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ANOTHER NOTE ON THE BOREL-CANTELLI LEMMA
AND THE STRONG LAW, WITH THE POISSON
APPROXIMATION AS A BY-PRODUCT! '

By DAvID FREEDMAN
University of California, Berkeley

Here is another way to prove Lévy’s conditional form of the Borel-
Cantelli lemmas, and his strong law. Consider a sequence of dependent
variables, each bounded between 0 and 1. Then the sum S of the variables
tends to be close to the sum T of the conditional expectations. Indeed,
the chance that S is above one level and T is below another is exponentially
small. So is the chance that S is below one level and T is above another.

The inequalities also show that for a sequence of dependent events,
such that each has uniformly small conditional probability given the past,
and the sum of the conditional probabilities is nearly constant at a, the
number of events which occur is ncarly Poisson with parameter a.

1. Introduction. There is a theorem in [2] which includes both the Borel-
Cantelli Lemma and the Strong Law. I recently came across two inequalities
which do a similar job, and I would like to present them here. Let (Q, .5, P)
be a probability triple, and let %, c %, C ... be increasing sub ¢-fields of
& . Let X, X,, --. be random variables, such that

(1) 0<X, <1

(2) X, 1s & -measurable.
Let

3) M, = E(X,|%,.),

so M, is an .27, _-measurable function, with 0 < M, < 1. Say t is a stopping
time iff 7 is a function on Q taking the values 0, 1, 2, - .., co with {r =n}e s,
foralln =0,1,2, .... This allows P{r = oo} > 0. Usually, one starts with
X, satisfying (1), and defines .5, as the o-field generated by X,, - - -, X,. Allow-
ing more general .5, is sometimes helpful.

The main result of this note is a pair of inequalities embodying the fact that
2. X, is around the same size as 3} M,; large deviations have exponentially small
probability. More exactly,
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“) THEOREM. Suppose X,, X,, - - - satisfy (1) and (2). Define M, by (3). Let
7 be a stopping time.

@) If0 <a < b, then
PNiX,Sa and $iM,z b= (D) e,
a

where the bound reduces to e~ for a = 0.

(b) If0 < b < a, then
PNiX,za ad TiM, <8< (D) e,
a
where the bound reduces to 1 fora=15b=0.

Note. Let ¢ = max {a, b}. By (9) below,
(i)ue“-b < exp |:_ M] ,
a 2c
where exp x = e*.

I will prove (4) in Section 2, using a standard martingale argument: this gener-
al approach to proving inequalities was suggested by Theorem 2.12.1 of Dubins
and Savage (1965).

I came across (4) while trying to understand this elementary fact. If 4,
A, - -+ are independent events, and P(|J 4,) is small, then b = Y} P(4,) is
small. To get this from (4a), make X, the indicator of 4,, and put a = 0: so
{X X, <a =QU 4,, and P(Q\U 4,) < e~®. That is,

P(U An)zl_e_b’

as is easy to prove directly. Of course, (4) also gives more general inequalities
of the same type. Suppose A,, 4,, - - - are independent events, and a is a non-
negative integer. If 0 < a < b < 3] P(4,), then (4a) shows:

P{no more than a of 4,, 4,, -.. occur} < <£>a et
a

Ifa > b= ) P(4,), then (4b) shows:

Pfat least a of A, A4,, --. occur} < <£>a e* b,
a

Here is a numerical illustration: For a sequence of independent events, such
that the sum of their probabilities is & = 10,000 or more, the chance that @ =
9,000 or fewer occur is at most e~ ~ 2 x 10~*. For a sequence of independent
events, such that the sum of their probabilities is 5 = 10,000 or less, the chance
that @ = 11,000 or more occur is at most e™* ~ 3 x 10-2,

There are classical methods for computing (say) the probability of at least a
occurrences exactly, in terms of P(4, n 4, n -..). (For instance, see Feller
(1968) Chapter IV or Fréchet (1940); (1943).) There is also a very interesting
inequality due to Hoeffding (1956): if 4,, .-, A, are independent, and n as well
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as b = P(4)) + --- + P(4,) are fixed, then P(31 1, < a) for a < b as well as
P(X11,, = a) for a > b are maximized when the P(4,) are all equal. If
the X’s are independent, then (4) is equivalent to well-known inequalities of
Bernstein and Kolmogorov. Hoeffding (1963) has further inequalities and a
review of the literature. The present inequalities seem to be new in two re-
spects: there are no independence conditions on the X,; the number of sum-
mands is variable, and does not appear in the bound. I hope to discuss a similar
inequality for conditional variances in another paper.

Inequality (4) can be used to prove Lévy’s conditional form of the Borel-
Cantelli lemmas as follows. Let b — oo in (4a) to see

P(SrX,<a and 57 M, = oo} =0.
Let a — oo to see
(%) X, = a.e. on {7 M, = co}.
Similarly, (4b) shows
(6) 2P X, < oo ae. on {X7rM, < oo}.

A bharder argument based on (4) proves a variant of Lévy’s strong law:

X+ o+ X, - :
n a.e. on M, = ;
M1+"‘+Mn_) {25 oo}

this is sharper than (5). These results will all be proved for unbounded variables
subject to a growth condition, in Section 4. There are examples in Section 5
to show that the growth conditions are sharp.

Section 3 concerns the Poisson approximation. For a sequence of small in-
dependent sets, the number which occur is approximately Poisson, as is well
known. This is still true for dependent events. Suppose X, X,, ... are 0-1
variables. Define M, by (3), so M, is the conditional probability that X, is 1,
given the past. The process which equals X, at time M,, equals X, 4 X, at time
M, + M,, equals X, + --. + X, attime M, + ... 4+ M,, and so on, is approxi-
mately Poisson, provided M, is uniformly small and }; M, is large. I hope to
explore this elsewhere. Section 3 reports certain inequalities which are by-prod-
ucts of the argument for (4). Sections 4 and 5 do not depend on Section 3.

2. The basic inequalities. Here are some estimates.

@) LEMMA. (a) Let 0 < a < b. The function exp[ha — (1 — e™)b] of h =
0 has a minimum of (bla)*exp(a — b) at h = log(b/a). If a =0, the inf is
exp(—»b), at h = co.

(b) Let 0 < b < a. The function exp[—ha + (¢" — 1)b] of h = 0 has a mini-
mum of (bla)* exp (@ — b) at h = log (a/b). If0 = b < a, theinf is0, ath = co.
If 0 = b = a, the function is always 1.

Proor. Calculus. [J
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®) LEMMA. Let0 < e < 1. Let

fe) = (1 1_€>He-f and  g() = (1 — o). |
Then

fle) < exp (—%2) <1 ana g(e) < exp(—%z) <l1.
Proor. Take logs, and use Taylor’s expansion. For example

logfle) = —(1 —¢)log(l —¢) — ¢

_ € e e _£
_e+7+3+ ¢ 5 e < 5 - 0

) COROLLARY. Suppose a and b are nonnegative. Let ¢ = max {a, b}. Then

(bjayes=s < exp[—wz;cb)z] .

Proor. Suppose a ++ b and both are positive: the other cases are easy.

The case 0 < a < b. Lete = (b — a)/b. Then

(e =162

< exp (—326—2> by (8)

The case 0 < b < a. Lete = (a — b)/a. Then

<f’_>"eu—b = [(1 = o))

a

<o~ by

= exg[—_(az_‘;b)zjl . 0

The basic probability estimate is

(10) LEMMA. Suppose X is a random variable on (Q, 7, P), with0 < X < 1.
Let X be a sub-o-field of -, and let M = E{X|Z}. Let h be real. Then

Efexp (hX)| X} < exp [M(e* — 1)].

Proor. Let f(x) = exp (hx). Let [ be the linear function which agrees with
fat 0and I:
I(x) =1 4 x(e* — 1).
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Then f(X) < I(X), so
E{f(X)|Z} = E{l(X)| X}
= I(E{X|Z}) = (M) .
But (M) < exp[M(e* — 1)]. [
For real 4, define

(11) R,(m, x) = exp [hx — (e* — 1)m].

If X, X,, --- satisfy (1)-(2), and M, M,, - .. are defined by (3), let
(12) S, =X+ .-+ X, and T, =M+ ... + M,
so S, =T,=0.

(13) PROPOSITION. R, is excessive. More precisely, define R, by (11). Then
R, = 0. Suppose X,, X,, - - - satisfy (1)-(2). Define {M,} by (3), and {S,} and {T,}
by (12). Then the process

R(T,, S,): n=0,1,2,...
is an expectation-decreasing martingale relative to the o-fields = : n = 0,1,2, - ..

Proor. Use (10). ]

It is convenient to extend exp to oo, as follows: exp(co) = o and
exp (—oo) = 0. Then exp is continuous on [—oo, co]. This makes R,(m, x)
defined and continuous for 0 < m < oo and 0 < x < oo, exceptat m = x =
oo. It allows for infinite values of the variables ¢, S, and T..

(14) COROLLARY. Suppose X,, X,, - - - satisfy (1)-(2), and t is a stopping time.
Define {M,} by (3), and {S,} and {T.,} by (12), and R, by (11). Let
G={T.< o or S, < oo}.
Then
§u R(T.. S.)dP < 1.
Proor. From (13),

§ R(T S...)dP <1,

TARY

where ¢ A n = min (¢, n). But R(T.,,, S..,) = R(T., S.))onGasn— oo. Use
Fatou’s lemma. []

This is the main technical inequality in the paper.

THE PROOF OF (4a). Introduce a utility function u(m, x) which is 1 when both
m = b and x < a, and is 0 otherwise. This defines u(m, x) for 0 < m < oo and
0 < x < co. Remember (11) and (12). Keep

G={T.< oo or S < oo}.
For h > 0,and 0 < m, x < oo except m = x = oo, let
Q,(m, x) = exp[ha — (1 — e ")b]R_,(m, x)
=exp[—h(x —a) + (1 — e*)(m — b)].
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Now
P{S.<a and T, = b} = u(T,S,)dP

= §ou(T., S.) dP
= {6 QuT., S.) dP
< 0,(0,0):
the first equality is easy; the second holds because u(T", S.) = 0 off G; the third

holds because u(m, x) < Q,(m, x) provided m or x is finite; the last inequality
follows from (14). To complete the proof, use (7a) to choose the # minimizing

2,(0,0). O
THE PROOF OF (4b). Introduce a utility function #(m, x), which is 1 when
both m < band x > a, and is 0 otherwise. This defines u(m, x) for 0 < m < o
and 0 < x < co. Remember (11) and (12). Keep
G ={T.< o and S, < oo}.

For h = 0,and 0 < m, x < co except m = x = oo, let
Q0,(m, x) = exp[—ha + (¢* — 1)b]R,(m, x)
= exp [A(x — a) + (¢" — 1)(b — m)].
P{S.>a and T _< b} = u(T.,S.)dP
= {su(T,, S.)dP
=< §¢ Ou(T., S;) dP
< 0,(0,0).

As before

Use (7b) to minimize Q,(0, 0). [

If 0 < b < a, the bound for the probability in (4a) is 1. For instance, let
X, = M, = b/n, and v = n. Similarly, the bound in (4b) is 1 for 0 < a < b.
In the range 0 < a < b, the bound in (4a) is not sharp, but it is of the right
order of magnitude for fixed a, as b — co. To see this, make M, = b/n and ¢ =
n. Let the X, be independent 0 — 1 variables, taking the value 1 with proba-
bility b/n. So S = X, + ... + X, is essentially Poisson with parameter b, and

PS<a)=PS =a)=et 2 = (27a) <_b_>“e.,_b .
a! a

Similarly for (4b).

The game implicit in (4) is as follows. From (m, x) you can move to
(m + M, x + X), where X is any random variable with 0 < X < I, and M =
E(X). In the variant for (4a), you win $ 1 if your m-coordinate reaches & be-
fore your x-coordinate exceeds a. In the variant for (4b), you win $ 1 if your
x-coordinate reaches a before your m-coordinate exceeds . The Poisson strategy
of using 0-1 variables with constant small expectation is sensible but not optimal.
In (4a), for instance, you should change strategies if you ever reach a position
on the 45 degree line through x = @ and m = b. From such a position, you
have a sure win by using constant X. This strategy is probably optimal for



916 DAVID FREEDMAN

integer a. For other a, let a* be the largest integer less than . When you reach
a*, you should probably switch to gambles which are @ — a* with probability
¢ and 0 with probability 1 — ¢. The payoff from this strategy does not seem to
have a simple explicit formula. Similar remarks apply to (4 b).

For use later, it is helpful to extend (4) as follows.

(15) CoROLLARY. Suppose K > 0. Suppose 0 < X, < K, and suppose (2).
Define M, by (3). Let t be a stopping time.

(@) If0<a<b, then
P{Yi X, <a and Y M, = b} < [(bja)es~t]V% .
(b) If0 < b < a, then
P{X{X,=a and Y {M, < b} < [(bja)res ]k .
Proor. Use (4) on the variables X, /K, with a/K for a and b/K for b. []

(16) CoOROLLARY. Suppose K > 0. Suppose X, > 0 satisfies (2). Define M,
by (3). Let t be a stopping time. Suppose that for almost all w,
X (0) =K forall n < t(w).
(@) If0<a < b, then
PN X, < a and 3i M, = b} < [(blayes—]/ .
(b) If0 < b < a, then
P[XiX, > a and i M, < b} < [(blayre % .
ProoF. Let X,* = X, for n <7, and X,* =0 for n > . Let M, * =

E(X,*|.%,_). Check that M,* = M, forn < rand M,* =0 for n > 7. Use
(15) on the starred process. []

3. The Poisson approximation. Suppose for now that X, takes only two
values, 0 and 1. Suppose (2)-(3). If the M, are uniformly small, and 3} M,
is nearly constant at a, then Y] X, is nearly Poisson with parameter a. The
main results (17) and (28) of this section are upper and lower bounds on the
generating functionexp (4 3 X,), which imply this Poisson approximation result.

(17) PROPOSITION. Suppose X,, X,, - - - satisfy (1)-(2). Define M, by (3). Let
© be a stopping time, and suppose y,; M, < b almost everywhere, where b is a non-
negative real number. For h = 0,

Elexp k(£ X,)] < exp [b(e* — 1)],
the generating function for a Poisson variable with parameter b. This bound is sharp.

ProorF. Remember (11) and (12). Let # > 0. If T. < b almost surely, then
(14) shows

1 = Efexp (hS. — (¢* — 1)T,)} = E{exp (hS,)} exp[—b(e* — 1)].
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To see the bound is sharp, fix a large positive integer N; make M, = b/N and
let the X, be independent 0-1 variables, taking the value 1 with chance 5/N.
So S, = X, + --. + X, is essentially Poisson with parameter 6. [].

The argument for (17) can also be used to prove

(18) PROPOSITION. Suppose X,, X,, - - - satisfy (1)-(2). Define M, by (3), and
S, and T, by (12). Let t be a stopping time.

(@) If T, =z b almost surely, then

Elexp (—hS,)] < exp[—b(1 — e7*)] for h=0.
(b)y If S. < a almost surely, then
Elexp(AT)] = (1 — ) for 0 <1<1.

(c) If S. = a almost surely, then

E[lexp(—=AT )] = (1 4 4~ for A=0.
These bounds are sharp.

To get (b) from (14), make the change of variables ¢* = 1/(1 — 2). For (c),
put e* = 1 + 2. To interpret these inequalities, remember that (1 4 )~ is the
Laplace transform of the sum of a independent exponential variables for 1 >
—1. So (b) and (c) relate T, to the time it takes for a Poisson process to reach
the level a, at least for positive integer a.

There is a lower bound (28) corresponding to (17). Here are the preliminaries.
Let

(19) B(x) = % log (1 + x) for x> 0.
Clearly,

(20) lim,_, ¢(x) = 1

and

(21) ¢(x) decreases as x increases.

By (21),

(22) If 0<x=<a, then (14 x)=exp[d(a)x].

(23) LEMMA. Fix ewith0 < e < 1. Let0 = ¢(s(e — 1)), where ¢ was defined
in (19). Let 0 < h< 1. Let X be a 0-1 valued random variable on (Q, &, P).
Let X be a sub-o-field of 5, and let M = P{X = 1|Z}. Suppose M < ¢ almost
surely. Then
Elexp (hX)|Z} = exp [OM(e* — 1)].
Proor. Check that
Ef{exp (hX)|Z} =1 + M(e* — 1).
Then use (22). []
The regularity condition for (28) is
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(24) Fix a positive ¢ < 1. Suppose X, is 0-1 and .5 ,-measurable, and
M" = P{Xn =1 I\Z‘_l} __<____ ¢ for all n.

(25) DEFINITION. Let 6 = ¢(e(e — 1)), where ¢ was defined in (19). For
0=hr<, Tt

R, (m, x) = exp [hx — O(e* — 1)m].
(26) PROPOSITION. R, . is defective. More precisely, let 0 < ¢ < 1 and 0 <
h < 1. Define R, by (25). Then R,, = 0. Suppose X, X,, ---, My, M,, - - -
satisfy (24). Define {S,} and {T,} by (12). Then the process

Rh,e(Tn’ Sn) : n=0,1,2, ...
is an expectation-increasing martingale relative to the g-fields &, .5, - - -.
Proor. Use (23). ]

(27) COROLLARY. Let0 < ¢ < 1and0 < h < 1. Define R, , by (25). Suppose
Xy, Xy, -+ and My, M,, - - . satisfy (24). Define {S,} and {T,} by (12). Let g bea

stopping time. Then
E{Rh,e(To/\n’ Sa/\'n)} g 1 .

(28) PROPOSITION. Let ¢ > 0. Suppose X, and M, satisfy (24), and t is a
stopping time. Suppose 3 7 M; > b almost surely. Define 0 as in (25). Then

E[exp h(};7 X,)] = exp [0b(e* — 1)] for 0<h< 1.
ProoF. Let ¢ be the least n if any with T, = b, and ¢ = oo if none. So
(29) T, = b almost surely
(30) T,< b+ 1 almost surely.

Of course, ¢ < 7: 50 S, < S, and it is only necessary to prove the proposition
with ¢ in place of z. Write U, = R, (T,,,, S,,,)- So U2 < exp (24S,). Then
(17) and (30) show that E(U,?) is uniformly bounded. This makes U, uniformly
integrable. But U, — R, (T,, S,) as n — co, whether ¢ is finite or infinite: use
(30) to ensure 7, < co. And E(U,) = 1 by (27). So

E{R, (T,, S)} = 1.
Using (29),
Rh,e(Ta, S,,) < exp (hSo) - exp (—01)((3” _ 1)) ) 0

At first sight, (17) and (28) look very special. However, as I hope to show
elsewhere, it is possible to prove Dvoretzky’s general central limit theorem for
dependent summands (unpublished) by the same technique.

The lower bounds corresponding to (18) can be obtained in a similar way.
Remember

0 = [e(e — 1) log [1 + e(e — 1)],

sof <land @ —1ase—0. Let
0" = —[e(1 — e )] log[l + ¢(1 — eY)],
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sof >1land ¢’ —»1ase¢—0. Now exp[—hx + 0'(1 — e *)m] is defective for
0 < & < 1, in the sense of (26).

(31)  PROPOSITION. Suppose X, X,, - - - satisfy (24). Define {S,} and {T,} by
(12). Let t be a stopping time.

@) If T. < b almost surely, then
E{exp (—hS,)} = exp[—6'b(1 — e*)] for 0 <h< 1.
(b) If S. = a almost surely, then

E{exp (AT.)} = <0,0_' X)" for 0 <2< 0(1 — ey,

(¢) If S. < a almost surely, then

Efexp (—aT.)} = <,‘f’_'_>" for 0<2<0(e—1y.

In particular: if X), X,, - - - satisfy (14), the amount of conditional expectation
used by the sum X, + X, 4 ... in getting to a is nearly the sum of @ independent
exponential variables.

4. Some almost-sure results.

(32) PROPOSITION. Suppose the X, are nonnegative, satisfy (2), and the M, are
defined by (3). Then

e X, < o almost surely on {37 M, < oo} .

Proor. Let
X* =X, when 0 X, <1
=0 when X, >1.
Let M, * = E{X,*|.5,_}. So M,* < M,, and (6) on the starred process shows:
(33) DX F < oo almost surely on {3} M, < «o}.

By Chebychev’s inequality, P{X, = 1|5 ,_;} < M,. Use (6) on the indicator
functions of {X, > 1}:
(34) X, # X, * only finitely often, almost surely on {}} M, < co}.
Combine (33)~(34). [ '

The next main result is (39), which extends (5) to certain unbounded variables.

Here are the preliminaries.

(35) LEMMA. Let ¢ be a non-decreasing function on (0, co0), with ¢(0) > 0.
Let x, be nonnegative real numbers, with 3, x, = co. Lets, = x; 4+ -+ 4 x,, s0
Sy = 0.

(@) If §= 1p(t) dt = oo, then 3 x, [ (s,) = co.
(b) If §= 1/g(1) di < oo, then 3] x,/§(s,) < co.
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Proor. Let f(u) = x, for n — 1 < u < n, and let F(t) = {{ f(u) du. Then
S, < F(y<s,forn—1=<t=<mn,so

Vit fw)/plE@)] du = 2T Xi4a/9(5)
§o fw)[glF(u)] du = T3 x.[$(5.) -

§o fw) /gL F(w)] du = §; 1/§(F) dF = 5 1/(1) dr . 0
Notk. In claim (a), if ¢(¢)/t is unbounded at infinity, and x, increases rapidly,
x,,, cannot be replaced by x,: for 3 x,/¢(x,) can be made to converge, and
then 3 x,/¢(s,) will converge a fortiori.
In claim (b), if x, increases rapidly, it cannot be replaced by x,.;.
The next result is probably known.

But

(36) COROLLARY. Suppose the x, are nonnegative real numbers, with 3} x, =
oco. Lets, =x + -+ + x,. Then 3 x,[5, = co.

Proor. Use (35a) with ¢(7) = ¢, to see 3, x,,,/s, = oo. If x,,; = O(s,), the
ratio test shows 3 x,,,/s,,, = oo. If x,,, # O(s,), a direct argument shows
2 Xug1[Spa = o0 I

The result (5) does not apply to all unbounded variables; a growth condition
is needed. To state the condition,

(37) let z, be the sup of n with M, + ... + M, <1t and let L(r) =
SUP,, SUP, < i X u(@)-

So L(7) is not random, 0 < L(r) = oo, and L(r) is non-decreasing with 7.

(38) FacT. Suppose X, = 0 satisfies (2). Define M, by (3) and L by (37).

Then
X, < LM, + - + M,).

ProOE. Let t = My(®) 4 -+ + M, (). Then t(w) = n, s0 X,(@) = L(1). []
The next result generalizes (5) to variables satisfying a growth condition.

(39) PROPOSITION. Suppose X, = 0 satisfies (2). Define M, by (3) and L by
(37). Suppose L(t) = O(t) as t — co. Then

X, = o almost surely on {3, M, = oo} .

PRrROOF. As in (32), let
= for 0 <X, <1
=0 for Xn z 1.
Let M * = E{X,*|. ~ ,_}. Now
(3 M, = oo} = {X M,* = oo} U{E M,* < co and 3 M, = co}.
By (5) on the starred process, }; X,* = co almost surely on {3} M,* = oco}.
But X, > X,*. Next, confine w to the set 4 = {3} M, * < o0 and 3] M, = oo}.

Let
P. = P{X, = 1.5, )
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Remember 7, = M, + ... + M, from (12). Then
M, = M,* 4 E(X, — X,*|.5,_,)
=M+ p. L(T,),
because 0 < X, — X, * < X, < L(T,) by (37). So
T, M, M}

Pn > n_. "
Lur,) T, LT,

n

But L(tr) = O(t) by assumption, so T,/L(T,) is bounded below as n increases to
infinity. And (36) shows }, M /T, = oo, so > [T,/L(T,)] - [M,/T,] = co.
Finally, 3} M,* < oo; so 33 M, */L(T,) < co. The upshot is, 3] p, = oo on 4.
Use (5) on the indicator functions of the sets {X, = 1}, to see that X, > 1 in-
finitely often, almost surely on 4. [J

The condition that L(f) = O(f) can not be weakened, as shown in (48) below.

The next result is a variant of Lévy’s strong law for dependent variables sub-
ject to a growth condition.

(40) THEOREM. Suppose the X, are nonnegative random variables satisfying (2).
Define the M, by (3), and L by (37). Suppose L(t) = o(t/loglog ) as t — oco. Then

Xo4 o+ X,
M+ -+ M,

almost surely on {3, M

W = 00} .

Proor. Remember from (12)thatS, = X, + ...+ X, and T, = M, + .- - +
M,. Let

Fix r > 1. Let 7(k) = 7,x be the sup of n with T, < r*. So z(k) is a stopping
time, because T, is & ,_;-measurable. Clearly, 7(k) is finite on G. Check that

(42) k) +1 <n< ek + 1) ifft < T, <rét,

Let
A, ={G and S, < T,/r* forsome n with (k) + 1 < n < o(k 4 1)}
B, ={G and S, > r’T, forsome n with (k) +1 <n < «(k 4 1)}.

It is possible that z(k + 1) = (k) < z(k) + 1.

I claim
(43) {G and liminf, S, /T, < 1/} C limsup,_., 4,
(44) {G and limsup, . S,/T, > r’} C limsup,_. B, .

For instance, fix an o in the set on the left side of (43). Then T, — oo, and

S,/T, < 1/r* for infinitely many n. So there are infinitely many pairs » and k

with ¥ < T, < r*** and S,/T, < 1/r* use (42) to get w into the right side.
Next, I will argue that

(45) T P(4,) < o0



922 DAVID FREEDMAN

and
(46) 2k P(By) < o0
Given (45) and (46), the usual Borel-Cantelli lemma shows that for each r,

P{G and liminfS,/T, < 1/r'} =0
P{G and limsup S,/T, > r’}=0.

Let r decrease to 1 through a sequence, to see
P{G and liminfS§,/T, <1} =0

P{G and limsupS,/T, > 1} =0;
that is,
P{G and lim S,/T, + 1} =0,

proving (40) from (45)-(46).

Of (45)-(46), the first one is a bit more delicate. To prove it, fix k; then (15)
can be used to estimate P(Akj, as follows. Let X,* = X, for n < z(k + 1) and
X,*=0forn>r<k+1). So0 < X,* < L(r**), and X, * is & ,-measurable.
Let M * = E{X,*| 5 ,_,}. As before,

M*=M for nér(k—{—l)

n

=0 fOrn>T(k—|—1).

Let o* be the least n if any with M* 4 ... 4 M, * > r*, and t* = oo if none.

Let
AF = (TP X < 0 and D ME = 4
I claim

(47) A, C Ax.

Indeed, fix an  in A,; find n = n(w) with z(k) + 1 < n < z(k 4+ 1) and S, <
T,/r*. Then X, = X* and M, = M* for i < r(k 4+ 1), so t* = ¢(k) 4 1 and

12

Z;* Xi* = Sr(k)+1 é Sn < Tn/rz g Tr‘(k)+l/r2 é rlﬂl/r2 é reeh

Similarly, »i* M* =T_,,,, = r*, proving (47). So P(A,) £ P(A,*), which
can be estimated from (9) and (15a) on the starred process with K = L(r**?)
and r = v* and @ = r*~' and b = r*. This comes out as follows:

P(A*) < exp(—ay), where
= =7
2rkL(rktt)
= =D e - log log r**1 .

2r L(r**') log log rk+!

In a,, the first factor is constant; the second goes to infinity, because L(#) =
o(t/loglog); the third is around log k. Consequently, P(A4,) is of the order
1/k?®, where (k) — oo. This proves (45).
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The argument for (46) is similar. First, B, c B,*, where
B* = {Sz'(k+1) = r*** and Tz'(k+1) = rkﬂ} . s
Second, P(B,*) can be estimated from (9) and (16b). This comes out as follows:
P(B,) < exp (—p,), where
g, = (rk+2 . rk+1)2
k 2rk+2L (phrny
(r _ 1)2 . rk+1
2r L(r***) log log r*+!
~ l/kﬂ(lc) y
where (k) — oo. []

S. Examples. The first result shows that the condition L(r) = O(¢) in (39) is
sharp.

- log log rkt1

(48) ExamMPLE. Let ¢(r) be a non-decreasing function of s, such that
lim sup, ., ¢(#)/t = co. Then thereisa sequence of positive numbers M,, M,, - . .

and a sequence of independent random variables X,, X,, - - - such that:
T M, = oo
E(X,) = M,
0< X, =¢(M,), 0 X, < oM, + - + M,)
21X, <o ae.

Proor. Choose M, > 0 so large that ' M, = oo and M, |6(M,) < 1 and
2 M,[/p(M,) < co. Let X, take only the values 0 and ¢(M,), with

PX, = ¢(M,)} = M,[$(M,) .
The usual Borel-Cantelli lemma shows
PX,#0 i0.}=0. 0

Definition (37) could be normalized a little differently, by letting 7, be the
inf of n with M, + ... 4 M, > t. This normalization leads to a growth con-
dition of the more restrictive form

(49) Xn+1 é L(Ml —F o+ M'n) ’
and with this form of the growth condition, (39) changes a bit, as follows.

(50) PROPOSITION. Suppose the X, are nonnegative and satisfy (2). Define M,

by (3). Suppose
Xop1 S 9My + - + M),

where ¢ is a non-decreasing function on [0, co) with ¢(0) positive.
(@) If §= 1/¢{t) dt = oo, then
12X, = a.e.on {3 M, = co}.
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(b) Suppose §= 1/¢(1)dt < oo. Let My, M,, - - . be any sequence of positive real

numbers, with
sup, M, ,,/M, < o and .M, = .
There is a sequence of independent random variables X,, X,, - - - with respective ex-
pectations M,, M,, - - - such that
0s=X,,usoM+ --- + M) and DX, < oo ae.
PROOF. You can argue the first assertion like (39), getting
Pn+l > Mn+1 M:-{-l

=M, + - + M) M+ -+ M)

The sum over n of the first term on the right diverges, by (35a).
For the second assertion, let X,,, be 0 or ¢(M, + ... + M,), with

M,

n+1

M, + -+ M)

Then 39 M, ,,/¢p(M, + --- + M,) < oo by (35b), so the ordinary Borel-Cantelli
lemma shows

P{Xn+1 = ¢(M1+ R M'n)} =

P{X,+0 i0}=0. O
Finally, I would like to show that the growth condition in (40) is sharp.
(51) ExampLE. Let ¢ > 0. There is a positive integer N = N(¢) and a

sequence X, X,, - - - of independent nonnegative random variables, each having

mean 1, such that
X, < enfloglog n for n > N
and
P{(X,+ -+ + X,))n—>1} =0.

Proor. Choose N so large that p, = (log log n)/(sn) satisfies
P> 0 and I —p, > e for n > N.

Let X, ---, X, be 0 or 2 with chance § each. For n > N, let X, be 0 or
enflog log n, with P(X, =0) =1 — p,.
Choose r > 1 but so close that log r < e. Abbreviate §, = X, + - + X,.
Keep k so large that r* > N and log log r*** < 2log k. Let A4, be the event
that X, = 0 for all » with r* < n < ré+1. So
P(4,) =1 —p)in=rt4 1, ..o, i
exp(—=2 3 {p.in=rt+1,..., 1}
exp (—2etloglog r¥*t . Y {ntin=1rk 41, ..., r*1})
exp [—4etlog k - log (r*¥**/r¥)]
exp (—4etlogr - logk) .
The upshot is ] P(4,) = oo, so P(limsup 4,) = 1. On 4,

S,ke1/r*Tt = (1)r)Si[r* . 0

v v v v
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Note. The argument for (40) shows that lim sup S,/n and lim inf S,/n are
O(et) away from 1, almost surely on {}}; M, = oo}.
Incidentally, you can also prove

(52) PROPOSITION. Suppose the X, are nonnegative random variables satisfying
(2). Define the M, by (3), and L by (37). Suppose the growth condition L(b) =
o(b). Then (X, + --- + X,)/(M; + --- + M,) converges to 1 in probability, given
{3 M, = }.

If ¢ > 0, there is a sequence of independent nonnegative random variables
X, X,, - - - each having mean 1, such that

X, < en for n > 1/e
(X; + -+ 4+ X,)/n does not converge to 1 in probability.
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