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Abstract. We examine a natural, but non-tight, reductionist security
proof for deterministic message authentication code (MAC) schemes in
the multi-user setting. If security parameters for the MAC scheme are
selected without accounting for the non-tightness in the reduction, then
the MAC scheme is shown to provide a level of security that is less
than desirable in the multi-user setting. We find similar deficiencies in
the security assurances provided by non-tight proofs when we analyze
some protocols in the literature including ones for network authentication
and aggregate MACs. Our observations call into question the practical
value of non-tight reductionist security proofs. We also exhibit attacks on
authenticated encryption schemes, disk encryption schemes, and stream
ciphers in the multi-user setting.

1 Introduction

A reductionist security proof for a cryptographic protocol P with respect to a
problem S is an algorithm R for solving S, where R has access to a hypothetical
subroutine A (called an oracle) that achieves the adversarial goal specified by the
security definition for P . Suppose that A takes time at most T and is successful
with probability at least ǫ, where T and ǫ are functions of the security parameter.
Suppose further that R solves S in time T ′ with probability at least ǫ′; again,
T ′ and ǫ′ are functions of the security parameter. Then the reductionist security
proof R is said to be tight if T ′ ≈ T and ǫ′ ≈ ǫ. Roughly speaking, it is non-tight
if T ′ ≫ T or if ǫ′ ≪ ǫ, in which case the tightness gap can be informally defined
to be (T ′ǫ)/(T ǫ′).

A tight proof for P with respect to S is desirable because one can then deploy
P and be assured that breaking P (within the confines of the adversarial model
specified by the security definition for P) is at least as hard as solving S. On the
other hand, a non-tight proof for P with respect to S provides only the weaker
assurance that breaking P requires at least as much work as a certain fraction
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of the work believed to be necessary for solving S. In that case, the desired
security assurance for P can be attained by using larger parameters — but at
the expense of slower performance.

BBS generator. As an example, consider the Blum-Blum-Shub (BBS) pseu-
dorandom bit generator G [14]. For an n-bit integer N that is the product of
two primes each of which is congruent to 3 modulo 4, the BBS generator takes a
random integer x mod N as the seed and produces M = jk bits as follows: Let
x0 = x, and for i = 1, . . . , k let

xi = min{x2
i−1 mod N, N − (x2

i−1 mod N)}.

Then the output of G consists of the j least significant bits of xi, i = 1, . . . , k.
In [1] it was proven that j = O(log n) bits can be securely extracted in each

iteration, under the assumption that factoring is intractable. More precisely, if
one assumes that no algorithm can factor N in expected time less than L(n),
then the security proof in [1] (see [71]) shows that the BBS generator is (T, ǫ)
secure if

T ≤
L(n)(ǫ/M)8

24j+27n3
. (1)

Here, (T, ǫ)-security means that there is no algorithm with running time bounded
by T which can distinguish between the outputs of G and a purely random bit
generator with advantage greater than ǫ.

The aforementioned security proof is an example of a polynomial-time reduc-
tion since, for M = O(nc) (where c is a constant), j = O(log n), and constant ǫ,
the right-hand side of (1) is of the form L(n)/f(n) where f is a polynomial in
the security parameter n. Such polynomial-time security proofs provide security
assurances in an asymptotic sense, i.e., as the security parameter n tends to
infinity. However, for a fixed security parameter that might be used in practice,
the proof might provide little or no security assurance. For example, suppose
that one were to follow the recommendations in [29] and [75] and implement
the BBS generator with n = 768 and j = 9. Then, as observed in [49], by using
the number field sieve to estimate L(n) and taking M = 107 and ǫ = 0.01, one
sees that the inequality (1) provides security assurances only against an adver-
sary whose time is bounded by 2−264. Thus, the security proof is completely
meaningless for these parameters.

Does tightness matter? As discussed in [49], a non-tight reductionist security
proof for a protocol P with respect to a problem S can be interpreted in several
ways. An optimistic interpretation is that it is reasonable to expect that a tighter
reduction will be found in the future, or perhaps that P is secure in practice in
the sense that there is no attack on P that is faster than the best attack on S
even though a tight reduction from S to P might not exist. However, strictly
speaking, if one implements P using a security parameter for which the problem
S is expected to take time T ′ to solve, then the security proof does not rule out
the possibility that an attack on P which takes time considerably less than T ′

will be discovered in the future.
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Researchers who work in theoretical cryptography are generally satisfied with
polynomial-time reductions, although some of them caution about the validity
of non-tight proofs in practice. For instance, Luby [55] writes “when we describe
a reduction of one primitive to another we are careful to quantify how much
of the security of the first instance is transferred to the second.” Goldreich [36]
cautions that a (non-tight) asymptotic proof offers only the “plausibility” of
the protocol’s security. On the other hand, Damg̊ard [25] asserts that a non-
tight polynomial-time reduction is useful because it rules out all polynomial-
time attacks. However, such an assurance is not very comforting since proofs
are meant to guarantee resistance to all attacks, and moreover there are many
examples of practical cryptographic schemes that have succumbed to attacks
that are deemed to be effective in practice even though in asymptotic terms
they require super-polynomial time.

Considerable effort has been expended on devising tighter security proofs for
existing protocols, and on designing new protocols with tighter security proofs.
For example, the first security proof [5] for the traditional hash-then-sign RSA
signature scheme (called RSA-FDH) was highly non-tight. Subsequently, Coron
[23] found an alternate proof that is significantly tighter (although still consid-
ered non-tight). Coron [24] proved that no tighter reduction exists; however,
Kakvi and Kiltz [42] have recently shown that Coron’s argument for the non-
existence of a tighter reduction for RSA-FDH is flawed when the encryption
exponent e has bitlength less than a quarter that of the RSA modulus N (see
also [43]). Meanwhile, Katz and Wang [45] showed that a small modification of
RSA-FDH yields a signature scheme that has a tight security proof, arguably
increasing confidence in RSA-FDH itself. Nonetheless, another variant of RSA-
FDH, called RSA-PSS, is commonly recommended in practice because it has a
tight security proof [5]. As another example, Gentry and Halevi [35] designed a
hierarchical identity-based encryption (HIBE) scheme that has a security proof
whose tightness gap depends only linearly on the number of levels, in contrast
to all previous HIBE schemes whose tightness gaps depend exponentially on
the number of levels. Finally, we mention Bernstein’s [7] tight proof in the ran-
dom oracle model for the Rabin-Williams signature scheme, and Schäge’s [68]
tight proofs without the random oracle assumption for the Cramer-Shoup and
Camenisch-Lysyanskaya signature schemes.

Despite ongoing efforts by some to tighten security proofs of existing proto-
cols and to develop new protocols with tighter proofs, it is fair to say that, for
the most part, the tightness gaps in security proofs are not viewed as a major
concern in practice. Researchers who design protocols with non-tight proofs typ-
ically give arguments in favour of their protocol’s efficiency by using parameters
that would make sense if the proof had been tight. For example, the Schnorr
signature scheme [69] is widely regarded as being secure, although its known se-
curity proofs are highly non-tight [61]. In fact, there are arguments which suggest
that a tighter proof is not even possible [60]. Nevertheless, the Schnorr signature
scheme is widely used in the cryptographic literature without any suggestion to
use larger key sizes to account for the tightness gap in the proof.



4

Other examples of well-known protocols with highly non-tight proofs include
the Boneh-Franklin (BF) [16, 34], Sakai-Kasahara (SK) [22] and Boneh-Boyen
(BB1) [15] identity-based encryption schemes, the Lu et al. aggregate signature
scheme [54], and the HMQV key agreement protocol [51]. In [18], Boyen com-
pares the tightness of the reductions for BB1, BF and SK. The reduction for
BB1 is significantly tighter than the reduction for BF, which in turn is signifi-
cantly tighter than that for SK. However, all three reductions are in fact highly
non-tight, the tightness gap being (at least) linear, quadratic and cubic in the
number of random oracle queries made by the adversary for BB1, BF and SK,
respectively. Although all these proofs have large tightness gaps, Boyen recom-
mends that SK should “generally be avoided as a rule of thumb”, BF is “safe
to use”, and BB1 “appears to be the smartest choice” in part due to the “fairly
efficient security reduction” of the latter. Despite the importance Boyen attaches
to tightness as a reason for avoiding SK, a recent IETF standard co-authored
by Boyen that describes BB1 and BF [19] does not recommend larger security
parameters to account for tightness gaps in their security proofs.

Our work. In §2, we examine a natural, but non-tight, reductionist security
proof for MAC schemes in the multi-user setting. If parameters are selected
without accounting for the tightness gap in the reduction, then the MAC scheme
is shown to provide a level of security that is less than what one would desire
in the multi-user setting. In particular, the attacks we describe are effective
on HMAC as standardized in [33, 26] and CMAC as standardized in [28, 72].
In §3, we show that this deficiency in the security assurances provided by the
non-tight proof appears in a network authentication protocol [20], and in §4 we
obtain analogous results for aggregate MACs and aggregate designated verifier
signatures. In §5, we exhibit attacks on some authenticated encryption schemes,
disk encryption schemes, and stream ciphers in the multi-user setting. We draw
our conclusions in §6.

2 MACs in the multi-user setting

Cryptographic protocols that provide basic confidentiality and authentication
security services are typically examined in the single-user setting, where there
is only one legitimate user (or a pair of legitimate users) and an adversary.
However, these protocols are generally deployed in the multi-user setting, where
there may be additional threats. Key establishment protocols were first analyzed
in the multi-user setting in [4, 13]. This was followed by a study of multi-user
public-key encryption [2] and signatures [57]. In this section, we consider the
security of MAC schemes in the multi-user setting.

2.1 Security definition

A MAC scheme consists of a family of functions {Hk}k∈K, where K = {0, 1}r

is the key space and Hk : D → {0, 1}t for each k ∈ K. Here, D is the set of all
(non-empty) binary strings of some maximum length L. A pair of users A and
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B select a secret key k ∈ K. To authenticate a message m ∈ D, user A computes
the tag τ = Hk(m) and sends (m, τ). The receiver B verifies that τ = Hk(m).

The traditional definition of MAC security (in the single-user setting) is the
following. An adversary B has complete knowledge of the MAC scheme, i.e., it
can select arbitrary k ∈ K and m ∈ D and compute Hk(m). Now, a key k′ is
selected independently and uniformly at random from K and kept secret from
B. The adversary B has access to a MAC oracle indexed by k′ in the following
way: for any m ∈ D of B’s choosing, B is given Hk′(m). B’s goal is to produce a
forgery, i.e., a pair (m, τ) such that m ∈ D was not queried to the MAC oracle
and Hk′(m) = τ . We will henceforth denote B’s task by MAC1 (breaking a MAC
scheme in the single-user setting). An adversary B is said to (T, ǫ)-break MAC1
if its running time is bounded by T and it produces a forgery with probability
at least ǫ; the probability is assessed over the choice of k′ and B’s coin tosses.
MAC1 is said to be (T, ǫ)-secure if there does not exist an adversary B that
(T, ǫ)-breaks it.

Our definition of MAC security in the multi-user setting is the following.
An adversary A has complete knowledge of the MAC scheme. First, n keys
k1, k2, . . . , kn corresponding to users1 1, 2, . . . , n are chosen independently and
uniformly at random from K and kept secret from A; n is an upper bound on
the total number of users in the system. The adversary A has access to MAC
oracles indexed by k1, . . . , kn in the following way: for any (i,m) of A’s choosing,
where i ∈ [1, n] and m ∈ D, A is given Hki

(m). Furthermore, A is allowed to
corrupt any oracle (or user); i.e., for any i ∈ [1, n] of its choosing, A is given ki.
The adversary’s goal is to produce a forgery, i.e., find a triple (i,m, τ) such that:

(i) i ∈ [1, n] and m ∈ D;
(ii) the adversary did not corrupt oracle i;
(iii) the adversary did not query Hki

with m; and
(iv) Hki

(m) = τ .

Henceforth, A’s task will be denoted by MAC* (breaking a MAC scheme in
the multi-user setting)2. A is said to (T, ǫ)-break MAC* if its running time is
bounded by T and it produces a forgery with probability at least ǫ; the proba-
bility is assessed over the choices of k1, . . . , kn and A’s coin tosses. MAC* is said
to be (T, ǫ)-secure if there does not exist an adversary A that (T, ǫ)-breaks it.

2.2 Reductionist security proof

We present a natural reductionist security proof that a MAC scheme is secure
in the multi-user setting, provided that it is secure in the single-user setting.

Suppose, by way of contradiction, that A is an adversary that (T, ǫ)-breaks
MAC*. Suppose we are given access to a MAC oracle for Hk, where k ∈R K; call
the oracle MACk. We show how A can be used to design an adversary B that
produces a forgery with respect to MACk.

1 More precisely, a ‘user’ is a pair of entities who share a symmetric key.
2 The MAC* problem without the corrupt capability was first formulated in [13].
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B begins by selecting an index j ∈R [1, n], guessing that if A succeeds then
its forgery will be with respect to user j. For each i ∈ [1, n] with i 6= j, B
selects ki ∈R K as i’s secret key. User j’s secret key is assigned to be k (which
is unknown to B). B now runs A, answering A’s MAC and corrupt queries to
users i 6= j using knowledge of ki, and using the given oracle MACk to answer
A’s MAC queries to user j. If A corrupts user j, then B aborts with failure. If
A outputs a forgery (j,m, τ), then B outputs (m, τ) as its forgery with respect
to MACk; otherwise, B’s experiment has failed.

Now, A’s operation is independent of B’s guess j, unless A corrupts user j
in which case B is certain to fail. Hence, the probability that A succeeds and
B’s guess is correct is at least ǫ/n and so B (T, ǫ/n)-breaks MAC1. We conclude
that if a MAC scheme is (T, ǫ)-secure in the single-user setting, then it is (T, nǫ)-
secure in the multi-user setting.

Remark 1. (tightness gap in the security proof for MAC* ) The security reduction
is non-tight, having a tightness gap of n, the number of users of the MAC scheme.
In §2.3, we present a generic attack on an ideal MAC scheme in the multi-user
setting that, under the assumption that keys and tags are of the same bitlength
r, produces a MAC forgery within time 2r/n. The attack is faster than the best
possible attack — exhaustive key search with running time 2r — on an ideal
MAC scheme in the single-user setting. Note that the attack does not contradict
the security proof for MAC* because of the tightness gap of n. The attack
suggests that a reduction for MAC* that is tighter than the one given above
does not exist.

Remark 2. (tightness gap in the security proof for RSA-FDH ) The security proof
for MAC* given above is somewhat similar to the Bellare-Rogaway security
proof for RSA-FDH in the random oracle model [5]. Recall that the RSA-FDH
signature on a message m is s = H(m)d mod N , where (N, e) is an RSA public
key and d is the corresponding private key, and where H : {0, 1}∗ → [0, N − 1]
is a hash function modeled as a public random oracle. In the Bellare-Rogaway
proof, the simulator uses a signature forger F to solve a given instance (N, e, y)
of the RSA problem, i.e., find x ∈ [0, N − 1] satisfying y ≡ xe (mod N). The
forger F is executed with (N, e) as public key, and the simulator has to faithfully
answer F ’s signature queries and queries to H . Assuming that F makes at most
q H-queries, the simulator selects j ∈R [1, q] and answers the jth H-query m
with H(m) = y, hoping that F eventually produces a forger on m — since the
signature on m must be x, the simulator thereby obtains the solution to its
instance of the RSA problem. If F forges a signature on any of the other q − 1
messages it presented to H , then the simulator fails. Consequently, the security
reduction has a tightness gap of q.

Coron [23] gave an alternate security proof for RSA-FDH for which the tight-
ness gap is qS , the number of signature queries F is permitted to make. Since
qS can be expected to be significantly smaller than the number of hash queries
a real-world forger can make, Coron’s proof is significantly tighter. However, it
is still non-tight. For the case e < N1/4, it is not known whether a tighter proof
with respect to the RSA problem exists [42, 43].
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Unlike the non-tight proof for multi-user MAC schemes, the tightness gap
in the RSA-FDH proof does not seem to be a concern because no one expects
there to be a method for breaking RSA-FDH that is faster than solving the
RSA problem (for which the fastest method known is to factor N). Indeed, it
is shown in [48] that RSA-FDH is tightly equivalent to an interactive version
of the RSA problem, called RSA1. Although Coron’s separation result implies
that the RSA1 problem cannot in general be proven to be tightly equivalent to
the RSA problem, reasonable heuristic arguments suggest that the RSA1 and
RSA problems are indeed equivalent in practice. We also note that Kakvi and
Kiltz [42] have provided a tight security proof with respect the the “Φ-hiding
assumption” in the case where e is prime and e < N1/4.

Remark 3. (tightness gaps in security proofs for Diffie-Hellman key agreement

protocols) Numerous Diffie-Hellman key agreement protocols have been proposed
in the literature, and many of them have been proven secure in the Canetti-
Krawczyk (CK) [20] model (and its variants). In the CK model, there can be
many users, any two of which can engage in several sessions of the key agreement
protocol; suppose that there are at most n sessions in total. The security proofs
are with respect to the computational Diffie-Hellman problem (CDH) or a variant
of it: given g, gx and gy, where g is a generator of a cyclic group, compute gxy.
Typically, one part of the proof involves the simulator selecting a session j at
random and then embedding gx and gy as the (ephemeral or static) public keys
of each of the two communicating parties for that session. If the adversary of
the key agreement protocol succeeds in compromising the security of the jth
session, then the simulator is able to compute gxy; otherwise the simulator fails.
Consequently, the security reduction has a tightness gap of at least n.

To the best of our knowledge, all published security proofs for Diffie-Hellman
protocols in the CK model (e.g., see [51, 53, 58, 73]) have tightness gaps of at
least n. However, no one has insisted that implementations of these protocols
use larger security parameters in order to account for the possible existence of
an attack that is better than the fastest known attack on the underlying Diffie-
Hellman problem.

2.3 An attack on MAC*

Select an arbitrary message m and obtain the tags Hki
(m) for i = 1, 2, . . . , n.

Next, select an arbitrary subset W of keys with |W| = w. For each ℓ ∈ W ,
compute Hℓ(m). If Hℓ(m) = Hki

(m) for some i (this event is called a collision),
then conclude that ℓ = ki and use ℓ to forge a message-tag pair for user i.

The expected running time of the attack is w, and there are n MAC queries.
The attack is deemed successful if ℓ = ki the first time a collision Hℓ(m) =
Hki

(m) is detected. In §2.4, the attack’s success probability is analyzed in the
ideal MAC model. Recall that r is the key length and t is the tag length. Suppose
that n2 ≪ 2r+1, and suppose that nw = c2min{r,t} for some constant c. One
consequence of the analysis is that if r = t, then the success probability is
approximately 1

2
. If t ≫ r then the success probability is essentially 1, whereas
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if r ≫ t then the attack is virtually certain to fail3. These conclusions are not
surprising, as the following informal argument shows. A collision can occur due
to either a key collision (i.e., ki = ℓ) or a tag collision (i.e., Hki

(m) = Hℓ(m)
but ki 6= ℓ). Given that a collision has occurred, if keys and tags are of the same
size, then the probability that it is due to a key collision is about 1

2
; if keys are

much longer than tags, the collision is most likely due to a tag collision; and if
tags are much longer than the keys, then the collision is most likely due to a key
collision.

In the remainder of the paper, the attack will be referred to as Attack 1.

Remark 4. (a second attack on MAC* ) Select an arbitrarymessagem and obtain
the tags Hki

(m) for i=1, 2, . . . until a collision is obtained: Hkp
(m)=Hkq

(m)
where p < q. Now corrupt user p and obtain kp. Under the assumption that
kp = kq, use kp to forge a message-tag pair with respect to user q. This attack
is called Attack 2. One can show that if r ≤ t then the probability that the
first collision is a key collision is significant only when the number of MAC
queries is at least 2r/2. Since Attack 1 can succeed with fewer MAC queries,
does not require corrupt queries, and is amenable to time-memory trade-offs (cf.
Remark 7), it is always superior to Attack 2.

Remark 5. (symmetric-key encryption) Attack 1 shows that existential key re-

covery (i.e., finding the secret key of any one of a set of users) is easier than
universal key recovery (i.e., finding the secret key of a specified user) for (de-
terministic) MAC schemes; these notions of key recovery were discussed in [49,
Section 5] in the context of public-key cryptosystems. Gligor, Parno and Shin
(see [70]) proved that existential key recovery is intractable for nonce-based
symmetric-key encryption schemes that are indistinguishable against chosen-
plaintext attacks; an example of such an encryption scheme is the counter mode
of encryption (cf. §5). However, their proof is non-tight, the tightness gap being
equal to the number of secret keys in the system. They then showed that this
tightness gap allows an existential key recovery attack that is faster than the
best attack known for universal key recovery for certain nonce-based encryption
schemes including the counter mode of encryption. Attack 1 is analogous to their
attack, which in turn was preceded by Biham’s key collision attacks [9].

We next argue that Attack 1 is effective on HMAC as standardized in [33,
26] and CMAC as standardized in [28, 72].

HMAC. HMAC [3] is a hash function-based MAC scheme that is extensively
standardized and has been widely deployed in practice. The MAC of a message
m with secret key k is HMACk(m) = Trunct (H(k ⊕ opad, H(k ⊕ ipad,m))),
where H : {0, 1}∗ → {0, 1}d is an iterated hash function, opad and ipad are
fixed strings, and Trunct is the truncation function that extracts the t most
significant bits of its input. The HMAC parameters are r (the bitlength of the

3 The case r ≫ t can be reduced to the case t ≫ r by querying the MAC oracles with
s different messages, where s is chosen so that st ≫ r; see [50, Section 4].
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secret key k), t (the bitlength of MAC tags) and d (the output length of H ,
which is assumed to be an iterated hash function).

IETF RFC 4868 [46] specifies HMAC-SHA-256-128, i.e., HMAC with SHA-
256 [32] as the underlying hash function and parameters r=d=256 and t=128,
presumably intended to achieve a 128-bit security level. Since r ≫ t, Attack 1 is
certain to fail when HMAC-SHA-256-128 is used in the multi-user setting.

HMAC is also standardized in FIPS 198-1 [33], with recommendations for
parameter sizes given in SP 800-107 [26]. It is stated in [26] that the “security
strength” of HMAC is the minimum of r and 2d, and the only requirement on tag
lengths is that t ≥ 8. Hence, if one were to use HMAC with SHA-1 [32] (which has
d=160) as the underlying hash function and select r=t=80, then the resulting
MAC scheme would be compliant with SP 800-107 and be expected to achieve an
80-bit security level. However, this version of HMAC would succumb to Attack 1
in the multi-user setting. Namely, by selecting n=220 and w=260, after querying
220 users for the MAC of some fixed message m, the adversary would be able
to determine the secret key of one of the 220 users after performing about 260

MAC operations. Since the work can be easily and effectively parallelized, the
attack should be considered feasible today (cf. Remark 7).

The FIPS 198-1 standard allows 80-bit keys and 160-bit tags, i.e., r=80 and
t=160. Attack 1 also applies to this choice of parameters. In fact, since t≫ r, a
collision in the first phase of the attack will most likely be due to a key collision.
In general, having tag length to be greater than the key length will not provide
any additional resistance to Attack 1.

Remark 6. (number of users) The 220 users in the attack described above need
not be distinct pairs of entities. What is needed is 220 keys. An entity might
be engaged in multiple sessions with other entities, and might even have several
active sessions with the same entity. Thus, the attacks could be mounted with
far fewer than 220 different entities.

CMAC. CMAC is a block cipher-based MAC scheme that has been standardized
in [28] and [72]. Let E denote a block cipher with key length r bits and block
length b bits. The r-bit key k is first used to generate two b-bit subkeys, k1 and
k2. The messagem is divided into blocks m1,m2, . . . ,mh, where eachmi is b-bits
in length with the possible exception ofmh, which might be less than b-bits long.
Now, if mh is b bits in length, then it is updated as follows: mh ← mh ⊕ k1.
Otherwise,mh is padded on its right with a single 1 bit followed by 0 bits until the
length of the padded mh is b bits; then mh is updated as follows: mh ← mh⊕k2.
Finally, one sets c0 = 0 and computes ci = Ek(ci−1⊕mi) for 1 ≤ i ≤ h. The tag
of m is defined to be CMACk(m) = Trunct(ch).

The standards [28] and [72] both use the AES block cipher (with r=b=128)
and do not mandate truncation, so we can take t=128. With these parameters,
CMAC in the multi-user setting is vulnerable to Attack 1. Indeed, after query-
ing n=232 users for the MAC of a fixed message m, the adversary is able to
compute the secret key of one of the users after performing about 296 MAC op-
erations. Although this workload is considered infeasible today, the attack does
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demonstrate that CMAC-AES does not attain the 128-bit security level in the
multi-user setting.

Remark 7. (reducing the on-line running time) Hellman [39] introduced the idea
of time/memory trade-offs (TMTO) to search for a preimage of a target point in
the range of a one-way function. The idea is to perform a one-time precomputa-
tion and store some of the results, subsequent to which the on-line search phase
can be significantly sped up. Biryukov and Shamir [11] later applied TMTO
to stream ciphers. They considered the problem of inverting any one out of D
possible targets. Let N denote the size of the search space, M the amount of
memory required, and T the on-line time, and suppose that 1≤D≤T 2. Then the
Biryukov-Shamir TMTO can be implemented with these parameters provided
that they satisfy the so-called multiple-data trade-off curve TM2D2 = N2; the
precomputation time P is N/D. The multiple-data trade-off curve has natural
interpretations in other contexts. Biryukov et al. [10] considered the problem of
finding any one of D keys for a block cipher. An extensive analysis of TMTO
with multiple data in different cryptographic settings was carried out in [40].

The multiple-data trade-off curve can be applied in the current context to
reduce the online search time. For HMAC with r=t=80 as considered above,
consider the function f : k 7→ HMACk(m) where m is a fixed message. Treating
f as a one-way function, the adversary’s goal is to invert f on any one of the
n tag values f(k1), . . . , f(kn). For n = 220, the precomputation time is P = 260

and T and M satisfy TM2 = 2120. Setting T = M (as originally considered by
Hellman), we have T = M = 240. Thus, the adversary can find any one of 220

possible HMAC keys with an off-line computation of 260 HMAC invocations,
240 storage units, and an on-line search time of 240. Using presently available
storage and computer technology, this attack should be considered feasible.

For the CMAC example considered above with r=t=128, if the adversary
wishes to determine any one of n = 232 possible secret keys, the precomputation
time would be P = 296. The parameters T and M are related by TM2 = 2192,
so T = M = 264 is one solution. Hence, with 264 storage units, an on-line search
time of 264 will find one of 232 keys.

Remark 8. (two-key and three-key variants of CMAC ) The predecessors of CMAC
include a three-key variant called XCBC [12] and a two-key variant called TMAC
[52]. Interestingly, these predecessors are not vulnerable to Attack 1 due to the
use of multiple keys.

Remark 9. (comparison with birthday attacks) HMAC and CMAC are both vul-
nerable to the following birthday attack in the single-user setting. Suppose that
keys and tags are each r bits in length. The adversary collects message-tag pairs
(where the messages all have the same length) until two distinct messages m1

and m2 are found with the same tag τ . By the birthday paradox, the expected
number of pairs needed is approximately 2r/2. Then, for any string x, (m1, x)
and (m2, x) have the same tags (with high probability in the case of HMAC, and
with certainty in the case of CMAC). The attacker can then request for the tag
of (m1, x), thereby also obtaining the tag of (m2, x).



11

Note that Attack 1 can be successful by using signficantly fewer MAC queries,
and additionally needs to issue only one MAC query per user. Moreover, the
damage caused by Attack 1 is more severe than the birthday attack since the
former is a key recovery attack.

2.4 Analysis of Attack 1

The ideal MAC model for a MAC scheme {Hk : D → {0, 1}t}k∈K is the following.
Let F be the set of all functions from D to {0, 1}t. The set F is finite and can be
considered as the set of all strings of length #D over the alphabet {0, 1}t. A total
of 2r independent and uniform random choices are made from F , giving a family
of 2r independent random oracles. Each such oracle can be indexed by an r-bit
string. The resulting indexed family is the idealized version of a MAC scheme.
In what follows, {Hk}k∈K will denote an idealized MAC family. In particular,
the Hk’s will be considered to be independent uniform random oracles.

Consider the following procedure. Suppose k1, . . . , kn are chosen indepen-
dently and uniformly at random from K = {0, 1}r. Let m (a message) be an
arbitrary element of D. Then, for i 6= j, we will need to consider the event that
Hki

(m) = Hkj
(m). For the probability analysis, it will be useful to analyze this

event in terms of the following three events, the last two of which are conditional
events: (i) ki = kj ; (ii) Hki

= Hkj
given that ki 6= kj ; and (iii) Hki

(m) = Hkj
(m)

given that ki 6= kj and Hki
6= Hkj

. Clearly Pr[ki = kj ] = 2−r and Pr[Hki
=

Hkj
|ki 6= kj ] = 1/#F = (2−t)#D. In practical applications, the maximum length

L of messages can be expected to be at least around 220 and so the probabil-
ity that Hki

= Hkj
given ki 6= kj is negligible. Furthermore, for 1 ≤ s ≤ 2t,

the quantity s/#F is also negligible. We will use these approximations in the
remainder of the analysis.

The analysis of Attack 1 is done in two stages. In the first stage, we determine
values for n and w for which there is a significant probability of detecting a
collision. The second stage of the analysis considers the probability of the keys
ℓ and ki being equal once a collision Hℓ(m) = Hki

(m) is detected.

Let W = {ℓ1, . . . , ℓw} and consider the functions Hℓ1 , . . . , Hℓw . Let A be the
event that these functions are pairwise distinct. Then

Pr[A] =

(

1−
1

#F

)(

1−
2

#F

)

· · ·

(

1−
w − 1

#F

)

≈ 1.

The approximation is based on the fact that w2 is negligible in comparison
to #F = (2t)#D. Let C be the event that a collision occurs. Let Lst1 =
{Hk1

(m), . . . , Hkn
(m)} and Lst2 = {Hℓ1(m), . . . , Hℓw(m)}. The event C is the

event Lst1 ∩ Lst2 6= ∅. Now,

Pr[C] = Pr[C|A] · Pr[A] + Pr[C|A] · Pr[A] ≈ Pr[C|A].
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Let B1 be the event that the keys k1, . . . , kn are pairwise distinct. Then

Pr[B1] =

(

1−
1

2r

)

· · ·

(

1−
n− 1

2r

)

≈ exp

(

−
1

2r
(1 + 2 + · · ·+ n− 1)

)

≈ exp

(

−
n2

2r+1

)

≈ 1−
n2

2r+1
.

As long as n2 ≪ 2r+1, the probability of event B1 occurring will be almost equal
to 1. For the remainder of the analysis, we will assume that this condition holds.

Let B2 be the event that the functions Hk1
, . . . , Hkn

are pairwise distinct.
Conditioned on the event B1, the probability of B2 occurring is almost equal 1.
This follows from an argument similar to the one which shows that Pr[A] ≈ 1.
We introduce three more approximations:

Pr[C] ≈ Pr[C|A] = Pr[C|A,B1] · Pr[B1] + Pr[C|A,B1] · Pr[B1]

≈ Pr[C|A,B1] (using Pr[B1] ≈ 1)

= Pr[C|A,B1, B2] · Pr[B2] + Pr[C|A,B1, B2] · Pr[B2]

≈ Pr[C|A,B1, B2] (using Pr[B2] ≈ 1).

Let xi = Hki
(m) for 1 ≤ i ≤ n and yj = Hℓj (m) for 1 ≤ j ≤ w. Condi-

tioned on the conjunction of B1 and B2, the values x1, . . . , xn are independent
and uniformly distributed. Conditioned on event A, the values y1, . . . , yw are
independent and uniformly distributed. Hence, conditioned on the conjunction
of A, B1 and B2, and assuming that the probability of Hki

being equal to Hℓj

for any i, j is negligible, the event C is the event that a list of n independent
and uniform values from {0, 1}t has a non-empty intersection with another list
of w independent and uniform values from {0, 1}t. By the birthday bound, this
probability becomes significant when the product n · w is some constant times
2t. As an example, one may choose n = 2t/4 and w to be a constant times 23t/4.
Similarly, conditioned on the conjunction of A, B1 and B2, and assuming that
the probability of a tag collision occurring is negligible, the probability of event
C becomes significant when n · w is some constant times 2r.

Suppose now that a collision is detected. The probability that the collision
is due to a repetition of the keys can be estimated as follows. We have

Pr[Hki
(m) = Hℓj (m)] = Pr[ki = ℓj] + Pr[Hki

(m) = Hℓj (m)|ki 6= ℓj ] · Pr[ki 6= ℓj ]

=
1

2r
+

(

1−
1

2r

)

·

(

Pr[Hki
= Hℓj |ki 6= ℓj ]

+ Pr[Hki
(m) = Hℓj (m)|ki 6= ℓj, Hki

6= Hℓj ] · Pr[Hki
6= Hℓj |ki 6= ℓj]

)

=
1

2r
+

(

1−
1

2r

)(

1

#F
+

1

2t

(

1−
1

#F

))

≈
1

2r
+

1

2t
−

1

2t+r
= δ,
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and hence

Pr[ki = ℓj|Hki
(m) = Hℓj (m)] =

Pr[ki = ℓj , Hki
(m) = Hℓj (m)]

Pr[Hki
(m) = Hℓj (m)]

=
Pr[ki = ℓj]

Pr[Hki
(m) = Hℓj (m)]

≈
1

2rδ
=

2t+r

2r(2t + 2r − 1)
=

2t

2t + 2r − 1
.

If r = t, then the last value is approximately 1
2
. However, if r ≫ t, then the

probability is essentially 0. If r ≪ t, the probability is essentially 1.

2.5 Fixes

We propose two generic countermeasures to Attack 1 on MAC schemes in the
multi-user setting.

Remark 10. (preventing replay attacks) Some MAC standards make provisions
for protecting against the replay of message-tag pairs. For example, NIST’s SP
800-38B [28] suggests that replay can be prevented by “incorporating certain
identifying information bits into the initial bits of every message. Examples
of such information include a sequential message number, a timestamp, or a
nonce.” We note that sequential message numbers and timestamps do not nec-
essarily circumvent Attack 1 because it is possible that each user selects the
same sequential message number or timestamp when authenticating the chosen
message m. Nonces can be an effective countermeasure provided that there is
sufficient uncertainty in their selection.

rMAC. One countermeasure is to randomize the conventional MAC scheme
{Hk}k∈K. That is, a user with secret key k now authenticates a message m by
computing τ = Hk(s,m) where s ∈R {0, 1}r; the resulting tag is (s, τ). The
verifier confirms that τ = Hk(s,m). This modified MAC scheme is called rMAC

(randomized MAC).
Security of rMAC in the multi-user setting is defined analogously to security

of MAC*: The adversary A is given access to n rMAC oracles with secret keys
k1, k2, . . . , kn ∈R K and can corrupt any oracle (i.e., obtain its secret key).
Its goal is to produce a triple (i,m, (s, τ)) such that the ith oracle was not
corrupted, (m, (s, τ)) is a valid message-tag pair with respect to the ith oracle
(i.e, Hki

(s,m) = τ), and m was not queried to the ith oracle. We denote A’s
task by rMAC*. When n = 1, then rMAC* is called rMAC1 (security of rMAC
in the single-user setting).

It is easy to verify that rMAC* resists Attack 1. Let us denote by P1 ≤b P2 a
reduction from problem P1 to problem P2 that has a tightness gap of b; if b = 1
then the reduction is tight. In §2.2 we showed that MAC1 ≤n MAC*, i.e., the
problem of breaking a MAC scheme in the single-user setting can be reduced
to breaking the same MAC scheme in the multi-user setting, but the reduction
has a tightness gap of n. Trivially, we have MAC* ≤1 MAC1. The reductionist
security proof in §2.2 can be adapted to show that rMAC1 ≤n rMAC*, and we
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trivially have rMAC* ≤1 rMAC1. Moreover, it is easy to see that MAC1 ≤1

rMAC1 and hence MAC1 ≤n rMAC*, and that MAC* ≤1 rMAC*. However, it
is unlikely that a generic reduction of rMAC1 to MAC1 exists because a MAC
scheme {Hk}k∈K having the property that there exists a (known) pair (σ, τ)
with σ ∈ {0, 1}r, τ ∈ {0, 1}t and Hk(σ) = τ for all k ∈ K would be considered
insecure whereas the corresponding rMAC scheme could well be secure.

We do not know a tighter security reduction from MAC1 to rMAC*, nor
do we know whether a tighter reduction is even possible (in general). However,
we would expect that rMAC* and MAC1 are tightly related in practice. One
approach to increasing confidence in rMAC* would be to derive tight lower
bounds for MAC1 and rMAC* in the ideal MAC model, and hope that these
lower bounds coincide.

fMAC. One drawback of rMAC is that tags are longer than before. An alter-
native countermeasure is to prepend all messages with a string that is fixed
and unique to every pair of users (and every session between them). That is, a
user with secret key k would authenticate a message m by computing the tag
τ = Hk(f,m), where f is the fixed and unique string that the user shares with
the intended recipient (for that session). All such strings are assumed to have
the same length, and this length is at least r. The strings are assumed to be
understood from context, so do not need to be transmitted. (For an example of
such strings, see §3.3.) The verifier confirms that τ = Hk(f,m). This modified
MAC scheme is called fMAC (fixed-string MAC).

Security of fMAC in the multi-user setting is defined analogously to security
of MAC*: The adversary A is given access to n fMAC oracles with secret keys
k1, . . . , kn ∈R K and fixed strings f1, . . . , fn, and can corrupt any oracle. Its goal
is to produce a triple (i,m, τ) such that the ith oracle was not corrupted, (m, τ) is
a valid message-tag pair with respect to the ith oracle (i.e, Hki

(fi,m) = τ), and
m was not queried to the ith oracle. We denote A’s task by fMAC*. When n = 1,
then fMAC* is called fMAC1 (security of fMAC in the single-user setting).

As was the case with rMAC*, it is easy to verify that fMAC* resists Attack 1.
Furthermore, one can show that fMAC* ≤1 fMAC1, MAC1 ≤1 fMAC1 ≤n

fMAC*, and MAC* ≤1 fMAC*, while we do not expect there to be a generic
reduction from fMAC1 to MAC1. We do not know a tighter security reduction
from MAC1 to fMAC*, nor do we know whether a tighter reduction is even
possible (in general). However, we would expect that fMAC* and MAC1 are
tightly related in practice. An intuitive reason for why fMAC* can be expected
to be more secure than MAC* is that for fMAC* each of the n oracles available
to the adversary can be viewed as having been chosen from an independent
family of MAC functions, whereas in MAC* each of the n oracles available to
the adversary is chosen from a single family of MAC functions.

Remark 11. (use of MAC schemes) Higher-level protocols that use MAC schemes
for authentication generally include various data fields with the messages being
MAC’ed, thus providing adequate defenses against Attack 1. For example, IPsec
has an authentication-only mode [47] where a MAC scheme is used to authen-
ticate the data in an IP packet. Among these data fields are the source and
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destination IP addresses, and a 32-bit “Security Parameter Index” (SPI) which
identifies the “Security Association” (SA) of the sending party.

3 NetAut

NetAut is a network authentication protocol proposed by Canetti and Krawczyk
[20] which combines a key establishment scheme with a conventional MAC
scheme in a natural way. In [20], a security model and definition for key estab-
lishment are proposed. Then, NetAut is proved to be a secure network authen-
tication protocol under the assumption that the underlying key establishment
and MAC schemes are secure. We describe several shortcomings in the analy-
sis of NetAut. The most serious of these shortcomings is the tightness gap in
the security proof, which we exploit to formulate concrete attacks on plausible
instantiations of NetAut.

3.1 Network authentication

The NetAut protocol presented in [20] has two ingredients: a key establishment
protocol π and a MAC scheme. NetAut utilizes a session identifier s, which is a
string agreed upon by the parties before execution of the protocol commences.
It is assumed that no two NetAut sessions in which a party Â participates with
another party B̂ have the same session identifier.

In the initial stage of the NetAut protocol4, a party Â participates in a key
establishment session with another party B̂. Upon successful completion of the
session, Â accepts a session key κ associated with the session identified by s
and (presumably) shared with B̂. Now, to send B̂ an authenticated message
m within session s, Â computes τ = MACκ(m) and sends (Â, s,m, τ) to B̂.
Similarly, upon receipt of a message (B̂, s,m, τ), Â computes τ ′ = MACκ(m)
and accepts if τ ′ = τ . At any point in time, Â can have multiple active sessions,
and can even have multiple active sessions with B̂.

The security model for NetAut is developed in two stages. The first stage
defines what it means for a key establishment protocol to be secure. The secu-
rity model, which has come to be known as the ‘CK model’, allows for multiple
parties and multiple sessions, and gives the adversary substantial powers includ-
ing the ability to learn some session keys, corrupt parties (learn all their secret
information), and learn some secret information that is specific to a particular
session. Informally speaking, a key establishment protocol is said to be secure if
no such adversary can distinguish the session key held by a fresh session from a
randomly-generated session key, where a ‘fresh’ session is one for which the ad-
versary cannot learn the corresponding session key through trivial means (such
as corrupting the party that participates in that session or simply asking for
the session key). A crucial feature of the definition is that any key establishment

4 Our description of NetAut is informal and omits a lot of details; the reader can refer
to [20] for a complete description.
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protocol that satisfies the security definition can be appropriately combined with
secure MAC and symmetric-key encryption schemes to realize a ‘secure chan-
nel’. In this paper, we will only consider NetAut — the combination of a key
establishment protocol with a MAC scheme.

The second stage of the security model for NetAut starts with an idealized
notion called a session-based message transmission (SMT) protocol in the au-
thenticated links model. In the authenticated links model, the communications
links between any two parties is perfectly authenticated — the SMT protocol
is secure in this model by its very definition. A secure network authentication
protocol is then defined as one that ‘emulates’ SMT in the unauthenticated links
model in the sense that whatever an adversary can achieve against the protocol
can also be accomplished by an adversary against SMT in the authenticated
links model.

Canetti and Krawczyk prove that if π is a secure key establishment protocol
and the MAC scheme is secure (in the single-user setting), then NetAut is a
secure network authentication protocol. The proof and associated definitions are
long and intricate. In §3.2 we describe some pitfalls that arise in interpreting the
proof when NetAut is instantiated with the SIG-DH key establishment protocol.

3.2 A concrete analysis

For concreteness, we will consider the 80-bit security level. Let E be an elliptic
curve defined over Fp where p is a 160-bit prime. Suppose that N = #E(Fp) is
prime, so that the group E(Fp) of Fp-rational points offers an 80-bit security level
against attacks on the discrete logarithm problem. Let G be a fixed generator of
E(Fp). We consider CMAC at the 80-bit security level, i.e., with 80-bit keys and
80-bit tags; the block cipher SKIPJACK [59], which has 80-bit keys and 80-bit
blocks, is a suitable ingredient.

In the SIG-DH key agreement scheme, sigÂ and sigB̂ denote the signing al-
gorithms of parties Â and B̂, respectively. It is assumed that each party has
an authenticated copy of the other party’s public verification key. The SIG-DH
scheme proceeds as follows. The initiator Â selects x ∈R [0, N − 1] and sends
(Â, s,X=xG) to party B̂. In response, B̂ selects y ∈R [0, N − 1] and sends
(B̂, s, Y=yG, sigB̂(B̂, s, Y,X, Â)) to Â and computes κ = yX . Upon receipt of
B̂’s message, Â verifies the signature, sends the message (Â, s, sigÂ(Â, s,X, Y, B̂))
to B̂, and computes the session key κ = xY associated with session s. Finally,
upon receipt of Â’s message, B̂ verifies the signature and accepts κ as the session
key associated with session s.

Canetti and Krawzcyk proved that SIG-DH is secure in the CK model un-
der the assumption that the decisional Diffie-Hellman problem5 in E(Fp) is in-
tractable (and the signature scheme is secure). The proof proceeds in two stages.
In the first stage, the basic Diffie-Hellman protocol is proven secure in the au-
thenticated links model under the assumption that DDH is intractable; this proof

5 The decisional Diffie-Hellman (DDH) problem in E(Fp) is the problem of determining
whether Z=xyG given G, X=xG, Y=yG and Z ∈ E(Fp).
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has a tightness gap of n, the total number of sessions. In the second stage, SIG-
DH is proven secure (in the unauthenticated links model) under the assumption
that the basic Diffie-Hellman protocol is secure in the authenticated links model;
this proof has a tightness gap of 2n. However, these tightness gaps do not seem
to have any negative security consequences for SIG-DH.

Key type mismatch. The first problem encountered when using SIG-DH and
CMAC as the ingredients of NetAut is that the SIG-DH session keys are points
in E(Fp) whereas the CMAC secret keys are bit strings. This key type mismatch

can be rectified by the commonly-used method of using a key derivation function
KDF to derive a bit-string session key from the SIG-DH session key, i.e., the
session key is now KDF(xyG). We refer to the modified key agreement scheme
as hashed SIG-DH (HSIG-DH).

The KDF is generally modeled as a random oracle in security proofs. HSIG-
DH can then be proven secure under the assumption that the gap Diffie-Hellman
(GDH) problem6 is hard using standard techniques.

Keysize mismatch. Security proofs for Diffie-Hellman key agreement protocols
in the random oracle model sometimes make the assumption that the probability
of a KDF collision during the adversary’s operation is negligible (e.g., see [51, 53,
58]). If this probability were not negligible, then the adversary could conceivably
force two non-related sessions (called ‘non-matching’ sessions in the literature)
to compute the same session key — in that event, the adversary could learn
the session key from one session by asking for it and thereby obtain the session
key for the other session. Thus, because of the birthday paradox, at the 80-bit
security level the assumption that the adversary has negligible probability of
obtaining a KDF collision requires that the KDF for HSIG-DH with our choice
of elliptic curve parameters should have 160-bit outputs. However we then have a
keysize mismatch since CMAC uses 80-bit keys. If the KDF is restricted to 80-bit
outputs, then the aforementioned proofs have a logical gap since the probability
of a KDF collision now becomes non-negligible.

One simple way to remove this gap is to include the identities of the com-
municating parties and the session identifier as input to the key derivation func-
tion (as is done in [73], for example), i.e., the HSIG-DH session key is now
KDF(Â, B̂, s, xyG). One can then argue that since the KDF is modelled as a
random oracle, the adversary must know the inputs to the KDF for the two
non-matching sessions (since the triples (Â, B̂, s) for the non-matching sessions
must be distinct) in order to detect the collision. In particular, the adversary
must know xyG — and such an adversary can be used to solve a CDH instance.

The insecurity of NetAut. Attack 1 is applicable to our instantiation of Net-
Aut with HSIG-DH (with 80-bit session keys) and CMAC at the 80-bit security
level. Namely, the adversary monitors n = 220 NetAut sessions, each of which
is induced to transmit some fixed message m. Then, as explained in §2.3, the

6 The gap Diffie-Hellman (GDH) problem in E(Fp) is the problem of solving the
computational Diffie-Hellman (CDH) problem in E(Fp) given an oracle for the DDH
problem in E(Fp).
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adversary is able to deduce one of the 220 session keys and thereafter use it to
forge message-MAC pairs for that session.

We emphasize that the mechanisms of the attack are within the scope of
the security model for NetAut considered in [20]. However, the attack does not
contradict the security proof for NetAut given in [20, Theorem 12] for the fol-
lowing reason. At one point in the proof it is shown that the probability that an
adversary succeeds in convincing a party Â that a message m was sent by party
B̂ in a particular session s even though B̂ did not send that message in that
session is negligible provided that the underlying MAC scheme is secure. The
reductionist proof for this claim (Lemma 13 of [20]) is analogous to the security
proof for MAC* given in §2.2, and hence has a tightness gap equal to the total
number n of sessions — this tightness gap is precisely what the attack exploits.

3.3 A fix

One method for preventing the attack on NetAut described above is to use the
fMAC variant of the MAC scheme. Here, a natural candidate for the unique
fixed string f is the session identifier s and the identifiers of the communicating
parties, i.e., after parties Â and B̂ complete session s of HSIG-DH and estab-
lish a session key κ, the authentication tag for a message m is computed as
τ = MACκ(s, Â, B̂,m). This modification of NetAut resists Attack 1. However,
even with this modification we do not know a tight security reduction, so the
possibility of another attack that exploits the tightness gap cannot be ruled out.

4 Aggregate MAC schemes

In the section, we show that some aggregate MAC schemes with non-tight se-
curity proofs and an aggregate designated verifier signature are vulnerable to
Attack 1 for certain choices of the underlying MAC scheme, e.g., CMAC with
80-bit keys and 80-bit tags.

4.1 Aggregate MAC schemes

Katz and Lindell [44] provided a formal security definition for the task of aggre-
gating MACs, proposed an aggregate MAC scheme, and gave a security proof
for their construction.

In the Katz-Lindell scheme, there are z parties, each of which randomly se-
lects an r-bit key ki for a deterministic MAC scheme; these keys are shared
with a central authority. When parties7 i1, i2, . . . , in wish to authenticate mes-
sages m1,m2, . . . ,mn, respectively, for the authority, they each compute τi =
MACki

(mi). The aggregate tag is τ = τ1 ⊕ τ2 ⊕ · · · ⊕ τn. The authority verifies
the aggregate tag by computing the individual tags and checking that their xor
is equal to τ .

7 For simplicity, we assume the parties are distinct and hence n ≤ z.
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In the security model of [44], the adversary can corrupt any party, and in
addition can obtain the tag of any message from any party. The adversary’s goal
is to produce a set of party-message pairs (i1,m1), (i2,m2), . . . , (in,mn) (for any
n ≤ z) and an aggregate tag τ such that the tag passes the verification check
and there is at least one party-message pair (ij ,mj) for which party ij has not
been corrupted and was never queried for the MAC of mj .

Katz and Lindell prove that their aggregate MAC scheme is secure provided
that the underlying MAC scheme is secure in the single-user setting. Their proof
is very similar to the one given for MAC* in §2.2, but is described asymptotically.
The total number of parties is z = p(r) for some unspecified polynomial p, and
the adversary A of the aggregate MAC scheme is assumed to be polynomially
bounded. The simulator B of A’s environment makes a guess for the index j,
and is successful in producing a forgery for the underlying MAC scheme provided
that its guess is correct. Since n ≤ z, the proof has a tightness gap of p(r).

It is easy to see that the Katz-Lindell aggregate MAC scheme succumbs
to Attack 1. This security flaw in their scheme is a direct consequence of the
tightness gap in their proof.

As with rMAC, randomizing the MACs will prevent the attack. However,
since the randomizers would also have to be sent, this countermeasure defeats
the primary objective of the aggregate MAC scheme — a small aggregate tag.
A better solution would be to deploy fMAC as the underlying MAC scheme.

Hierarchical in-network data aggregation. Chan, Perrig and Song [21] pre-
sented the first provably secure hierarchical in-network data aggregation algo-
rithm. Such an algorithm can be used to securely perform queries on sensor
network data. A crucial component of the algorithm is the (independently dis-
covered) Katz-Lindell aggregate MAC scheme. In the data aggregation applica-
tion, each sensor node shares a secret key ki with the querier. At one stage of the
application, each node computes the tag τi = MACki

(N,OK), where MAC is a
conventional MAC scheme, N is a nonce sent by the querier, and OK is a unique
message identifier. The aggregate tag is τ = τ1 ⊕ τ2 ⊕ · · · ⊕ τn. We emphasize
that the same nonce N and message identifier OK are used by each node. It
follows that the MAC scheme is vulnerable to Attack 1. In fact, the attack is
easier to mount in this setting because the application itself requires each node
to compute its tag on a fixed message. The security proof for the aggregate MAC
scheme given in [21, Lemma 11] is very informal and assumes “that each of the
distinct MACs are unforgeable (and not correlated with each other)”, and then
concludes that “the adversary has no information about this [aggregate tag].”

History-free aggregate MACs. Eikemeier et al. [31] presented and analyzed
a MAC aggregation algorithm where the aggregation of individual tags must be
carried out in a sequential manner, and where the aggregation algorithm de-
pends only on the current message being MAC’ed and on the previous aggregate
tag. They provided an elaborate security definition and a security proof for their
scheme. We note that their security model allows the adversary to query individ-
ual parties for tags of messages of the adversary’s choosing. Consequently, their
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history-free aggregate MAC scheme succumbs to Attack 1. Not surprisingly, the
security reduction in [31] is non-tight, with a tightness gap of at least z (the
total number of parties).

4.2 Aggregate designated verifier signatures

An aggregate designated verifier signature (ADVS) scheme combines the ideas of
aggregate signatures [17] and designated verifier signatures [41]. Bhaskar, Her-
ranz and Laguillaumie [8] introduced the notion of ADVS and proposed two
constructions in the public-key and identity-based settings. The constructions
at their core use a MAC scheme and the identical idea of MAC aggregation as
in Katz-Lindell (§4.1). The essential difference is that the common MAC key of
a sender and the designated verifier is derived from the discrete-log static keys
of the two parties through hashing.

It is easy to see that the Bhaskar et al. scheme is vulnerable to Attack 1. Such
an attack, though realistic, is not captured in the security model of [8] which is
essentially an adaptation of the aggregate signature security model of Boneh et
al. [17]. In particular, both models fail to capture the scenario where multiple
honest signers send individual as well as aggregated authenticated messages to a
designated verifier, and an adversary is trying to forge a non-trivial (aggregate)
signature involving at least one honest signer.

5 Symmetric-key encryption in the multi-user setting

Bellare, Boldyreva and Micali [2] proved that if a public-key encryption scheme
is secure in the single-user setting, then it is also secure in the multi-user setting.
Their security proof has a tightness gap equal to nqe, where n is the number of
users and qe is the number of encryptions performed by each user. They men-
tion that analogous results for symmetric-key encryption schemes can be easily
proven. In this section, we examine the security of authenticated encryption
(AE) schemes and stream ciphers in the multi-user setting.

5.1 Deterministic authenticated encryption

Rogaway and Shrimpton [65] proposed the notion of ‘deterministic authenti-
cated encryption’ (DAE), presented a DAE scheme called Synthetic Initializa-
tion Vector (SIV), and proved the scheme secure. A primary motivation for their
work was that prior protocols for the ‘key-wrap problem’ had “never received a
provable-security treatment”.

Let E be a block cipher with r-bit keys and r-bit blocks. The SIV mode of
operation described in [65] uses CMAC and the counter (CTR) mode of operation
for E [27]; recall that in CTR mode encryption, a one-time pad is generated by
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selecting a random IV which is repeatedly incremented and encrypted; the one-
time pad is then xored with the blocks of the plaintext to obtain the ciphertext8.
A plaintext message m is processed by first computing IV = CMACk′ (m) and
then c = CTRk′′ (IV,m). Here, the secret key is k = (k′, k′′), where k′ is a key
for CMAC and k′′ is a key for the block cipher E. The ciphertext is (IV, c).
To decrypt and verify, one computes m = CTRk′′(IV, c) and verifies that IV =
CMACk′(m).

An attack. For concreteness, suppose that SIV uses an 80-bit block cipher
(such as SKIPJACK) as the underlying block cipher for CTR mode encryption
as well as for CMAC. Our attack on SIV is a chosen-plaintext attack in the
multi-user setting. The adversary selects an arbitrary message m and obtains
the ciphertext (IVi, ci) from 220 parties i with secret key pairs ki = (k′i, k

′′
i ).

As in Attack 1, the adversary then finds k′j for some user j in about 260 steps.
Next, the adversary finds two equal-length messages m1 and m2 with m1 6=
m2 and CMACk′

j
(m1) = CMACk′

j
(m2); this can be accomplished in about 240

steps using the van Oorschot-Wiener collision finding algorithm [74]. Finally, the
adversary requests the encryption of m1 from party j, receiving the ciphertext
(IV1, c1). The adversary then computes the encryption of m2 as (IV1, c1⊕m1⊕
m2) as its forgery. It can easily be checked that this ciphertext will decrypt to
m2 and pass the verification check.

Our attack shows that, despite the provable security guarantees of SIV in
[65], this particular implementation of SIV does not achieve the desired 80-bit
security level in the multi-user setting. Note, however, that the attack may not
be relevant in the context of the key-wrap problem. Since “the plaintext carries
a key”, it will not be possible for the adversary to obtain 220 (IVi, ci) pairs on
the same message m.

A fix. A possible countermeasure to the attack would be to encrypt IV under
k′′, i.e., the encryption of m would be (Ek′′ (IV ),CTRk′′(IV,m)) where IV =
CMACk′(m).

5.2 Authenticated encryption

In many AE schemes, including OCB [64, 62], GCM [56] and PAE [66], the
encryption function uses a secret key k for a block cipher to map a nonce-
message pair (IV,m) to a ciphertext of the form (c, τ). For these AE schemes,
the only requirement on the IV is that it not be repeated with the same key.
We consider the scenario where keys, tags and blocks all have the same length.

An attack. Fix a nonce-message pair (IV,m) and consider the function f : k 7→
τ , where τ is the tag of the AE encryption of (IV,m) under key k. Attack 1 can
then be mounted (cf. Remark 7). The attack requires many users to perform
authenticated encryption of m with the fixed IV , but since the AE schemes only

8 In the interest of simplicity, our description of SIV omits some details from [65]. In
particular, we omit the header which in any case “may be absent”, and use CMAC
instead of CMAC*. These omissions do not have any bearing on our attack.
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mandate that the IV not be repeated with the same key, the attack is legitimate
in the multi-user setting.

Rogaway [63], on his web page that promotes OCB, states

In the past, one had to wait years before using a new cryptographic
scheme; one needed to give cryptanalysts a fair chance to attack the
thing. Assurance in a scheme’s correctness sprang from the absence of
damaging attacks by smart people, so you needed to wait long enough
that at least a few smart people would try, and fail, to find a damag-
ing attack. But this entire approach has become largely outmoded, for
schemes that are not true primitives, by the advent of provable security.
With a provably-secure scheme assurance does not stem from a failure
to find attacks; it comes from proofs, with their associated bounds and
definitions.

In particular, he states that for OCB “the underlying definition is simple and
rock solid”. It is understandable that practitioners would be glad to hear the
recommendation that they can have confidence in a newly proposed protocol
solely based on the security proof, and need not wait for it to stand the test
of time. However, our attack on OCB, which is a practical one under certain
plausible assumptions, shows that it would be more prudent not to put all one’s
trust in a reductionist security proof and its associated definition, especially
if the proof has a large tightness gap or the definition does not allow for the
multi-user setting.

5.3 Disk encryption

A disk encryption scheme is a special case of a tweakable enciphering scheme
(TES) [37] where the message length is fixed. More concretely, a message is a disk
sector and there is a ‘tweak’ which is the sector address. The tweak is not a nonce
in the sense that it can be reused for encryptions with the same key. Formally,
the encryption algorithm uses a secret key k to transform a tweak-message pair
(IV,m) to a ciphertext c, where c and m have the same length.

For disk encryption schemes such as EME [38], k is a key of a block cipher.
By treating c as a tag, one can apply Attack 1 to recover k. Note that since c
will typically be much longer than k, a collision encountered during the attack
will most likely be due to a key collision. In the context of disk encryption, there
is no notion of session keys — the different keys would correspond to different
users. The encryption of a fixed tweak-message pair can be obtained by inducing
the users to encrypt the chosen message for the chosen disk sector.

Fixes for AE and disk encryption schemes. In the multi-user setting, one
way to ensure that an r-bit security level is achieved against our attacks (without
changing the underlying block cipher) is to use multiple keys that together are
longer than r bits. Examples of such schemes are Poly1305-AES [6] and the disk
encryption schemes in [67]. The use of multiple keys, however, does not immedi-
ately guarantee resistance to Attack 1 — as we have seen, SIV is vulnerable to
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the attack since the first ciphertext component depends only on the first SIV key
– and hence the modification of a mode of operation to resist Attack 1 should
be done with care.

5.4 Stream ciphers

A stream cipher with IV takes as input an r-bit key k and a v-bit IV and
produces a keystream which is then XORed with the message to obtain the
ciphertext. The usual requirement on the IV is that it should not be repeated
for the same key.

Fix a value IV0 for the IV and define a map f that takes k to the first r bits of
the keystream produced using k and IV0. In the multi-user setting, Attack 1 can
be mounted by inducing different users to encrypt known messages using IV0 and
their respective keys. Inverting f on any of the resulting keystreams yields one
of the secret keys. For concreteness, consider 80-bit keys and suppose that the
attacker is able to collect 220 targets. A TMTO attack using a precomputation
of 260 and memory and on-line time of 240 will (with high probability) find one
of the 220 keys. The attack parameters are feasible, thus bringing into question
the adequacy of 80-bit keys for stream ciphers with IV . The importance of this
issue can be seen in the context of the eSTREAM project [30] which recommends
80-bit stream ciphers such as Trivium.

Requiring that IVs be randomly generated does not circumvent the attack
but instead makes it somewhat easier to mount. This is because random IVs must
be communicated in the clear to a receiver. The attacker could then target the
receiver and obtain the first 80 bits of the keystream produced by the receiver.
Since a receiver expects IVs along with the ciphertext, an active attacker can
legitimately use the same IV0 for all the 220 receivers. In contrast, if the IV
is merely a nonce (such as a counter), then it may be more difficult to induce
all senders to use IV0. Note that the use of an authenticated encryption scheme
together with random IVs foils the attack. The attack can also be foiled by using
the technique employed in fMAC — prepending the IV with a string that is fixed
and unique among all sessions.

6 Concluding remarks

We showed that ignoring the tightness gaps in reductionist security proofs can
have damaging consequences in practice. Our examples involve MAC schemes in
the multi-user setting. In particular, the tightness gap in the natural reduction
from MAC1 to MAC* indicates a real security weakness, whereas the tightness
gap in the natural reductions from MAC1 to rMAC* and fMAC* do not seem to
matter in practice. Our examples illustrate the difficulty of interpreting a non-
tight security proof in practice. Although our examples all involve the multi-user
setting, we feel that they call into question the practical value of all non-tight
security proofs. We also demonstrated potential security weaknesses of provably-
secure authenticated encryption schemes in the multi-user setting.
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Practitioners who use security proofs as a tool to assess the security of a cryp-
tographic system, but rely more heavily on extensive cryptanalysis and sound
engineering principles, should not be alarmed by our observations. On the other
hand, theoreticians who believe that a security proof is the essential, and per-
haps the only, way to gain confidence in the security of a protocol should be
much more skeptical of non-tight proofs (unless, of course, the proof is accom-
panied by a clearly-stated requirement that security parameters be increased to
accommodate the tightness gap) and perhaps even reject these proofs as mere
heuristic arguments for the protocol’s security.
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