ANOTHER PROOF OF THE DEFECT RELATION FOR MOVING TARGETS

Manabu Shirosaki

(Received May 21, 1990)

- 1. Introduction. The second main theorem and the defect relation of slow moving targets were discussed in [7], where Stoll gave the bound n(n+1) for the sums of defects. The author generalized this result in [5] and gave in [6] examples of holomorphic mappings and moving targets which have the bound n+1. Ru and Stoll [3] then gave the bound n+1 in the general case. Since their proof is complicated, however, we give a simpler proof of Ru-Stoll's theorem in this paper.
- 2. Statement of the result. Let f be a holomorphic mapping of C into $P^n(C)$. Let $\tilde{f} = (f_0, \dots, f_n)$ be its reduced representation, i.e., \tilde{f} is a holomorphic mapping of C into $C^{n+1} \{0\}$. Fix $r_0 > 0$. We define the characteristic function T(f; r) of f by

$$T(f;r) = \frac{1}{2\pi} \int_{0}^{2\pi} \log \|\tilde{f}(re^{i\theta})\| d\theta - \frac{1}{2\pi} \int_{0}^{2\pi} \log \|\tilde{f}(r_{0}e^{i\theta})\| d\theta$$

for $r > r_0$. In particular, the characteristic function of a meromorphic function is defined as that of the corresponding holomorphic mapping of C into $P^1(C)$.

For $q \ge n$, let g_j be q+1 holomorphic mappings of C into $P^n(C)$ with reduced representations $\tilde{g}_j = (g_{j0}, \dots, g_{jn})$ $(0 \le j \le q)$. Assume that the following conditions are satisfied:

- (1) $T(g_i; r) = o(T(f; r))$ as $r \to \infty$ $(0 \le j \le q)$;
- (2) g_j ($0 \le j \le q$) are in general position, i.e., for any j_0, \dots, j_n with $0 \le j_0 < \dots < j_n \le q$,

$$\det(g_{i_k l})_{0 \le k, l \le n} \not\equiv 0.$$

- By (2), we may assume that $g_{j0} \neq 0$ ($0 \leq j \leq q$) by changing the homogeneous coordinate system of $P^n(C)$ if necessary. Then put $\zeta_{jk} = g_{jk}/g_{j0}$ with $\zeta_{j0} \equiv 1$. Let \Re be the smallest subfield containing $\{\zeta_{jk} \mid 0 \leq j \leq q, 0 \leq k \leq n\} \cup C$ of the meromorphic function field on C. It is easy to check that T(h; r) = o(T(f; r)) as $r \to \infty$ for all $h \in \Re$. Furthermore, we assume
- (3) f is non-degenerate over \Re , i.e., f_0, \dots, f_n are linearly independent over \Re . Put $h_i = g_{i0}f_0 + \dots + g_{in}f_n$. Then the counting function of g_i for f is defined by

$$N(f, g_j; r) = \frac{1}{2\pi} \int_0^{2\pi} \log|h_j(re^{i\theta})| d\theta - \frac{1}{2\pi} \int_0^{2\pi} \log|h_j(r_0e^{i\theta})| d\theta$$

for $r > r_0$. The defect of g_i for f is defined by

$$\delta(f, g_j) = \liminf_{r \to \infty} \left(1 - \frac{N(f, g_j; r)}{T(f; r)} \right).$$

In this situation, Ru and Stoll proved:

THEOREM (Defect relation).

$$\sum_{j=0}^{q} \delta(f, g_j) \leq n+1.$$

3. **Proof of Theorem.** Let p be a positive integer. Let $\mathfrak{L}(p)$ be the vector space generated over C by $\{\prod_{\substack{0 \leq j \leq q \\ 0 \leq k \leq n}} \zeta_{jk^n}^{p_{jk}} | p_{jk} \text{ non-negative integers with } \sum_{\substack{0 \leq j \leq q \\ 0 \leq k \leq n}} p_{jk} = p \}$. Since $\zeta_{j0} = 1$, we have $\mathfrak{L}(p) \subset \mathfrak{L}(p+1)$. Thus we can take a basis $\{b_1, \dots, b_t\}$ of $\mathfrak{L}(p+1)$ such that $\{b_1, \dots, b_s\}$ is a basis of $\mathfrak{L}(p)$, where $t = \dim \mathfrak{L}(p+1)$ and $s = \dim \mathfrak{L}(p)$. By (3), we can deduce that $b_j f_k$ $(1 \leq j \leq t, 0 \leq k \leq n)$ are linearly independent over C. Put $F_k = h_k/g_{k0}$ for $0 \leq k \leq n$.

First, we prove that $b_j F_k$ $(1 \le j \le s, 0 \le k \le n)$ are linearly independent over C. Assume that $\sum_{\substack{1 \le j \le s \\ 0 \le k \le n}} c_{jk} b_j F_k \equiv 0$ with $c_{jk} \in C$. Then

$$\sum_{l=0}^{n} \left(\sum_{\substack{1 \le j \le s \\ 0 \le k \le n}} c_{jk} b_j \zeta_{kl} \right) f_l \equiv 0.$$

Since f is non-degenerate over \Re , we have

$$\sum_{\substack{1 \le j \le s \\ 0 \le k \le n}} c_{jk} b_j \zeta_{kl} \equiv 0 \qquad (0 \le l \le n) .$$

These are expressed in terms of matrices as

$$\left(\sum_{1\leq j\leq s}c_{j0}b_j, \cdots, \sum_{1\leq j\leq s}c_{jn}b_j\right)(\zeta_{jk})_{0\leq j, k\leq n}\equiv (0, \cdots, 0).$$

By the condition (2), $\det(\zeta_{jk})_{0 \le j, k \le n} \not\equiv 0$, hence we have

$$\sum_{1 \le j \le s} c_{jk} b_j \equiv 0 \qquad (0 \le k \le n) .$$

Since $b_1, \dots b_s$ are linearly independent over C, we obtain $c_{jk} = 0$ $(1 \le j \le s, 0 \le k \le n)$. Hence we conclude that $b_j F_k$ $(1 \le j \le s, 0 \le k \le n)$ are linearly independent over C.

Since $b_j F_k$ $(1 \le j \le s, 0 \le k \le n)$ are linear combinations of $b_j f_k$ $(1 \le j \le t, 0 \le k \le n)$ over C, we can choose $\beta_{m}^{kl} \in C$ so that there exists $C \in GL((n+1)t; C)$ such that

$$(b_j F_k \ (1 \le j \le s, \ 0 \le k \le n), \ h_{mj} \ (s+1 \le j \le t, \ 0 \le m \le n)) = (b_j f_k \ (1 \le j \le t, \ 0 \le k \le n)) C \ ,$$

where $h_{mj} = \sum_{1 \le k \le t, \ 0 \le l \le n} \beta_{mj}^{kl} b_k f_l$ $(s+1 \le j \le t, \ 0 \le m \le n)$. Then we have an equality of Wronskian determinants

$$W(b_j F_k (1 \le j \le s, 0 \le k \le n), h_{mj} (s+1 \le j \le t, 0 \le m \le n))$$

= $W(b_j f_k (1 \le j \le t, 1 \le k \le n)) \cdot \det C$.

Take a multi-index $\alpha = (\alpha_0, \dots, \alpha_n)$ with distinct $\alpha_0, \dots, \alpha_n \in \{0, \dots, q\}$. We apply the above argument to $F_{\alpha_0}, \dots, F_{\alpha_n}$ instead of F_0, \dots, F_n . Then we denote h_{mj}^{α} for h_{mj} and C_{α} ($\in C - \{0\}$) for det C. Put

$$W_{\alpha} = W(b_i F_{\alpha \nu} (1 \le j \le s, 0 \le k \le n), h_{mi}^{\alpha} (s+1 \le j \le t, 0 \le m \le n))$$

and

$$W = W(b_i f_k (1 \le j \le t, 0 \le k \le n))$$
.

Since $b_j f_k$ $(1 \le j \le t, 0 \le k \le n)$ are linearly independent over C, we have $W \ne 0$. Then we have

$$(4) W_{\alpha} = C_{\alpha} W.$$

For any fixed $z \in C$, we take distinct indices $\alpha_0, \dots, \alpha_n = \beta_0, \dots, \beta_{q-n}$ such that

(5)
$$|F_{\alpha_0}(z)| \le \cdots \le |F_{\alpha_n}(z)| \le |F_{\beta_1}(z)| \le \cdots \le |F_{\beta_{q-n}}(z)| \le \infty$$
.

Then we have

(6)
$$\log \|\tilde{f}(z)\| \le \log |F_{\beta_{j}}(z)| + \log^{+} A(z).$$

for $j = 0, \dots, q - n$, where

(7)
$$\int_0^{2\pi} \log^+ A(re^{i\theta}) d\theta = o(T(f;r))$$

and $\log^+ x = \max(0, \log x)$ for $x \ge 0$. Indeed, let $\gamma_0, \dots, \gamma_n$ be distinct integers with $0 \le \gamma_0, \dots, \gamma_n \le q$. Then the equalities

$$F_{\gamma_j} = \zeta_{\gamma_{j0}} f_0 + \cdots + \zeta_{\gamma_{jn}} f_n$$
 for $j = 0, \cdots, n$

and (2) admit the representations

$$f_k = \sum_{j=0}^n A_{kj}^{\gamma} F_{\gamma_j}$$
 for $k=0, \dots, n$,

where $A_{kj}^{\gamma} \in \Re$ and γ is the multi-index $(\gamma_0, \dots, \gamma_n)$. Therefore we have

$$|f_k(z)| \le \sum_{j=0}^n |A_{kj}^{\alpha}(z)| |F_{\beta_i}(z)|$$
 for $k=0, \dots, n \text{ and } l=0, \dots, q-n$

by (5), where $\alpha = (\alpha_0, \dots, \alpha_n)$ and hence

$$\|\tilde{f}(z)\| \le \sum_{0 \le k, i \le n} |A_{kj}^{\alpha}(z)| |F_{\beta l}(z)| \quad \text{for} \quad l = 0, \dots, q - n.$$

Here if we put $A = \sum_{\gamma} \sum_{0 \le k, j \le n} |A_{kj}^{\gamma}|$, where γ ranges over the set $\{\gamma = (\gamma_0, \dots, \gamma_n) \mid \gamma_0, \dots, \gamma_n \text{ distinct and } 0 \le \gamma_0, \dots, \gamma_n \le q\}$, then we have (7) because of $A_{kj}^{\gamma} \in \mathbb{R}$ and the concavity of \log^+ . Now (6) is clear.

By (4), we obtain

(8)
$$\log \frac{|F_{0} \cdots F_{q}|^{s}}{|W|} = \log |F_{\beta_{1}} \cdots F_{\beta_{q-n}}|^{s} - \log \frac{|W_{\alpha}|}{|F_{\alpha_{0}} \cdots F_{\alpha_{n}}|^{s}} + c_{1}$$

$$= \log |F_{\beta_{1}} \cdots F_{\beta_{q-n}}|^{s} - \log \frac{|W_{\alpha}|}{|F_{\alpha_{0}} \cdots F_{\alpha_{n}}|^{s} \|\tilde{f}\|^{(n+1)(t-s)}}$$

$$- (n+1)(t-s) \log \|\tilde{f}\| + c_{1}$$

for some constant c_1 . We put

$$D_{\alpha} = \frac{|W_{\alpha}|}{|F_{\alpha_0} \cdots F_{\alpha_n}|^s ||\widetilde{f}||^{(n+1)(t-s)}}.$$

Then we obtain

(9)
$$\int_{0}^{2\pi} \log^{+} D_{\alpha}(re^{i\theta}) d\theta = S(f; r)$$

by the lemma of logarithmic derivatives and the concavity of \log^+ , where S(f; r) is a quantity which satisfies

(10)
$$\lim_{r \to \infty, r \notin E} S(f; r) / T(f; r) = 0$$

for some subset E of (r_0, ∞) of finite Lebesgue measure. By (8) we have

(11)
$$\log |F_{\beta_1} \cdots F_{\beta_{q-n}}|^s \leq \log \frac{|F_0 \cdots F_q|^s}{|W|} + \log^+ D_\alpha + (n+1)(t-s) \log \|\tilde{f}\| + c_1.$$

By (6) and (11) we get an inequality

(12)
$$s(q-n)\log \|\tilde{f}\| \le \log \frac{|F_0 \cdot \cdot \cdot F_q|^s}{|W|} + \sum_{\alpha} \log^+ D_{\alpha} + (n+1)(t-s)\log \|\tilde{f}\|$$
$$+ c_2 \log^+ A + c_3$$

on C for some constants c_2 and c_3 . By integrating this inequality over the circle $\{z \in C \mid |z| = r\}$ $(r > r_0)$, we obtain

$$s(q-n)T(f;r) \le s \sum_{j=0}^{q} N(f,g_j;r) + S(f;r) + (n+1)(t-s)T(f;r) + o(T(f;r)).$$

Therefore we have

$$\sum_{j=0}^{q} \left(1 - \frac{N(f, g_j; r)}{T(f; r)} \right) \le n + 1 + (n+1) \left(\frac{t}{s} - 1 \right) + \frac{S(f; r)}{T(f; r)}$$

and hence

$$\sum_{j=0}^{q} \delta(f, g_j) \le n + 1 + (n+1) \left(\frac{t}{s} - 1 \right).$$

By Steinmetz' lemma (cf. [7, Lemma 3.12]), we have

$$\lim_{p\to\infty}\inf\frac{t}{s}=1.$$

Thus we have the defect relation

$$\sum_{j=0}^{q} \delta(f, g_j) \leq n+1.$$

REMARK. In the situation of §3, we put

$$N_{p}(r) = \frac{1}{2\pi} \int_{0}^{2\pi} \log |W(re^{i\theta})| d\theta - \frac{1}{2\pi} \int_{0}^{2\pi} \log |W(r_{0}e^{i\theta})| d\theta ,$$

 $\Theta_p = \liminf_{r \to \infty} N_p(r)/T(f; r)$ and $\Theta = \liminf_{p \to \infty} \Theta_p/s$. Then we have

$$\sum_{j=0}^{q} \delta(f, g_j) + \Theta \le n + 1$$

by the inequality (12). It is easy to see that $0 \le \Theta \le n+1$. If all ζ_{jk} are constants, then W is the Wronskian determinant of f_0, \dots, f_n for all p, and Θ can take various values.

REFERENCES

- [1] W. K. HAYMAN, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- [2] M. Ru AND W. STOLL, Courbes holomorphes évitant des hyperplans mobiles, C. R. Acad. Sci. Paris Ser. I, 310 (1990), 45–48.
- [3] M. RU AND W. STOLL, The second main theorem for moving targets, preprint.
- [4] S. Mori, Another proof of Stoll's theorem for moving targets, Tôhoku Math. J. 41 (1989), 619-624.
- [5] M. Shirosaki, A generalization of Stoll's theorem for moving targets, Tôhoku Math. J. 41 (1989), 673–678.
- [6] M. Shirosaki, On defect relations of moving hyperplans, preprint.

360

M. SHIROSAKI

[7] W. Stoll, An extension of the theorem of Steinmetz-Nevanlinna to holomorphic curves, Math. Ann. 282 (1988), 185-222.

DEPARTMENT OF MATHEMATICAL SCIENCES COLLEGE OF ENGINEERING UNIVERSITY OF OSAKA PREFECTURE SAKAI 591 JAPAN