ANOTHER LOOK AT FORECAST-ACCURACY METRICS

FOR INTERMITTENT DEMAND
by Rob J. Hyndman

Preview: Some traditional measurements of forecast accuracy are unsuitable for intermittent-demand data
because they can give infinite or undefined values. Rob Hyndman summarizes these forecast accuracy metrics
and explains their potential failings. He also introduces a new metric—the mean absolute scaled error
(MASE)—which is more appropriate for intermittent-demand data. More generally, he believes that the
MASE should become the standard metric for comparing forecast accuracy across multiple time series.

groups in the world.

B There are four types of forecast-error metrics:
scale-dependent metrics such as the mean
absolute error (MAE or MAD); percentage-error
metrics such as the mean absolute percent error
(MAPE); relative-error metrics, which average
the ratios of the errors from a designated
method to the errors of a naive method; and
scale-free error metrics, which express each
error as a ratio to an average error from a
baseline method.

B For assessing accuracy on a single series, | prefer
the MAE because it is easiest to understand and
compute. However, it cannot be compared across
series because it is scale dependent; it makes no
sense to compare accuracy on different scales.

B Percentage errors have the advantage of being
scale independent, so they are frequently used to
compare forecast performance between different
data series. But measurements based on
percentage errors have the disadvantage of being
infinite or undefined if there are zero values in a
series, as is frequent for intermittent data.

M Relative-error metrics are also scale independent.
However, when the errors are small, as they can
be with intermittent series, use of the naive
method as a benchmark is no longer possible
because it would involve division by zero.

B The scale-free error metric | call the mean absolute
scaled error (MASE) can be used to compare
forecast methods on a single series and also to
compare forecast accuracy between series. This
metric is well suited to intermittent-demand series
because it never gives infinite or undefined values.
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I ntroduction: Three Ways

to Generate Forecasts

There are three ways we may generate forecasts (F) of a
quantity (Y) from a particular forecasting method:

1. We can compute forecasts from acommon origin t (for
example, the most recent month) for a sequence of forecast
horizons F ,,,...,F , based on datafromtimest = 1,...,n.

Thisisthe standard procedure implemented by forecasters
in rea time.

2. Wecanvary the origin from which forecasts are made
but maintain a consistent forecast horizon. For example,
we can generate a series of one-period-ahead forecasts
FroneF o, Whereeach F isbased on datafrom times
t = 1,..,j . This procedure is done not only to give
attention to the forecast errors at a particular horizon
but also to show how the forecast error changes as the

horizon lengthens.

3. We may generate forecasts for a single future period
using multiple data series, such as a collection of products
or items. This procedure can be useful to demand planners
as they assess aggregate accuracy over items or products
at a location. This is also the procedure that underlies
forecasting competitions, which compare the accuracy of
different methods across multiple series.

Whilethesearevery different situations, measuring forecast
accuracy is similar in each case. It is useful to have a
forecast accuracy metric that can be used for all three cases.

June 2006 Issue 4 FORESIGHT 43



An Example of What Can Go Wrong

Consider the classic intermittent-demand series shown in
Figure 1. These data were part of a consulting

period because the in-sample period includes some
relatively large observations. In general, we would expect
out-of-sample errors to be larger.

project | did for a major Australian lubricant  Figure 1. Three Years of Monthly Sales of a Lubricant Product Sold in Large Containers

manufacturer.

Sales of lubricant

Suppose we are interested in comparing the SE
forecast accuracy of four simple methods: (1)
the historical mean, using data up to the most
recent observation; (2) the naive or
random-walk method, in which the forecast for
each future period is the actual value for this
period; (3) simple exponential smoothing; and
(4) Croston’s method for intermittent demands
(Boylan, 2005). For methods (3) and (4) | have

Units sold

used a smoothing parameter of 0.1. 0

| compared the in-sample performance of these
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Data source: Product C in Makridakis et al. (1998, chapter 1). The vertical dashed line indicates
the end of the data used for fitting and the start of the holdout set used for out-of-sample forecasting.

Month

methods by varying the origin and generating a

sequence of one-period-ahead forecasts — the second
forecasting procedure described in the introduction. | aso
calculated the out-of-sample performance based on
forecasting the datain the hol d-out period, using information
from thefitting period alone. These out-of-sample forecasts
are from one to twelve steps ahead and are not updated in
the hold-out period.

Table 1 shows some commonly used forecast-accuracy
metrics applied to these data. The metrics are all defined in
the next section. There are many infinite values occurring
in Table 1. These are caused by division by zero. The
undefined valuesfor the naive method arisefrom thedivision
of zero by zero. The only measurement that always gives
sensible resultsfor all four of the forecasting methodsisthe
MASE, or themean absolute scaled error. Infinite, undefined,
or zero values plague the other accuracy measurements.

In this particular series, the out-of-sample period has
smaller errors (is more predictable) than the in-sample

Table 1. Forecast-Accuracy Metrics for Lubricant Sales

GMAE Geometric Mean Absolute Error 1.65 0.96
MAPE Mean Absolute Percentage Error LY 0 -
sMAPE  Symmetric Mean Absolute 1.73 1.47 -

Percentage Error

MdJRAE  Median Relative Absolute Error 095

GMRAE  Geometric Mean Relative £y 0 -
Absolute Error

MASE Mean Absolute Scaled Error 0.86 0.44

0.00 0.00

1.00 0.20

Measurement of Forecast Errors

We can measure and average forecast errorsin several ways:

Scale-dependent errors

The forecast error is simply, =Y, — F,, regardless of how
the forecast was produced. Thisis on the same scale asthe
data, applying to anything from ships to screws. Accuracy
measurements based on e, are therefore scal e-dependent.

The most commonly used scale-dependent metrics are
based on absolute errors or on squared errors:
Mean Absolute Error (MAE) = mean(le, |)

Geometric Mean Absolute Error (GMAE) = gmean(je, |)
Mean Square Error (MSE) = mean(e’)

where “gmean” is a geometric mean.

The MAE is often abbreviated as the MAD (“D” for
“deviation”). The use of absolute values or squared
values prevents negative and
positive errors from offsetting
each other.

_Croston

In
133 009000 099/ ginceall of these metricsareonthe
182 142 1.70 1.47| same scale as the data, none of
them are meaningful for assessing
a method’s accuracy across

0.79 045 multiple series.

098 093 =
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0.78 0.33

44 FORESIGHT Issue 4 June 2006



For ng accuracy on asingleseries, | prefer the MAE
becauseit is easiest to understand and compute. However,
it cannot be compared between series because it is scale
dependent.

For intermittent-demand data, Syntetos and Boylan (2005)
recommend the use of GMAE, athough they call it the
GRMSE. (The GMAE and GRM SE are identical because
the square root and the square cancel each other in a
geometric mean.) Boylan and Syntetos (this issue) point
out that the GMAE has the flaw of being equal to zero
when any error is zero, a problem which will occur when
both the actual and forecasted demands are zero. This is
the result seen in Table 1 for the naive method.

Boylan and Syntetos claim that such asituation would occur
only if an inappropriate forecasting method is used.
However, it is not clear that the naive method is always
inappropriate. Further, Hoover indicates that division-by-
zero errorsin intermittent series are expected occurrences
for repair parts. | suggest that the GMAE is problematic
for assessing accuracy on intermittent-demand data.

Percentageerrors

The percentage error is given by p, = 100g,/Y,. Percentage
errors have the advantage of being scale independent, so they
arefrequently used to compareforecast performance between
different data series. The most commonly used metric is

Mean Absolute Percentage Error (MAPE) = mean(|p,|)

Measurements based on percentage errors have the
disadvantage of being infinite or undefined if there are
zerovaluesin aseries, asis frequent for intermittent data.
M oreover, percentage errors can have an extremely skewed
distribution when actual values are close to zero. With
intermittent-demand data, it isimpossible to usethe MAPE
because of the occurrences of zero periods of demand.

The MAPE has another disadvantage: it puts a heavier
penalty on positive errors than on negative errors. This
observation has led to the use of the “symmetric’ MAPE
(SMAPE) in the M3-competition (Makridakis & Hibon,
2000). It is defined by

SMAPE = mean(200 |Y - F |/ (Y + F,))
However, if the actual value Y, is zero, the forecast F, is

likely to be close to zero. Thus the measurement will
still involve division by a number close to zero. Also,

the value of sSMAPE can be negative, giving it an
ambiguous interpretation.

Relativeerrors

An alternative to percentages for the calculation of scale-
independent measurements involves dividing each error by
the error obtained using some benchmark method of
forecasting. Let r, = e /g’ denote the relative error where
g’ istheforecast error obtained from the benchmark method.
Usually the benchmark method is the naive method where
F, isequal to the last observation. Then we can define

Median Relative Absolute Error (MdRAE) = median(|r,|)
Geometric Mean Relative Absolute Error (GMRAE) = gmean(|r,|)

Because they are not scale dependent, these relative-error
metrics were recommended in studies by Armstrong and
Collopy (1992) and by Fildes (1992) for assessing forecast
accuracy across multiple series. However, when the errors
are small, as they can be with intermittent series, use of
the naive method as a benchmark is no longer possible
because it would involve division by zero.

Scale-freeerrors

The MASE was proposed by Hyndman and K oehler (2006)
asagenerally applicable measurement of forecast accuracy
without the problems seen in the other measurements. They
proposed scaling the errors based on the in-sample MAE
from the naive forecast method. Using the naive method,
we generate one-period-ahead forecasts from each data point
in the sample. Accordingly, a scaled error is defined as

¢

Z |YiiYif1‘

q,: 1
n—-1 =

Theresult isindependent of the scale of the data. A scaled
error is less than one if it arises from a better forecast
than the average one-step, naive forecast computed in-
sample. Conversely, it is greater than one if the forecast
is worse than the average one-step, naive forecast
computed in-sample.

The mean absolute scaled error is simply

MASE = mean(|q,|)

Thefirst row of Table 2 showstheintermittent series plotted
inFigure 1. The second row givesthe naiveforecasts, which
areequal to the previous actual values. Thefinal row shows
the naive-forecast errors. The denominator of g, is the
mean of the shaded valuesin thisrow; that is the MAE of
the naive method.
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Table 2. Monthly Lubricant Sales, Naive Forecast

values of other groups of series to identify which

In-sample RIS series are the most difficult to forecast. Typical
I/\\I:;:le 020101000020630000070000000310010100 valuesfor one-step MASE values are lessthan one,
forecast ¥, 02010100002063000007000000000000000 | asitisusualy possible to obtain forecasts more
Emor [Y-¥)| 22111100022633000077000000310010100 | accurate than the naive method. Multistep MASE

The only circumstance under which the MASE would be
infinite or undefined is when all historical observations
are equal.

Thein-sample MAE is used in the denominator becauseitis
always available and it effectively scales the errors. In
contrast, the out-of-sample MAE for the naive method may
be zero because it is usually based on fewer observations.
For example, if we were forecasting only two steps ahead,
then the out-of -sample MAE would be zero. If we wanted to
compareforecast accuracy at one step ahead for ten different
series, then we would have one error for each series. The
out-of-sample MAE in this case is a so zero. These types of
problems are avoided by using in-sample, one-step MAE.

A closely related ideais the MAD/Mean ratio proposed by
Hoover (thisissue) which scalesthe errorsby thein-sample
mean of the series instead of the in-sample mean absolute
error. This ratio aso renders the errors scale free and is
aways finite unless al historical data happen to be zero.
Hoover explains the use of the MAD/Mean ratio only in
the case of in-sample, one-step forecasts (situation 2 of the
three situations described in the introduction). However, it
would also be straightforward to use the MAD/Mean ratio
in the other two forecasting situations.

Themain advantage of the MA SE over theMAD/Meanratio
isthat theMASE ismorewidely applicable. TheMAD/Mean
ratio assumes that the mean is stable over time (technically,
that the seriesis“ stationary”). Thisis not true for datawhich
show trend, seasonality, or other patterns. While intermittent
datais often quite stable, sometimes seasonality does occur,
and this might make the MAD/Mean ratio unreliable. In
contrast, the MASE is suitable even when the data exhibit a
trend or a seasona pattern.

The MASE can be used to compare forecast methods on a
single series, and, because it is scale-free, to compare
forecast accuracy across series. For example, you can
average the MASE values of several series to obtain a
measurement of forecast accuracy for the group of series.
This measurement can then be compared with the MASE
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valuesare often larger than one, asit becomes more
difficult to forecast as the horizon increases.

The MASE istheonly available accuracy measurement that
can be used in al three forecasting situations described in
the introduction, and for all forecast methods and all types
of series. | suggest that it is the best accuracy metric for
intermittent demand studies and beyond.
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