
Another algorithm for reducing bandwidth
and profile of a sparse matrix

Z.„. 1*7 T^ OTUTV'T'TT uy vv . i ' . ui.»J. j . J. j- j .

International Labor Office

Geneva, Switzerland

and

ILONA ARANY
Computing Center of the Ministry of Labor
Budapest, Hungary

ABSTRACT

The paper describes a new bandwidth reduction method
for sparse matrices which promises to be both fast and
effective in comparison with known methods. The al
gorithm operates on the undirected graph correspond
ing to the incidence matrix induced by the original
sparse matrix, and separates into three distinct phases:
(1) determination of a spanning tree of maximum
length, (2) modification of the spanning tree into a
free level structure of small width, (3) level-by-level
numbering of the level structure. The final numbering
produced corresponds to a renumbering of the rows
and columns of a sparse matrix so as to concentrate
non-zero elements of the matrix in a band about the
main diagonal.

INTRODUCTION

As electronic computers make possible computations
on ever larger data sets, it has come to be realized 1,pir-2

that most large matrices are, in the nature of things,
sparse; more precisely, that a matrix of (large) order
n will generally contain only Kn non-zero elements,
where K tends to decrease as n increases (K is often as
little as 2 or 3 and only rarely greater than 20). There
has been, accordingly, during the last ten years, a good
deal o± research into techniques j.or emcieni. computer
handling of large sparse matrices. These techniques
may be separated into two classes:

Tx: techniques which deal with the given sparse
matrix, more or less directly, in a sparse form
(some typical approaches are surveyed in
[2] and [3]) ;

T2: techniques which transform the given sparse
matrix into a band form (which may then be
processed further by efficient and well-known
band matrix algorithms).

Initially "direct" techniques Tx attracted more inter
est, and the utility of "band" techniques T2 was occa
sionally questioned.* Research into T2 techniques was
spurred however by the work of Cuthill-McKee,5 who
described an effective bandwidth reduction algorithm
with execution time linear in Kn. Instead of dealing
directly with the given matrix, Cuthill-McKee (here
after called CM) dealt with the numbered graph whose
connections correspond to the given matrix's zero/non
zero structure; they renumbered the vertices of this
graph, and this renumbering therefore defined the in
terchanges of rows and columns required to transform
the original sparse matrix into a band matrix.

The CM method was later modified in various ways,
especially by Rose,6 who also contributed an important
analysis of the application of Gaussian elimination to
band matrices, showing in particular the importance
of the profile.

The algorithm presented here, called the SA algo
rithm, is of class T2. It results from efforts to improve
on previous work,7 and has been directly stimulated by
the approach suggested by Smyth-Renzi (hereafter
called SB)8 as well as by the related algorithm pub
lished independently by Gibbs-Poole-Stockmeyer (here
after called GPS).9 Like the CM and GPS algorithms,
SA renumbers the vertices of a given numbered graph
with the objective of minimizing the maximum differ
ence between numbers assi°"ned to connected vertices.
Also in common with these algorithms, SA reduces
profile as well as bandwidth6 and may be applied to
non-symmetric as well as to symmetric matrices.

TERMINOLOGY

We use the term graph, and the symbol G or G (V, E) ,
to denote a finite connected * undirected graph without

* The algorithm may easily be modified to deal separately with
the disjoint components of a single graph.

987

988 National Computer Conference, 1976

loops or multiple edges defined on a vertex set V of
cardinality n= jVj>l and an edge set E of cardinality
m = j E |. For any distinct pair of vertices u, v e V, we
define the usual distance function P (u,v) to be the num
ber of edges on the shortest path from u to v. For a
single vertex u, we adopt the convention p(u,u)=0;
for unconnected vertices u,v, we set p(u,v) = oc; if
p(u,v) =1 , then u and v are said to be adjacent. The
diameter of G is defined by

diam(G) = max„.veV[p(u,v)].

Since we assume G is connected, diam(G) < n-1.
Apart from such basic terms, we need for our pur

poses here to define four main concepts: level struc
ture, free level structure, numbering, and bandwidth.

A level structure LS of a graph G(V,E) is an as
signment of the vertices of V into sets, called levels
Lu L2, . . ., Lx, such that

(1) L,! contains at least one vertex;
(2) for each k=2,3, . . ., A, Lb contains every ver

tex not in a previous level which is adjacent
to some vertex of Lk_i.

It follows from this definition that if G is connected,
LS contains all n vertices of V; that the levels are dis
joint; that l<A<diam(G)+1; and that LS is deter
mined uniquely by the choice of vertices in Li. We may
therefore unambiguously denote LS by LS(Li) or,
when Lx = {u}, by LS (u). We observe in fact that level
Lk of LS(Li) consists of exactly those vertices which
occur in the kth level of every spanning forest (SF)
grown from the vertex set Lj (for a description of this
process see Reference 5). L S ^) therefore corre
sponds (one-many) to the SF(Li), and LS(u) to the
spanning trees ST(u). Whenever edges are not im
portant, then, we may refer to LS and SF/ST inter
changeably.*

A free level structure FLS of a graph G(V,E) is an
arrangement of all n vertices of V into A levels Llf L2,
. . ., Lx, such that

(1) no level is empty;
(2) if ueLk then all vertices adjacent to u are in

either Lk_x, Lk, or Lk+1.

We note that in this case also l<A<diam(G)+1,
but that FLS(u) is no longer uniquely determined
(Figure 1). For either LS or FLS we speak of the
width of level k, w(Lk) = [Lk|, and the width of the
structure, w(LS) or w(FLS) =max1<k<xw(Lk). A is
called the length of the structure.

Following GPS, we now define a numbering <x=cc(V)
of G(V,E) to be a one-one map of V onto the first n
natural numbers {1,2, . . ., n}. For a given numbering

* We dwell on this point to avoid confusion. The definition of
LS given here is more restrictive than the original definition
given in Reference 7, but is compatible with the SF/ST usage of
Reference 8. The GPS definition of LS Reference 9 is compatible
with Reference 7, and what GPS call the "level structure rooted
at u" is identical to our LS (u) .

unique level structure LS(u)

four free level structures FlS(u)

Figure 1

a, we may define S<*(G), the bandwidth of the graph G
relative to the numbering a, to be

Ba=Sa(G) =max(u,v)eE|a(u) - a (v) |.

The bandwidth of G is then

S=8(G)=minn l l a[MG)].

GENERAL DESCRIPTION OF THE SA
ALGORITHM

Our goal is therefore, given G(V,E), to find a num
bering a=a(V) such that Sa=8(G). Our (heuristic)
algorithm approaches this problem in three distinct
phases:

I FindLS
Using the SB method,8 a level structure LS
= LS(u) is found such that A=diam(G) +1.

II Find FLS
Using a subset M (|M|=min {|LX|, |n/X|}) of
the vertices of level Lx in LS(u), a new level
structure, denoted LS'=LS'(M), is grown.
LS' is also of length A. LS and LS' are syste
matically compared, and an FLS is determined
such that w=w(FLS) is small (if possible,
w=|n/AJ).

I l l Number FLS
FLS is numbered on a level-by-level basis; that
is, first, the integers {1,2,.. . .wj are assigned
to the vertices of the first level of FLS (wk

denotes the width of the kth level of FLS);

Algorithm for Reducing Bandwidth 989

second, the integers {Wx + 1, Wi + 2, . . . , wx

+ w2} are assigned to the vertices of the sec
ond level; and so on, until all vertices have
been numbered. The algorithm makes use of
knowledge of the edges joining vertices of
successive levels in an effort to minimize
bandwidth: it searches for a level-by-level
numbering a such that the corresponding
bandwidth satisfies

S a < W + A.

where A successively takes the values 0,1, . . .,
w — 1. The first numbering found which satis
fies this condition is the required numbering
a.

The justification of algorithms such as this is partly
theoretical, partly experimental, and numerous varia
tions in strategy are possible. In practical terms, we
are trying to find a "reasonably good" numbering with
out needing to investigate all of the n! different possi
ble numberings; our strategy therefore'is always in
fluenced by estimates, often very rough in nature, of
the additional benefit to be expected from the additional
effort expended. We will find an example of this kind
of strategic thinking in Phase II of SA: we do not
carry out an exhaustive search to find the FLS of truly
minimum width, even though such a search might not
on the average be too laborious, simply because (1) it
seems that an exhaustive search would not be likely to
decrease w; (2) the result might be merely to decrease
w by 1, but not decrease Sa, and in addition make num
bering more lengthy and difficult. On the other hand,
in Phase I, we propose using the SB algorithm s instead
of the GPS pseudo-diameter algorithm,9 because the
former guarantees finding a longest spanning tree at
(apparently) no additional cost. On the theoretical
side, the basic justification for level-by-level numbering
is the result of Arany-Szoda 10 that corresponding to
every numbering a of G there exists at least one FLS
whose width w=Sa, and which may be numbered on a
level-by-level basis to yield the numbering a. Since the
case 8a-S is included in this result, it follows that level-
by-level numbering of an FLS is an acceptable ap
proach to bandwidth reduction, in that it does not ex
clude any minimum case. The result however does not
point to any particular FLS-growing or FLS-number-
ing algorithms.

PHASE I OF SA: FIND LS

As noted above, the SB diameter algorithm is pro
posed here, because it guarantees finding A = diam(G)
+ 1 and apparently is comparable to the GPS pseudo-
diameter algorithm in execution time. The SB algo
rithm is described fully in Reference 8 and is not in
cluded here*.

* We do however provide a correction to the algorithm SPAN
(h,i) given in the Appendix of Reference 8. In step 7 replace

diameter = 8, pseudo-diameter = 6

Figure 2

GPS state in Reference 9 that their pseudo-diameter
algorithm found the true diameter in all test cases.
Figure 2 illustrates a graph of diameter 8 whose GPS
pseudo-diameter is 6. The GPS algorithm would re
quire the growth of 6 spanning trees to achieve this
result, the SB algorithm 3 spanning trees (starting
vertex ®) , Removal of edges (4,8) and (5,9) from
Figure 2 and insertion of edge (4,5) would permit GPS
to find a pseudo-diameter 7 at a cost of growing 4
spanning trees. For a symmetrized version of the
Curtis matrix4 (Figure 3), SB finds diameter 7 at a
cost of 6 spanning trees (starting vertex ®) , and GPS
finds pseudo-diameter 7 from each of six starting
vertices of minimum degree at an average cost of 5.5
spanning trees. See Table I.

A more detailed analysis of the application of the
GPS pseudo-diameter algorithm to the Curtis matrix

TABLE I—Comparison of SB and GPS

example

Figure 2
Figure 2 (mod.)
Curtis matrix

(pseudo

SB

8
8
7

-) diameter

GPS

6
7
7

number of
LS grown

SB

3
3
6

GPS

6
4
5.5

the ending "." with "gotoll.". Step 8 should read "[Is the
vertex connected to jorig in level g+1?] / / h=l and level (h,
elist(j)) = : g + l , gotolO; otherwise gotoll.". Interchange steps
9 and 10.

990 National Computer Conference, 1976

FLS corresponding to Curtis matrix

Figure 3

Algorithm for Reducing Bandwidth 991

shows that 48 of the 54 vertices would, used as starting
root vertices, yield maximum pseudo-diameter 7; of
these 48 vertices, the 9 extreme vertices yield A=8
immediately, 22 yield A=7 but contain an extreme ver
tex in L7, and 15 yield A=6 with an extreme vertex in
L6 (there are two other special cases). These statistics
appear to be related to the success of the GPS algo
rithm, and it would be interesting to know if for much
larger graphs also (n = 500 to 5000) such a high per
centage of optimal starting root vertices occurs.

GPS initially searches V for a vertex of lowest de
gree as starting root vertex, and from the correspond
ing Lx selects additional root vertices in increasing
order of degree. SB includes no such searches.

PHASE II OF SA: FIND FLS

The algorithm described below is an attempt to deal
efficiently with difficult cases which may arise when G
is not "well" connected (Figure 4) ; that is, when a
number of vertices swing into different levels in the
level structure LS' grown from vertices of Lx in LS (u).
It seems that the' growing of this "reverse" level struc
ture (step (1) of the following algorithm) will nor
mally accomplish what GPS accomplish in phase II
of their algorithm; the other steps in the algorithm
given below make use of the same information pro
posed by GPS, but in a more flexible manner.

Given LS(u) of length A=diam(G)+l, phase II
proceeds as follows:

(1) [Grow "reverse" LS'.] For R = | n/A |,* choose a
set of vertices M<LX such that |M|=min [R,
w(Lx)] and grow LS'(M) with levels Lk' of
width w'(k), k=l ,2 , . . ., A (L / ^ M) .

(2) [Calculate initial value of T.]
T«-2i^x min [R-w ' (k) ,0] ; if T = 0, goto (16).
[Two criteria are used to determine whether the
movement of a vertex of FLS(M) from one level
to another yields a "better" FLS: the value T
given here and the value T'=3 [R—w7 (k)] 2 . The
FLS is "better" if the vertex movement in
creases T (by unity) or decreases T'. T is also
an "absolute" criterion, since any FLS for which
T=0 is accepted; T' is not calculated explicitly
because it is not "absolute", so that only AT' is
required (see step (12)). Both T and T' may
be used since T"' decreases iff T does not in
crease.]

(3) [Calculate level pairs.] As in Reference 9, asso
ciate with each vertex v e V a level pair (gv,hT),
where gv is the level of v in LS'(M), where hv=
A—kT + l, and kv is the level of v in LS(u).

(4) [Separate "movable" vertices into r connected
components.] As in Reference 9, separate all
vertices such that gv = hv into r disjoint connected
components C^Ca, . . ., Cr of cardinality d,c2,

* SB propose rather | n/\ j .

. . ., cr, respectively, arrange^ so tuat c1^c2^:

. . .<c r .
(5) If r=0,goto (16).
(6) [Organize storage for vertices in component Cr.]

Associate with each vertex xrjeCr, j = 1,2, . . ., c„
an identifier [v(j) ,g(j) ,h(j)] , where v(j) is a
pointer to the level pair of the vertex v=xr j, and
[g(j)>h(j)] is the level pair of xrj (that is,
g(j)=gv<j), h (j)=h T (j)) ; order the vertices so
t h a t g (l) > g (2) > . . .>g(c r) .

(7) [Initialize vertex movement parameters for Cr.]
j<- l ; AT<-0, A T ^ - O ; for each k=l ,2 , . . ., A,
w(k)<—w'(k).
[For each C„ we need to provide temporary stor
age for the level widths w'(k) : this temporary
storage into w(k) is used to keep track of moves
made since the last acceptance of a vertex move
ment (last increase of T or decrease of T').]

(8) [Move vertex xrj from level g(j) to g(j)—1.]
Perform MOVE-VERTEX (j,7) as follows:
(8 . 1) y « - g (j) ^ g (j) - l ;
(8.2) w (y) < - w (y) + l , w (y + l) « - w (y + l) - l ;
(8.3) let j ' successively take the values j +1 , . . .,

cr, 1, . . ., j ; for the first value j ' such that
g(j /)>h(j ') , se t j«- j ' ;

(8.4) if there is no such j ' , set j«-0.
[Given j , MOVE-VERTEX (j,y) returns the new
level y of the moved vertex xrj, together with the
next admissible value of j . The vertex move
ments take place in a "cascade" from higher-level
vertices to lower-level vertices, in accordance
with the observation that under these circum
stances a vertex xrj may always be moved to the
preceding level, provided that g (j)>h (j) (ini
tially, of course, g (j)>h (j) for every j = 1,2,
. . ., c r). Note that not all possible configura
tions of Cr are necessarily covered by the move
ments included here.]

(9) [Calculate AT.] A T < - A T + (if w(y + l) > R - l , 1;
otherwise, 0) — (i f w (y) > R , l ; otherwise 0).
[The full expression for AT is

T=-min{R- [w(y) - l] , 0}+min{R-w(y) ,0}
- m i n { R - [w(y + l) +l] ,0}+min{R-w

(y + l),0}.]
(10) [For increased T, store present arrangement of

vertices into levels.] If AT = 1, T«-T + l, AT<-0,

and perform STORE-PATTERN; otherwise,
goto (12).
[STORE-PATTERN does the following: for j =
1,2, . . ., c„ gv(j,<-g(j); for k = l,2, . . ., A,
w'(k)<-w(k); AT'<-0. Note that A T is reset
after every increase of T, but that acceptance
based on A T does not reset AT (step (13)).]

(11) IfT = 0,goto (16).
(12) [Calculate AT'.] A T V < - A T ' + [w (y) - w (y + l)

- 1] .
(13) If A T < 0 , perform STORE-PATTERN.

992 National Computer Conference, 1976

(14) [More vertex movements possible?] If j>0 ,
goto (8).

(15) [More components of "movable" vertices?] r<-
r - 1 , goto (5).

(16) Exit.
[The FLS(M) which best satisfies the T and T
criteria has now been determined. Each vertex v
of FLS(M) is placed into the level specified by
gv, and the width of each level Lk' is given by
w'(k).]

Figure 4 illustrates the result of the application of
the algorithm to an LS with many movable vertices.
In this case only three vertices would need to be moved
before FLS became acceptable (T=0) . In the example
of Figure 2, an FLS of width 5 would be accepted
(T= — 3) after movement of two vertices. For the two
dimensional grid discussed in detail by GPS, phase II
yields an optimal FLS = LS(M) after step (1), and no
vertex movements are required. For the Curtis matrix,
on the other hand, consideration of the connected
components in decreasing order of size actually in
hibits bandwidth reduction: for starting vertex u = ©
and a corresponding LS(M) of width 11 (T= —9), the
algorithm requires 56 vertex movements to yield an

Figure 4

FLS of width 10 (T = - 7) . Although this result leads
to an optimum numbering (8=10), much unnecessary
work is done. Clearly, in order to evaluate the effi
ciency and utility of phase II of the SA algorithm, con
siderable computational experience, especially with
large matrices, is desirable.

PHASE III OF SA: NUMBER FLS

We propose here a somewhat more sophisticated
numbering algorithm than has previously been em
ployed,57'9 but which retains the property of having
execution time approximately linear in n. Indeed, as
we shall see, the numbering algorithm has the interest
ing property of being rather more efficient in the more
difficult cases.

Suppose we are given an FLS(M) of length A and
width w', with levels Lk' of width w' (k), k= 1,2,. . ., A.
Suppose further that corresponding to each veV, we
may identify gT, the level of v, and A(v), the set of
vertices adjacent to v; and that corresponding to each
level Lk' of FLS, we may identify the vertices xkj e Lk',
j = 1,2, . . ., w' (k). Phase III assigns numbers to the
vertices on a level-by-level basis, with the objective of
arriving at a numbering a of G which corresponds to a
suitably small bandwidth 8a. In the large, phase III
proceeds as follows:

(1) A<-0.
(2) Sa«-w'+A.
(3) For each k=l ,2 , . . ., A, try to assign numbers

to the vertices xkj c Lk' in such a manner that the
number n (x) of each vertex x satisfies

|n (x) -n(y) |<8„ ,

for every y e Ax.

(4) If for some k, it turns out that the vertices cannot
be numbered to satisfy this condition, then
A<-A + l, goto (2).

We observe that, in principle, this algorithm will
terminate sooner or later; indeed, as CM remark,5 for
S a=2w'-1, any level-by-level numbering of FLS will
satisfy the condition given in step (3). We observe
further that, in practice, the algorithm will normally
terminate at some value Ba close to w'; in fact, in the
great majority of cases, for o« — W .

We give now a more detailed description of step (3).
Since the same procedure is used for the numbering of
each level, we confine ourselves to describing the
numbering of the kth level Lk'. Certain basic values
need to be defined and calculated:

W'(k) = Ws; kw'(k ') , l<k<A;
= 0,k=0.

A±1(j) = {v|xkJeL'kAveA(xw)AvcLk±1'}, the set of
vertices of L'k+1 (L'k_i) adjacent to the j t h

vertex in Li k.

* However an unpublished example due to Arany-Szoda has the
following characteristics: n = 60, m = 112, w' = 9, 5(G) = 1 4 .

Algorithm for Reducing Bandwidth 993

a±1(j) = jA±1(j)|.

lown (j) = minxeA l(j)n (x), a-, (x) > 0 ;
= W ' (k - l) , a - 1 (x) = 0 ;

the lowest number assigned to any vertex in
Lk_/ which is adjacent to the j t h vertex in
W.

The processing required for each level falls naturally
into two stages, which we call INITIALIZE Lk' and
NUMBER L,/:

INITIALIZE Lk'

(1) For each vertex xkj, j = 1,2,. . ., w'(k), calculate
(1.1) xmin(j)<-max[l+W'(k- l) , W'(k) +a+1

(j) — Sa]f the least number assignable to xkj

which is compatible with bandwidth Sa;
(1.2) xmax (j) <-min [W (k), 8a+lown (j)] , the

greatest number assignable to xkj which is
compatible with

(1.3) xrange (j) <-xmax (j) -xmin (j) + 1 ; if
xrange (j)<0, goto INCREMENT A (step
(4) in the general outline of phase III given
above).

(2) nrangeclass (j)<-0, j = 1,2, . . ., w'(k).
[The number of vertices to which a number
W ' (k - l) + j ' , j ' = l,2, . . ., w'(k), may be as
signed will be determined; nrangeclass (j) will
then contain a pointer to the first of the numbers
W'(k—1) + j ' which may be assigned to exactly j
vertices.]

(3) For each number j ' = 1,2, . . ., w'(k) :
(3.1) calculate

nr(j ') , the number of values of j for which
xmin (j) <j '<xmax(j) ;

nlist(j',l) to nlist (j ' ,nr(j ')), a list con
taining the values of j for which xmin
(j)< j '<xmax(j) ;

(3.2) if nr (j') =0, goto INCREMENT A;
(3.3) np(j')<-nrangeclass(nr(j')), nrangeclass

(nr(j '))«-j ' .
[np(j') is a pointer to the next number in
nrangeclass (nr (j ')).]

NUMBER Lk'
(4) J<—1, counter<-0.
(5) If nrangeclass (J) =0, J«-J + l, goto (5).

[The numbers to be assigned are chosen in in
creasing order of nrangeclass.]

(6) j'<r-nrangeclass (J),nrangeclass (J)«-np(j ')-
[j' is the number to be assigned.]

(7) [Determine j , the vertex to which j ' is assigned.]
(7.1)h<-l,j«-nlist(j ' ,h);
(7.2) h<-h+l, j e n l i s t (j',h) ; if j 1 = 0,

goto (7.6) ;
(7.3) if range 0\) <xrange(j),xrange(j)<-

xrange(j) - 1 , j<-ja, goto (7.2);
(7.4) xrange(j\)<-xrange(j\) — 1; if xrange

(j j =0, goto INCREMENT A;

(7.5) goto (7.2) ;
(7.6) exit.

(8) [Assign j ' t o j .]
(8 .1)n(x k j)<-W'(k- l)+ j ' ;
(8.2) counters—counter + 1; if counter = w'(k),

goto (11) ;
(8.3) xrange(j)<-x,nr(j ')<-0.

(9) [Delete j and j ' from storage.] For every J '=
xmin(j), xmin(j)+, . . ., xmax(j) such that
nr (J') = 0, do the following:
(9.1) rouK—nr(J'), nr(J')<—nr(J') — 1 ;
(9.2) if rold=l, goto INCREMENT A;

if ro ld=J,J<-nr(J ') ;
(9.3) pold<—np(J'), np(J')<-nrangeclass

(nr (J ')) , nrangeclass(r(J'))<-J';
(9.4) if nrangeclass (rold) = J', nrangeclass (rold)

<—pold, goto (9.7) ; otherwise,
j2<—nrangeclass (rold);

(9.5) if np(j,)=J' , j2<-np(j2),goto (9.5) ;
(9.6)np(j2)«-pold;
(9.7) exit.

(10) Goto (5).
(11) Exit.

Table II displays results obtained using the above
algorithm on a few examples; these results [S(SA)]
are compared with optirium numbering [8 (FLS)]
and with results [S(GPS^ obtained by the GPS num
bering algorithm. S(FLS [was attained neither by SA
nor GPS, primarily bt -use more than single-level
lookahead was required.

It appears that, in phase III as in the other phases,
SA produces results at least as satisfactory as those of
GPS. The execution time of phase III is bounded above
by a value proportional to 2w'(k)2, and depends essen
tially on the size of the variables xrange (j) and nr (j') :
when these variables are small—that is, when the num
bering is more difficult—execution time will corre
spondingly be small. Storage required for phase III
is of the order of w' (w' + 6).

CONCLUSIONS

We have described a bandwidth reduction algorithm
which appears to be competitive in effectiveness and
efficiency with presently known algorithm. Systematic
testing on large matrices encountered in practice is re-

TABLE II—Numbering FLS using SA

FLS S(SA)

Figure 2 6
Figure 3 11
FLS of width 10 determined
by applying phase II to
Curtis matrix
[Li' = {52,53,54}] 11
Figure 4 5

5(FLS)

5
10

10
4

5(GPS)

6
11

12
6

994 National Computer Conference, 1976

quired. Some of the more important questions remain
ing to be clarified, either by experiment or by analysis,
are as follows:

(1) The execution time of SB (phase I of SA) is pro
portional to 2Hm. What can be said about the
magnitude of H ?

(2) In what (more efficient) way can vertex move
ments be evaluated during phase II, in order to
yield an optimum FLS ?

(3) Given two FLS of G of widths Wj and w2>w1, de
note by Sj and <52 the least bandwidths obtainable
by level-by-level numbering of the first and second
FLS, respectively. Does it follow that S,^!?

REFERENCES
1. Willoughby, Ralph A., Sparse Matrix Algorithms and Their

Relation to Problem Classes and Computer Architecture,
IBM Research Publication RC 2833, March 1970, 38 pp.

2, Pooch, Udo W. and Al Nieder, "A Survey of Indexing
Techniques for Sparse Matrices," ACM Computing Surveys
5-2, June 1973, pp. 109-133.

3. Tewarson, R. P., "Computations with Sparse Matrices,"
SI AM Review, 12-4, October 1970, pp. 527-543.

4. Curtis, A. R. and J. K. Reid, "The Solution of Large Sparse
Unsymmetric Systems of Linear Equations," Proc. IFIP
Congress 71, 1972, pp. 1240-1245.

5. Cuthill, E. and J. McKee, "Reducing the Bandwidth of
Sparse Symmetric Matrices," Proc. 24th Nat. Conf. ACM,
1969, pp. 157-172.

6. Rose, D. J., Symmetric Elimination on Sparse Positive
Definite Systems and the Potential Flow Network Problem.
Ph.D. thesis, Harvard Univ., 1972.

7. Arany, Ilona, W. F. Smyth and Lajos Szoda, "An Improved
Method for Reducing the Bandwidth of Sparse Symmetric
Matrices," Proc. IFIP Congress 71, 1972, pp. 1246-1250.

8. Smyth, W. F. and W. M. L. Benzi, "An Algorithm for Find
ing the Diameter of a Graph," Proc. IFIP Congress 7U,
1975, pp. 500-503.

9. Gibbs, Norman E., William G. Poole and Paul K. Sto.ck-
meyer, An Algorithm for Reducing the Bandwidth and
Profile of a Sparse Matrix, Technical Report No. 5, July
1974, 25 pp.

10. Arany, Ilona and Lajos Szoda, "Ritka Szimmetrikus
Matrixok Savszelesseg Redukcioja, "Informdcio Elektronika
4, 1973, pp. 273-282.

