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Preview: Some traditional measurements of forecast accuracy are unsuitable for intermittent-demand data

because they can give infinite or undefined values. Rob Hyndman summarizes these forecast accuracy metrics

and explains their potential failings. He also introduces a new metric—the mean absolute scaled error

(MASE)—which is more appropriate for intermittent-demand data. More generally, he believes that the

MASE should become the standard metric for comparing forecast accuracy across multiple time series.
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Introduction: Three Ways
to Generate Forecasts

There are three ways we may generate forecasts (F) of a
quantity (Y) from a particular forecasting method:

1. We can compute forecasts from a common origin t (for
example, the most recent month) for a sequence of forecast

horizons  F
n+1

,...,F
n+m 

based on data from times t = 1,...,n.

This is the standard procedure implemented by forecasters

in real time.

2. We can vary the origin from which forecasts are made

but maintain a consistent forecast horizon. For example,

we can generate a series of one-period-ahead forecasts
F

1+h
,...,F

m+h
 where each  F

j+h  is based on data from times

t = 1,..., j . This procedure is done not only to give

attention to the forecast errors at a particular horizon
but also to show how the forecast error changes as the

horizon lengthens.

3. We may generate forecasts for a single future period

using multiple data series, such as a collection of products

or items. This procedure can be useful to demand planners
as they assess aggregate accuracy over items or products

at a location. This is also the procedure that underlies

forecasting competitions, which compare the accuracy of
different methods across multiple series.

While these are very different situations, measuring forecast
accuracy is similar in each case.  It is useful to have a

forecast accuracy metric that can be used for all three cases.

� There are four types of forecast-error metrics:

scale-dependent metrics such as the mean

absolute error (MAE or MAD); percentage-error

metrics such as the mean absolute percent error

(MAPE); relative-error metrics, which average

the ratios of the errors from a designated

method to the errors of a naïve method; and

scale-free error metrics, which express each

error as a ratio to an average error from a

baseline method.

� For assessing accuracy on a single series, I prefer

the MAE because it is easiest to understand and

compute. However, it cannot be compared across

series because it is scale dependent; it makes no

sense to compare accuracy on different scales.

� Percentage errors have the advantage of being

scale independent, so they are frequently used to

compare forecast performance between different

data series. But measurements based on

percentage errors have the disadvantage of being

infinite or undefined if there are zero values in a

series, as is frequent for intermittent data.

� Relative-error metrics are also scale independent.

However, when the errors are small, as they can

be with intermittent series, use of the naïve

method as a benchmark is no longer possible

because it would involve division by zero.

� The scale-free error metric I call the mean absolute

scaled error (MASE) can be used to compare

forecast methods on a single series and also to

compare forecast accuracy between series. This

metric is well suited to intermittent-demand series

because it never gives infinite or undefined values.



period because the in-sample period includes some

relatively large observations. In general, we would expect

out-of-sample errors to be larger.

Measurement of Forecast Errors

We can measure and average forecast errors in several ways:

Scale-dependent errors
The forecast error is simply, e

t
=Y

t
 – F

t 
, regardless of how

the forecast was produced. This is on the same scale as the

data, applying to anything from ships to screws. Accuracy
measurements based on e

t
 are therefore scale-dependent.

The most commonly used scale-dependent metrics are
based on absolute errors or on squared errors:

where “gmean” is a geometric mean.

The MAE is often abbreviated as the MAD (“D” for

“deviation”). The use of absolute values or squared

values prevents negative and
positive errors from offsetting

each other.

Since all of these metrics are on the

same scale as the data, none of

them are meaningful for assessing
a method’s accuracy across

multiple series.

44 FORESIGHT  Issue 4  June 2006

Table 1. Forecast-Accuracy Metrics for Lubricant Sales

 Mean Naïve SES Croston
  In Out In Out In Out In Out
GMAE  Geometric Mean Absolute Error  1.65 0.96 0.00 0.00 1.33 0.09 0.00 0.99
MAPE  Mean Absolute Percentage Error ∞ ∞ – – ∞ ∞ ∞ ∞
sMAPE Symmetric Mean Absolute  1.73 1.47 – – 1.82 1.42 1.70 1.47
 Percentage Error
MdRAE Median Relative Absolute Error  0.95 ∞   0.98 ∞ 0.93 ∞
GMRAE Geometric Mean Relative ∞ ∞ – – ∞ ∞ ∞ ∞
 Absolute Error 
MASE  Mean Absolute Scaled Error  0.86 0.44 1.00 0.20 0.78 0.33 0.79 0.45

Figure 1. Three Years of Monthly Sales of a Lubricant Product Sold in Large Containers

Data source: Product C in Makridakis et al. (1998, chapter 1). The vertical dashed line indicates
the end of the data used for fitting and the start of the holdout set used for out-of-sample forecasting. 
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An Example of What Can Go Wrong

Consider the classic intermittent-demand series shown in
Figure 1. These data were part of a consulting

project I did for a major Australian lubricant

manufacturer.

Suppose we are interested in comparing the

forecast accuracy of four simple methods: (1)
the historical mean, using data up to the most

recent observation; (2) the naïve or

random-walk method, in which the forecast for
each future period is the actual value for this

period; (3) simple exponential smoothing; and

(4) Croston’s method for intermittent demands
(Boylan, 2005). For methods (3) and (4) I have

used a smoothing parameter of 0.1.

I compared the in-sample performance of these

methods by varying the origin and generating a

sequence of one-period-ahead forecasts – the second
forecasting procedure described in the introduction. I also

calculated the out-of-sample performance based on

forecasting the data in the hold-out period, using information
from the fitting period alone. These out-of-sample forecasts

are from one to twelve steps ahead and are not updated in

the hold-out period.

Table 1 shows some commonly used forecast-accuracy

metrics applied to these data. The metrics are all defined in
the next section. There are many infinite values occurring

in Table 1. These are caused by division by zero. The

undefined values for the naïve method arise from the division
of zero by zero. The only measurement that always gives

sensible results for all four of the forecasting methods is the

MASE, or the mean absolute scaled error. Infinite, undefined,
or zero values plague the other accuracy measurements.

In this particular series, the out-of-sample period has
smaller errors (is more predictable) than the in-sample

Mean Absolute Error (MAE)
Geometric Mean Absolute Error (GMAE)

 Mean Square Error (MSE)

= mean(|et |)
= gmean(|et |)
= mean(e2)t



the value of sMAPE can be negative, giving it an

ambiguous interpretation.

Relative errors
An alternative to percentages for the calculation of scale-

independent measurements involves dividing each error by
the error obtained using some benchmark method of

forecasting. Let  r
t
 = e

t 
/e

t
* denote the relative error where

e
t
*  is the forecast error obtained from the benchmark method.

Usually the benchmark method is the naïve method where

F
t
 is equal to the last observation. Then we can define

Because they are not scale dependent, these relative-error
metrics were recommended in studies by Armstrong and

Collopy (1992) and by Fildes (1992) for assessing forecast

accuracy across multiple series. However, when the errors
are small, as they can be with intermittent series, use of

the naïve method as a benchmark is no longer possible

because it would involve division by zero.

Scale-free errors
The MASE was proposed by Hyndman and Koehler (2006)
as a generally applicable measurement of forecast accuracy

without the problems seen in the other measurements. They
proposed scaling the errors based on the in-sample MAE

from the naïve forecast method. Using the naïve method,

we generate one-period-ahead forecasts from each data point
in the sample. Accordingly, a scaled error is defined as

The result is independent of the scale of the data. A scaled

error is less than one if it arises from a better forecast
than the average one-step, naïve forecast computed in-

sample. Conversely, it is greater than one if the forecast

is worse than the average one-step, naïve forecast
computed in-sample.

The mean absolute scaled error is simply

The first row of Table 2 shows the intermittent series plotted
in Figure 1. The second row gives the naïve forecasts, which

are equal to the previous actual values. The final row shows

the naïve-forecast errors. The denominator of q
t
  is the

mean of the shaded values in this row; that is the MAE of

the naïve method.
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For assessing accuracy on a single series, I prefer the MAE

because it is easiest to understand and compute. However,
it cannot be compared between series because it is scale

dependent.

For intermittent-demand data, Syntetos and Boylan (2005)

recommend the use of GMAE, although they call it the

GRMSE. (The GMAE and GRMSE are identical because
the square root and the square cancel each other in a

geometric mean.)  Boylan and Syntetos (this issue) point

out that the GMAE has the flaw of being equal to zero
when any error is zero, a problem which will occur when

both the actual and forecasted demands are zero. This is

the result seen in Table 1 for the naïve method.

Boylan and Syntetos claim that such a situation would occur

only if an inappropriate forecasting method is used.
However, it is not clear that the naïve method is always

inappropriate. Further, Hoover indicates that division-by-

zero errors in intermittent series are expected occurrences
for repair parts. I suggest that the GMAE is problematic

for assessing accuracy on intermittent-demand data.

Percentage errors
The percentage error is given by p

t
 = 100e

t 
/Y

t
. Percentage

errors have the advantage of being scale independent, so they
are frequently used to compare forecast performance between

different data series. The most commonly used metric is

Measurements based on percentage errors have the

disadvantage of being infinite or undefined if there are
zero values in a series, as is frequent for intermittent data.

Moreover, percentage errors can have an extremely skewed

distribution when actual values are close to zero. With
intermittent-demand data, it is impossible to use the MAPE

because of the occurrences of zero periods of demand.

The MAPE has another disadvantage: it puts a heavier

penalty on positive errors than on negative errors. This

observation has led to the use of the  “symmetric” MAPE
(sMAPE) in the M3-competition (Makridakis & Hibon,

2000). It is defined by

However, if the actual value Y
t
 is zero, the forecast F

t
 is

likely to be close to zero. Thus the measurement will
still involve division by a number close to zero. Also,

Mean Absolute Percentage Error (MAPE) = mean(|pt |)

sMAPE = mean(200 |Yt – Ft | / (Yt + Ft ))

Median Relative Absolute Error (MdRAE)
Geometric Mean Relative Absolute Error (GMRAE)

= median(|rt |)
= gmean(|rt |)

qt=
et

n

i=2
∑1

n–1
|Yi–Yi–1|

MASE = mean(|qt |)
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The only circumstance under which the MASE would be
infinite or undefined is when all historical observations

are equal.

The in-sample MAE is used in the denominator because it is

always available and it effectively scales the errors. In

contrast, the out-of-sample MAE for the naïve method may
be zero because it is usually based on fewer observations.

For example, if we were forecasting only two steps ahead,

then the out-of-sample MAE would be zero. If we wanted to
compare forecast accuracy at one step ahead for ten different

series, then we would have one error for each series. The

out-of-sample MAE in this case is also zero. These types of
problems are avoided by using in-sample, one-step MAE.

A closely related idea is the MAD/Mean ratio proposed by
Hoover (this issue) which scales the errors by the in-sample

mean of the series instead of the in-sample mean absolute
error. This ratio also renders the errors scale free and is

always finite unless all historical data happen to be zero.

Hoover explains the use of the MAD/Mean ratio only in
the case of in-sample, one-step forecasts (situation 2 of the

three situations described in the introduction). However, it

would also be straightforward to use the MAD/Mean ratio
in the other two forecasting situations.

The main advantage of the MASE over the MAD/Mean ratio
is that the MASE is more widely applicable. The MAD/Mean

ratio assumes that the mean is stable over time (technically,

that the series is “stationary”). This is not true for data which
show trend, seasonality, or other patterns. While intermittent

data is often quite stable, sometimes seasonality does occur,

and this might make the MAD/Mean ratio unreliable. In
contrast, the MASE is suitable even when the data exhibit a

trend or a seasonal pattern.

The MASE can be used to compare forecast methods on a

single series, and, because it is scale-free, to compare

forecast accuracy across series. For example, you can
average the MASE values of several series to obtain a

measurement of forecast accuracy for the group of series.

This measurement can then be compared with the MASE

values of other groups of series to identify which

series are the most difficult to forecast. Typical
values for one-step MASE values are less than one,

as it is usually possible to obtain forecasts more

accurate than the naïve method. Multistep MASE
values are often larger than one, as it becomes more

difficult to forecast as the horizon increases.

The MASE is the only available accuracy measurement that

can be used in all three forecasting situations described in

the introduction, and for all forecast methods and all types
of series. I suggest that it is the best accuracy metric for

intermittent demand studies and beyond.
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Table 2. Monthly Lubricant Sales, Naïve Forecast

 In-sample       Out-of-sample
Actual Yt 0 2 0 1 0 1 0 0 0 0 2 0 6 3 0 0 0 0 0 7 0 0 0 0 0 0 0 3 1 0 0 1 0 1 0 0
Naïve
forecast Ŷt 0 2 0 1 0 1 0 0 0 0 2 0 6 3 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Error |Yt – Ŷt| 2 2 1 1 1 1 0 0 0 2 2 6 3 3 0 0 0 0 7 7 0 0 0 0 0 0 3 1 0 0 1 0 1 0 0


