γ0
c
≤ C#Dk,β,i|b|−3γ0 . (7.20)

45Recall that a contact flow on a connected manifold is mixing, [38].
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Next, we assume s ≥ can. Then, by (7.14) and (7.20) and arguing as in the
proof of (4.19),46 we can write the integral in (7.13) as47∣∣∣∣∣∑
k,β,i

∫
W̃β,i

〈gk,β,i, hs〉

∣∣∣∣∣ ≤ C#

∑
k,β,i

Dk,β,i(b
−3γ0 + e−ληsr−η) vol

(
φ−sW̃β,i

)
‖h‖sη .

Note that
∑

i #Wk,β,i|φ−sW̃β,i| ≤ C#r
∑

W∈Wα,G,β,kr
|φ−sW |. Thus, by Lemma

C.3 and Remark C.4,

∣∣∣∣∣∑
k,β,i

∫
W̃β,i

〈gk,β,i, hs〉

∣∣∣∣∣ ≤ C#

∑
k

(kr)n−1(|b|−3γ0 + e−ληsr−η)

(n− 1)!eark−σds (kr+s)
r ‖h‖sη

≤ C#(a− σds)−n(|b|−3γ0 + e−ληsr−η)eσdss ‖h‖sη .

(7.21)

Thus, by (7.11), (7.13), (7.21),∥∥∥R̂n(z)2h
∥∥∥s

1+η
≤ C#

(a− σds)2n

[
r−η ‖h‖u (a− σds)n

(a− σds + λη)n
+ |b|−3γ0 ‖h‖sη

]
. (7.22)

Next, by (7.7), (7.22) and Lemma 7.10,

∥∥∥R̂n(z)3h
∥∥∥s
η
≤

Cη

∥∥∥R̂n(z)2h
∥∥∥s
η

(a− σds + λη)n
+

Cη
(a− σds)n

∥∥∥R̂n(z)2h
∥∥∥s

1+η

≤ Cη
(a− σds)3n

[
(a− σds)n|b|

η
2

(a− σds + λη)n
+ |b|−3γ0

]
‖h‖∗ .

(7.23)

The above, and (7.6), (7.17) imply the Lemma provided γ0 has been chosen
smaller than 40η.

7.2 A key (but technical) inequality

We are left with the task of proving (7.19).

46 Namely, we use the first line of the equation before (4.19) with g − gε = gk,β,i, ε = 1
and q = η.

47 Note that, since gk,β,i is supported in W̃β,i, the integral can also be seen as an integral
on W β,i ∈ Σs.
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Proof of Lemma 7.10. This is the heart of Dolgopyat’s estimate. Given
W ∈ Wk,β,i and W ′ ∈ Bk,β,i(W ), we must estimate∫

W̃β,i

〈ĝk,β,i,W , ĝk,β,i,W ′〉 =

∫
W̃β,i

JHβ,i,W · JHβ,i,W ′ · ĝk,β,i,̄i ◦Hβ,i,W

× ĝk,β,i,̄i ◦Hβ,i,W ′ .

(7.24)

It turns out to be convenient to write the above as an integral over W̃ . More
precisely, let ϑ̃W : Bd(0, δ)→ Rd be a flow box coordinate change preserving
the contact form α0 and such that, setting ϑW = Θ−1

β ◦ ϑ̃W , has the property

that ϑW ({(ξ, 0)}ξ∈Bds (0,C#r)) ⊂ W and, moreover, W̃ contains the support
(projected on via the unstable Holonomy) of the integrand.48 We can then
rewrite (7.24) as49∫

W̃β,i

〈ĝk,β,i,W , ĝk,β,i,W ′〉 =

∫
Bds+1(0,2r)

dξ e−z(τW ′◦H̃W ′ (ξ)−ξd)Gk,β,i,W,W ′ ,̄i(ξ), (7.25)

where ξ = (ξ̃, ξd), H̃W ′ = HW̃ ,W̃ ′ ◦ ϑW , and

Gk,β,i,W,W ′ ,̄i
.
=

{
ϕk,β

(kr + τW )n−1e−akr

(n− 1)!

JWφkr ◦ φτW
Jφkr+τW

(∗φ∗kr+τW ∗ g)ī

}
◦ ϑW

×
{
ϕk,β

(kr + τW ′)
n−1e−akr

(n− 1)!

JW ′φkr ◦ φτW ′
Jφkr+τW ′

(∗φ∗kr+τW ′ ∗ g)ī

}
◦ H̃W ′

× JH̃β,i,W ′ .

Let us define
∆∗(ξ)

.
= τW ′ ◦ H̃β,i,W ′(ξ)− ξd, (7.26)

and note that ∆∗(ξ+ ζ)−∆∗(ξ) is exactly the so called temporal function.50

We let w(ξ) = (ws(ξ), wu(ξ), wd(ξ)) = ϑ−1
W ◦H̃W ′(ξ)−(ξ, 0). Then by Lemma

48 Such a coordinate change always exists, see [8, Lemma A.4].
49 By Appendix E it follows that the image of W ′ on W̃ by the unstable holonomy is

strictly contained in a ball of radius 2r, provided r is small enough.
50 In the language of [43] (in which the role of the stable and unstable manifolds are

reversed) ∆∗(ξ + ζ)−∆∗(ξ) = ∆(y, y′), where x = ϑW (ξ), y = H̃W ′(ξ) and y′ = ϑW (ξ +
(ζ̃, 0)) with ζ = (ζ̃, ζd).
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E.2 we have51

|∆∗(ξ + ζ)−∆∗(ξ)− dα0(w(ξ), ζ)| ≤C#‖w‖2‖ζ̃‖$′ + C#‖w‖$
′‖ζ̃‖2

+ C#‖w‖1+$′‖ζ̃‖1+$′ .
(7.27)

We are left with the task of performing the integral in the lefthand side of
(7.25). The basic idea (introduced in [43]) is to integrate first in the direction
yi = ‖wu(0)‖−1(wu(0), 0). Note that dα0(w(0), yi) = ‖wu(0)‖ and, by the
cone condition, ‖ws‖ ≤ C#‖wu‖. Hence, by the Hölder continuity of the
unstable foliation (detailed in Appendix E), for ξ ∈ Bds+1(0, r),

dα0(w(ξ), yi) ≥ C#‖w(ξ)‖ ≥ C#%. (7.28)

Next, we impose the condition

r = %1−$′+ς (7.29)

for some, very small, ς > 0. By Lemma E.1 we have that

‖w(ξ)− w(ξ + ζ)‖ ≤ C#(‖w(ξ)‖‖ζ̃‖$′ + ‖w(ξ)‖$′‖ζ̃‖) ≤ C#%. (7.30)

For each ξ ∈ Bds+1(0, r), 〈ξ, yi〉 = 0, we define Ii(ξ) = {s ∈ R : ξ + syi ∈
Bds+1(0, r)} and consider the integral∣∣∣∣∫

Ii(ξ)

ds e−z∆
∗(ξ+syi)Gk,β,i,W,W ′ ,̄i(ξ + syi)

∣∣∣∣ . (7.31)

It is then natural to divide the interval Ii(ξ) in subintervals {sl, sl+1}l∈Z such
that,

(sl+1 − sl)dα0(w(ξ + slyi), yi) = 2π|b|−1.

Let us set δl = sl+1− sl and wl = w(ξ + slyi), then, recalling (7.28), we have

C#|b|−1 ≤ δl‖wl‖
2π

≤ C#|b|−1. (7.32)

Next, we must assume

51 It may be possible to improve this estimate by going forward or backward in time to
the situation in which the two lengths are equal, but some non-obvious distortion estimate
would have to play a role to ensure that the following “preferred” direction does not
changes too wildly.
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|b|−1 ≤ r%, (7.33)

to insure that Ii(ξ) contains at least one interval. Note that Lemma E.1 im-

plies that ‖H̃W ′(ξ+yisl+1)−H̃W ′(ξ+yisl)‖ ≤ C# max{δl, ‖wl‖δ$
′

l }. Hence52

sup
|s−sl|≤δi

|Gk,β,i,W,W ′ ,̄i(ξ + syi)− Gk,β,i,W,W ′ ,̄i(ξ + slyi)| ≤ C#D
2
n,k

× (r−1 max{δl, ‖wl‖δ$
′

l }+ δ$∗l ‖wl‖)

where Dn,k
.
=

(kr)n−1e−akr

(n− 1)!
.

We can then bound (7.31) by∑
l

∣∣∣∣∫ sl+1

sl

e−z[∆
∗(ξ+syi)−∆∗(ξ+slyi)]Gk,β,i,W,W ′ ,̄i(ξ + slyi)

∣∣∣∣
+ C#D

2
n,k

(
|b|−1‖wl‖−1 + |b|−$′‖wl‖1−$′ +

‖wl‖1−$∗r

|b|$∗

)
.

Next, equations (7.27), (7.32) yield

|∆∗(ξ + syi)−∆∗(ξ + slyi)− (s− sl)dα0(wl, yi)| ≤ C#
‖wl‖2−$′

|b|$′

+ C#
‖wl‖$

′−2

|b|2
+ C#

1

|b|1+$′
.

Recalling (7.29) and (7.30), we can continue our estimate of (7.31) as

C#

∑
l

∣∣∣∣∫ sl+1

sl

ds e−z(s−sl)dα0(wl,yi)Gk,β,i,W,W ′ ,̄i(ξ + slyi)

∣∣∣∣
+ C#D

2
n,kr

(
|b|−1%−1r−1 +

r1−$∗

|b|$∗
+

r2−$′

|b|$′−1
+
%$
′−2

|b|
+
r−$

′

|b|$′
)
.

We remark that the integrals in the first line are all bounded by C#|b|−1δl.
By the above equation, integrating in the remaining directions and letting53

Dk,n,β,i
.
= Dk,n#Wk,β,i and |b|−1 = %2−$′+2ς

52 We remark that ‖JH̃β,i,W ′(ξ)− JH̃β,i,W ′(ξ + ζ)‖ ≤ C#‖wl‖‖ζ‖$∗ , see Appendix E.
53 The choice for % satisfies the constraints (7.33) .
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equation (7.25) yields∣∣∣∣∣
∫
W̃β,i

Gk,β,i,B

∣∣∣∣∣ ≤ C#D
2
k,n,β,i

[
%$
′ς +

1

|b|$
′

2

]
rds+1 ≤ C#D

2
k,n,β,i|b|

− $′ς
2−$′+2ς rds+1.

which gives the required inequality.

8 Growth of ζ-functions

We start by showing that the estimates in section 7.1 imply a bound on
the growth of the traces. To this end note that the previous results show
that tr[(R(ds)(z)n), which is well defined for <(z) large enough, equals a
function meromorphic in <(z) > σds −

σp,q
2

, for each 0 < p + q < r − 1.
Since tr[(R(ds)(z)n) is independent on p, q, it can be extended as much as the
condition p+ q < r− 1 allows. It is then natural to use tr[(R(ds)(z)n) to also
denote such an extension. Before getting to the point we need a refinement
of equation (5.19) which holds only for ` = ds.

Lemma 8.1. For each a = <(z) > htop(φ1) and n ∈ N∣∣∣∣∣∣
∫
M

∑
α,̄i

〈ωα,̄i, R(ds)(z)njε,α,̄i,x〉x −
∑
τ∈T

χds(τ)λ(τ)n−1λ(τ)

(n− 1)!µ(τ)ezλ(τ)

∣∣∣∣∣∣ ≤ C#ε|z|n
(a− σds)n+1

+
C#|z|n

(a− σds + λ)n+1
.

Proof. We start by equation (5.16) with s = 0 and ` = ds and then we look
more in depth at the derivative of Fα,̄i,z. By formulae (5.5) and (5.18) we
have ∑

ī

Fα,̄i,z(x, t) =
tn−1

(n− 1)!
e−ztψα(x)tr(∧ds(Dhypφ−λ(τ)(x)).

To compute the trace is it convenient to do a linear change of variables in the
zero section such that the periodic orbit is at zero and its stable and unstable
substances are spanned by e1, . . . , eds and eds+1, . . . , ed−1. Then, calling ωi the
dual base, we have that 〈ω1∧· · ·∧ωds , Dhypφ−λ(τ)ω1∧· · ·∧ωds〉 gives exactly
the stable Jacobian Jst of the map, while all the other terms in the trace are
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8 GROWTH OF ζ-FUNCTIONS

smaller than C#J
s
t e
−λ̄t. Note that this implies that supτ χds(τ) ≤ C#. By

the usual distortion estimates it follows that

‖∂ζJst ‖∞ ≤ C#‖Jst ‖∞ ≤ C#| det(1− Λτ,α,m(0))|,

where we are using the coordinates defined in (5.9). By the above inequal-
ity and Sub-Lemma 5.5 we can obtain from equation (5.16) the improved
estimated (with respect to equation (5.17))

∑
α,̄i,m,τ∈Tε

∫ δ

−δ

Fα,̄i,z ◦ Θ̃−1
α ◦ Ξ−1

τ,α,m(0, ξd, λ(τ))

| det(1− Λτ,α,m(0))|

+
λ(τ)n−1

(n− 1)!
O
(
ε|z|e−aλ(τ) + |z|e−(a+λ̄)λ(τ)

)
.

(8.1)

Using [39, Theorem 18.5.7] we can bound the total error term in the above
equation by

C#ε|z|n(a− htop(φ1))−n−1 + C#|z|n(a+ λ̄− htop(φ1))−n−1.

The Lemma is then proven arguing exactly as at the end of Lemma 5.1.

Lemma 8.2. There exists a0 ≥ 1 and τ∗ > 0 such that, for each n ∈ N,
z ∈ C, htop(φ1) + 2a0 ≥ a = <(z) ≥ htop(φ1) + a0, b = =(z) 6∈ [−1, 1],

| tr[(R(ds)(z)n)| ≤ C#|b|(a− σds + τ∗)
−n.

Proof. Choose η ∈ (0, $∗) and consider R(ds)(z) ∈ L(B̃1,η,ds , B̃1,η,ds). Next,
we establish the analogue of [44, Lemma 3.1]. By Lemmata 5.1 and 8.1 it
follows, for each ε < ε0,∣∣tr[(R(ds)(z)n)

∣∣ ≤ C#

∣∣∣∣∣∣R(ds)(z)n
∣∣∣∣∣∣

1,η,ds
sup
x∈M

∣∣∣∣∣∣jε,α,̄i,x∣∣∣∣∣∣1,η,ds +
C#|z|εn

(a− σds)n+1

+
C#|z|n

(a+ λ− σds)n+1

≤ C#ε
−Cη

∣∣∣∣∣∣R(ds)(z)n
∣∣∣∣∣∣

1,η,ds
+

C#|z|εn
(a− σds)n+1

+
C#|z|n

(a+ λ− σds)n+1

where, in the first line, we have used the usual trick of seeing, locally, the
integral over M as an integral over a foliation made of elements of Σ. Next,
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8 GROWTH OF ζ-FUNCTIONS

given b ∈ R, |b| ≥ B, let z = a + ib, a = a0 + σds and c > 0. Also,
let nb = dC1C# ln |b|e and write, for any n ∈ N, n = knnb + rn, rn < nb.
Lemmata 7.8, 4.8 imply

∣∣∣∣∣∣R(ds)(z)n
∣∣∣∣∣∣

1,η,ds
≤
Ckn+1
η |b|−γ0kn

(a− σds)n
≤ |b|

γ0e
n

C1C# ln |b| (lnCη−γ0 ln |b|)

(a− σds)n

≤ Cη|b|γ0e
− nγ0

2C1C#

(a− σds)n
,

(8.2)

where we have assumed |b| ≥ C
2
γ 0
η =: B. Choosing ε depending on n by

requiring ε−Cηe
− nγ0

2C#C1 = ε yields∣∣tr[(R(ds)(z)n)
∣∣ ≤ C#(a− σds)−n|b|e

− nγ0
3C1C#(1+Cη) + C#|b|n(a+ λ− σds)−n

implying the result for |b| ≥ B. On the over hand, by Proposition 4.9, in
the region {z ∈ C : |=(z)| ≤ B, htop(φ1) − 1 ≤ <(z) ≤ htop(φ1)} there are
only finitely many eigenvalues of X(ds) and htop(φ1) is the only eigenvalue
on the line <(z) = htop(φ1). Accordingly, there exists τ0 > 0 such that
σ(X(ds)) ∩ {z ∈ C : |=(z)| ≤ B, htop(φ1) − τ0 ≤ <(z) < htop(φ1)} = ∅. By
standard spectral theory it follows that, for τ1 < min{τ0,

1
2a0
},∣∣∣∣∣∣R(ds)(z)n

∣∣∣∣∣∣
1,η,ds

≤ C#(a+ τ1 − σds)−n.

Using the above instead of (8.2) yields the results in the remaining region.

Lemma 8.3. In the region {z ∈ C : <(z) ∈ [htop(φ1) − τ∗,∞)} ζRuelle

is non zero and has only a simple pole at z = htop(φ1). Moreover, setting
D = {z ∈ C : <(z) ∈ [htop(φ1)− τ∗, A] ; |=(z)| ≥ 1} we have

|ζRuelle(z)| ≤ C#e
C#|z| for all z ∈ D∣∣∣∣ ddz ln ζRuelle(z)

∣∣∣∣ ≤ C#|z| for all z ∈ D.

Proof. If τ∗ is chosen small enough, then Proposition 2.12 implies that the
determinants D`, ` 6= ds, are analytic, bounded and non zero in the regions
considered and hence, recalling equation (2.5), it suffices to study Dds(z).
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In view of Lemma 2.11 we start by studying D̃ds(ξ − z, ξ). Fix z0 ∈ D and
consider ξ = a0 + htop(φ1) + i=(z0). Then, recalling Lemma 5.1

Dds(z) = Dds(ξ)D̃ds(ξ − z, ξ) = Dds(ξ) exp

(
−
∞∑
n=1

(ξ − z)n

n
tr[(R(ξ)n)

)
.

Note that Dds(ξ) is uniformly bounded in z0. By Lemma 8.2 it follows that

|Dds(z0)| ≤ C# exp

(
∞∑
n=1

|=(z0)|(a0 + htop(φ1)−<(z0))n

n(a0 + τ∗)n

)
which is convergent provided <(z0) > htop(φ1)− τ∗.

Next, by the same argument as above, the logarithmic derivative

d

dz
lnDds(z) =

∞∑
n=1

(ξ − z)n−1 tr[(R(ξ)n)

is bounded as claimed in the required domain.

Appendices

A External Forms: a toolbox

In this appendix we collect, for the reader’s convenience, some useful formu-
lae. More details can be found in [36, Section 2]).

Given a Riemannian d dimensional manifold M , for each x ∈ M , ` ∈
{0, . . . , d} and v1, . . . , v`, w1, . . . , w` ∈ T ∗xM we define54

〈v1 ∧ · · · ∧ v`, w1 ∧ · · · ∧ w`〉 = det(〈vi, wj〉). (A.1)

Assuming bilinearity, the above formula defines uniquely a scalar product
among `-forms.

Let ωM be the Riemannian volume form on M . We define a duality from
` to d− ` forms via (see [36, (2.1.6)])

〈v, w〉ωM = (−1)`(d−`)v ∧ ∗w = (−1)`(d−`)w ∧ ∗v = ∗v ∧ w. (A.2)

54 By duality the scalar product in T∗M induces a canonical scalar product in T ∗M .
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Since such a formula must hold for all `-forms, the (d − `)-forms ∗w, ∗v are
uniquely defined. The operator “∗” is the so called Hodge operator.

Note that if {dxi} is an orthogonal base of T ∗xM , then {dxī = dxi1 ∧ · · · ∧
dxi`} is an orthonormal base of ∧`T ∗M , where ī = (i1, . . . , il) is an ordered
multi-index (i.e. ik < ik+1). Then

∗dxī = ε(̄ic)dxīc

where īc is the ordered (d− `)-multiindex such that dxī ∧ dxīc = ε(̄i)ωM and
ε(̄i) is the sign of the permutation π(1, . . . , d) = (i1, . . . , i`, i

c
1, . . . , i

c
d−`).

The above definitions and considerations imply the following equalities

〈v, ∗w〉 = (−1)`(d−`)〈∗v, w〉 ; ∗ ∗ v = (−1)`(d−`)v ; 〈∗v, ∗w〉 = 〈v, w〉. (A.3)

Note also that, for any smooth function f , ∗(fw) = f ∗ w. It is also natural
to define the scalar product

〈v, w〉Ω`
.
=

∫
M

〈v, w〉x ωM(x).

Next, consider a smooth diffeomorphism F : M → N , for M,N Riemannian
manifolds. Let det(DF ) be determined by F ∗ωN = det(DF )ωM , then

〈F ∗v, w〉 = (−1)(d−`)` det(DF ) · F ∗〈v, ∗(F−1)∗ ∗ w〉. (A.4)

To prove this, we just compute

〈F ∗v, w〉ωM = ∗ ∗ F ∗v ∧ ∗w = F ∗(v ∧ ∗ ∗ (F−1)∗ ∗ w)

= (−1)`(d−`)F ∗(〈v, ∗(F−1)∗ ∗ w〉ωN)

= (−1)`(d−`) det(DF ) · 〈v, ∗(F−1)∗ ∗ w〉 ◦ F · ωM .

In particular, letting (F ∗)′ be defined by 〈F ∗f, g〉Ω` = 〈f, (F ∗)′g〉Ω` , we have

∗(F ∗)′ = (F−1)∗ ∗ .

The above formulae yield a formula for the Lie derivative: let Z be a vector
field and Ft the flow generated by Z. Then, by differentiating F ∗t 〈v, w〉 =
det(DF )−1〈F ∗t ∗ v, ∗F ∗t w〉 with respect to t at t = 0. It follows that

LZ〈v, w〉 = −〈v, w〉 divZ + 〈LZ(∗v), ∗w〉+ 〈v, LZw〉
= −〈v, w〉 divZ + (−1)d(d−`)〈∗LZ(∗v), w〉+ 〈v, LZw〉.

(A.5)
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We will also be using the relation (see [1, Proposition 2.2.19] for the details)

LZF
∗w = F ∗LF∗Zw. (A.6)

Let γV be a rescaling of the vector field V . Recall that, by definition,
X(`)h

.
= d

dt
φ∗−th

∣∣
t=0

= −LV h for h ∈ Ω`
s. Hence for all t ∈ R and h ∈ Ω`

0,s,
by the properties of Lie derivatives (for iV as in Remark 3.9),

LγV (L(`)
t h) = γLV (L(`)

t h) + dγ ∧ iV (L(`)
t h)

= −γ d

ds
φ∗−s(φ

∗
−th)

∣∣∣∣
s=0

= −γL(`)
t (X(`)h).

(A.7)

B Orientability

Here we prove some simple facts about orientability of the invariant distri-
butions for Anosov flows and discuss how to modify the arguments of this
paper in the non orientable case. We believe some of the following results to
be well known but we could not locate a simple reference, so we add them
for the reader’s convenience.

Lemma B.1. For each geodesic flow on an orientable compact Riemannian
manifold M0 of negative sectional curvature, the unstable and stable distri-
bution are orientable.

Proof. We present the proof for the unstable distribution, the proof for the
stable distribution being exactly the same by reversing time. Remember that
the geodesic flow takes place in M

.
= T1M , the unitary tangent bundle. If

we assume that M0 is d dimensional, then M is 2d− 1 dimensional and the
unstable space is d− 1 dimensional.

Given a geodesic γ, let (J, J ′) ∈ T (TM) be a Jacobi fields along it. We
have then [20, Chapter 5.2]

D2J

dt2
+R(γ′(t), J(t)))γ′(t) = 0

where D
dt

, is the covariant derivative and R is the curvature tensor. Recall that
D
dt
J = J ′ and that we can assume that both J(t) and J ′(t) are perpendicular
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to d
dt
γ(t). If we then define the quadratic form Q(J, J ′) = 〈J, J ′〉, we have

[20, chapter 3.3],55

d

dt
Q(J, J ′) = 〈J ′, J ′〉 − 〈J,R(γ′(t), J(t))γ′(t)〉

= 〈J ′, J ′〉 −K(γ′(t), J(t)) ‖γ′(t) ∧ J(t)‖2 > 0.

This means that the cone {(J, J ′) ∈ T (TM) : Q(J, J ′) > 0} is invariant
under the flow, thus the unstable vectors must belong to such a cone. Given
a point q ∈ M0 and (q, p) ∈ M , let us consider the tangent space T(q,p)M .
Let (δq, δp) ∈ Eu(q, p) ⊂ T(p,q)M . By the above discussion we have 〈δq, p〉 =
〈δp, p〉 = 0 and that (0, δp) ∈ Eu implies δp = 0. Finally, let Ecu(q, p) =
span{Eu(q, p), V }, where V = (p, 0) is the vector field generating the geodesic
flow. Accordingly, if we denote the canonical projection π : M →M0 defined
by π(q, p) = q, we have that π∗ : Ecu(q, p)→ TqM is an isomorphism. Indeed,
if (δq, δp) ∈ Ecu, then we can write δq = βp + ξ and δp = η, where β ∈ R,
and (ξ, η) ∈ Eu. Accordingly, if δq = π∗(δq, δp) = 0, then β = 0 and ξ = 0,
which in turns imply η = 0.

To conclude note that since M0 is orientable, then there exists a volume
form ω on M0. But then ω = iV (π∗ω) is a volume form on each Eu, therefore
the bundle is orientable.

The above arguments remain true for more general flows (see [47, 46] for
a discussion of appropriate invariant cones associated to contact flows or [76]
for a slightly more general setting) but the result is false for some Anosov
flows.56 Yet, it is often possible to keep track of the orientation of an orbit
by a simple multiplicative factor as follows.

Lemma B.2. If the torsion of the first homology group of M does not contain
factors of the type Z2m, then there exists a smooth function A : M ×R+ → R
such that, for each closed orbit τ and x ∈ τ ,

eπiA(x,λ(τ)) = ε(τ).

55 We let K denote the sectional curvature.
56 For example consider the map f : T2 → T2 defined by f(x, y) = −A(x, y) mod 1

where

A =

(
1 1
1 2

)
.

One can then define a ceiling function τ and the associated suspension, and clearly the
resulting flows is Anosov but the invariant distribution are non orientable.
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Moreover, At(·) = A(·, t) is a cocycle.

Proof. Consider the line bundle π : F → M such that the fiber at x ∈ M
consists of the volume forms on Eu(x). Let F0 = F \ {(x, 0)}x∈M , i.e. we
have taken out the zero section. Hence, for each x ∈ M , π−1(x) has two
connected component. Thus, for each x ∈ M , there exists a neighborhood
F0 ⊃ U 3 π−1x and a continuous map F : U → π(U) × Z2 such that, for
each x̄ ∈ U , p ◦ F (x̄) = π(x̄), where p(x, i) = x, and q(F (U)) = Z2, where
q(x, i) = i. This construction defines a double covering Mor of M . Given
a cycle γ : [0, 1] → M we can then consider any lift γ̃ to Mor. Locally γ̃
will have the form γ̃(t) = (γ(t), i(t)), i ∈ Z2. We define then the degree
map d̄(γ) = i(0) + i(1) which is well known to be a homotopy invariant.
Accordingly, d̄ depends only on the homology class of γ. In other words
d̄ ∈ H1(M,Z2). We would like to show that d̄ ∈ H1(M,R).

Since H1(M,Z) is finitely generated it is isomorphic to Zn⊕Tor. By the
universal coefficient Theorem H1(M,R) is isomorphic to Rn while H1(M,Z2)
is isomorphic to Zn+m

2 where m is the number of Z2k that are present in the
torsion part. Thus by hypothesis m = 0. Next, it is known that the closed
orbits of an Anosov map generate all H1(M,Z), [2]. Consider a set of closed
periodic orbits Γ = {γi}i∈N that generate H1(M,Z), hence they generate
H1(M,Z2). We can thus consider a base Γ0 ⊂ Γ of H1(M,Z2). By the above
discussion it is a base in H1(M,R) as well. We can then consider the dual
base in H1(M,R). By De Rham cohomology such a base can be represented
in terms of 1-forms. In conclusion, there exist closed 1-forms {wγ}γ∈Γ0 such

that, for each γ, γ′ ∈ Γ0,
∫ λ(γ′)

0
φ∗twγ(V ) is one if γ = γ′ and zero otherwise.

Finally, let

A(x, t) =
∑
γ∈Γ0

d̄(γ)

∫ t

0

φ∗swγ(V (x))ds.

Note that A is an additive cocycle with respect to the flow φt. Moreover, if
τ is a closed orbit and x ∈ τ , A(x, λ(τ)) mod 2 = d̄(τ). The Lemma follows
since ε(τ) = eπid̄(τ).

In the hypothesis of the above Lemma we can define, instead of (2.9), the
operator

L(`)
t (h) = eπiAtφ∗−th. (B.1)

The study of such an operator can be carried out in complete analogy with
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what we have done in sections 4, 5, 6 (at the price of slightly heavier nota-
tion).57

If the hypothesis of Lemma B.2 does not apply, then one can still intro-
duce an appropriate weight, but this creates some difficulties that can be
solved only by introducing a more sophisticated Banach space. The basic
idea is to consider the action of φ∗t also on an orientation bundle. This would
be simple enough, but in so doing the action of the flows on such a bundle
produces a multiplicative factor proportional to the stable Jacobian. To elim-
inate such an unwanted multiplicative factor it is then necessary to consider
a transfer operator with a weight given exactly by the inverse of the stable
Jacobian.58 Yet, this solution produces another problem: in general such
a weight is only Hölder, hence the resulting operator does not act properly
on spaces of smooth functions, a property essential to obtain large domains
of analyticity for the zeta function. To overcome this last obstacle in the
present setting one has to change the Banach space. This can be done as in
[31].

Let G be the Grassmannian of ds dimensional subspaces of the tangent
bundle. Next, consider the fiber bundle E := {(x,E, h, ω) : (x,E) ∈ G, h ∈∧` T ∗xM, ω ∈

∧ds E ′}, π : E → G given by π(x,E, h, ω) = (x,E). The
fibers consist of an `-form times a volume form (hence an orientation) on the
subspace. We can then consider the vector space S of the Cr−1 sections of
the bundle E . This generalizes the space Ω`

r. Given (h, ω) ∈ S, g ∈ Ω`
r and

Wα,G ∈ Σ we can then define the integral∫
Wα,G

〈g, h〉ω =

∫
R(ds)

〈g(Gα(ξ)), h(Gα(ξ), EGα)〉G∗αω

where Gα
.
= Θ−1

α ◦ G and EGα = DGα(R(ds)). We can then use the above
to define the analogue of the functional Jα,G,g,v1,...,vp in section (3.11) and
then construct the norms in the same way. The transfer operator is then the
canonical action of the flow on S with a weight given by the Jacobian of the
flow restricted to the element of the Grassmanian. Note that one obtains an
operator of the type considered in [31, equation (3.1)]. Accordingly, all the
present arguments can be repeated in complete analogy, although one must

57 The computations are essentially the same. In Section 4, 6, 7 one obtains the same
bounds for the spectrum, while in Section 5 keeping track of the cocycle yields the required
factor ε(τ).

58 The interested reader can consult Fried [27, Section 6] for a thorough explanation.
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compute in the more sophisticated way explained in [31].59

As the present paper is already quite technical, we decided not to go into
such a more sophisticated construction as, on the one hand, it does not add
any new idea, and on the other it would make the presentation much harder
to follow. Nevertheless, all the results presented here can be generalized by
using such an approach.

C Topological Entropy and volume growth

It is well known that there is a relation between asymptotic volume growth of
manifolds and the topological entropy (see [77, 29, 50] and references therein).
Unfortunately, here we need a uniform upper and lower bound for all times.
We are not aware of such bounds for flows in the literature. For Axiom A
diffeomorphisms they can be obtained in great generality from the results in
[31].60 It is clear that applying the same strategy to the present setting of
flows similar results can be obtained. Yet, since we are interested only in
the topological entropy and not in an arbitrary potential, a more elementary
approach is available.

Let us proceed in slightly greater generality than needed, since it can
be done at no extra cost. Let M be a Riemannian manifold and (M, f) a
partially hyperbolic diffeomorphism. Call Es, Eu, Ec the stable, unstable and
central distribution respectively. Let ds be the dimension of Es.

Assume that, for each n ∈ N, ‖Dfn|Ec‖+ ‖Df−n|Ec‖ ≤ C#.
A set S ⊂ M is called (ε, n)-separated if for each x, y ∈ S we have that

df,n(x, y) > ε where df,n(x, y) = max0≤k≤n d(fk(x), fk(y)). Let S(f, ε, n) be
the set of all (ε, n)-separated sets. We then define N(f, ε, n) = sup

S∈S(f,ε,n)

#S.

It is well known that, [39],

htop(f) = lim
ε→0

lim
n→∞

lnN(f, ε, n)

n
.

59 To be precise, in [31] there are no `-forms, but the point of the present paper is
exactly that functions and `-forms can be handled by essentially the same computations
once the proper machinery has been set up.

60Indeed, in [31] it is shown in particular that, given a mixing Axiom A diffeomor-
phism (M,f), the spectral radius of a transfer operator with potential φ̄ satisfies, for each

manifold W ∈ Σ, C#e
P (φ̄)n ≤

∣∣∣∫W e
∑n−1
k=0 φ̄◦f

k
∣∣∣ ≤ C#e

P (φ̄)n, where P (φ̄) is the pressure

associated to the potential, see [31, equations (3.3), (4.10), Lemma 4.7, Theorem 5.1.].
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Moreover since if ε′ > ε, then N(f, ε, n) ≥ N(f, ε′, n). Thus, for each δ > 0,

htop(f) ≥ lim
n→∞

lnN(f, δ, n)

n
. (C.1)

Fix δ > 0 and let Σ̂ be the set of all C1, ds-dimensional manifolds of
radius δ and tangent space close to Es. Let us define

ρ+
n = sup

W∈Σ̂

vol(fnW ) ; ρ−n = inf
W∈Σ̂

vol(fnW ).

Lemma C.1. For all n,m ∈ N,

ρ−n+m ≥ C#ρ
−
n ρ
−
m; ρ+

n+m ≤ C#ρ
+
n ρ

+
m.

In addition, if f is topologically transitive,

ρ+
n ≤ C#ρ

−
n .

Proof. To prove the first equation consider fn(W ) and chose a set Wn
.
=

{Wi} ∈ Σ̂ such that Wi ⊂ fn(W ), Wi ∩Wj = ∅ and the cardinality of Wn is
maximal. Then #Wn ≥ C# vol(fn(W )). Thus

vol(fn+m(W )) ≥
∑

W ′∈Wn

vol(fm(W ′)) ≥ C#ρ
−
n ρ
−
m

and the result follows taking the inf on W . The second inequality is proven
similarly by taking a minimal cover of fn(W ).

Let us prove the last inequality. By topological transitivity for each ε > 0
there exists nε ∈ N such that given any two ball B,B′ of radius ε, there exists
n ≤ nε such that fn(B) ∩B′ 6= ∅.61 Let n̄ = nδ.

Next, for each n ∈ N there exists Wn ∈ Σ̂ such that vol(fn−n̄(Wn)) ≥
1
2
ρ+
n−n̄. Let x ∈ Wn and B an open ball centered at x and of radius cδ for

some fixed c ∈ (0, 1) to be chosen later. Given any W ∈ Σ̂ let z ∈ W and
B′ a ball of radius cδ centered at z. By the above arguments there exists
m ≤ n̄, such that fm(B′) ∩ B 6= ∅. Given that the stable and unstable

61 Take S ∈ S(f, 0, ε/4) with maximal cardinality. Then ∪x∈SB(x, ε) ⊃ M , where
B(x, ε) is a ball (in the Riemannian metric) or radius ε and center x. Then for each
x, y ∈ S there exists nx,y ∈ N such that fnxy (B(x, ε/4)) ∩ B(y, ε/4) 6= ∅. The claim
follows since any ball B of radius ε must contain a point x ∈ S such that B(x, ε/4) ⊂ B.
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manifolds are uniformly transversal, it is possible to choose c such that, for
each point in y ∈ Wn, W cu

δ (y)∩fmW 6= ∅.62 By the hypothesis on the central
bundle it follows that the point related by the holonomy will never have a
distance larger than δ in the future, then vol(fk(Wn)) ≤ C# vol(fk+m(W )).
Accordingly

vol(fn(W )) ≥ C# vol(fn−m(Wn)) ≥ C#ρ
+
n−n̄ ≥ C#ρ

+
n ,

and the result follows again by taking the inf on the W.

Lemma C.2. If (M, f) is topologically transitive, then, for each n ∈ N,
ε > 0,

Cερ
+
n ≤ N(f, δ, n) ≤ Cερ

+
n .

Proof. Let W ∈ Σ̂ and consider a ε separated set Sn on fn(W ).63 Since
the manifold contracts backward, points that are far away in fn(W ) but
close in M will separate backward. Thus f−nSn ∈ S(f, ε, n). Since #Sn ≥
C# vol(fn(W )), it follows that N(f, ε, n) ≥ Cερ

+
n .

To prove the second inequality we use the notation introduced in the
proof of Lemma C.1. Fix W ∈ Σ̂. Let S ∈ S(f, ε, n) be a set with maximal
cardinality. Cover M with balls of radius cε. By transitivity, for each ball
B there exists a time nB ≤ n̄ such that fnBW ∩ B 6= ∅. Let WB ⊂ fnBW ,
WB ∈ Σ̂ be a manifold that intersects the ball B and project all the point
in S ∩ B to WB via the weak unstable holonomy. If we consider the images
of such points we note that two points can be (ε, n) separated only if their
corresponding points on WB are (C#ε, n) separated. Finally, note again that
the (C#ε, n) separated points on WB must have a distance larger that C#ε
in the manifold fn(WB). Thus there can be at most Cε vol(fn(WB)) such
points. Accordingly,

N(f, ε, n) ≤
∑
B

Cε vol(fn+nB(W )) ≤ Cερ
+
n .

Using the above results the required bound follows.

62 By W cu
δ (y) we mean a disk of radius δ in the weak unstable manifold.

63 That is the distance among the points is larger than ε when measured on the manifold
fn(W ).
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Lemma C.3. If (M, f) is topologically transitive, then for all n ∈ N we have

ehtop(f)n ≤ ρ+
n ≤ C#e

htop(f)n.

Proof. By Lemmata C.2, C.1

lnN(f, ε, kn)

kn
≤ lnCερ

+
kn

kn
≤ lnCε

kn
+

ln ρ+
n

n
.

Taking first the limit for k →∞ and then the limit ε→ 0, the first inequality
of the Lemma follows.

By Lemma C.1, it follows that ρ+
n+m ≥ C#ρ

+
n ρ

+
m. Then ρ+

kn ≥ Ck
#(ρ+

n )k

and

ln[C#ρ
+
n ] ≤ m lim

k→∞

ln ρ+
kn

km
≤ n lim

k→∞

lnN(f, δ, kn)

kn
≤ nhtop(φ1)

where we have used Lemma C.2 and equation (C.1).

Remark C.4. Note that if f is the time one map of a hyperbolic flow, then
by the spectral decomposition Theorem [13, Section 1.1], the manifold can
be decomposed into finitely many isolated topologically transitive sets. Hence
applying Lemma C.3 to each isolating neighborhood we obtain C#e

htop(φ1)n ≤
ρ+
n ≤ C#e

htop(φ1)n for each Anosov flow.

D Averaging operators

The following operators are used extensively in this paper.

Definition D.1. Let κ ∈ C∞(Rd,R+) such that
∫
κ(x)dx = 1, supp κ ⊂

{x ∈ Rd : ‖x‖ ≤ 1} and let κε(x)
.
= ε−dκ(ε−1x). For each α ∈ A,

` ∈ {0, . . . , d}, let Ψ ∈ C∞0 (R2d, GL(
(
d
`

)
,R)) with supp Ψ ⊂ Bd(0, 2δ)

2. We
define64 the operator Mα,Ψ,ε : Ω`

r → Ω`
r by

Mα,Ψ,ε(h)(x)
.
=


0 if x 6∈ Uα∑

ī,j̄∈I`

[ ∫
Rd Ψ(Θα(x), y)ī,j̄κε(Θα(x)− y)

×〈ωα,j̄, h〉Θ−1
α (y)dy

]
ωα,̄i if x ∈ Uα.

64 Obviously our definition depends on the choice of the function κ, and in the future
some special choice of κ will be made. However, we choose not to explicitly show the
dependence as a subscript to simplify the notation.
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Given the particular choice Ψ(x, y)ī,j̄
.
= ψα(Θ−1

α (x))δī,j̄ we define

Mε
.
=
∑
α

Mα,ε
.
=
∑
α

Mα,Ψ,ε.

Lastly, given the duality induced by (3.4), we define the operators M′α,ε,M′ε,
as those such that for all h, g ∈ Ω`

r we have65

〈M′α,εh, g〉Ω`r = 〈h,Mα,εg〉Ω`r and 〈M′εh, g〉Ω`r = 〈h,Mεg〉Ω`r .

Lemma D.2. There exists ε0 > 0 such that, for each ε ∈ (0, ε0), ` ∈
{1, . . . , d}, q > 0, p ∈ N∗ and h ∈ Ω`

p+q, we can bound

‖Mεh‖−,p,q,` + ‖M′εh‖−,p,q,` ≤ Cp,q,κ‖h‖+,p,q,`,

‖Mεh‖Cp(Ω,M) + ‖M′εh‖Cp(Ω,M) ≤ Cp,q,κε
−ds−p−q‖h‖−,p,q,`,

‖h−Mεh‖−,p−1,q+1,` + ‖h−M′εh‖−,p−1,q+1,` ≤ Cp,q,κε‖h‖+,p,q,`.

Proof. We will give a proof only for the operator Mε, the proof for M′ε being
similar. To prove the first inequality we begin by estimating the integral in
(3.11) for the case p = 0. First of all note that, for each α, β ∈ A,Wβ,G ∈
Σα(ρ,L0) and Ψ, if ∫

Wβ,G

〈g,Mα,Ψ,εh〉ωvol 6= 0, (D.1)

then Wβ,G∩ Ûα 6= ∅. Thus there exists Wα,G′ ∈ Σα(ρ+, L+) such that Wβ,G∩
Ûα ⊂ Wα,G′ (see Remark 3.5). On the other hand, by Definition D.1, the

integrand is supported in Ûα, thus∫
Wβ,G

〈g,Mα,Ψ,εh〉ωvol =

∫
Wα,G′

〈g,Mα,Ψ,εh〉ωvol.

Thus, it suffices to compute∫
Wα,Gx,F

〈g,Mα,Ψ,εh〉ωvol =
∑
ī,j̄∈I`

∫
Bds (0,2δ)

dξ

∫
Rd
dyΨ(Gx,F (ξ), y)ī,j̄

× gα,̄i ◦Θ−1
α ◦Gx,F (ξ)hα,j̄ ◦Θ−1

α (y)κε(Gx,F (ξ)− y),

65 By the duality relation M′ is then also defined on currents. In addition, note that
Mα,εΩ

`
0,r ∪M′α,εΩ`0,r ⊂ Ω`0,r.
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where hα,̄i(z) = 〈h, ωα,̄i〉z and gα,̄i(z) = 〈g, ωα,̄i〉z for each z ∈ Uα.
Next, we keep ξ ∈ Bds(0, 2δ) fixed and we consider the change of variables

ζ = Gx,F (ξ) − y. By Fubini-Tonelli theorem and the definition of Gx,F we
can exchange the integrals and obtain∫

Wα,Gx,F

〈g,Mα,Ψ,εh〉ωvol =
∑
ī,j̄∈I`

∫
Rd
dζ κε(ζ)

∫
Bds (0,2δ)

dξΨ(Gx,F (ξ), Gx−ζ,F (ξ))ī,j̄

× gα,̄i ◦Θ−1
α ◦Gx,F (ξ)hα,j̄ ◦Θ−1

α ◦Gx−ζ,F (ξ).

(D.2)

Now given our admissible test function g and a leaf Wα,Gx,F , we can define
admissible elements gζ,Ψ and Wα,Gxζ,F

, as follows. Let xζ
.
= x − ζ, gζ,Ψ,j̄ ◦

Θ−1
α (z)

.
=
∑

ī Ψ(z + ζ, z)ī,j̄gα,̄i ◦Θ−1
α (z + ζ) and gζ,Ψ =

∑
ī gζ,Ψ,̄iωα,̄i, so that∑

ī

Ψ(Gx,F (ξ), Gx−ζ,F (ξ))ī,j̄gα,̄i ◦Θ−1
α ◦Gx,F (ξ) = gζ,Ψ,j̄ ◦Θ−1

α ◦Gxζ ,F (ξ).

Then ∫
Wα,Gx,F

〈g,Mα,Ψ,εh〉ωvol =

∫
Rd
dζκε(ζ)

∫
Wα,Gxζ,F

〈gζ,Ψ, h〉ωvol. (D.3)

Note that, since the cones are constant in the charts, Gxζ ,F ∈ Σ(ρ+, L+) for
each ζ small enough. Since, ‖gζ,Ψ‖Γ`,qc (α,Gxζ,F ) ≤ Cq‖Ψ‖Cq‖g‖Γ`,p+qc (α,Gx,F ) we

have
‖Mα,Ψ,εh‖−,0,q ≤ Cq‖Ψ‖Cq‖h‖+,0,q.

The first inequality of the Lemma, for p = 0, follows.
Next we treat the case p > 0. Let v ∈ Cp+q. We need to compute

LvMα,Ψ,ε. To do so note that Lv(ωα,̄i) =
∑

j̄ ρī,j̄(v)ωα,j̄. Moreover by equation
(A.6) there exists Ψ′v such that we have Lv(Ψ(Θα(x), y))ī,j̄

.
= Ψ′v(Θα(x), y))ī,j̄.

Next, we deal with Lv(κε(Θα(x)−y)) using integration by parts with respect
to y. Lastly, we apply (A.5) to Lv〈ωα,j̄, h〉Θ−1

α (y).
By using all the remarks above, we obtain that there exists vectors

w1(v), . . . , wl(v) ∈ Cp+q, and functions Ψv,Ψv,1, . . . ,Ψv,l such that ‖Ψv‖Cp+q−1+∑
l ‖Ψv,l‖Cp+q ≤ C#‖ψ‖Cp+q and for which we have

LvMα,Ψ,εh = Mα,Ψv ,εh+
∑
l

Mα,Ψv,l,ε(Lwlh). (D.4)
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By iterating the above equality, using the previous bound for p = 0 and
equation (3.14), we obtain the first inequality of the Lemma.

To prove the second inequality, given definition (3.9), we must evaluate

〈ωα,i,Mα,εh〉Θ−1
α (z) = ψα ◦Θ−1

α (z)

[∫
Rd
κε(z − y)〈ωα,̄i, h〉Θ−1

α (y)dy

]
=

∫
Rdu+1

dyds+1 . . . dyd

∫
Wα,G(0,yds+1,...,yd),0

〈gε,z,y, h〉ωvol.
(D.5)

where ĝε,z,y,̄i ◦ Θ−1
α (ξ) = ψα ◦ Θ−1

α (z)κε(z − (ξ, yds+1, . . . , yd)) and gε,z,y =
ĝε,z,y,̄iωα,̄i. Then, differentiating (D.5) with respect to z and integrating by
parts yields the desired result since ‖gε,z,y‖Γ`,p+qc

≤ C#ε
−p−q.

Finally note that by construction

lim
ε→0

[Mα,Ψ,εh](x) = Ψ(Θα(x),Θα(x))h(x)
.
= Ψ̂α(x)h(x).

Thus, by (D.4), we have that limε→0 LvMα,Ψ,εh exists. On the other hand,
for all g ∈ Cr, we have (see (4.23))

lim
ε→0

∫
M

gLvMα,Ψ,εh ω = lim
ε→0

(−1)d
∫
M

Mα,Ψ,εhd(iv(gω)) =

∫
M

gLv[Ψ̂αh].

Thus,
lim
ε→0

LvMα,Ψ,εh = Lv[Ψ̂αh]. (D.6)

Hence, by (D.3) and the explicit representation of (D.2), we can write∫
Wα,Gx,F

ωvol

[
〈g, Ψ̂αh〉 − 〈g,Mα,Ψ,εh〉

]
=

∫
dζκε(ζ)

∫ 1

0

dt
d

dt

∫
Wα,Gxtζ,F

ωvol〈gtζ,Ψ, h〉

=

∫
dζκε(ζ)

∫ 1

0

dt

∫
Wα,Gxtζ,F

ωvol〈gtζ,Ψ, Lvζh〉 −
∑
ī

〈gtζ,Ψ, ĥα,̄iLvζωα,̄i〉

(D.7)

where vζ = −(Θ−1
α )∗ζ. The last inequality, for p = 0, follows since ‖vζ‖Cp+q ≤

C#ε. To obtain the result for p > 0, one can use (D.4) and (D.6) repeatedly.
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The above Lemma has a useful corollary.

Corollary D.3. Both Mε and M′ε extend to operators in L(Bp,q,`+ ,Bp,q,`− ) and

L((Bp,q,`− )′, (Bp,q,`+ )′). In addition, if h ∈ Bp,q,`+ , then

lim
ε→0
‖h−Mεh‖−,p,q,` + ‖h−M′εh‖−,p,q,` = 0. (D.8)

Proof. By definition, there exists a sequence {hn} ⊂ Ω`
s that converges to h

in Bp,q,`+ . Hence

‖h−Mεh‖−,p,q,` ≤ ‖h− hn‖−,p,q,` + ‖hn −Mεhn‖−,p,q,` + ‖Mε(hn − h)‖−,p,q,`
≤ C#‖h− hn‖+,p,q,` + C#ε‖hn‖+,p+1,q−1,`

implies the result.

Remark D.4. The loss related to the ± norms is due to the need of viewing
a manifold of Σα in a different chart. If we would consider a Ψ supported
in Uα and be interested only in the semi-norms arising from Σα, such a loss
would disappear.

E Holonomies

Here we recall some known facts concerning the invariant foliations of an
Anosov flow and prove some useful estimates. Concerning the issue of regu-
larity, more details can be found in [32, 33, 34].

The strong unstable foliation can be locally trivialized by a change of
coordinates of the form H(ξ, η) = (H(ξ, η), η), η ∈ Bdu(0, δ), ξ ∈ Bds+1(0, δ),
such that for each ξ, {H(ξ, η)}η∈Bdu (0,δ) is a strong unstable manifold. In
addition, without loss of generality, we can require that H(0, η) = 0 and
H(ξ, 0) = ξ. The results on the regularity of the foliation can be summa-
rized by considering the map H̃ : Bds+1(0, δ) → C0(Bdu(0, δ),Rds+1) de-
fined by [H̃(ξ)](·) = H(ξ, ·). Then H̃ has range in Cr(Bdu(0, δ),Rds+1) and
‖H̃‖C$(Bds+1(0,δ),Cr(Bdu (0,δ),Rds+1)) ≤ C#. Moreover for each η, the function
H(·, η) is absolutely continuous and has Jacobian JH(ξ, η). Again, we can de-
fine JH̃ : Bds+1(0, δ)→ C0(Bdu(0, δ),R) by [JH̃(ξ)](·) = JH(ξ, ·). Then JH̃
has range in Cr(Bdu(0, δ),R) and ‖JH̃‖C$∗ (Bds+1(0,δ),Cr(Bdu (0,δ),R)) ≤ C#.66

66 See [34] and referencess therein for the proofs of these statements.
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In this paper the holonomies are often used as follows: given W1,W2 ∈ Σ
and x, y ∈ W1 estimate d(HW̃1,W̃2

(x), HW̃1,W̃2
(y)).67 Although it is clear how

to proceed, we give the details for the benefit of the lazy reader.
Note that, without loss of generality we can assume that x = 0, y = (a, 0)

and HW̃1,W̃2
(0) = (0, z), W̃1 = {(ξ, 0)}ξ∈Rds+1 . Then W̃2 will have the form

{(ξ, z +G(ξ)), G(0) = 0, and ‖DξG‖ ≤ 2. Also let HW̃1,W̃2
(a, 0) = (ξ, η),

Lemma E.1. We have that

‖(ξ, η)− (a, z)‖ ≤ C#

[
‖a‖$′‖z‖+ ‖∂ξG‖C0‖a‖

]
. (E.1)

Proof. The intersection point (ξ, η) satisfies (ξ, η) = (H(a, η), z+G(ξ)). Thus

ξ − a = H(a, η)−H(a, 0)

= H(a, z +G(ξ))−H(a, z +G(a)) +H(a, z +G(a))−H(a, 0)

= A(ξ − a) +H(a, z +G(a))−H(a, 0).

where the last line is an application of the intermediate value theorem and
‖A(ξ)‖ ≤ ‖∂ηH(a, ·)‖C0 ‖∂ξG‖C0 ≤ C#‖a‖$

′‖∂ξG‖C0 . Then

‖ξ−a‖ ≤ ‖(1−A)−1(H(a, z+G(a))−H(a, 0))‖ ≤ C#‖a‖$
′
(‖z‖+‖∂ξG‖C0‖a‖).

Analogously,

η − z = G(H(a, η))−G(H(a, z)) +G(H(a, z)) = A1(η − z) +G(H(a, z)),

where ‖A1(η)‖ ≤ ‖∂ξG‖C0‖∂ηH(a, ·)‖C0 ≤ C#‖a‖$
′‖∂ξG‖C0 . Thus

‖η − z‖ ≤ ‖(1− A1)−1G(H(a, z))‖ ≤ C#‖∂ξG‖C0(‖a‖+ ‖a‖$′‖z‖).

Next, we need a small improvement of [43, Lemma B.7]. We use the same
notation established before (7.27), a part form the fact that the points ξ, ζ
are fixed to some value ξ∗, ζ∗.

Lemma E.2. For ξ∗, ζ∗ ∈ Bds+1(0, δ) and ∆∗ as in (7.26) we have that

|∆∗(ξ∗ + ζ∗)−∆∗(ξ∗)− dα0(z(ξ∗), ζ∗)| ≤C#(‖z‖2‖ζ̃∗‖$
′
+ ‖z‖$′‖ζ̃∗‖2)

+ C#‖z‖1+$′‖ζ̃∗‖1+$′ .

67 Remember that W̃ = ∪t∈IφtW , for some appropriate interval I.
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Proof. We use the same coordinates defined before Lemma E.1 withW = W1,
W ′ = W2; so that ξ∗ = 0, ζ∗ = (ζ̃ , 0).68 Thus W̃ is a flat manifold and W̃ ′ is
the graph of (ξ,G(ξ̃)), where ξ̃ = (ξ1, . . . ξds), ξds+1 being the flow direction.
Also W = {(ξ̃, 0)} while W ′ is the graph of (ξ̃, G(ξ̃), L(ξ̃)) with L(0) = 0,
G(0) = z̄ = zu(ξ∗). Let H(ξ, η) = (Hs(ξ, η), H0(ξ, η)), Hs : Rd → R(ds), H0 :
Rd → R, and {(Iu(ζ), Is(ζ), I0(ζ))} = {H(ζ, η)η∈Rdu} ∩ {(ξ,G(ξ))ξ∈Rds+1}.
Then ∆∗(ξ∗ + ζ∗)−∆∗(ξ∗) = I0(ζ̃)− L(Is(ζ̃)). Define Ξ : [0, 1]2 → Rd by

Ξ(t, s) = (sHs(ζ̃ , tIu(ζ̃)), tG(sIs(ζ̃)), s[H0(ζ̃ , tIu(ζ̃))− tI0(ζ̃)] + tL(sIs(ζ̃)))

and set Ξ([0, 1]2)
.
= Σ. From [43, equations (B.4), (B.5)] it follows that

I0(ζ̃)− L(Is(ζ̃)) equals the integral of the symplectic form over Σ, hence

∆∗(ξ∗ + ζ∗)−∆∗(ξ∗) =

∫
Σ

dα0 =

∫
[0,1]2

Ξ∗dα0 =

∫
[0,1]2

dα0(∂sΞ, ∂tΞ) dtds

=

∫
[0,1]2
〈Hs(ζ̃ , tIu(ζ̃)), G(sIs(ζ̃))〉 − ts〈∂ξ̃G(sIs(ζ̃)Is(ζ̃), ∂ηHs(ζ̃ , tIu(ζ̃))Iu(ζ̃)〉

= 〈ζ̃ , z̄〉+O
(
‖ζ̃‖$′‖z̄‖‖Iu‖+ ‖ζ̃‖‖z̄‖$′‖Is‖+ ‖ζ̃‖$′‖z̄‖$′‖Iu‖‖Is‖

)
.

Since, by Lemma E.1, ‖Iu − z̄‖+ ‖Is − ζ̃‖ ≤ C#(‖z̄‖$′‖ζ̃‖+ ‖z̄‖‖ζ̃‖$′), the
Lemma follows.
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