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Abstract

The purpose of this paper is twofold. Namely, to present a probabilistic analysis of
a class of bottleneck (capacity) optimization problems, and to design simple and efficient
heuristic algorithms guaranteed to be asymptotically optimal. OUf unified approach is
applied to a wide variety of bottleneck problems including vehicle routing problems, loca
tion problems, and communication network problems. In particular, we present a simple
and a.symptotically optimal heuristic algorithms that solve the bottleneck assignment prob
lem, the bottleneck spanning tree problem and the directed bottleneck traveling salesman
problem in O(n2) time-complexity steps (our algorithm runs in O(n3+t ) for the undirected
version of the bottleneck traveling salesman problem). We also discuss polynomial heuristic
algorithms for the bottleneck k-clique problem and the bottleneck k-Iocation problem. We
prove - using our probabilistic analysis - that these algorithms with high probability (whp)
produce the optimal solution. Furthermore, we extend our results to the d·th best solution
for some bottleneck optimization problems.

-This research was supported by AFOSR Grant 90-0107, and in part by the NSF Grant CCR.890030S,
and by Grant ROI LM05118 from the Na.tional Library of Medicine.

1



1. INTRODUCTION

In this paper we investigate a general bottleneck and capacity optimization problems in

a probabilistic framework. A bottleneck problem can be formulated as follows: for a given

integer n minimize the objective function Z(a) = max;eSn(a) {Wi(a)} (and for capacity

problem ma.xi:m..ize yea) = min;eSn(a){Wi(an) over a set BTl of all feasible solutions, where

Sn(a) is the set of all objects belonging to a feasible solution a E Bn, and wj(a) is the

weight assigned to the i·th object. In our probabilistic framework, weights are drawn

independently from a common distribution function F( .). We do not impose any special

restriction on the class of distributions F(·) except a minor requirement of continuity for

F(·). Our interest is twofold. First of all, we study the asymptotic behavior of the best

solution Zmin = minorEBn Z(a) and the d-th best solution Z(d) of our bottleneck and capacity

optimization problems, where Zmin = Z(l) :::;; Z(2) :::;; ... :::;; Zmax. Secondly, using these

probabilistic findings we build heuristic algorithms that asymptotically performed as good as

the optimal algorithm. More precisely, the relative error between the value of our objective

function Z(o:) evaluated for a heuristic solution 0: and the optimal value Zmin (found in our

probabilistic analysis) tends to zero as the size of the problem becomes larger and larger.

Needless to say, our heuristics are much cheaper (in terms of time and space complexities)

than the optimal algorithm.

To motivate our study, we discuss some examples (d. [HoS86]) that show the range of

applications for our methodology. In the bottleneck traveling salesman problem (BTSP) a

salesperson wishes to choose a route that minimizes the travel time on the longest day of

traveling [GaG78, AnV79]. For the bottleneck k-clique problem one wishes to partition n

cities into k diques such that the longest distance within a clique is minimized [LUK81].

Finally, the last example deals with the bottleneck k-th center problem that belongs to the

location theory. In this case, one is asked to choose k cities among n such that the city

furthest from a k center is as closed as possible [HoS86].

The problems just mentioned belong to three general classes of optimization problems,

namely communication network problems, weighted center problems and vehicle routing prob

lems [HoS86]. The first class contains - besides the k-center problem - spanning tree prob

lem, k clustering problem, k switching network problem, and so forth. In the second class,

besides the k clique problem, one can also include the k supplier problem, weighted k center

problem, etc. Finally, the last class contains the traveling salesman problem, k path vehicle

routing, repeated city TSP, and so on (for more details see [HoS86]). For each of these

problems, we search for a subgraph of the complete graph satisfying certain constrains such
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that the weight of the longest (shortest) edge including in the subgraph is minimized (maxi

mized); such problems are - as discussed above - called bottleneck (capacity) problems. It is

sometimes more convenient to transform these problems into similar problems on matrices

with random weights. If possible, we shall reMon in terms of such matrices.

We establish in this paper two types of results. The first one is of probabilistic nature,

and deal with the typical behavior of the optimal solution Zmin and/or the d-th best solu

tion Z(d). In particular, for the bottleneck assignment problem (BAP) and the bottleneck

traveling salesman problem (BTSP) we prove that Zmin '"" F-l(1og n/n) in probability (pr .),

where F-I(.) is the inverse function of the distribution function F(·). This result should be

interpreted as follows: for every £ the probability Pr{IZmin/F-1(1ognJn) -11> £} tends

to zero as n -+ 00. Roughly speaking, this means that it is very unlikely that the optimal

value Zmin differs from F-l(1ogn/n) by more than £, whatever the £ is selected. Moreover,

for any bounded d the d-th best solution Z(d) behaves asymptotically in a similar manner.

For the bottleneck spanning tree problem we show that Zmin '"" F-1(1/nI+I/n) (pr.), and

in the case of the bottleneck k clique problem Zmin '"" F-1(n- 2!(k-I») (pr.). Finally, in the

bottleneck k center problem we have Zmin '"" F-1(1-lognJn) (pr.). All of these results

are derived in a uniform manner, and more importantly they have a simple algorithmic

interpretation. Namely, in the course of obtaining them we repeatedly use the following

algorithm. After sorting all weights in an increasing order, we find such a number of edges

(elements) m* that almost surely the (random) graph built from these m* edges contains a

given subgraphs (e.g., a hamiltonian path, a matching, a clique, etc.). It is now a question

of choosing an appropriate algorithm that constructs this subgraph, and to show that the

algorithm outputs the optimal value most of the time, but the latter issue was aheady

investigated in our probabilistic part of the paper.

Our heuristics with guaranteed performance compare favorable with all known determin

istic solutions to these problems. In particular, we construct O(n2 ) algorithms that solves

exactly with very high probability such problems as the Bottleneck Assignment Problem

(BAP), the Bottleneck Spanning Tree Problem (BSTP) and the Bottleneck (directed) Trav

eling Salesman Problem (BTSP)(the undirected version of BTSP we can solve in O(n3+!

steps). These algorithms beat the best deterministic solutions obtained by Garfinkel and

Gilbert [GaG7S], and recently improved by Gabow and Tarjan [GaT88] (O(n2 .Sy'lOg1i) for

BAP and O(n2 Iog"'n) for BSTP in complete graphs; see also Frieze [FRIBS] for similar

solution to ours for BTSP. Our heuristic algorithms are easy to implement, and they run

well in practice due to the fact that the constants in our complexity results are small (see

Section 4 for some computer experiments). Finally, we have also polynomial algorithms for
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the other two bottleneck problems, namely the k center problem and the k clique problem

(d. [HoS86, FeL88J).

We view this paper as a contribution to the probabilistic analysis of algorithms that

- not unexpectedly - leads to some new algorithmic insights. Our unified approach to

bottleneck optimization problems seems to be new, and has only something in common

with the work of Weide [WEI80] and Lueker [LUE81] (cf. also Frieze [FR1890, FRl89bJ).

But in contrast to Weide's and Lueker's works our approach is algorithmically constructive,

and - more importantly - we use some simple but powerful results from the order statistics.

It turns out that application of the order statistics to optimization problems is not restricted

to bottleneck and capacity problems, and might lead to a unified approach to a large class

of optimization problems (see [SZP89] for some preliminary results).

2. MAIN RESULTS

Our objective is to compute the optimal value Zmin defined as follows

Zmin= miu{ max w;(a)} ,
aEBn iESn(or)

(2.1)

where Bn is the set of all feasible solutions, Sn(a) is the set of all objects belonging to the

a-th feasible solution, and wi(a) is the weight assigned to the i-th object. This problem

is a bottleneck optimization problem since it minimizes the largest weight in a feasible

solution. In another formulation, called capacity optimization problem, we ask to maximize

the lightest weight in a feasible solution, that is, the formulation (2.1) becomes

To avoid repetition we shall further reason in terms of the bottleneck problem. We analyze

it in a probabilistic framework that is summarized in the following two assumptions:

(A) The cardinality IBnl of B n is fixed and equal to L. The cardinality ISn(a)1 does not

depend on a E Bn and for all a it is equal to N, Le., ISn(a)1 = N.

(B) For all a E Bn and i E Sn(a) the weights w;(a) are identically and independently

distributed (Li.d.) random variables with common distribution function F(·) that is

strictly continuous (incretJ$ing) function.

We restrict our attention to problems on graphs and matrices, so any object is either a

vertex (edge) or an element of a matrix, and we denote by Wij the weight assigned to the

(i,j)-th edge in a graph or the (i,j)-th element of a matrix. We denote by Gn,m a graph
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spanned on n vertices with m edges. By W = {wij}f,j=l we define the matrix of weights.

If possible, we shall realion in terms of the matrix W. A graph Gn,m can be directed or

undirected, and respectively the matrix W can be asymmetric or .9ymmetric. In the latter

case, assumption (B) cannot hold ali it is stated since Wij = Wji, but this -in most case 

causes only minor problems. To avoid this difficulty we modify the assumption (B) for the

symmetric ca.se such that independence is applied only to Wij with i ~ j.

In the Introduction we have identified three classes of bottleneck optimization problems.

Now, we present detailed definitions of three problems - each from one class - which are next

rigorously investigated in our probabilistic framework. We formulate them for asymmetric

(directed) matrices (graphs):

• Bottleneck A.9signment Problem (BAP)

(2.2.)

where u(.) is a permutation of M = {1,2, ... ,n}. For bipartite graphs the permuta

tion u(·) becomes a perfect matching. In the Bottleneck Traveling Salesman Problem

(BTSP) the permutation a(·) becomes a hamiltonian cycle in a graph Gn,m' Of course,

the cardinality L of the set of feasible solutions Bn is either n! or (n -I)! respectively.

• Bottleneck k Clique Problem (BkCP)

Zmin = min {maxwij},
deBn i,jed

(2.26)

where a clique cl is a complete subgraph spanned on k vertices in Gn,m' In terms

of matrices, a clique cl can be defined as a set of k pairs of indices from M, namely

cl = {(CllCx),(C2,C2), ... ,(Ck,Ck)} EM XM. Note also that the cardinality L of Bn

is L = C~ where C~ = G;). On the other hand, the cardinality N of the set Sn(cl) is

Cr
• Bottleneck k Location Problem (BkLP)

Zmin = min{ max Wei j} ,
ceBn jEM-c '

where c ={Cl,C2, ..,Ck} and Ci E M. Note that L = C~ and N = n - k.

(2.2c)

In addition, we consider explicitly one more problem that belongs to the first category, but

its importance justifies to pay some additional attention to it.
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• BoUleneck Spanning Tree (BST)

Zmin = min {;rq.ax Wi,j} ,
~PEBn 1,JEsp

(2.2d)

where 8p is a spanning tree of a graph Gn,m' Naturally, for complete graphs L =

IBnl = nn-2 and N = n-2.

In fact, in many applications - most notably molecular biology and pattern recogni tion

- one is not only interested in the best possible solution, but also in the d-th best solution,

that is, the d-th order statistic of the objective function Z. We denote the d·th best solution

as Z(d), and naturally Zmin = Z(l) ~ Z(2) :5 ... :5 Zmax. As a motivating example for such

a study, consider a problem in which weights are known only approximately (e.g., Gibbs

energy in RNA, DNA or protein foldings [ZUK89]). Then, the best solution in terms of

these approximate energy values does not necessary produce the optimal structure in terms

of the true energy values. However, if the problem is not too sensitive to small perturbation

in weights , then one may expect that the second, the third, or the tenth best solution is the

one that minimizes the total true (Le., undisturbed) total free energy. In fact, even when

all weights are exactly known, we still might want to produce, say, the first hundredth best

solutions so, say, a biologist can decide which ones bear some biological meanings. Having

this in mind, we also present some results for the d-th best solution Z(d)'

LuckIy enough, for most of the bottleneck optimization problems we can present fairly

general algorithm. This algorithm works m:; follows (cr. [HoS86]).

Algorithm BOTTLE

begin

sort weights such that w(l) :5 W(2) ~ ... :5 W(n2)

i = 0

repeat

begin

i = i + 1

add Wei) element to the structure built so far

build a partial solution f3 (not necessary a fem:;ible solution)

end

until f3 becomes a feasible solution a

output a

end
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Of course, this algorithm always produces a correct answer. The question is how expen

sive it is. It is easy to notice that the cost (time complexity) of the algorithm depends on

the sorting procedure (cr. second line of the BOTTLE), and the number of iterations of the

loop repeat-until. In each iteration we must check whether a feasible solution exists or

not (this might be even NP-completej e.g., hamiltonian path for BTSP). The sorting part is

bounded from the below by 0(n2 ) (since every element out of n2 has to be touched at least

once). The rest depends on an optimization problem. Let the number of the loop iterations

be denoted by m-. In the worst case m- f'V n2 , but a typical time necessary to complete

this loop is much smaller. Such a typical value of m- can be interpreted as the number

of iterations needed almost surely to produce a feasible solution. In other words, m· can

be seen as the number of elements that one needs to (randomly) select from a matrix W

to construct almost surely a feasible solution (e.g., a subgraph such as clique, hamiltonian

path, etc.). The second factor that determines the complexity is the the feasibility test.

Let Cte8e be the time required to perform the test. Then, the ultimate complexity of the

algorithm is 0(max{n2 ,m·Cte8t}). In passing we note that the complexity Cte~t may not

necessary be the worst-time complexity; especially if m- is interpreted in a probabilistic

manner.

In our probabilistic framework it is natural to consider algorithms from a typical view

point. Then, the complexity should be investigated from this view point too. This will lead

to several mutations of our basic algorithm which we further refer as a heuristic. A general

scheme for such a heuristic algorithm is presented below (for a change we phrMe it in terms

of graphs).

Algorithm HEURISTIC

begin

sort weights such that W(l)·~ W(2) ~ ••• .$ W(n(n_l)j2)

Setm=m·

apply feasibility test to Gn,m

output Q or NOT FOUND

end

In the above m- should assure with probability one the existence of a feasible solution.

In practice, instead of m = m· we run the algorithm for a couple of iterations from m =

m· - 0(1) to m = m- +0(1). The algorithm needs some simple modifications to output

the d-th best solution, namely we have to run the feasibility test at most d times.
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A natural question is how good is this heuristic, that is, how fast is the algorithm, and

how close is the value Zhel.l found by the heuristic to the optimal value ZOOn. The latter

problem is of prime importance for any approximate algorithm. In fact, a quality of an

heuristic can be measure by the relative error en = (Zmin - Zheu)fZmllll and one accepts

an approximate algorithm if en tends to zero (falit enough!) ali n -). 00 in some probability

sense. This condition can be verified once we know the optimal value Zmin which is of

its own interest. The four theorems below - our main (probabilistic) results - present the

limiting value of Zmin for the four bottleneck problems discussed above. We assume that

our two basic assumptions (A) and (B) always hold. Proofs are delayed to the next section.

Some additional algorithmlc consequences of these findings are discussed below.

(2.3a)(pr.)

Theorem 1. Bottleneck and Capacity Assignment Problems

(i) For symmetric and asymmetric BAP the d-th best solution Z(d) converges in probability

to F-l(lognjn) as n tends to infinity provided d is bounded with respect to n, that is,

lim Z(d) = 1
n~oo F '(log nfn)

where F- I (.) denotes the inverse function to the distribution F(·). For the bottleneck ca

pacity assignment problem the following hold

lim Vi') = 1
n~oo F '(l-lognfn)

(pr.) (2.3d)

Our approximate algorithm HEURISTIC ruTlS in 0(n2 ) steps and outputs (asymptotically)

the optimal valve (cf. (2.3)) with very high probability (whp).

(ii) For the bottleneck and capacity traveling salesman problem (2.3a) and (2.3b) hold too.

Our algorithm HEURISTIC runs in 0(n2 ) steps for the directed version of BSTP, and in

O(n3+t
) for the undirected version of BTSP.•

Theorem 2. Bottleneck Spanning Tree Problem

Asymptotically the optimal solution for BSTP becomes

(pr.)lim Zmin - 1
n .....oo F I(n I lIn) -

Our algorithm runs in 0(n2 ) steps and gives the optimal value (2.4) (whp).

(2.4)

Theorem 3. Bottleneck k Clique Problem
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For large n, and k bounded with respect to n, the optimal solution for the k clique problem

satisfies

where f > O.

lim ZnUn - 1 (p)
n.....oo F 1(n-2/(k-l)+') - r.

There exists a polynomial version of our algorithm HEURISTIC.•

(2.5)

Theorem 4. Bottleneck k Center Problem

For large n, and k bounded with respect to n, the optimal solution for the k center problem

becomes

lim ZnUn - lim ZnUn - 1 (P) (2.6)
n~ooF '(n l/(n ')+') -n-ooF l(l-(lf(n-k)-<)logn) - T.

where I: > O. There exists a polynomial version of our algorithm HEURISTIC.•

Finally, we comment on specific algorithms that implement our approximate algorithm

HEURISTIC. We start with the asymmetric BAP. Our analysis from Section 3 (see also

[ErR64]) will indicate that selecting m· = n(log n +wn ) (wn --t 00) elements from a matrix

assures with probability one the existence of a permutation. To construct such a permuta

tion we transform the problem to another one on bipartite graphs. Namely, as easy to see

a permutation in a matrix can be viewed as a perfect matching in a bipartite graph Gn,m.

with m"' vertices. Then, applying O(n1/ 2m) Micali-Vazirani algorithm [MiVBOj for finding

the maximum matching in such a general graph, the algorithm HEURISTIC becomes

Algorithm ASYMMETRIC BAP

Set m· = n(Jog n +wn)

begin

apply Micali·Vaziranl algorithm to Gn,m.

end.

For symmetric BAP one needs to set m· = ~(logn+wn)' Naturally these algorithms run

in 0(n2
) steps since feasibility tests costs only 0(n3/ 2 Iogn). For the bottleneck traveling

salesman problem (BTSP) the challenge is how to find efficiently a hamiltonian path. We

shall use here 0(n1.5) (Las Vegas) algorithm of Frieze [FRIBB] to solve the directed version

of the problem, and 0(n3+') algorithm to the solve the undirected version of the problem

(c!. [BOL85, FRI89b]). From our analysis in Section 3 (c!. [BOL85, FRI88]) it will be dear

that m· = n(logn + loglogn +wn) edges is enough to have almost surely a hamiltonian

path in a directed graph, and m· = n/2(log n +log log n +wn) is the "magic" number for

an undirected graph [FRIBB]. The HEURISTIC algorithm modifies to the following
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Algorithm DIRECTED BTSP

Set m'" = n(log n +loglogn +wn)

begin

apply Frieze's algorithm DHAM to Gn,m.

end.

The bottleneck spanning tree problem is easier to tackle. From Erdos and Renyi [ErR60J

one concludes that m'" = n1-1!(n-l)+f. Hence, the dominating factor in the complexity issue

becomes the sorting part, and hence the algorithm HEURISTIC runs in O(n2 ) steps.

Finally, we show that m· = n2(1-1!(k-l» [BOL85, LUK81) for the k clique problem,

and m- = n 2
-

1jn for the k center problem. This implies, unfortunately, that almost all

n2 weights have to be inspected, and saving in time is very limited. H k is bounded in n

(but might be large) there is, of course, a polynomial algorithm to build a feasible solution.

Moreover, even in the case of unboundness of k Fellows and Langston [FeL88] proved that

there exists a polynomial algorithm for constructing feasible solutions for these problems.

In passing we note that capacity problems require only minor changes. In fact, in the

BOTTLE and the HEURISTIC algorithms one needs to sort in a decreasing order instead of

increasing order. In particular, in Theorem 1 (d. (2.3b)) we pointed out how to construct

our main result for the capacity assignment problem. The rest is left to an interesting

reader.

3. ANALYSIS THROUGH ORDER STATISTICS

In this section we prove our main results stated in Theorems 1 to 4. As we shall see, the

most difficult to handle is the asymptotics for the d-th best solution Z(d)' We have one such

a result for BAP and CAP (d. Theorem 1), and we treat this case with a special attention.

Fortunately, a probabilistic analysis of Zmin can be handled in a uniform manner. Basic

points of such an analysis are presented below.

The bottleneck optimization problem (2.1) possesses very special feature, namely the

one that we call ranking-dependent. By tlllS we mean that the optimal solution depends only

on the rank of the weights w;(a) and not on the concrete value of w;(a). In other words, if

one transforms all weights according to any increasing function I( '), then the rank of the

optimal solution remains the same. More formally, the bottleneck optimization problem is

ranking-dependent since the following holds

f(Zmin) = min {max J(w;(am
aEB" IES,,(a)

10
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for every increasing function f(·). As a simple consequence of this, one notes that prob

abilistic behavior of Zmin under aUf assumption (B) (i.e., distribution F(·) is a strictly

increasing function) can be proven for one selected distribution, say uniform U(O, 1), and

then transform to any other distribution F(·) by the transform F-I(.). Indeed, this simply

follows from the fact that X = F-I(U) where F(.) is the distribution function of the ran

dom variable X, and U represents uniformly distributed random variable on the interval

[0, I].

To prove our main results, we proceed as follows. Let W(I) ~ W(2) ~ ••. ~ W(n2) de

note all n2 weights ordered in an increasing sequence; for simplicity we shall only reason

in terms of the matrix optimization problem (2.1)(e.g., BAP). Then, according to the algo

rithm BOTTLE the optimal solution to a bottleneck optimization problem is found after

inspecting m- elements (edges). Naturally, Zmin = w(m-)' In our probabilistic framework,

we assume that the weights Wi (capital letters denote random variables) for 1 ~ i ~ n2

are uniformly distributed Li.d. (independently, identically distributed) random variables,

and we denote by M~ the number of elements necessary to inspect in order to construct

almost surely a feasible solution. Note that the M;:-th order statistic of, say, n2 uniformly

distributed random variables Wi is W(M;;) = M~/(n2 +1) +0(1) (pl.), that is, for any € the

following holds limn.....coPr{lWM;; - M~/(n2 +1)1> €} = O. This is a simple consequence

of the following two elementary facts [GALS7]:

• The r-th order statistic U(r) of m uniformly distributed i.i.d. random variables satisfies

T(m-T+I)
VaTU(") = (m+ 1)'(m+2) (3.2)

hence by Chebyshev's inequality U(r) -) EU(r) (pr.) as m -+ 00. In fact, by Borel

Cantelli lemma the convergence in probability may be replaced by almost sure conver

gence provided r = o(m)

• The above property holds even if T is replaced by a random variable Em such that

limiT ~ 1 (a.s.)

Then, our claim follows from the Chebyshev's inequality, and therefore Zmin '" W(M;;) (pr .).

In summary, we just proved that as n -+ 00

M'
Zmin -)~ (pr.) ,

n' (3.3a)

for uniformly distributed weights Wi. This and (3.1) further imply that for any other

distribution function F(·)

ZrrUn ~ p-l(M;ln') (pT.)

11
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provided F-l(.) is strictly continuous (d. [ChT78, p.68]).

From the above, in particular, from (3.3b) one concludes that for proving our results

concerning the optimal values Zmin one needs only to evaluate M~ (a.s.). In the case of

d-th best solution Z(d) a more intricate analysis is necessary. We give more details of this

when the bottleneck assignment problem is discussed.

3.1 Bottleneck Assignment and Traveling Salesman Problems

Let us start with the optimal value Zm..in, and therefore we concentrate on computing

M~ (a.s.). Consider first the asymmetric BAP problem. In this CMe a feasible solution

becomes a permutation q(.) (cf. (2.2a)), that is, in a feMible solution no two elements share

a column and/or a. row. To compute M~ (a.s.) we select randomly elements from a n x n

matrix W, and stop when for the first time every column and every row contains a selected

element. It turns out, as proved by Frieze [FRI88], that the same condition guarantees that

a directed graph with the weight matrix W possesses almost surely a ha.miltonian cycle.

However, for the symmetric BAP and undirected BSTP we have a little different situation.

It is proved [BOL85] that an undirected (random) graph is hamiltonian (a.s.) when the

minimum degree of this graph is at least two. In terms of the weight matrix W this can be

read as a requirement that a random selection of elements from W stops when for the first

time every row (column) contains at least two chosen elements.

We reduce the evaluation of M~ to an urn-and-ball problem. In such a model balls

are thrown randomly and independently to n urns. We may ask questions like what is the

number of balls needed until every box has at least one ballj at least two balls, etc. To treat

uniformly the above two cases (Le., symmetric and asymmetric) we define M~ as the first

time until every urn has at least J( balls. How to compute such a quantity? It turns out

that a simple technique called poissonizationmay easily answer this question (d. [ALD89,

HOL86J). Holst [IIOL86] pwved that M~ = n· (logn + (K -1)loglogn +wn ) (a.s.) where

Wn -;. 00 as n -+ 00.

The poissonization idea is useful in some other problems considered in this paper. There

fore, we present here heuristic arguments that lead to the evaluation of M~ (cr. [ALD89]).

The key idea is to assume that the arrival time of balls into urns is a Poisson process with

parameter 1. We denote by POIS(>') a Poisson process with parameter >.. Then, every box

receives a Poisson process with parameter lin, and by superexponentiality property of any

Poisson process we have

Pr{a box contains at least IC balls at time t} ~ e-t /"'(t/nt- 1/(I( -1)!.

But poissonization makes boxes independent, hence the number of boxes with at least J(
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balls is distributed as a POIS(ne-'!n{tjn)K-Ij(I( -I)!). Note that the event {M~ ~ t}

is equivalent to the event that the number of boxes with at least IC balls is equal to zero at

time t. Then, immediately

This further implies that

PriM: ~ n· (logn + (I( - 1) log log n +w.)} ~ eWn

(3.4a)

(3.4b)

and the latter probability tends to one whenever W n -t 00. Hence, we just proved that

M; = n . (log n +(IC - 1) log log n +wn) (a.s.). (The difficulty of this analysis - not shown

here - is to prove depoissonization, that is, how to conclude the final result regarding the

original model from the Poisson modelj for more details see [ALD89, JaS89].)

Part of Theorem 1 regarding the optimal value Zmin follows immediately from the above

and (3.3). In particular I to verify (3.3a) we use (3.4) to show the convergence in probability.l

However I to prove the results for the d·th best solution Zed) we need a little more elaborate

methodology. We prove our result (cL Theorem 1) by showing an upper bound and a lower

bound. The upper bound repeats our arguments from the prove of Zmin to show that for

uniformly distributed weights the following holds [BOL85]

M* +d M n' lognZ < =;:n'-c'--"-
(d) - n2 + 1 '" n2 "'---;;:- (3.5)

and the IMt implication holds M long as d/M~ ---t 0 for n ---t 00. Therefore, in the rest of

this section we deal with the lower bound for the d-th best solution.

Let us illustrate our approach to the lower bound by considering again the optimal value.

We shall reason in terms of the Mymmetric BAP problem. The following is eMy to show

Zmin 2. m;:tX { rnJn Wi;} .
l~J~n l~l~n

(3.6a)

The idea behind this lower bound is as follows: first we take minimum weight in every

column, and then maximum from these selected weights. Now l we try to generalize this

bound for the d-th best solution Z(d)' Fix j, and find the d-th smallest weight in the j-th

column. Denote such an value M W(d),;' Next find the (n - d +1)-st largest value in the

sequence W(d),l1 W(d),2' ... , W(d),n' Call such a value as W(d),(n-d+1)' Then, the following is

an easy generalization of (3.6a)

Z(d) 2. W(d),(n-d+1) .

---------
IThis analysis can be easily extended, as pointed out above, lo the the almo!t sure convergence.

13
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This bound should be understood in the stochastic inequality sense [ChT87], that is, it holds

for every realization.

The problem of finding the matching lower bound for Z(d) reduces to a tight bound

on W(d),(n_d+l). For this we need to study some features of order statistics. Note that

{W(d),j}j=l is a sequence of Li.d. random variables. Moreover, the d-th order statistic

W(d),. comes also from n Ll.d. weights WiJ. We need the following lemma, that is of its

own interest and finds many other applications in combinatorial optimization (cr. [ALD89,

SZP89]). A simpler version of this lemma is known - but not very well known - so we

present here a sketch of the proof. For some more information regarding order statistics see

Aldou, [ALD89] and Galambo' [GAL87] (,ee al,o [LaR78]).

Lemma 5. Order Statistics.

Let Xl, X2 , ... , Xn be identically exchangeable (i.e., any joint distribution depends only

on the number of variables involved, not the indexes of the variables [GAL87}) nonnegative

random variables with common distribution function F(x), and let G(x) = 1 - F(x) be

defined on whole half real line (0,00). Denote Fr(x) = Pr{XI < x, ... ,Xr < x} and Gr(x) =
Pr{XI > x, ... , Xr > x} for any 1 $ r ::; n. Let also Z(r) be the T-th order statistic of the

sequence Xl, X 2 , •••, X n.

(;) If for every c > 1
lim Gn_r+l(cx) = 0

0;-+00 Gn_r+1 (x)

(i.e., Gn_r+l(x) has exponential tail), then

(3.7)

(pr.) (3.8)

where a!;) is the smallest solution of the following equation

(ii) Independent Case. If Xl, X 2 , ..., X n are independently distributed, then

,-1 ( )PriZe,) > xl = L ~ F'(x)[I- F(x)]n-'
i=O t

If, in addition, (3.1) holds and n - T is bounded with respect to n, then

(3.9)

(3.10)

(pr.) (3.11)
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Proof. By definition of the r-th order statistic we have

n-r+l
P,{Z(,»x}=P,{ U n (X;. > x))

il,..,in-r+l i=1

(3.12)

for all distinct ill ... ,in-r+1 E {1, ... ,n}. For (i) we apply Boole's inequality to the above

and set x = (1 + ,)al:"). Then, using (3.7) and (3.9)

P,{Z(,) > (l+,)a~)}::; ( n I)G'-'+l«l+,)a~») = ( n I)G'-'+J(a~»)O(I) = 0(1),n-r+ n-r+

and this proves (3.8). Moreover, (3.10) is a simple consequence of (3.12) and the indepen

dence assumption. Finally, (3.11) follows from (3.10) after some simple algebra (d. [GAL87

p. 247]).•

Now we ready to prove the lower bound for Zed)' We use (3.6) and Lemma 5. From (3.10)

we compute the distribution function for W(d),i as the d·th order statistic of WI,;' ... , Wn,i'

Then, using (3.9) we estimate the n - d+ 1-st order statistic for W(d),l' .... ,W(d),n' But, due

to ranking-dependent property of bottleneck problems we are free to select a distribution

of the weights. Since we plan to apply Lemma 5 we need a distribution satisfying (3.7).

The best seems to be an exponential distribution, so we assume F(z) = 1- e-:c. Then, by

(3.11) Zed) "" an (for simplicity we drop the upper index in the notation of an) where an

solves asymptotically the following equation (cL (3.9))

whe'e (el. (3.10))

d-1 ( )Gd(x)=e-·x 2: ~ (eX-Ii.
i=O ~

But, for bounded d we can reduce (3.13a) to

n
1dfGd(a.) = 1 ,

which possesses the following asymptotic solution

log(nil logd-1 (nil))
a. ~

n

(3.13a)

(3.13b)

(3.14)

(3.15)

where f3 = ~/(d - 1)!. Indeed, the above can be shown by inspection. Using e:C - 1"" x

for x --+ 0, the LHS of (3.14) with an from (3.15) becomes

'-1 (d 1)' (1 + loglog{d-l)np);
n G ( ) '"' . Iogn(3 --+ 1

d'dT dan = LJ i! logd 1 ina
va~ ,=1 1J
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(3.16)
Z;:]n _ log(n/(d -1)!log'-t(n/(d -1)1)) .

n

where the last implica.tion follows from the fact that d is bounded. Tills also implies that

an'" lognjn. To complete the proof we need only to translate this result to the uniform

distribution. But, 1 - e-"n '" an for an --+ O. This observation completes the proof of the

lower bound, and hence Theorem 1.

As discussed above, in many applications the sensitivity analysis of an optimlzation

problem is of prime interest. We can answer some sensitivity questions using the technique

developed 50 far. Consider the following problem. We have shown that the maximum over

all smallest values of every column has asymptotically the same value as the optimal value

Zmin (cL (3.6a)). A natural question to ask is whether the optimal value is asymptotically

preserved when the smallest value in every column is replaced by the d-th smallest value.

More formally, as above define for every column j the d smallest value as W(d),j Then,

consider Z~ = maxl$i$n W(d),j . How large can d be to assure that Zrnin '" Z~n ? One may

expect that if this holds for d large enough, then there exits a simple asymptotically optimal

randomlzed algorithm that constructs a feasible solution for BAP. By Lemma 5, with the

exponential distribution of weights, we see that Z~{n '" an, where an solves nGd(a",) = 1.

But this equation is almost the one we consider in (3.14). So, elementary modifications lead

to

Of course, if d is bounded with respect to n, then Zrnin '" Z~~ '" lognjn. A more sophisti

cated analysis shows that this asymptotic relationship holds also for d = o(log nj log log n).

Note tha.t it is not enough to assure almost sure construction of a. feasible solution (i.e.,

a permutation) for the BAP problem. However, this finding can be used to save some

(running) time for algorithms solving BAP problem.

3.2 Remaining Proofs

For the remaining of the bottleneck problems (cf. Theorem 2 to 4) we only provide

proofs for the optimal value Zmin. Extension to d-th best solution is possible, and details

of appropriate statement formulations and proofs are left for the reader.

As explained earlier (cr. Eqs. (3.3a)-(3.3b)), proofs of Theorem 2 to 4 reduce to finding

the value of M~, that is, the minimum number of elements necessary to select from W in

order to assure the existence (a.s.) a feasible solution. In the case of spanning tree and k

clique problem we immediately obtain from [ErR60] and [BOL85, LUK81]

M'" - nl-I!(n-I)
n - aJld

respectively. This and (3.3) complete the proof of Theorem 2 and 3.
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To prove Theorem 4 for the k center problem we first note that a feasible solution in

this case (d. (2.2c)) consists of all k(n - k) elements ofthe weight matrix W. This simply

represents all edges connecting the k centers with all other vertices. A simple combinatorial

enumeration, as the one in Erdos and Renyi [ErR60] implies that

(

Mk(n-k) )
Pr{a fea8ible 8olution exi8t8 in a matrix with M selected elements} ~ 0 n2k(n k) k

hence M~ = n2- 1/(n-k)+f I as needed for the proof of Theorem 4. As a curiosity, on may

ask whether a modified selection process in which elements are returned to W, will harm

significantly the optimal solution (but we can save some memory in this case!). More

formally, we find the minimum number of elements selected randomly with returns from a

n X n matrix that assures the existence of a feasible solution in the k center problem.

We derive here this result using the poissonization technique discussed above. We re

formulate the problem in terms of urn-and· ball problem, and we argue in the language of

Aldous (d. [ALD89]). How many balls is needed to fill k urns with at least n balls? In the

first step we replace the throwning process by a Poisson process with rate 1. Then, every urn

receives a Poisson process with rate lIn, that is, POIS(l/n). Call Tj the number of balls

necessary to put at least n balls into the i·th urn. Naturally, due to the superexponentiality

property of a Poisson process

Pr{T; > t} '" e-t/n(tln)" In! .

Then, the required value M~ can be computed as M~ = max{T1 , ... ,Tk}. By Lemma 5 we

know that M~ '" an where an solves the equation kPr{T; > an} = 1. Using the Stirling's

formula, one needs to solve asymptotically the following

After some algebra we find

M~ '" n 2-..jl/2n+logk/(nlogn) .

We note that this differs from the previous solution by a factor of O(n~). In particular,

our optimal solution would become F- 1(1-logn/..;'2n).

4. COMPUTER EXPERIMENTS AND CONCLUDING REMARKS

In order to visualize and verify our theoretical results we have programmed our algo

rithms BOTTLE and HEUIUSTIC for the BAP problem. In BOTTLE we used an improved
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Table 1: Comparison of simulation and theoretical results.

DISTRIBUTION SIZE VALUE TIME

THEORY OPTIMAL HEURISTIC BOTTLE HEURISTIC

Normal (0,1) 100 ·1.500000 ·1.62355 ·1.48766 77 8

200 ·1.770000 ·1.860940 ·1.87524 736 58

300 ·1.920000 ·1.957682 ·1.99665 3285 117

400 ·2.020000 ·2.098472 ·2.05880 7758 288

500 ·2.100000 ·2.161564 ·2.16474 15002 566

Exponential (1) 100 0.047146 0.053723 0.05328 79 34

200 0.026849 0.033738 0.02819 741 43

300 0.019196 0.026014 0.02601 3527 135

400 0.015092 0.016736 0.01559 6495 298

500 0.012507 0.015816 0.01582 18070 411

Uniform (0,1) 100 0.046052 0.043567 0.04347 69 7

200 0.026492 0.032597 0.03373 869 41

300 0.019013 0.026200 0.02593 3456 139

400 0.014979 0.018658 0.01866 7340 303

500 0.012429 0.015084 0.01405 16085 481

Hungerian Method to check whether a perfect matching exists or not. In both algorithms

BOTTLE and HEURISTIC we build heap to sort efficiently (in O(n2 ) steps) weights Wij.

Finally, we implemented in HEURISTIC a simple and effective (time-complexity of O(n2 ))

subalgorithm to inspect whether the selected weights cover the whole matrix W, that is,

whether there is at least one weight in every column and every row (note that this assure

that m'" is properly selected).

We have used three different distributions, namely normal distribution N(O, 1), gamma

distribution gamma()",J3), and beta distribution beta(Cl:l,Cl:2). For each distribution we

evaluated the optimal value using our exact algorithm BOTTLE and compare it with the

theoretical optimal value obtained from Theorem l.

From the table one may immediately note very good accuracy of our theoretical results

even for small size of the problem (100 $ n $ 500). This implies good convergence rates for

our theoretical results. In additional, this suggests agood quality of our heuristic algorithms,
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and it was confirmed by computer runs. From the table we note that the running time for

BOTTLE is approximately 121n3, while for HUERISTIC is only 15nz which is significant

time saving even for moderate values of n. Furthermore, we point out that our algorithm

BOTTLE does not differ significantly from an optimal algorithm for this problem, and our

another computer experiments confirm tills observation (hence our heuristic is even more

valuable).

Finally, there are several directions one can pursue this research. First of all, it might be

interesting to extend this analysis to other bottleneck optimization problems. Even more

interesting is to see whether the order statistic approach can be used for other optimization

problems such as linear assignment problem, traveling salesman problem, location problem,

and so forth. Some preliminary results in this direction are reported in [SZP89].
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