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Abstract We consider Anosov flows on a 5-dimensional smooth manifold V that
possesses an mvanant symplectic form (transverse to the flow) and a smooth invariant
probability measure A Our main technical result is the following If the Anosov
foliations are Cx, then either (1) the manifold is a transversely locally symmetnc
space, I e there is a flow-invariant C°° affine connection V on V such that VR = 0,
where R is the curvature tensor of V, and the torsion tensor T only has nonzero
component along the flow direction, or (2) its Oseledec decomposition extends to
a C°° splitting of TV (defined everywhere on V) and for any invariant ergodic
measure fi, there exists #M>0 such that the Lyapunov exponents are -2^M, —x»,
0, Xp, and 2^H, /^-almost everywhere

As an application, we prove Given a closed three-dimensional manifold of
negative curvature, assume the horosphenc foliations of its geodesic flow are C°°
Then, this flow is C°° conjugate to the geodesic flow on a manifold of constant
negative curvature

1 Introduction
Let V be a compact C°° manifold without boundary (we will use ' C 0 0 ' and 'smooth '

interchangeably) and let (p, V ^ V, (£|R, be a C°° Anosov flow on V Denote by

TV= E + ®E~@E° the <p,-invanant splitting of the tangent bundle of V into the

distributions E+ of expanding vectors, E~ of contracting vectors, and the direction

E° spanned by the vector field

d
<P =dt = 0

We recall that there are numbers a >0 and b > 1 such that, for all (>0,

M l s b e-°' \\D<p,\E-\\^b e~al (0)
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658 R Feres and A Katok

Define E = E+®E~ and assume that E possesses a symplectic form fi, which
is C°° and flow-invariant In this case E+ and E~ have equal dimension and are
Lagrangian We may also consider an Anosov diffeomorphism on a symplectic
manifold V, <p V-* V, in which case TV=E = E+@E~

We also assume that V is equipped with a smooth (C°°) (p,-invanant probability
measure A Then <p, is ergodic with respect to A

The most natural case in which the above conditions are satisfied is that of a
contact flow, l e when dim V = 2m + l and there exists a flow-invariant 1-form 0
such that v = 6 A (dd)m ^ 0 Then one can define ft = dd and A = |^| If a contact
flow is Anosov, then automatically E+® E~ = Ker 0 and O(£°, ) = 0

Let us denote E+0 = E + ®E°, E"° = £ - © £ » The distributions E+, E , E+o,
E~° are all integrable Let W+, W~, W+o, W~° denote the corresponding foliations
W+ and W~ are Lagrangian foliations with respect to Cl

In this context, it is possible to define a flow-invariant affine connection V on V
(see § 2), which was first used by M Kanai in [K] V is transversely torsion-free,
meaning that for any vector fields £ 17 on V, T(£ rj)e E° (T is the torsion tensor
of V) The curvature tensor will be denoted by R

We say that (V, V) is an affine locally symmetric space on transversals if V/? = 0
If for some cover V of V the space P of orbits of the lifted flow to V, with the
quotient topology, is a smooth manifold, this condition means that P (with the
affine connection induced by V) is an affine locally symmetric space

Our main result is

THEOREM 1 Let <p, V-» Vbe an Anosov flow as above and assume that the dimension
ofVis 5 Assume that E+ and E~ are C°° Then, either

(1) (V, V) is an affine locally symmetric space on transversals or
(2) There exist C°° <p,-invariant line fields V,, ee {+,-}, ie{\,2}, defined

everywhere on V, such that E" = L\®Le
2 and for any ergodic <p,-invanant measure /x,

there is x^ > 0 such that for ^.-almost everywhere ve V and for every 0 # £ e U, (v),

hm -loglKD^J^I^e^ se{+,-}, is{1,2},
/-.±oo f

{here, \\ \\ denotes any Riemanman norm on TV)
In other words, the Oseledec decomposition of {<p,} is smooth and the Lyapunov

exponents are equal to — 2^M, — x^, 0, x^, 2x^> (i-almost everywhere
Moreover, there exists e e {+, —} for which L\ 1= [U2, L^F], on a nontrwial invariant

open set

The same results hold, with the obvious rephrasing, for symplectic Anosov
diffeomorphisms on compact four-dimensional manifolds

We give an application of Theorem 1 to the problem of rigidity of geodesic flows
on 3-dimensional Riemannian manifolds of negative curvature

Let M be a compact C°° manifold without boundary, of dimension n > 2 , with
a Riemannian metric o- of negative sectional curvature The geodesic flow <p, V-* V
on the unit tangent bundle V of M is a contact Anosov flow, and V is foliated by
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Anosov flows with smooth foliations 659

the horosphenc foliations W+ (resp W+o), the strong (resp weak) unstable foliation
and W~ (resp W~°), the strong (resp weak) stable foliation

In [K], M Kanai shows that if the stable and unstable foliations W+ and W~
are C°° and the sectional curvature K of M satisfies

then the geodesic flow on V is C00 isomorphic to the geodesic flow for a metric of
constant negative curvature In [F-K], the above condition is improved to the optimal
one - 4 < K s - l

By combining Theorem 1 with a fact that appears in the proof of Theorem 4 1
of [K], we show that the pinching assumption on K is not necessary if dim M = 3

THEOREM 2 Let Mbea compact, boundaryless, C°° Riemannian manifold of dimension
3 whose sectional curvature K is strictly negative Assume that one of the horosphenc
foliations W+ or W~, in the unit tangent bundle V of M, is Cx Then, the geodesic
flow on V is Cx isomorphic to the geodesic flow for a metric of constant negative
curvature

We observe that, in the case of geodesic flows, the smoothness of, say, W~ readily
implies the smoothness of W+ This is because there exists a diffeomorphism of V,
the flip map J v >-> — v, which interchanges W+ and W~

Remarks (l) Two previous proofs of Theorem 2 presented in the preprints Rigidity
of Geodesic Flows on Negatively Curved Compact 3-Mamfolds, by the second author,
and Rigidity of Geodesic Flows on Negatively Curved Manifolds of Dimensions 3 and
4, contain gaps, although the main line of argument is correct and is earned out in
the present paper Another reason for restructuring the paper is our desire to separate
the main technical result for general Anosov flows (Theorem 1), which essentially
belongs to smooth dynamics, from the application to geodesic flows The interested
reader will find other applications of Theorem 1 to Anosov difleomorphisms in
[Fl-K]

(n) All the results proven here require only finite smoothness of the Anosov
foliations The exact degree of smoothness needed is, however, much greater than
the optimal one (which is presumably C2) Therefore we did not pay greater attention
to this issue We note that we have used Sard's theorem in Lemma 6 and that Kanai's
results in [K] are formulated for C°° foliations (although finite smoothness suffices
there, too)

(m) After this paper was written, the first author extended the result of Theorem
2 to negatively curved manifolds of arbitrary odd dimension [F]

2 The Kanai connection
Assume the setting defined in the introduction, prior to Theorem 1 To avoid
repetitions, we will restrict ourselves to the case of flows

Denote by TTF TV-> EF, e = +, - , or 0, the natural projections, and assume that
the bundles E' are differentiate of class Cr, r > l The Kanai connection is an
affine connection V on V such that (I) Vft = 0, (n) Vir" = 0, for e = +, - , 0, (in) V
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is transversely torsion-free, 1 e ircT = 0, e = +, - , (IV) V<p = 0, (v) Vv = Siv = the Lie
derivative along the flow

It is not difficult to verify that property (n) is equivalent to the following one
(n') If fe is a vector field in Ee and 77 is any vector field on V, then V,,£e e E\ for
e = +, - , or 0

LEMMA 1 There exists a unique affine connection V on V satisfying (i)-(v) V 15
<p,-invariant and is of class Cr~x if the bundles E+ and E~ are of class Cr

Proof (See also [K] and [F-K]) We first show that there exists a unique covanant
derivative of vector fields in E, along vectors in E, satisfying the properties (i)-(ni)

Define c = TT+ - ir~ and let g = fl( , c ) g is a bilinear nondegenerate symmetric
form on E and one can define the corresponding Levi-Civita connection, the unique
torsion-free connection V with respect to which g is a parallel tensor field, 1 e
V'g = 0. Then note that V'c = 0 is equivalent to W £ = 0, e = +, - (we observe that
2 TTE = Identity + e c) We will show that the latter property is equivalent to V
preserving the subbundles Ee, e = +,—

Given vector fields £ 77, v in E, we have (see, e g [KN] v I, p 36, and [H], p 48)

(a)

(b) 0 = 3dCl(t,-n, v)

= $n(v, v)-vWt, ")+"ft(£ v)-W[v, v], £)+**([£ H, r?)-
Given vector fields ije, 7]e, vc in E% e = +, - , it follows from (a), (b), the

integrability of E\ and the identities O(£E, £e) = 0 and g(E\ £e) = 0, that

g(V'tV\ i>*) = 0 hence V'^rj'eE' and

g(V^T?-s, v-*) = e/2 dil(f, V~\ p'e) = 0 hence VJ-t,"' e £"f

It also follows from a simple computation that if V'c = 0 and V'g = 0 then V'n = 0
Therefore V satisfies (1), (11), and (111)

Given arbitrary vector fields £ = £1 +f<p and r\ = 77, + h<p for real functions / and
h, and vector fields &, 77, in £, define

It is not difficult to check that V so defined is the unique affine connection on V
that satisfies (i)-(v) Moreover the connection <pfV, defined by (<pfV)£Tj =
D<p-,VDvi(D<p,T), also can be shown to have the same properties By uniqueness, we
must have V = <pf V

By computing the Chnstoflfel symbols of V, one readily sees that V is C r l if the
foliations are C O

Let g be the symmetric nondegenerate bilinear form on E introduced in the proof
of Lemma 1 g = fl( •, c ), c = ir+ - ir~ Denote by R the curvature tensor of the
Kanai connection and consider the (0,4)-tensor field R = g(R( , ) , ) Its co-
vanant derivative w = VR is a (0, 5)-tensor field and we have w = 0 if and only if
VR = 0, as can be easily verified
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LEMMA 2 (1) w and R are <p,-invanant tensor fields
(2) Ifwv9

i0for some ve V, there exist e = + or - , £,, £3, £ 5 e £ e ( u ) , and £2,
£ 4 e£- E (u ) , SMC/I that a>v(&,€2,&,£4,£5)*0

(3) For any ve V, ee{+, - } and vectors^, £3, f5e £E(u), £,, £4^ £~E(i>), we have

where /A IS any permutation of {1, ,5} suc/i </ia< / i = / i , ° / i 2 , a product of a
permutation //., o/{l , 3, 5} and a permutation fj.2 of {2,4} Moreover, for a permutation
H such that ix(\) = 1, we haue /?„(&, , &) = RV(€M2), , ^(5))
/Voo/ (1) follows naturally from the <p,-invanance of V and g In order to show the
other properties, we need to consider the algebraic symmetnes of u> First, let us
observe that /?„(£,, &, £3, £4) = 0 whenever ^, and £,, or f3 and f4 belong to the
same subbundle £ f for e = + or - In fact, as R{^,^2)E

e ^ E£ and Ee is a
Lagrangian subbundle, we have /?„(&, , £») = efl(/?,,(fi, ^2)^3, £4) = 0, whenever
£3 and ^4 belong to the same space Ee On the other hand, it is well known that
the curvature tensor of an affine connection associated to an indefinite metric satisfies
#i>(£i, £2 > £3 > £4) = ^(£3» £4, £1, £2), so that the same property holds for the first pair

R also satisfies the following symmetnes, true for any curvature tensor with an
indefinite metric We use the abbreviation ( 1 2 3 4) for /?(£], £2, £3, £4)

(1 2 3 4) = (3 4 1 2) = - ( 2 1 3 4) = - ( 1 2 4 3)

(1 2 3 4)+ (2 3 1 4)+ (3 1 2 4) = 0 (first Bianchi identity)

Furthermore, we obtain, for

( 1 2 3 4 5) = » ( & , & , & , & , 6 ) ,

(1) (1 2 3 4 5) = 0, whenever $2 and £3, or £4 and £5 belong to the same subbundle
E\ e = + or -

(11) (1 2 3 4 5) = - ( 1 3 2 4 5)
(111) (1 2 3 4 5) = - ( 1 2 3 5 4)
(iv) (1 2 3 4 5) = (1 4 5 2 3)
(v) ( 1 2 3 4 5) + (l 3 4 2 5) + (l 4 2 3 5) = 0

(vi) (1 2 3 4 5)+ (2 3 1 4 5)+ (3 1 2 4 5) = 0 (second Bianchi identity)
The identities (i)-(v) are easily obtained from the corresponding properties of R

by using that VEF c Er and the formula

1=2

where £, € Es{v) and £, is any smooth vector field in Es which extends £, near v
It is now easy to show that (i)-(vi) imply (2) and (3) •

3 Some smooth ergodic theory
Let || || be any Riemanman norm on TV If ve V and f e TVV, define
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For each veV, ;f+(u, ) assumes finitely many values on TVV, say

*i(«)<*2(»)< <Xs{v)(v) s(v)<dimTLV
Define

F,(v) is a linear subspace of TVV, and we have the filtration

{0} = Fo(»)<=F,(o)c czFs{v)(v)=ToV

The functions x,, s, and the filtration (F,) are ^-invariant and measurable, as
functions of v e V

Let IX be any <p, -invariant Borel probability measure on V According to the
Multiplicative Ergodic Theorem of Oseledec, there exists a set A of full ^-measure
such that for all v € A we have the linear decomposition

s ( o )

r o v = © Ej(v)

and x*(v, £) = hml^±<x>r1 \og\\(D<p,)vt;\\= x,(v), uniformly in geEj(v) such that
| | | | | = 1 The subspaces E}(v), 7 = 1, , s(v), depend measurably on v and are
<p, -invariant

The following lemma was proved in [F-K]

L E M M A 3 Let r be a continuous tp,-invanant tensor field on V of type (0, r) Let veA

and suppose that g, e Ei(v), i = 1, , r, are vectors at v such that x(£, , , £.) ^ 0

Then

Recall the setup given in § 1 In particular, we have E = E+® E~ and the symplec-
tic form flonE By applying Lemma 3 to the invariant tensor field fl, we note that,
if x is a Lyapunov exponent of <p,, then —\ is also a Lyapunov exponent In this
case, the Oseledec decomposition reads, for t e A ,

where e = + or - , r = (s-1)/2, and Ee,(v) is associated to the Lyapunov exponent
e xAv) Moreover, since <p, is Anosov, if 77 is a vector such that x+(v, i?) = 0, then

veE°
We may also consider the filtration

{0} = F o
+ <=F^ < = F > £ + ,

where Ft is defined by F,+r+1(u) = Ft(v)@E~(v)
The foliations W+ and W~° (see § 1) are transverse to each other and have

complementary dimensions Assume they are of class Cr, r > 1 Given any pair of
points v and we V such that ve W~°(w), we can find a neighbourhood aUl of v
and ^ of w for which the holonomy map

%»v ue W+(v)n1ll,^W-o(u)n W+(w)e W+(w)n°U»

is a Cr-diffeomorphism Denote by HH1,(M) £ + ( U ) - > E+(3€ttl(u)) the differential of
%wv at UE W+(v)n%
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Notice that, for every t e R,

since the foliations are <p, -invariant Hence

Dip, o //„„ o D<p_, = HVi(H)Vi(1)

LEMMA 4 Assw/ne f/iaf f/ie AMOSOD splitting TV= E+@E~@E° is differentiable of
class C, r > l Lef u, we V, wif/i ue W~°(w) 77ien s(f) = s(w), ^,(u)=^f,(w) for
i = l, , s, and for each i

In p a r t i c u l a r , the filtration ( F t ) is Crl a l o n g the leaves of W~°

Proof If ve W-(w), £e F?{v), and f = HBO(i;)f, then A-+(W, ?) = X+(V, f) This is,
in fact, true since

= hmsup-log \\H^n)^(

But hmsup,^+codist(<p,(w), <p,(v)) =0, so that there are constants 0<c, c' such that
for every f >0 and 17 e £+(<p,(f)), we have

Therefore

f ) = hm sup-log
< + o c /

It remains to show that the negative (forward) exponents at v and w are the same
For that, let us consider the following map Let {eF,(ti)n£"(i)) and £x =
{r)eE+(v) n(£Tj) = 0} Choose any J/G £+(u) sothatfl(j', f) = l Then, there exists
a unique f'e £~(w) such that (('y = HKUfx andfi{Hnvv, f') = 1 The correspondence

PHe fe£-(»)n-»f 'e£-(w)

is well defined (1 e independent of the choice of v) and C (if the Anosov splitting
is Cr) Clearly, the same argument used above for Hwv also applies to Pwv, so that

*+(w,n=*+(«u) •
As a remark, we point out that the maps H and P that occur in the above proof

are nothing but the parallel transport of vectors with respect to the invariant affine
connection V

4 The Proof of Theorems 1 and 2
In §2, we introduced the invariant (0, 5)-tensor field w If w = 0 we arrive at the
alternative (1) of Theorem 1 Now we would like to consider the possibility w^O

Consider the set s$F = {v e V (ov(E
F, £"F, £ \ EF, EF) * 0}, 1 e v e sdF if there

are vectors £,, f,, £5e Ef (v), £,, £,e £"*(») such that «„(&, , & ) * 0
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From now on, A will denote a smooth invariant probability measure on V Recall

that <p, is ergodic with respect to A In particular, every nontnvial invariant open

set has full A-measure

According to Lemma 2 (2), w^O implies si+ or s£~ (or both) are non-empty s&e

is an open subset of V and, since to and E± are flow-invariant, so is s£e Therefore,

if s£e ^ 0, for some e € {+, - } , sie has full A-measure

Let S e {+, - } be such that Ms * 0, and define A * = / n A Note that A8 also has

a full A-measure

LEMMA 5 Assume the same conditions as in Theorem 1 (in particular, dim E±(v) = 2,

v e V) Suppose that u> # 0 Then for each v e A* (see definition above), we have the

Oseledec decomposition

TvV=E;(v)@E;(v)@E0(v)®Et(v)®E+(v)

and Lyapunov exponents — X2(v)<~Xi(v)<0<X\(v)<X2(v) Moreover, we have

for at least one of the combinations of subscripts shown in Table 1 and for no other

possibility not given there (the exponents will, in each case, satisfy the relation given

at the right hand side of the table)

Table 1

I

II

III

I,

1
1

2
1
1

1

'2

2
1

2
2
2

2

'3

1
1

1
2
1

1

'4

1
2

2
2
2

2

'5

1
1

1
1
2

1

Resonance

2x,(») = *2(t;)

2Xl(v)=x2(v)

3Xl(v) = 2X2(v)

Proof Lemma 3, applied to ft, yields that ^ is a Lyapunov exponent if and only if

—X is a Lyapunov exponent This remark and the same lemma applied to

0, veAs,

show that there are two different positive exponents and

Xh + X,i + Xl, = X,2 + X,4 ' , £ { 1 , 2 }

It is, now, easy to venfy that the above table accounts for all the possibilities •

The next lemma essentially follows from the arguments in [F-K]

LEMMA 6 There exists a <p,-invariant set A<= A* of full K-measure such that for every

veA, (*) holds (see Lemma 5) only for possibility I of Table 1
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Proof To simplify the notation, assume that 8 = - We begin by showing that case
II in table 1 can only happen in a set of A-measure zero First, note the following
Let v e A~ be such that

for vectors £f e Ef, i = 1 or 2, e = + or - Since Ec, are one-dimensional, there is
no loss of generality in using repeated arguments for u> in (*,), as we did, for
example, in its second and fourth entries Denote by A' the set of such v's Let
£* € Ee be arbitrary smooth extensions of £f in a neighbourhood of v We claim that

0*<oD{&, ti, fr, it, €7) = &&&, €7, £ , £") (*2)
In general, we should have

If, say, the first term on the nght hand side of the above identity is not zero, there
would exist -qeEt(v), i = l or 2, such that Rv(r), | 7 , £2, £7)^0 By Lemma 3,
Xi(v) = -X2(v) + 2\i(v) = 0, a contradiction, since the absolute values of all the
positive Lyapunov exponents are bounded below by the constant a of (0) A similar
argument applies to each of the remaining terms

Now, define the vector bundle p Y=E+@E~®E+®E~^V and consider M =
{£ = (fi, 6 , 6 , &) e V *(f) = 0} It follows from Lemma 3 that £ ( £ , f f, 6+, f D =
0 for every v € A~ so that

. , 0 ^ for each ve A'

On the other hand, (*2) can clearly be rephrased as follows (see [F-K], Lemma
3) Given ve A" where (*2) holds, then for every tangent vector Xe T^V at f =
(£,€7,&,i7)ep~\v) such that (DP)iX = ^^ £2"(u)\{0}, we have

By the Implicit Function Theorem, there exists a neighbourhood % of £ in °V such
that the level set Jfn1l( is a smooth submanifold of codimension 1 embedded
in V Moreover, if Ye TeN, (DR)fY = 0, so that there does not exist any Ye T(M~
such that (Dp)fy = ^2(^)^0 Therefore v is a critical value of the smooth func-
tion p restricted to Jfn% The union U f ( - ^ n % ) over all ueA' and fe
(E2®EJ@Et®E^)v such that (*2) holds is a smooth submanifold of T The base
point projection p, restricted to this submanifold, is a smooth map into a manifold
of smaller dimension, of which all the points v e A' are critical values It follows
from Sard's Theorem that A(A') = 0

Case III of Table 1 is similar In fact, this case corresponds to having X2<2X\,
which is shown in [F-K] to occur at most in a set of A-measure zero (if w # 0)

•
Let v e °Ui-*L(v) <= Ee(v) be a smooth field of /c-planes in Ee defined on an open

set °U c V Let ft be the symplectic form on E = E+®E~ Define the O-complement
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of L to be the distribution L± of linear subspaces of Ee of codimension k given by

L±(v)={veE-e(v) Q(T/,£)=0 for every £e L(v)}

Clearly, if L is flow-invariant and smooth on °U, then Lx has the same properties
Consider now the case when dim£ E =2 Let Ee = E\@EC

2, e = + or - , be the
Oseledec decomposition of Ec defined on As (see Lemma 5) It is an easy con-
sequence of Lemma 3, applied to the nondegenerate form ft, that

LEMMA 7 Assume the same conditions as in Theorem 1, and in addition VRT^O

Then, there exist C00-line fields v>~* U,{v), veV, which are flow-invariant and such
that for ve A (see Lemma 6), Lf(t)) = Ee,(v)

Proof To simplify the notation, we assume S = - For ve V, consider L2(v) =
iveE-(v) <»0(T?, f,, &,&,&) = 0, for every &,&eE+(v), t2,t4eE~(v)} L2(v)
is a linear subspace of E~(v) for each ve V and can be viewed as the solution set
of a system of linear equations on E~ that are smoothly parametrized by ve V
Therefore, there exists a nonempty open set °U, <= V where L2 defines a smooth
distribution Since w and Ec are flow-invariant, °ll can be chosen flow-invariant
and L2 will be flow invariant In particular °U has full A-measure Now, observe
that for every veAn% Lemma 6 gives L2{v) = E2(v), so L2 is a smooth line field
on °U which extends the fast contracting direction E2

Define Lf =(L2)
± L^ is a flow-invariant, smooth line field on °U and L*(v) =

E~{(v) for every ve A
Now, for v e V consider

Q{v) ={veE+(v) «„(£„•»»,&, 17, &) = 0 for every f,, f2, (3e £"(»)}

Q(u) is the solution set of a system of homogeneous quadratic equations defined
on the 2-dimensional space E+(v) Therefore Q(v) may be the set {0}, or E+(v),
or one line through the origin or yet a pair of transverse lines intersecting at the
origin Moreover, the system of quadratic equations is smoothly parametrized by
ve V so that there exists a nonempty open set %'<= V, which can be taken flow-
invariant, where Q depends smoothly on v But for veAn°lt',v/e know from Lemma
6 that Q(v) = E~[(v) u E2 (v) Therefore Q defines a pair of transverse smooth line
fields on °\l' which coincides with EX(V)KJE\(V) on every veAn^W

Define dU = aU'ncU € is an open set of full A-measure O n u e l n A , L2{v) =
(Q(v)\L^(v))u{0} coincides with E2(v), so that L2 defines a smooth flow invariant
line field on $. that extends E2 L\ - (L2 )

x is, then, a smooth flow-invariant line
field on <U that extends E\

Next, we show that the line fields L\, i = 1, 2, e = +, - , defined on %L c V, extend
to smooth line fields everywhere on V For that, it will be enough to find extensions
of L\ since L2

F = (L\)± Note that L\f is invariant under the holonomy transport
along We0 (Lemma 4, § 3) Therefore, Lemma 7 is established after

LEMMA 8 Assume that the foliations W and W° {see § 1) are Cx for e =+,- Let
ve ^I-»L(D)C: E+(v) be a C00 flow-invariant distribution of k-dimensional planes
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defined on an open set 0 ^ *% <= V Assume that L is invariant under the holonomy
transport along W~°, in the following sense Ifu, u'etfl are such that u'e W~(u), we
have Huu(u')L(u') = L{u) (recall the definitions in §3) Then, there exists a C°°
distribution defined everywhere on V and invariant under holonomy transport along
W~° that coincides with L on <%

Proof Given veV, define L(v) = Hvu{u)L(u), for any u e l n W~°(v) The first
thing to show is that L is well-defined We note that % n W~°(v) # 0 since all the
leaves of IV'0 are dense in V (this is true for any Anosov flow possessing a dense
orbit See [A]) Moreover, if «' is another point in "%n W~°(v), then u'e W~°(u),
so that

Hw(u)L(u) = Hm.(u')Hu u(u)L(u) = Hvu (u')L(u'),

and L is therefore independent of the choice of u L is clearly smooth and invariant
along the leaves of W~° It then suffices to check it is smooth along the leaves of
W+ Let w belong to a sufficiently small neighbourhood Y of v in W+(v) such that
3>e:»{w)E W+(u)n°U and 2tvu Y^ %VU(Y) is a diffeomorphism Then

w e Y^L(w) = Hvu(W;Z(

will depend smoothly on w

End of the proof of Lemma 7 It follows immediately from Lemma 8 that Lf can be
extended everywhere on V with the required properties The same lemma applies
to L7 by viewing E\ as the slow expanding direction for the flow <p_, Now, take
the d-complement of L\ to obtain extensions for L\, e = +, — •

We remark that Lemma 7 is sufficient to establish Theorem 2
It remains to prove that the line fields L\ and V2, obtained above, are everywhere

transverse to each other, and to check the properties claimed for the Lyapunov
exponents and the brackets of the line fields

Proof of Theorem 1 We have shown in Lemma 7 the existence of C°° line fields Lf,
for i e {1, 2}, and e e {+, - } , such that, for almost every ve V, L'(v) = £f(i>) Here,
E* are the measurable line fields that appear in the Oseledec decomposition of TV,

By Lemma 6, we have

«(Lf,,L-8,Lf3,L-*,L?,)^0 (1)

if and only if (i,, , i5) e {(1, 1,1, 2,1), (1,2,1,1,1)} Moreover ft(Lf, Ll) = Q
Consider the set ^ = (t)6 V w ^ O } si is a non-empty <p,-invariant open set,

hence it has full A-measure since the Lebesgue measure is ergodic
Define the space M of all cp,-invanant Borel probability measures on V, equipped

with the weak*-topology
We have Given any /x e M, for (i-almost every ve si,

hm -\og\\D<p,\L.ivt\\ = eiXpiv), (2)
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where e e {+, - } , i e {1,2}, and #M is a <p,-invanant measurable function on V such
that Xii. — a > 0 (a 1S ^ e constant that appears in (0)) In fact, this follows from the
Oseledec Theorem and Lemma 3, applied to (1)

In particular, we observe that for any point u e i that lies on a periodic orbit,
(2) is satisfied, since we may consider the invariant probability measure supported
on that periodic orbit

Let us define, for v e V and meZ,

Fm(v) = F*m'(v) =\og\\(D<pm)v\L',M\\,
where

\\(D<pm)v\mv)\\= sup — = —j for any
; II77II || 5 I I

(recall L"\ is one-dimensional)
It immediately follows that {Fm m e Z} is an additive cocycle, that is,

UH \\(D<pm),,,aD<pnU\\
|| =log ^ ^ ^

Therefore, due to Birkhoff's Ergodic Theorem, if /t is an ergodic measure in M, for
fi -almost every veV, the limit of

F (v) 1 m~1

I , ( V ( ) ,

exists and equals JVF, d̂ t
In particular, if v e J^ IS any point lying on a periodic orbit of <p, and /A e M is

the measure supported on that orbit, then there exists ^ ( i ) )>a>0so that

J V F? £//* = «*(») ee{+ , -} , is{1,2} (3)

We observe that the positive functions / A ^ ^ '(fi) = J v F i ' t//x, defined on J< are
continuous with respect to the weak*-topology

Any ergodic measure /LA G M can be obtained as the limit of a sequence of measures
/ i , e i supported on periodic orbits that are contained in any given invariant dense
open set This is a corollary of the Specification Theorem for Anosov flows [B], and
can be shown as follows Let /A e M be ergodic Then, it follows from Birkhoff's
Ergodic Theorem that for ti-almost every veV, and for every continuous function
/ o n V,

l i m ^ I f{<p,{v))dt= I
T^x 1 JQ Jv

Choose such a point v and pick any vo&s4 Now, we can apply the Specification
Theorem to produce a closed orbit that passes near v0 (so that it is contained in
•sd) and follows the orbit segment of v of length T for most of the time, within a
small distance e With an appropriate choice of e and T, it is easy to verify that the
invariant probability measure supported on that closed orbit will approximate /A
arbitrarily well in the weak*-topology
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Therefore, due to Lemma 3, given any ergodic measure / ^ e i and for /J.-almost
every veV, there exists xM > a > 0 so that (3) also holds for /J. In fact, by approximat-
ing fi by a sequence of measures /jLneJt supported on periodic orbits in si, we obtain

Let us prove now that L\ # L2 everywhere The sets 0F ={ve V L\{v) = V2{v)},
for e = + and —, are compact and flow-invariant If at least one of them is not
empty, it carries a flow-invariant ergodic measure /A for which ^e > 2(/ i) /^£ l(fi) = l,
thus contradicting (4) Therefore, 6+ = €~ = 0

It remains to show that L\ <= \L\, Lj"E] on a nontnvial invariant open set, for some
e Consider smooth vector fields ff, for J e {1,2}, such that gf{v) e Lf(i;) for all v
Since Lf = Ef almost everywhere, and due to Lemma 3, we have, for any sign e
and any vector field TJ G E",

£ ( # , £ " ' , £ , £"*) = <> and &

Therefore

= - 2

where for the last step we also used the symmetries of R given in Lemma 2 Therefore,
if we choose e = 8 (see Lemma 6), we have

on some invariant nontnvial open set, so that L2
S<= VL-sL^s or L?c VLT«L? on that

open set But

so that both inclusions should occur, since fl{Lf, Lj)?iO if and only if i=j
Therefore, since VE± <= £*,

i-f<=VL-L?c:VLT''L?-VLfL7sc[L?,L7s] D

Proof of Theorem 2 In [K], M Kanai considered the following setting Denote by
P= V/{4>,} the space of orbits of the lift of the geodesic flow to the universal cover
V of V, where V is now the unit tangent bundle of a negatively curved manifold
M, as in Theorem 2 On P, he introduced an affine connection, let us call it V,
which can be thought of as the restriction of V to the bundle E (see [F--K] for
details) He proved that, if V is a locally symmetric affine connection, l e if VR' = 0,
where R' is the curvature tensor of V, then the conclusion of Theorem 2 holds
Therefore, it will suffice to show that the tensor field o> vanishes in this case

Suppose (0 9^0 According to Theorem 1, there exists a smooth line field L =
Lj"<= £ + defined everywhere on V

https://doi.org/10.1017/S0143385700005836 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005836


670 R Feres and A Katok

Let S be a closed surface diffeomorphic to the 2-sphere, embedded in the universal
cover M of M Denote by v(x) the inward, say, unit normal vector to S at xe S
and let p V -» M denote the base point projection The differential of p at v e V
defines an isomorphism between E+(v) and the orthogonal complement of v,
v±czTpiv)M Therefore, for each xeS, (Dp)Hx) E+(v(x))-> TXS is a linear
isomorphism and

defines a continuous line field tangent to S, a topological impossibility Therefore,
we must have u> = 0 •
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