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Abstract

Recently, Lauritzen, Raben-Pedersen and Thomsen proved that Schubert vari-
eties are globally F -regular. We give another proof simpler than the original one.

1. Introduction

Let p be a prime number, k an algebraically closed field of characteristic p, and G a simply

connected, semisimple affine algebraic group over k. Let T be a maximal torus of G. We

choose a basis ∆ of the root system of G. Let B be the negative Borel subgroup of G,

and P a parabolic subgroup of G containing B. Then the closure of a B-orbit on G/P is

called a Schubert variety.

Recently, Lauritzen, Raben-Pedersen and Thomsen [12] proved that Schubert varieties

are globally F -regular, utilizing Bott-Samelson resolution. The objective of this paper is

to give another proof of this. Our proof depends on a simple inductive argument utilizing

the familiar technique of fibering the Schubert variety as a P1-bundle over a smaller

Schubert variety.

Global F -regularity was first defined by Smith [19]. A projective variety over k is

said to be globally F -regular if it admits a strongly F -regular homogeneous coordinate

ring. As a corollary, all local rings of a Schubert variety are F -regular, in particular, are

F -rational, Cohen-Macaulay and normal.

A globally F -regular variety is Frobenius split. It has long been known that Schubert

varieties are Frobenius split [14]. Given an ample line bundle over G/P , the associ-

ated projective embedding of a Schubert variety of G/P is projectively normal [16] and

arithmetically Cohen-Macaulay [17]. We can prove that the coordinate ring is strongly

F -regular indeed.
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Over globally F -regular varieties, there are nice vanishing theorems, one of which

yields a short proof of Demazure’s vanishing theorem.

The author is grateful to Professor V. B. Mehta for his valuable advice. In particular,

Corollary 7 is due to him. He also kindly informed the author of the result of Lauritzen,

Raben-Pedersen and Thomsen. Special thanks are also due to Professors V. Srinivas and

K.-i. Watanabe for their valuable advice.

2. Preliminaries

Let p be a prime number, and k an algebraically closed field of characteristic p. For a

ring A of characteristic p, the Frobenius map A→ A (a 7→ ap) is denoted by F or FA. So

F e
A maps a to ap

e
for a ∈ A and e ≥ 0.

Let A be a k-algebra. For r ∈ Z, we denote by A(r) the ring A with the k-algebra

structure given by

k
F−rk−−→ k → A.

Note that F e
A : A(r+e) → A(r) is a k-algebra map for e ≥ 0 and r ∈ Z. For a ∈ A and

r ∈ Z, the element a viewed as an element in A(r) is occasionally denoted by a(r). So

F e
A(a(r+e)) = (a(r))p

e
for a ∈ A, r ∈ Z and e ≥ 0.

Similarly, for a k-scheme X and r ∈ Z, the k-scheme X(r) is defined. The Frobenius

morphism F e
X : X(r) → X(r+e) is a k-morphism.

A k-algebra A is said to be F -finite if the Frobenius map FA : A(1) → A is finite. A

k-scheme X is said to be F -finite if the Frobenius morphism FX : X → X(1) is finite. Let

A be an F -finite Noetherian k-algebra. We say that A is strongly F -regular if for any

non-zerodivisor c ∈ A, there exists some e ≥ 0 such that cF e
A : A(e) → A (a(e) 7→ cap

e
)

is a split monomorphism as an A(e)-linear map [6]. A strongly F -regular F -finite ring is

F -rational in the sense of Fedder-Watanabe [3], and is Cohen-Macaulay normal.

Let X be a quasi-projective k-variety. We say that X is globally F -regular if for any

invertible sheaf L over X and any a ∈ Γ(X,L) \ 0, the composite

OX(e) → F e
∗OX

F e∗ a−−→ F e
∗L

has anOX(e)-linear splitting [19], [5]. X is said to be F -regular ifOX,x is strongly F -regular

for any closed point x of X.

Smith [19, (3.10)] proved the following fundamental theorem on global F -regularity.

See also [20, (3.4)] and [5, (2.6)].

Theorem 1. Let X be a projective variety over k. Then the following are equivalent:

1. There exists some ample Cartier divisor D on X such that the section ring
⊕

n∈Z Γ(X,O(nD))

is strongly F -regular.
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2. The section ring of X with respect to each ample Cartier divisor is strongly F -

regular.

3. There exists some ample effective Cartier divisor D on X such that there exists an

OX(e)-linear splitting of OX(e) → F e
∗OX → F e

∗O(D) for some e ≥ 0 and that the

open set X −D is F -regular.

4. X is globally F -regular.

A globally F -regular variety is F -regular. In particular, it is Cohen-Macaulay and

normal.

For an affine k-variety SpecA, the following three conditions are equivalent: SpecA is

globally F -regular; A is strongly F -regular; and SpecA is F -regular.

A globally F -regular variety is Frobenius split in the sense of Mehta-Ramanathan

[14]. As the theorem above shows, if X is a globally F -regular projective variety, then

the section ring of X with respect to every ample divisor is Cohen-Macaulay normal.

A globally F -regular projective variety X enjoys a nice vanishing theorem. If L is

a numerically effective invertible sheaf, then H i(X,L) = 0 for i > 0. In particular,

H i(X,OX) = 0 for i > 0 [19, (4.3)]. It follows that a globally F -regular projective curve

is P1. We also have the following vanishing theorem [19, (4.4)]. Let X be a globally

F -regular projective variety and L a nef big invertible sheaf on X. Then H i(X,L−1) = 0

for i < dimX.

A projective toric variety over a field of positive characteristic is globally F -regular

[19, (6.4)]. Fano varieties with rational singularities in characteristic zero are of globally

F -regular type, that is, almost all modulo p reductions of them are globally F -regular

[19, (6.3)].

The following lemma is of use later.

Lemma 2 ([4, Proposition 1.2]). Let f : X → Y be a k-morphism between projective

k-varieties. If X is globally F -regular and the associated homomorphism of sheaves of

rings f# of f , OY → f∗OX , is an isomorphism, then Y is globally F -regular.

Let G be a simply connected, semisimple algebraic group over k, and T a maximal

torus of G. We fix a basis ∆ of the set of roots of G. Let B be the negative Borel

subgroup and P a parabolic subgroup of G containing B. Then B acts on G/P from

the left. The closure of a B-orbit of G/P is called a Schubert variety. Any B-invariant

closed subvariety of G/P is a Schubert variety. The set of Schubert varieties in G/B is

in one-to-one correspondence with the Weyl group W (G) of G. For a Schubert variety X

in G/B, there is a unique w ∈ W (G) such that X = BwB/B, where the overline denotes

the closure operation. For basic notions on algebraic groups, see [2].

We need the following theorem later.
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Theorem 3. A Schubert variety in G/P is a normal variety.

For a proof, see [16, Theorem 3], [1], [18], and [15].

Let X be a Schubert variety in G/P . Then X̃ = π−1(X) is a B-invariant reduced

subscheme of G/B, where π : G/B → G/P is the canonical projection. It has a dense

B-orbit, and actually X̃ is a Schubert variety in G/B.

Let Y = ρ−1(X), where ρ : G→ G/P is the canonical projection. Let Φ: Y ×P/B →
Y ×X X̃ be the Y -morphism given by Φ(y, pB) = (y, ypB). Since (y, x̃B) 7→ (y, y−1x̃B)

gives the inverse, Φ is an isomorphism. Note that (p1)∗OY×P/B ∼= OY , where p1 : Y ×
P/B → Y is the first projection, since P/B is a k-complete variety and H0(P/B,OP/B) =

k. As Φ is a Y -isomorphism, we see that (π1)∗OY×XX̃ ∼= OY , where π1 : Y ×X X̃ → Y is

the first projection. As π1 is a base change of π : X̃ → X by the faithfully flat morphism

Y → X, we have

Lemma 4. π∗OX̃ ∼= OX . In particular, if X̃ is globally F -regular, then so is X.

Let w ∈ W (G), and X = Xw be the corresponding Schubert variety BwB/B in

G/B. Assume that w is nontrivial. Then there exists some simple root α such that

l(wsα) = l(w)−1, where sα is the reflection corresponding to α, and l denotes the length.

Set X ′ = Xw′ be the Schubert variety Bw′B/B, where w′ = wsα. Let Pα be the parabolic

subgroup BsαB ∪B. Let Y be the Schubert variety BwPα/Pα.

The following is due to Kempf [10, Lemma 1].

Lemma 5. Let πα : G/B → G/Pα be the canonical projection. Then X ′ is birationally

mapped onto Y . In particular, (πα)∗OX′ = OY (by Theorem 3). We have (πα)−1(Y ) = X,

and π|X : X → Y is a P1-fibration, hence is smooth.

Let X be a Schubert variety in G/B. Let ρ be the half-sum of positive roots, and set

L = L((p − 1)ρ)|X , where L((p − 1)ρ) is the invertible sheaf on G/B corresponding to

the weight (p − 1)ρ. Note that 〈ρ, α∨〉 = 1 for α ∈ ∆ by [7, Corollary 10.2] (see for the

notation, which is relevant here, [8, (II.1.3)]. Under the notation of [7], (δ, α∨) = 1.). It

follows that L is ample by [8, Proposition II.4.4]. The following was proved by Ramanan-

Ramanathan [16]. See also Kaneda [9].

Theorem 6. There is a section s ∈ H0(X,L) \ 0 such that the composite

OX(1) → F∗OX F∗s−−→ F∗L
splits.

Since L is ample, we immediately have the following.

Corollary 7. X is globally F -regular if and only if X is F -regular.

Proof. The ‘only if’ part is obvious. The ‘if’ part follows from Theorem 6 and Theorem 1,

3⇒4.
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3. Main theorem

Let k be an algebraically closed field, G a simply connected, semisimple algebraic group

over k, T a maximal torus of G. We fix a basis of the set of roots of G, and let B be the

negative Borel subgroup of G.

In this section we prove the following theorem.

Theorem 8. Let P be a parabolic subgroup of G containing B, and let X be a Schubert

variety in G/P . Then X is globally F -regular.

Proof. Let π : G/B → G/P be the canonical projection, and set X̃ = π−1(X). Then X̃ is

a Schubert variety in G/B. By Lemma 4, it suffices to show that X̃ is globally F -regular.

So in the proof, we may assume that P = B.

So, let X = BwB/B. We proceed by induction on the dimension of X, in other words,

l(w). If l(w) = 0, then X is a point and X is globally F -regular. Let l(w) > 0. Then there

exists some simple root α such that l(wsα) = l(w) − 1. Set w′ = wsα, X ′ = Bw′B/B,

Pα = BsαB ∪B, and Y = BwPα/Pα.

By induction assumption, X ′ is globally F -regular. By Lemma 5 and Lemma 2, Y is

also globally F -regular. In particular, Y is F -regular. By Lemma 5, X → Y is smooth.

By [13, (4.1)], X is F -regular. By Corollary 7, X is globally F -regular.

Corollary 9 (Demazure’s vanishing [16], [9]). Let X be a Schubert variety in G/B,

λ a dominant weight, and L := L(λ)|X . Then H i(X,L) = 0 for i > 0.

Proof. For any n ≥ 0 and α ∈ ∆, 〈nλ+ρ, α∨〉 = n〈λ, α∨〉+1 > 0, since λ is dominant. By

[8, Proposition II.4.4], L(nλ+ ρ) = L(λ)⊗n⊗L(ρ) is ample. It follows that L⊗n⊗L(ρ)|X
is ample for any n ≥ 0. This implies that L is nef. The assertion follows from Theorem 8

and [19, (4.3)].

Let P be a parabolic subgroup of G containing B. Let X be a Schubert variety in

G/P . Let M1, . . . ,Mr be effective line bundles on G/P , and set Li := Mi|X . In [11],

Kempf and Ramanathan proved that the k-algebra C :=
⊕

µ∈Nr Γ(X,Lµ) has rational

singularities, where Lµ = L⊗µ1

1 ⊗ · · · ⊗ L⊗µrr for µ = (µ1, . . . , µr) ∈ Zr. We can prove a

very similar result.

Corollary 10. Let C be as above. Then the k-algebra C is strongly F -regular.

By [5, Theorem 2.6], C̃ =
⊕

µ∈Zr Γ(X,Lµ) is a quasi-F -regular domain. By [5,

Lemma 2.4], C is also quasi-F -regular. By [16, Theorem 2], C is finitely generated over

k, and is strongly F -regular.
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