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ANOTHER NOTE ON WEYL’S THEOREM

ROBIN HARTE AND WOO YOUNG LEE

Abstract. “Weyl’s theorem holds” for an operator T on a Banach space X
when the complement in the spectrum of the “Weyl spectrum” coincides with
the isolated points of spectrum which are eigenvalues of finite multiplicity. This
is close to, but not quite the same as, equality between the Weyl spectrum and
the “Browder spectrum”, which in turn ought to, but does not, guarantee the
spectral mapping theorem for the Weyl spectrum of polynomials in T . In this
note we try to explore these distinctions.

Recall [2, 4, 6] that a bounded linear operator T ∈ BL(X,X) on a Banach
space X is Fredholm if T (X) is closed and both T−1(0) and X/cl (TX) are finite
dimensional: in this case, we define the index of T by index (T ) = dim T−1(0) −
dim X/T (X). An operator T ∈ BL(X,X) is called Weyl if it is Fredholm of
index zero, and is called Browder if it is Fredholm “of finite ascent and descent”:
equivalently ([6], Theorem 7.9.3) if T is Fredholm and T − λI is invertible for
sufficiently small λ 6= 0 in C. The (Fredholm) essential spectrum σess(T ), the Weyl
spectrum ωess(T ) and the Browder spectrum ωcomm

ess (T ) of T are defined by

σess(T ) = {λ ∈ C : T − λI is not Fredholm},(0.1)

ωess(T ) = {λ ∈ C : T − λI is not Weyl}(0.2)

and

ωcomm
ess (T ) = {λ ∈ C : T − λI is not Browder};(0.3)

evidently

σess(T ) ⊆ ωess(T ) ⊆ ωcomm
ess (T ) = σess(T ) ∪ acc σ(T ),(0.4)

where we write acc K for the accumulation points of K ⊆ C and σ(T ) for the usual
spectrum of T . If we write iso(K) = K \ acc(K) and

πleft
0 (T ) = {λ ∈ iso σ(T ) : 0 < dim (T − λI)−1(0) <∞}(0.5)

for the isolated eigenvalues of finite multiplicity, and ([6], (9.8.3.4))

π00(T ) = σ(T ) \ ωcomm
ess (T )(0.6)

for the Riesz points of T , then ([6], Theorem 9.8.4) with the help of the “punctured
neighbourhood theorem”

iso σ(T ) \ σess(T ) = iso σ(T ) \ ωess(T ) = π00(T ) ⊆ πleft
0 (T ).(0.7)
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2116 ROBIN HARTE AND WOO YOUNG LEE

Note that some authors use the notation of (0.6) for the concept of (0.5).

1. Definition. We say that Weyl’s theorem holds for T ∈ BL(X,X) if

σ(T ) \ ωess(T ) = πleft
0 (T ),(1.1)

and we shall say that Browder’s theorem holds for T if

σ(T ) \ ωess(T ) = π00(T ).(1.2)

Evidently “Weyl’s theorem” implies “Browder’s theorem”:

2. Theorem. Each of the following conditions is equivalent to Browder’s theorem
for T ∈ BL(X,X):

σ(T ) = ωess(T ) ∪ πleft
0 (T );(2.1)

ωess(T ) = ωcomm
ess (T );(2.2)

Necessary and sufficient for Weyl’s theorem is Browder’s theorem together with
either of the following:

ωess(T ) ∩ πleft
0 (T ) = ∅;(2.3)

πleft
0 (T ) ⊆ π00(T ).(2.4)

Proof. Implication (1.2) =⇒ (2.1) is the last part of (0.7). Conversely if (2.1) holds
then σ(T ) \ ωess(T ) = πleft

0 (T ) \ ωess(T ) ⊆ π00(T ), giving (1.2). Equivalence (1.2)
⇐⇒ (2.2) is (0.6). Implication (2.2) =⇒ (1.2) is the middle part of (0.7). Towards
the second part of the theorem notice that (2.4) always implies (2.3): we claim that
Browder’s theorem together with (2.3) implies Weyl’s theorem, and that Weyl’s
theorem implies (2.4). Indeed, using the last part of (0.7), Browder’s theorem says
that the complement in σ(T ) of the Weyl spectrum is a subset of π left

0 (T ), while
(2.3) ensures that πleft

0 (T ) is a subset of this complement. On the other hand, the
second part of (0.7) together the inclusion πleft

0 (T ) ⊆ iso σ(T ) and Weyl’s theorem
gives (2.4).

The disjointness condition (2.3) can fail whether or not Browder’s theorem holds
[9]:

3. Example. If X = `p or X = c0 and

T = vw : (x1, x2, x3, · · · ) 7→ (
1

2
x2,

1

3
x3,

1

4
x4, · · · ) on X(3.1)

is the product of the backward shift v and the standard weight w, then

σ(T ) = σess(T ) = ωess(T ) = ωcomm
ess (T ) = {0}(3.2)

and

πleft
0 (T ) = {0}.(3.3)

Proof. T is quasinilpotent and compact, so not Fredholm, giving (3.2), while

T−1(0) = Cδ1 = {(λ, 0, 0, · · · ) : λ ∈ C}
is of dimension 1.
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In general the spectral mapping theorem is liable to fail for the Weyl spectrum
([2], Example 3.3): there is only ([2], Theorem 3.2) inclusion, since the product of
Weyl operators is Weyl,

ωessp(T ) ⊆ pωess(T ).(3.4)

Similarly the Weyl spectrum of a direct sum need not be the union of the Weyl
spectra of the components: we only have in general, since the direct sum of Weyl
operators is Weyl and the index is additive on direct sums,

ωess(T ) \ ωess(S) ⊆ ωess(S ⊕ T ) ⊆ ωess(S) ∪ ωess(T ).(3.5)

By contrast ([6], Theorem 9.8.2) the spectral mapping theorem holds for the Brow-
der spectrum, and the Browder spectrum of a direct sum is the union of the Browder
spectrum of the components. This might suggest that Browder’s theorem for S and
T is sufficient for equality in (3.4) and the second part of (3.5):

4. Theorem. If Browder’s theorem holds for T ∈ BL(X,X) and S ∈ BL(Y, Y )
and if p is a polynomial, then

Browder’s theorem holds for p(T ) ⇐⇒ pωess(T ) ⊆ ωessp(T ),(4.1)

and

Browder’s theorem holds for S ⊕ T ⇐⇒ ωess(S) ∪ ωess(T ) ⊆ ωess(S ⊕ T ).(4.2)

Proof. If ωcomm
ess p(T ) ⊆ ωessp(T ), then, with no other restriction on T ,

pωess(T ) ⊆ pωcomm
ess (T ) = ωcomm

ess p(T ) ⊆ ωessp(T ),

which is the right hand side of (4.1); conversely if Browder’s theorem holds for T
as well as this inclusion, then ωcomm

ess p(T ) = pωcomm
ess (T ) ⊆ pωess(T ) ⊆ ωessp(T ).

Similarly, if Browder’s theorem holds for S ⊕ T , then, with no other restriction on
either S or T ,

ωess(S) ∪ ωess(T ) ⊆ ωcomm
ess (S) ∪ ωcomm

ess (T ) = ωcomm
ess (S ⊕ T ) ⊆ ωess(S ⊕ T ),

which is the right hand side of (4.2); conversely if Browder’s theorem holds for S
and for T as well as this inclusion, then ωcomm

ess (S ⊕ T ) = ωcomm
ess (S) ∪ ω comm

ess (T ) ⊆
ωess(S) ∪ ωess(T ) ⊆ ωess(S ⊕ T ).

5. Theorem. If T ∈ BL(X,X), then the following are equivalent:

Index(T − λI) Index(T − µI) ≥ 0 for each pair λ, µ ∈ C \ σess(T );(5.1)

pωess(T ) ⊆ ωessp(T ) for each polynomial p.(5.2)

Also if

ωess(T ) = σess(T ),(5.3)

then

ωess(S) ∪ ωess(T ) ⊆ ωess(S ⊕ T ) for each Y and S ∈ BL(Y, Y ),(5.4)

which in turn implies the condition (5.1).
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Proof. The spectral mapping theorem for the Weyl spectrum may be rewritten as
the implication, for arbitrary n ∈ N and λ ∈ Cn,

(T − λ1I)(T − λ2I) · · · (T − λnI) Weyl

=⇒ T − λjI Weyl for each j = 1, 2, · · · , n.(5.5)

Now if Index(T − zI) ≥ 0 on C \ σess(T ), then we have

n∑
j=1

Index(T − λjI) = Index
n∏
j=1

(T − λjI) = 0

=⇒ Index(T − λjI) = 0 (j = 1, 2, · · · , n),

and similarly if Index(T − zI) ≤ 0 off σess(T ). If conversely there exist λ, µ for
which

Index(T − λI) = −m < 0 < k = Index(T − µI),(5.6)

then

(T − λI)k(T − µI)m(5.7)

is a Weyl operator whose factors are not Weyl. This proves the equivalence of the
conditions (5.1) and (5.2). To see that (5.3) =⇒ (5.4), recall that the index of a
direct sum is the sum of the indices:

Index(S ⊕ T − λ(I ⊕ I)) = Index(S − λI) + Index(T − λI)(5.8)

whenever λ 6∈ σess(S ⊕ T ) = σess(S) ∪ σess(T ). Conversely if (5.1) fails, so that
(5.6) holds, then also the direct sum of (T −λI)k and (T −µI)m is a Weyl operator
whose factors are not Weyl; thus in particular 0 ∈ C is in the Weyl spectrum of the
operator T − λI but not in that of the direct sum

T − λI ⊕ S − λI with S − λI = (T − λI)k−1(T − µI)m.

Of course the condition (5.3) implies the condition (5.1). We can rewrite (5.1)
in terms of the “spectral picture” ([11], Definition 1.22) of the operator T , which
consists of the essential spectrum of T together with the mapping which associates
with each “hole” H (bounded component of the complement) of σess(T ) the integer
JT (H) = Index(T − λI) with λ ∈ H (independent of the choice of λ ∈ H). When
X is a Hilbert space then (5.1) is ([11], Definition 4.8; Theorem 1.31) the condition
that T ∈ BL(X,X) be “semi-quasitriangular”, in the sense that either T or T ∗ is
quasitriangular.

We have a familiar example of an operator for which the spectral mapping the-
orem holds for the Weyl spectrum, which does not coincide with the Browder
spectrum:

6. Example. If

T =

(
u 0
0 v

)
:

(
Y
Y

)
→
(
Y
Y

)
(6.1)

with Y = `p or Y = c0 and the forward and backward shifts u and v, and if |λ| < 1,
then

T − λI is Weyl and not Browder,(6.2)
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but the inclusion (5.2) does hold. At the same time Browder’s theorem holds for
each of u and v, but not for T = u⊕ v.

Proof. It is clear that T − λI is Fredholm and has index zero, therefore is Weyl;
alternatively (cf. [4], Example 4.3; [6], (7.7.6.6)-(7.7.6.9)) if

S =

(
u− λ 1− uv

0 v − λ

)
and S′ =

(
v(1− λv)−1 0

(1− λu)−1(1− uv)(1− λv)−1 (1 − λu)−1u

)
,

(6.3)

then

S′S = I = SS′ and T − λI − S is finite rank;(6.4)

make the calculations

(1− λv)−1(u − λ) = u ; (v − λ)(1 − λu)−1 = v ;

(1− λv)−1(1 − uv) = 1− uv = (1− uv)(1− λu)−1.

To see that T − λI is not Browder, recall the eigenvector

δ1 = (1, 0, 0, · · · ) ∈ v−1(0);

we claim that

y = un(1− λu)−(n+1)δ1 =⇒ (v − λ)n+1y = 0 6= (v − λ)ny,

noting that

(v − λ)n(1− λu)−n = vn,

and hence

x =

(
0
y

)
=⇒ (T − λI)n+1x = 0 6= (T − λI)nx.

For (5.1), observe that trivially T satisfies the condition (5.2) (since there is only
one hole in the essential spectrum).

We have a very similar example in the opposite direction:

7. Example. If Y = `p or Y = c0 and

T =

(
u+ 1 0

0 v − 1

)
:

(
Y
Y

)
→
(
Y
Y

)
(7.1)

with the forward and backward shifts u and v on Y , then Browder’s theorem holds
for T while the spectral mapping theorem for the Weyl spectrum fails.

Proof. We claim ([4], Example 4.4; [6], (7.6.4.9)), using the first part of (3.5), that

σ(T ) = ωess(T ) = {|1− z| ≤ 1} ∪ {|1 + z| ≤ 1},
since both the spectrum and the Weyl spectrum of each of the shifts is the closed
unit disc. Thus Browder’s theorem certainly holds for T ; to see the failure of the
spectral mapping theorem with the polynomial p = z2, observe that

1 ∈ pωess(T ) ⊇ σessp(T ) and 1 6∈ ωessp(T ) = ωess(T
2);

for this last part observe that Index(T − I) = −1 = −Index(T + I), or alternatively
make a direct calculation ([4], Example 4.4; [6], (7.6.4.13)) as for Example 6.
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Weyl’s theorem may or may not hold for quasinilpotent operators, and is not
transmitted to or from dual operators: for example it fails for the quasinilpotent
T = vw of Example 3, but holds for its adjoint T ∗ = wu: if T = vw on `2 then

σ(T ∗) = ωess(T
∗) = {0} and πleft

0 (T ∗) = ∅.(7.2)

Once again Browder’s theorem performs better:

8. Theorem. If T ∈ BL(X,X), then

Browder’s theorem holds for T ⇐⇒ Browder’s theorem holds for T †.(8.1)

Proof. Observe that

ωess(T
†) = ωess(T ) and iso σ(T †) = iso σ(T ),(8.2)

which together with (0.7) and (2.2) gives (8.1).

Combining (3.3) and (7.2) shows that the Riesz points need not coincide with
the intersection of the isolated eigenvalues of finite multiplicity for the operator and
its dual:

T = vw ⊕ wu =⇒ πleft
0 (T ) ∩ πleft

0 (T †) = {0} 6= π00(T ) = ∅.(8.3)

9. Theorem. Necessary and sufficient for Browder’s theorem to hold for T ∈
BL(X,X) is that

acc σ(T ) ⊆ ωess(T ).(9.1)

Hence in particular Browder’s theorem holds for quasinilpotent operators, compact
operators and algebraic operators.

Proof. If (9.1) holds then

σ(T ) \ ωess(T ) ⊆ iso σ(T ),

giving Browder’s theorem by (0.7); the converse is (0.4). If σ(T ) consists of isolated
points then T satisfies (9.1); thus Browder’s theorem holds for quasinilpotents, al-
gebraic operators and compact operators with finite spectrum. For general compact
operators (more generally, “Riesz operators”), we have (in infinite dimensions)

acc σ(T ) ⊂ {0} ⊆ σess(T ),(9.2)

giving again (9.1).

An example of Berberian shows that on a Hilbert space X it is not sufficient,
for Weyl’s theorem for T ∈ BL(X,X), that T is reduced by its finite dimensional
eigenspaces ([1], Example 1): take T = T1 ⊕ T2, where T1 is the one-dimensional
zero operator and T2 is an injective quasinilpotent compact operator as in (7.2).
This condition is, however, sufficient for Browder’s theorem:

10. Theorem. If X is a Hilbert space and T ∈ BL(X,X) is reduced by its finite
dimensional eigenspaces, then Browder’s theorem holds for T .

Proof. If T is reduced by its finite dimensional eigenspaces, then T = T1⊕ T2 with

T1 normal and ωess(T2) = σ(T2).(10.1)

In fact, take ([1], Example 5)

X⊥
2 = X1 =

∑
λ∈Λ

(T − λI)−1(0)
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to be the sum of the (not necessarily isolated) eigenvalues of finite multiplicity.
Evidently both the condition (5.3) and Browder’s theorem hold for each of T1 and
T2.

Theorem 10 shows (cf. [3], Theorem 3.1) that Browder’s theorem holds for hypo-
normal operators, since hyponormal operators are reduced by their eigenspaces.

Weyl’s theorem is transmitted ([10], Theorem 3) from T ∈ BL(X,X) to T −K
for commuting nilpotents K ∈ BL(X,X): notice (T−K)−1(0) ⊆ T−n(0) if Kn = 0.
This however does not extend to quasinilpotents: recall the quasinilpotent vw of
Example 3 and set

T =

(
1 0
0 0

)
:

(
Y
Y

)
→
(
Y
Y

)
and K =

(
0 0
0 vw

)
:

(
Y
Y

)
→
(
Y
Y

)
.(10.2)

Evidently K is quasinilpotent and commutes with T ; but Weyl’s theorem holds for
T because

σ(T ) = ωess(T ) = {0, 1} and πleft
0 (T ) = ∅,(10.3)

while Weyl’s theorem does not hold for T +K because

σ(T +K) = ωess(T +K) = {0, 1} and πleft
0 (T +K) = {0}.(10.4)

Oberai [10] has examples which show that Weyl’s theorem for T is not sufficient
either for Weyl’s theorem for T + K with finite rank K ([10], Example 2) or for
Weyl’s theorem for p(T ) with a polynomial p ([10], Example 1). Browder’s theorem
behaves better, at least for commuting perturbations:

11. Theorem. If Browder’s theorem holds for T ∈ BL(X,X), then Browder’s
theorem holds for T + K if K commutes with T and is either quasinilpotent or
compact.

Proof. For the first part recall the argument of Oberai ([10], Lemma 2): if K is
quasinilpotent and commutes with a Weyl operator T , then 0 /∈ σess(T + λK) for
arbitrary λ ∈ C, which by index continuity forces T +λK to have index zero for all
λ ∈ C, in particular with λ = 1. Thus if K is quasinilpotent and commutes with
T , then

ωess(T +K) = ωess(T ).(11.1)

It is also clear ([6], Theorem 7.4.3) that, for the same K,

σ(T +K) = σ(T ) and σess(T +K) = σess(T ),(11.2)

and hence also the accumulation points of the spectrum coincide. By (0.4) it follows
that also

ωcomm
ess (T +K) = ωcomm

ess (T )(11.3)

whenever K is quasinilpotent and commutes with T . If instead K is a commuting
compact, remember that the Weyl spectrum is invariant under compact purturba-
tions, giving again (11.1), while the Browder spectrum is invariant under commuting
compact perturbations, giving (11.3).

This may fail if K is not assumed to commute with T , even if K both compact
and nilpotent:
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12. Example. If

T =

(
u 1− uv
0 v

)
and K =

(
0 1− uv
0 0

)
,(12.1)

then K is a rank one nilpotent, T is unitary, and Browder’s theorem does not hold
for T −K.

Proof. It is clear that K is both rank one and square zero. The operator T is
unitary (essentially the bilateral shift), so that Weyl’s theorem holds for T ; we saw
in Example 6 that Browder’s theorem fails for T −K.

Berberian ([1]; [10], Definition 2) called the operator T ∈ BL(X,X) isoloid if
the isolated points of its spectrum are always eigenvalues:

13. Definition. T ∈ BL(X,X) is called isoloid if

λ ∈ iso σ(T ) =⇒ (T − λI)−1(0) 6= {0},(13.1)

and will be called reguloid if each isolated point of its spectrum is a regular point,
in the sense that there is a generalized inverse:

λ ∈ iso σ(T ) =⇒ T − λI = (T − λI)Sλ(T − λI) with Sλ ∈ BL(X,X).(13.2)

We shall call T ∈ BL(X,X) normaloid if it satisfies the growth condition, that for
all λ ∈ C \ σ(T )

||(T − λI)−1||dist(λ, σ(T )) ≤ 1.(13.3)

We are guilty of an abuse of language in (13.3). For “reguloid” operators Weyl’s
theorem and Browder’s theorem are equivalent:

14. Theorem. If T ∈ BL(X,X) is reguloid then Browder’s theorem for T implies
Weyl’s theorem for T . There is the implication, for arbitrary T ∈ BL(X,X),

T normaloid =⇒ T reguloid =⇒ T isoloid.(14.1)

Proof. We claim that the condition (2.3) holds for reguloid operators: for if T −λI
has a generalized inverse and if λ ∈ ∂σ(T ) is in the boundary of the spectrum then
T −λI has ([5]; [6], Theorem 7.3.4) an invertible generalized inverse. If therefore T
is reguloid, then T − λI has an invertible generalized inverse for each λ ∈ πleft

0 (T ),
and hence ([6], (3.8.6.1))

(T − λI)−1(0) ∼= X/(T − λI)(X).(14.2)

Since also

dim (T − λI)−1(0) <∞,(14.3)

it follows that T − λI is Weyl, and hence λ ∈ σ(T ) \ ωess(T ). The same argument
gives the second implication of (14.1), for if in (14.3) the operator T −λI is one-one
then by (14.2) it is invertible. Towards the first implication we may write T in place
of T − λI and hence assume λ = 0; then using the spectral projection at 0 ∈ C we
can represent T as a 2× 2 operator matrix:

T =

(
T0 0
0 T1

)
,(14.4)
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where σ(T0) = {0} and σ(T1) = σ(T ) \ {0}. Now we can borrow an argument of
Stampfli ([12], Theorem C): take 0 < ε ≤ 1

2dist(0, σ(T ) \ {0}) and argue

T0 =
1

2πi

∫
|z|=ε

z(T − zI)−1dz,

using the growth condition (13.3) to see that

||T0|| ≤ 1

2π

∫
|z|=ε

|z| ||(T − zI)−1|| |dz| ≤ 1

2π
ε
1

ε
2πε = ε,(14.5)

which tends to 0 with ε. It follows that T0 = 0 and hence that

T =

(
0 0
0 T1

)
= TST with S =

(
0 0
0 T−1

1

)
has a generalized inverse.

Coburn’s argument ([3], Corollary 3.2) also shows that if Weyl’s theorem holds
for T , if T is normaloid (in the proper sense of the word, norm equals spectral
radius), and if πleft

0 (T ) = ∅, then T is extremally non-compact in the sense [3] that

||T || = inf{||T +K|| : K compact in BL(X,X)};(14.6)

for we can argue

||T || = |T |σ = |T |ω = |T +K|ω ≤ |T +K|σ ≤ ||T +K||,(14.7)

where | · |σ and | · |ω denote the spectral radius and the “Weyl spectral radius”.
Hyponormal operators on Hilbert space are well known to satisfy the growth

condition (14.3), and hence are also “reguloid”. It is not difficult to see that any
“cohyponormal” operator is also reguloid, and hence direct sums of hypo- and
cohyponormal operators. Example 6, however, shows that Browder’s theorem need
not hold for a reguloid operator T , while Example 3 shows that we cannot replace
“reguloid” by “isoloid” in the first part of Theorem 14.
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