ANOTHER PROOF OF THE DEFECT RELATION FOR MOVING TARGETS

Manabu Shirosaki

(Received May 21, 1990)

1. Introduction. The second main theorem and the defect relation of slow moving targets were discussed in [7], where Stoll gave the bound $n(n+1)$ for the sums of defects. The author generalized this result in [5] and gave in [6] examples of holomorphic mappings and moving targets which have the bound $n+1$. Ru and Stoll [3] then gave the bound $n+1$ in the general case. Since their proof is complicated, however, we give a simpler proof of Ru-Stoll's theorem in this paper.
2. Statement of the result. Let f be a holomorphic mapping of \boldsymbol{C} into $P^{n}(\boldsymbol{C})$. Let $\tilde{f}=\left(f_{0}, \cdots, f_{n}\right)$ be its reduced representation, i.e., \tilde{f} is a holomorphic mapping of \boldsymbol{C} into $C^{n+1}-\{0\}$. Fix $r_{0}>0$. We define the characteristic function $T(f ; r)$ of f by

$$
T(f ; r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|\tilde{f}\left(r e^{i \theta}\right)\right\| d \theta-\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|\tilde{f}\left(r_{0} e^{i \theta}\right)\right\| d \theta
$$

for $r>r_{0}$. In particular, the characteristic function of a meromorphic function is defined as that of the corresponding holomorphic mapping of \boldsymbol{C} into $P^{1}(\boldsymbol{C})$.

For $q \geq n$, let g_{j} be $q+1$ holomorphic mappings of C into $P^{n}(C)$ with reduced representations $\tilde{g}_{j}=\left(g_{j 0}, \cdots, g_{j n}\right)(0 \leq j \leq q)$. Assume that the following conditions are satisfied:
(1) $T\left(g_{j} ; r\right)=o(T(f ; r))$ as $r \rightarrow \infty(0 \leq j \leq q)$;
(2) $g_{j}(0 \leq j \leq q)$ are in general position, i.e., for any j_{0}, \cdots, j_{n} with $0 \leq j_{0}<\cdots<$ $j_{n} \leq q$,

$$
\operatorname{det}\left(g_{j_{k}}\right)_{0 \leq k, l \leq n} \not \equiv 0 .
$$

By (2), we may assume that $g_{j 0} \not \equiv 0(0 \leq j \leq q)$ by changing the homogeneous coordinate system of $P^{n}(\boldsymbol{C})$ if necessary. Then put $\zeta_{j k}=g_{j k} / g_{j 0}$ with $\zeta_{j 0} \equiv 1$. Let Ω be the smallest subfield containing $\left\{\zeta_{j k} \mid 0 \leq j \leq q, 0 \leq k \leq n\right\} \cup C$ of the meromorphic function field on \boldsymbol{C}. It is easy to check that $T(h ; r)=o(T(f ; r))$ as $r \rightarrow \infty$ for all $h \in \mathfrak{\Omega}$. Furthermore, we assume
(3) f is non-degenerate over Ω, i.e., f_{0}, \cdots, f_{n} are linearly independent over Ω. Put $h_{j}=g_{j 0} f_{0}+\cdots+g_{j n} f_{n}$. Then the counting function of g_{j} for f is defined by

$$
N\left(f, g_{j} ; r\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|h_{j}\left(r e^{i \theta}\right)\right| d \theta-\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|h_{j}\left(r_{0} e^{i \theta}\right)\right| d \theta
$$

for $r>r_{0}$. The defect of g_{j} for f is defined by

$$
\delta\left(f, g_{j}\right)=\underset{r \rightarrow \infty}{\lim \inf }\left(1-\frac{N\left(f, g_{j} ; r\right)}{T(f ; r)}\right)
$$

In this situation, Ru and Stoll proved:
Theorem (Defect relation).

$$
\sum_{j=0}^{q} \delta\left(f, g_{j}\right) \leq n+1
$$

3. Proof of Theorem. Let p be a positive integer. Let $\mathcal{L}(p)$ be the vector space generated over C by $\left\{\prod_{\substack{0 \leq j \leq q \\ 0 \leq k \leq n}} \zeta_{j k j}^{p_{j k}} \mid p_{j k}\right.$ non-negative integers with $\left.\sum_{\substack{0 \leq j \leq q \\ 0 \leq k \leq n}} p_{j k}=p\right\}$. Since $\zeta_{j 0}=1$, we have $\mathfrak{L}(p) \subset \mathfrak{L}(p+1)$. Thus we can take a basis $\left\{b_{1}, \cdots, b_{t}\right\}$ of $\mathfrak{L}(p+1)$ such that $\left\{b_{1}, \cdots, b_{s}\right\}$ is a basis of $\mathfrak{L}(p)$, where $t=\operatorname{dim} \mathscr{L}(p+1)$ and $s=\operatorname{dim} \mathcal{L}(p)$. By (3), we can deduce that $b_{j} f_{k}(1 \leq j \leq t, 0 \leq k \leq n)$ are linearly independent over C. Put $F_{k}=h_{k} / g_{k 0}$ for $0 \leq k \leq n$.

First, we prove that $b_{j} F_{k}(1 \leq j \leq s, 0 \leq k \leq n)$ are linearly independent over \boldsymbol{C}. Assume that $\sum_{\substack{1 \leq j \leq s \\ 0 \leq k \leq n}} c_{j k} b_{j} F_{k} \equiv 0$ with $c_{j k} \in \boldsymbol{C}$. Then

$$
\sum_{l=0}^{n}\left(\sum_{\substack{1 \leq j \leq s \\ 0 \leq k \leq n}} c_{j k} b_{j} \zeta_{k l}\right) f_{l} \equiv 0 .
$$

Since f is non-degenerate over $\boldsymbol{\Omega}$, we have

$$
\sum_{\substack{1 \leq j \leq s \\ 0 \leq k \leq n}} c_{j k} b_{j} \zeta_{k l} \equiv 0 \quad(0 \leq l \leq n)
$$

These are expressed in terms of matrices as

$$
\left(\sum_{1 \leq j \leq s} c_{j 0} b_{j}, \cdots, \sum_{1 \leq j \leq s} c_{j n} b_{j}\right)\left(\zeta_{j k}\right)_{0 \leq j, k \leq n} \equiv(0, \cdots, 0)
$$

By the condition (2), $\operatorname{det}\left(\zeta_{j k}\right)_{0 \leq j, k \leq n} \not \equiv 0$, hence we have

$$
\sum_{1 \leq j \leq s} c_{j k} b_{j} \equiv 0 \quad(0 \leq k \leq n)
$$

Since $b_{1}, \cdots b_{s}$ are linearly independent over C, we obtain $c_{j k}=0(1 \leq j \leq s, 0 \leq k \leq n)$. Hence we conclude that $b_{j} F_{k}(1 \leq j \leq s, 0 \leq k \leq n)$ are linearly independent over C.

Since $b_{j} F_{k}(1 \leq j \leq s, 0 \leq k \leq n)$ are linear combinations of $b_{j} f_{k}(1 \leq j \leq t, 0 \leq k \leq n)$ over C, we can choose $\beta_{m j}^{k l} \in \boldsymbol{C}$ so that there exists $C \in G L((n+1) t ; C)$ such that

$$
\left(b_{j} F_{k}(1 \leq j \leq s, 0 \leq k \leq n), h_{m j}(s+1 \leq j \leq t, 0 \leq m \leq n)\right)=\left(b_{j} f_{k}(1 \leq j \leq t, 0 \leq k \leq n)\right) C,
$$

where $h_{m j}=\sum_{1 \leq k \leq t, 0 \leq l \leq n} \beta_{m j}^{k l} b_{k} f_{l}(s+1 \leq j \leq t, 0 \leq m \leq n)$. Then we have an equality of Wronskian determinants

$$
\begin{gathered}
W\left(b_{j} F_{k}(1 \leq j \leq s, 0 \leq k \leq n), h_{m j}(s+1 \leq j \leq t, 0 \leq m \leq n)\right) \\
=W\left(b_{j} f_{k}(1 \leq j \leq t, 1 \leq k \leq n)\right) \cdot \operatorname{det} C
\end{gathered}
$$

Take a multi-index $\alpha=\left(\alpha_{0}, \cdots, \alpha_{n}\right)$ with distinct $\alpha_{0}, \cdots, \alpha_{n} \in\{0, \cdots, q\}$. We apply the above argument to $F_{\alpha_{0}}, \cdots, F_{\alpha_{n}}$ instead of F_{0}, \cdots, F_{n}. Then we denote $h_{m j}^{\alpha}$ for $h_{m j}$ and $C_{\alpha}(\in C-\{0\})$ for $\operatorname{det} C$. Put

$$
\boldsymbol{W}_{\alpha}=W\left(b_{j} F_{\alpha_{k}}(1 \leq j \leq s, 0 \leq k \leq n), h_{m j}^{\alpha}(s+1 \leq j \leq t, 0 \leq m \leq n)\right)
$$

and

$$
W=W\left(b_{j} f_{k}(1 \leq j \leq t, 0 \leq k \leq n)\right) .
$$

Since $b_{j} f_{k}(1 \leq j \leq t, 0 \leq k \leq n)$ are linearly independent over \boldsymbol{C}, we have $\boldsymbol{W} \not \equiv 0$. Then we have

$$
\begin{equation*}
W_{\alpha}=C_{\alpha} W . \tag{4}
\end{equation*}
$$

For any fixed $z \in \boldsymbol{C}$, we take distinct indices $\alpha_{0}, \cdots, \alpha_{n}=\beta_{0}, \cdots, \beta_{q-n}$ such that

$$
\begin{equation*}
\left|F_{\alpha_{0}}(z)\right| \leq \cdots \leq\left|F_{\alpha_{n}}(z)\right| \leq\left|F_{\beta_{1}}(z)\right| \leq \cdots \leq\left|F_{\beta_{q-n}}(z)\right| \leq \infty \tag{5}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\log \|\widetilde{f}(z)\| \leq \log \left|F_{\beta_{j}}(z)\right|+\log ^{+} A(z) \tag{6}
\end{equation*}
$$

for $j=0, \cdots, q-n$, where

$$
\begin{equation*}
\int_{0}^{2 \pi} \log ^{+} A\left(r e^{i \theta}\right) d \theta=o(T(f ; r)) \tag{7}
\end{equation*}
$$

and $\log ^{+} x=\max (0, \log x)$ for $x \geq 0$. Indeed, let $\gamma_{0}, \cdots, \gamma_{n}$ be distinct integers with $0 \leq \gamma_{0}, \cdots, \gamma_{n} \leq q$. Then the equalities

$$
F_{\gamma_{j}}=\zeta_{\gamma_{j 0} 0} f_{0}+\cdots+\zeta_{\gamma_{j} n} f_{n} \text { for } j=0, \cdots, n
$$

and (2) admit the representations

$$
f_{k}=\sum_{j=0}^{n} A_{k j}^{\gamma} F_{\gamma_{j}} \quad \text { for } \quad k=0, \cdots, n,
$$

where $A_{k j}^{\gamma} \in \Omega$ and γ is the multi-index $\left(\gamma_{0}, \cdots, \gamma_{n}\right)$. Therefore we have

$$
\left|f_{k}(z)\right| \leq \sum_{j=0}^{n}\left|A_{k j}^{\alpha}(z)\right|\left|F_{\beta_{l}}(z)\right| \quad \text { for } \quad k=0, \cdots, n \text { and } l=0, \cdots, q-n
$$

by (5), where $\alpha=\left(\alpha_{0}, \cdots, \alpha_{n}\right)$ and hence

$$
\|\tilde{f}(z)\| \leq \sum_{0 \leq k, j \leq n}\left|A_{k j}^{\alpha}(z)\right|\left|F_{\beta_{l}}(z)\right| \quad \text { for } \quad l=0, \cdots, q-n .
$$

Here if we put $A=\sum_{\gamma} \sum_{0 \leq k, j \leq n}\left|A_{k j}^{\gamma}\right|$, where γ ranges over the set $\left\{\gamma=\left(\gamma_{0}, \cdots, \gamma_{n}\right) \mid\right.$ $\gamma_{0}, \cdots, \gamma_{n}$ distinct and $\left.0 \leq \gamma_{0}, \cdots, \gamma_{n} \leq \varphi\right\}$, then we have (7) because of $A_{k j}^{\gamma} \in \mathfrak{R}$ and the concavity of $\log ^{+}$. Now (6) is clear.

By (4), we obtain
(8) $\quad \log \frac{\left|F_{0} \cdots F_{q}\right|^{s}}{|\boldsymbol{W}|}=\log \left|F_{\beta_{1}} \cdots F_{\beta_{q-n}}\right|^{s}-\log \frac{\left|\boldsymbol{W}_{\alpha}\right|}{\left|F_{\alpha_{0}} \cdots F_{\alpha_{n}}\right|^{s}}+c_{1}$

$$
\begin{aligned}
= & \log \left|F_{\beta_{1}} \cdots F_{\beta_{q-n}}\right|^{s}-\log \frac{\left|\boldsymbol{W}_{\alpha}\right|}{\left|F_{\alpha_{0}} \cdots F_{\alpha_{n}}\right|^{s}\|. \tilde{f}\|^{(n+1)(t-s)}} \\
& -(n+1)(t-s) \log \|\tilde{f}\|+c_{1}
\end{aligned}
$$

for some constant c_{1}. We put

$$
D_{\alpha}=\frac{\left|\boldsymbol{W}_{\alpha}\right|}{\left|F_{\alpha_{0}} \cdots F_{\alpha_{n}}\right| s^{\prime}\|\tilde{f}\|^{(n+1)(t-s)}} .
$$

Then we obtain

$$
\begin{equation*}
\int_{0}^{2 \pi} \log ^{+} D_{\alpha}\left(r e^{i \theta}\right) d \theta=S(f ; r) \tag{9}
\end{equation*}
$$

by the lemma of logarithmic derivatives and the concavity of $\log ^{+}$, where $S(f ; r)$ is a quantity which satisfies

$$
\begin{equation*}
\lim _{r \rightarrow x, r \notin E} S(f ; r) / T(f ; r)=0 \tag{10}
\end{equation*}
$$

for some subset E of $\left(r_{0}, \infty\right)$ of finite Lebesgue measure. By (8) we have

$$
\begin{equation*}
\log \left|F_{\beta_{1}} \cdots F_{\beta_{q-n}}\right|^{s} \leq \log \frac{\left|F_{0} \cdots F_{q}\right|^{s}}{|\boldsymbol{W}|}+\log ^{+} D_{\alpha}+(n+1)(t-s) \log \|\tilde{f}\|+c_{1} . \tag{11}
\end{equation*}
$$

By (6) and (11) we get an inequality

$$
\begin{align*}
s(q-n) \log \|\tilde{f}\| \leq & \log \frac{\left|F_{0} \cdots F_{q}\right|^{s}}{|\boldsymbol{W}|}+\sum_{\alpha} \log ^{+} D_{\alpha}+(n+1)(t-s) \log \|\tilde{f}\| \tag{12}\\
& +c_{2} \log ^{+} A+c_{3}
\end{align*}
$$

on \boldsymbol{C} for some constants c_{2} and c_{3}. By integrating this inequality over the circle $\left\{z \in \boldsymbol{C}||z|=r\}\left(r>r_{0}\right)\right.$, we obtain

$$
s(q-n) T(f ; r) \leq s \sum_{j=0}^{q} N\left(f, g_{j} ; r\right)+S(f ; r)+(n+1)(t-s) T(f ; r)+o(T(f ; r)) .
$$

Therefore we have

$$
\sum_{j=0}^{q}\left(1-\frac{N\left(f, g_{j} ; r\right)}{T(f ; r)}\right) \leq n+1+(n+1)\left(\frac{t}{s}-1\right)+\frac{S(f ; r)}{T(f ; r)}
$$

and hence

$$
\sum_{j=0}^{q} \delta\left(f, g_{j}\right) \leq n+1+(n+1)\left(\frac{t}{s}-1\right)
$$

By Steinmetz' lemma (cf. [7, Lemma 3.12]), we have

$$
\liminf _{p \rightarrow \infty} \frac{t}{s}=1
$$

Thus we have the defect relation

$$
\sum_{j=0}^{q} \delta\left(f, g_{j}\right) \leq n+1
$$

Remark. In the situation of $\S 3$, we put

$$
N_{p}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\boldsymbol{W}\left(r e^{i \theta}\right)\right| d \theta-\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\boldsymbol{W}\left(r_{0} e^{i \theta}\right)\right| d \theta,
$$

$\Theta_{p}=\underset{r \rightarrow \infty}{\liminf } N_{p}(r) / T(f ; r)$ and $\Theta=\underset{p \rightarrow \infty}{\liminf } \Theta_{p} / s$. Then we have

$$
\sum_{j=0}^{q} \delta\left(f, g_{j}\right)+\Theta \leq n+1
$$

by the inequality (12). It is easy to see that $0 \leq \Theta \leq n+1$. If all $\zeta_{j k}$ are constants, then \boldsymbol{W} is the Wronskian determinant of f_{0}, \cdots, f_{n} for all p, and Θ can take various values.

References

[1] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[2] M. Ru and W. Stoll, Courbes holomorphes évitant des hyperplans mobiles, C. R. Acad. Sci. Paris Ser. I, 310 (1990), 45-48.
[3] M. Ru and W. Stoll, The second main theorem for moving targets, preprint.
[4] S. Mori, Another proof of Stoll's theorem for moving targets, Tôhoku Math. J. 41 (1989), 619-624.
[5] M. Shirosaki, A generalization of Stoll's theorem for moving targets, Tôhoku Math. J. 41 (1989), 673-678.
[6] M. Shirosaki, On defect relations of moving hyperplans, preprint.
[7] W. Stoll, An extension of the theorem of Steinmetz-Nevanlinna to holomorphic curves, Math. Ann. 282 (1988), 185-222.

Department of Mathematical Sciences
College of Engineering
University of Osaka Prefecture
SAKai 591
Japan

