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ANOTHER UPPER BOUND FOR THE RENEWAL FUNCTION
By D. J. DaLEY

Australian National University

The general renewal equation and real variable methods are used to
show that for a renewal process with generic lifetime random variable
X = 0 having distribution F and finite first and second moments EX = 2-!
and EX2, the renewal function U(x) = X ;° Fr*(x) satisfies U(x) < Axy +
CAEX? for a certain constant C independent of F. Stone (1972) showed
that 1 < C<2.847 ... it is proved here that C < 1.3186 --- and conjec-
tured that C = 1.

1. Introduction. It has been shown by Stone (1972) that the renewal function

U(x) = L= F'(x)
of a random walk whose generic step length X has right-continuous distribution

function (df) F with finite first and second moments EX = 1-' > 0 and EX*
satisfies

(1.1) U(x) < Ax, + CREX*
for some finite constant C independent of F. He showed by example that C > 1,

and established by Fourier analytic methods that C < » = 2.846753 ... where
7 is the positive root of

(1.2) 281 (p — w{sinfu/iuydu =1 + 2r .

Below, we use real variable methods to show in the less general case that
F(0 —) = 0, so that the random walk is a renewal process, firstly that

(1.3) c<1s,
and then, by refining the argument, that
(1.4) C < 1.3185649 ... .

The method used may be capable of further refinement and extension: to date
we have not been successful in applying it to the general random walk where
by refining Stone’s Fourier transform argument we have shown (Daley, 1976)
that C < 2.081. Certainly though, the evidence lends credence to the conjecture
that C = 1.

We recall for later use some of the motivation for (1.1). It is known (e.g.
Theorem XI. 3.1 of Feller (1971)) that for a renewal process, either F is non-
arithmetic and '

(1.5) U(x) — Ax, — B2 X — 00
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where 8 = ZEX? = EX?/(EX)?, or else F is a lattice distribution, with lattice
span h, say, and for 0 < t < &,

(1.6) U(nh + t) — A(nh + 1) — BJ2 + W} — t[h) n— oo .
In either case then,

(1.7) sup, {U(x) — ax,} = 7P

for some finite

(1.8) 7 =1(F) = (1 + W82,

putting £ = 0 in the nonlattice case. If equality holds here, since ik < 3, we
must have y(F) < 1. Otherwise (and henceforth we shall assume it to be the
case), the right-continuity of U then ensures that for some not necessarily unique
finite ¢,

(1.9) U@ — 48 =7r8-

2. Proof of (1.3). For the moment, let F be the df of any (not necessarily
nonnegative) rv X with mean 2! > 0 and finite standardized second moment
B = EX’/(EX)". LetI(x) =0or1lasx< or >0, and set
2.1) G(x) = A\" (I(u) — F(u)ydu = 2 {3 (I(x — u) — F(x — u))du .

Then I(x) — G(x) = 0 (all x), I(x) — G(x) is convex on (—oo, 0) and (0, co0),
and
(2.2) B = ZEX* = 22 {>,, (I(u) — G(u)) du .

Recall (Chapter XI of Feller (1971)) that U = Y » F* is that solution Z of
the general renewal equation Z = z + Z « F, i.e.,

(2.3) Z(x) = z(x) + 2. Z(x — y) dF(y)

for which z(x) = I(x). The function Ax, is the solution of (2.3) for which
z(x) = G(x), and since in general (2.3) has the solution Z = z « U, we can write
(2.4) Vix) = U(x) — Ax, = {2 (I(x — u) — G(x — u))dU(u) .

Observe that the nonnegativity of / — G and the nondecreasing nature of U
ensure that U(x) — Ax, = 0 (all x).

The strategy used below to bound V is to bound 7/ — G and appeal to (2.4);
this principle is essentially used also in Feller (1948). So far we have been
successful in bounding / — G in a useful manner only when F(0 —) = 0. Then
U(x) = 0 (x < 0), and also

(2.5) 1 — G(x) = 2G(x)(1 — G(x)) = 2(G(x) — G¥(x))

provided G(x) = .5, which is certainly the case for all x = /24 because 1 — G
is convex and has integral §/22 (see (2.2)).
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Define z,(x) = 1 or 2(G(x) — G*(x)) as Ax < or = /2. Then writing § = §/24,
2:6)  V(x+8) = (@xU)x +6)
SUx+E) —Ux)+2((I—G)«G«U)x+§).
Now
(2.7) -GG+ U=(I—-G)x(Ax )« (I — F)=U
= (I — G)x (Ax,) = B2,

so putting x = {, rearranging, and recalling (1.9),
(2.8) UQ) —4C+ & =rp—24<8,
whence C = sup y(F) < 1.5 and (1.3).

3. Refinement and proof of (1.4). Our more detailed analysis depends in the
first place on examining

3.1 Cy = suppey; 1(F)
where &/ denotes the class of df’s G defined as at (2.1) in terms of F with the
properties stated there.

Lemma 1. C, is a nondecreasing function of B.

Proor. Givenarv X with thedf F, defineanewrvX, 0 <g¢< )by X, =X
with probability g, = 0 otherwise. Let F, be the df of X, and let

(3-2) U= Z¢ 8" = L0 (1 = I + ¢F)" = X7 F¥'/q
be its renewal function. Then since
2, = 1/EX, = 1[qEX = 4/q, B, = AEX}? = qAEX* = B/q,
1(F)B, = sup, (Uy(x) — 4,x,) = sup, (U(x) — 2x,)/q = r(F)B[q
and so y(F,) = y(F). Thus, the family of sets {r: y(F) = 7 for some F e &'} is
monotone nondecreasing in 8, and hence the lemma.
It will be convenient from this point on to take 4 = 1, and to define &, as &/
so-restricted (there is no loss of generality in this procedure) and also restricted

to the df’s of nonnegative rv’s X (the lemma above does not need this restriction).
Then any G in &, has

(3.3) GO)=0=ZGO0+)=1—-FO0+)< 1,
and since G(x) is concave on (0, co) and satisfies (2.2) with 4 = 1,
(3.4 x = G(x) = x/B for 0 x< B/2.

Indeed, it is somewhat tedious but not difficult to use (2.2) and the first part of
(3.4) to show that the class &, generates the set

(B.5) D, ={(x,G(x):Ge T x = 0}
={(5)): 0=y < Ly<x <&@ MU 1):x= 6
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where
(3-6) §B,y) =By 0<y=.5
=@ - -1))41 -y S=y<l.
Refer back to (2.5)—(2.8), interpret & more generally, and define
3.7 z(x) =1 0<x<¢
= (G(x) — G"(x)/n x>§

for some y, > 0. It is clear that
(3.8) z(x) = 1 — G(x)

for x < &, and also for x and G such that G(x) =y =y, (cf. (2.5)). If (3.8)
holds for all x, then the argument from (2.6) to (2.8) shows that

(3.9) C<E8+1/2,.

It remains to determine & and y, jointly, in an optimal fashion. We give an
outline of the argument in which a key step is Lemma 2.

LeMMA 2. Given y = G(x) and x = O(p) for large B,
(3.10) G(x) — G"(x) = y(1 —y) + (y — 0’2 + o()
(3.11) =yt —y) - LSy 4=

R - = e

+o0(1).

Fix y,in .5 < y, < 1 so that by (3.6),
(3.12) x < &, = B4l — yy) + O(1) .
We shall use (3.11) to show that if x > &, and
(3.13) y=GE) Sy =1—b+by
for a certain constant b, then
(3.14) G(x) — G*(x) =yl — ),
and hence (3.9) does indeed hold. As an immediate consequence we have that
(3.15) C < infpeypca {1/4(1 — yo) + 1/2(1 — 5(1 = y))}

= 2+ (b8
PRrROOF OF LEMMA 2. Let y = G(x). Then
(3.16) G¥(x) = (¢ G(x — u)dG(u) < {; G,(x — u) dG(u)
= {¢G(x — u)dG (x — u) < G,¥(x)
where 7 = 7(x, y) is the index of the extremal G, ¢ &, for which G,(x) = y and
3.17) G (2) =z 0z
=1-1=—nB-7-~10=92,/B-1+0=27) z>7
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observing that 7 (in case of possible ambiguity) is the larger positive root of

G18)  F-1+A=)1=p=>_0-nE—-7—-~1=12x).
For x = O(B) and large $, (3.18) can be written as
G19) (=2 =2y = IB2x — (A = )]+ (I =y + 0(1) = 0.
Also, rewriting the part of (3.17) relating to z = O(B) > 7 in the form
G () =1+ (1 =92/ + o(1);
it follows that
(3.20) Gr(x)=y*— (y — )2 + o(1).
Combining (3.16) and (3.20) yields (3.10), and substituting from the solution
of (3.19) into (3.10) yields (3.11).

Take 1 >y, > y,, and suppose that the right-hand side of (3.11) exceeds

»n(l — y) for given y in y, < y < y, forall §, < x < 8/4(1 — y). Then since the
infimum of (3.11) with respect to x occurs at x = &,, we can define

@21) oy =inf, ., {y — (1 =2+ L —y } :
T (20 —=y) _ (VP
L+ [1 < 1 —y 1) :|
Put Y = (1 — y))/(1 — y), and Y, = (1 — y,)/(1 — y,). Then
(3.22) n=1—(1 =y Suplgygyl'% {% - (12Y VT I» .

Assuming the supremum occurs at some point interior to the interval (1, Y;),
differentiation shows that it occurs where
(3.23) LS — 1/ + W) =2Y/{(1 + W)*W(Q2Y — 1)}
where W? =1 — (2Y — 1)~%. Simplifying, we get first
WEW 4 1) = 2(1 — W)(1 + (1 — W),
and then (rejecting the root W = 0)
133 + 10W? —3W —4=0.

The only root in (0, 1) is at W = .5725 :--, whence Y = 1.1098 ... and the
supremum equals .778562774 = b as at (3.13). Substitution in (3.15) yields
(1.4). Note that (1 — y)=' = b + (2b)* = 2.026 - -- s0y, > .5 and the infimum
at (3.15)does occurin .5 < y, < 1. Also, Y; = (1 — y)/(1 —y,) = 67 > 1.1098,
so the supremum at (3.22) is interior to (1, Y;). :

4. Concluding remarks. If X is a bounded rv, X < o8 a.s. say, for some
finite ¢ > 1, then we can put § at (2.6) equal to g8, dispense with the other
term bounding 1 — G(x) for x = ¢8, and conclude that U(x) < dx, + o8 (all x).
This refinement is useful only if ¢ < 1.3186 .- .,
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It should be noted that A-'U(x) — x = V(x)EX is the expected length of
‘overshoot’ of a renewal process beyond x: that is, if §,=0,8, ..., §, =
S.—1 + X,, -+ are the successive epochs of a renewal process with {X,} i.i.d.
like X, and N(x) = inf{n: S, = x}, then V(x)EX = ESy,, — x. This interpreta-
tion does not appear to be of any use for studying y(F).

For any particular df F for which EX = 1, and with G(G~(y)) =y for 0 <
y < 1, the argument behind (3.9) yields

(4.1) 1(F) = infoc, o {GTH()/B + 1/20} -

For example, if Fis such that G(8/4) = £, then immediately y(F) < 1. However,
since G}(y) =y (all 0 < y < 1) (cf. (3.4)), the infimum at (4.1) can be < 1
only if 8 = 2.

In cases where F has a density function f and the hazard rate f(x)/R(x) is a
monotone function, rather better bounds than (1.1) and (2.6) may be available.
If the mean residual life E(X — x| X > x) is a bounded function of x (which
requires that R(x) = o(x~*) for every positive @ as x — o), then Marshall (1973)
has given bounds that may be still tighter. A review of related results is con-
tained in Butterworth and Marshall (1974).
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