ANOTHER UPPER BOUND FOR THE RENEWAL FUNCTION

By D. J. DALEY

Australian National University

The general renewal equation and real variable methods are used to show that for a renewal process with generic lifetime random variable $X \ge 0$ having distribution F and finite first and second moments $EX = \lambda^{-1}$ and EX^2 , the renewal function $U(x) = \sum_{0}^{\infty} F^{n^*}(x)$ satisfies $U(x) \le \lambda x_+ + C\lambda^2 EX^2$ for a certain constant C independent of F. Stone (1972) showed that $1 \le C \le 2.847 \cdots$; it is proved here that $C \le 1.3186 \cdots$ and conjectured that C = 1.

1. Introduction. It has been shown by Stone (1972) that the renewal function

$$U(x) = \sum_{n=0}^{\infty} F^{n*}(x)$$

of a random walk whose generic step length X has right-continuous distribution function (df) F with finite first and second moments $EX = \lambda^{-1} > 0$ and EX^2 satisfies

$$(1.1) U(x) \le \lambda x_+ + C \lambda^2 E X^2$$

for some finite constant C independent of F. He showed by example that $C \ge 1$, and established by Fourier analytic methods that $C \le \eta = 2.846753 \cdots$ where η is the positive root of

$$(1.2) 2 \int_0^{\eta} (\eta - u) \{ \sin \frac{1}{2} u / \frac{1}{2} u \}^2 du = 1 + 2\pi.$$

Below, we use real variable methods to show in the less general case that F(0-)=0, so that the random walk is a renewal process, firstly that

$$(1.3) C \leq 1.5,$$

and then, by refining the argument, that

$$(1.4) C \leq 1.3185649 \cdots.$$

The method used may be capable of further refinement and extension: to date we have not been successful in applying it to the general random walk where by refining Stone's Fourier transform argument we have shown (Daley, 1976) that C < 2.081. Certainly though, the evidence lends credence to the conjecture that C = 1.

We recall for later use some of the motivation for (1.1). It is known (e.g. Theorem XI. 3.1 of Feller (1971)) that for a renewal process, either F is non-arithmetic and

$$(1.5) U(x) - \lambda x_+ \to \beta/2 x \to \infty$$

Received September 24, 1974; revised June 25, 1975. AMS 1970 subject classification. Primary 60K05. Key words and phrases. Renewal function, bound. 110 D. J. DALEY

where $\beta = \lambda^2 E X^2 = E X^2 / (E X)^2$, or else F is a lattice distribution, with lattice span h, say, and for $0 \le t < h$,

$$(1.6) U(nh+t) - \lambda(nh+t) \rightarrow \beta/2 + \lambda h(\frac{1}{2} - t/h) n \rightarrow \infty.$$

In either case then,

$$\sup_{x} \{U(x) - \lambda x_{+}\} = \gamma \beta$$

for some finite

$$\gamma = \gamma(F) \ge (1 + \lambda h \beta^{-1})/2,$$

putting h = 0 in the nonlattice case. If equality holds here, since $\lambda h \leq \beta$, we must have $\gamma(F) \leq 1$. Otherwise (and henceforth we shall assume it to be the case), the right-continuity of U then ensures that for some not necessarily unique finite ζ ,

$$(1.9) U(\zeta) - \lambda(\zeta) = \gamma \beta.$$

2. Proof of (1.3). For the moment, let F be the df of any (not necessarily nonnegative) rv X with mean $\lambda^{-1} > 0$ and finite standardized second moment $\beta = EX^2/(EX)^2$. Let I(x) = 0 or 1 as $x < \text{or } \ge 0$, and set

(2.1)
$$G(x) = \lambda \int_{-\infty}^{x} (I(u) - F(u)) du = \lambda \int_{0}^{\infty} (I(x - u) - F(x - u)) du$$
.

Then $I(x) - G(x) \ge 0$ (all x), I(x) - G(x) is convex on $(-\infty, 0)$ and $(0, \infty)$, and

$$(2.2) \beta = \lambda^2 E X^2 = 2\lambda \int_{-\infty}^{\infty} (I(u) - G(u)) du.$$

Recall (Chapter XI of Feller (1971)) that $U = \sum_{n=0}^{\infty} F^{n^*}$ is that solution Z of the general renewal equation Z = z + Z * F, i.e.,

$$(2.3) Z(x) = Z(x) + \int_{-\infty}^{\infty} Z(x - y) dF(y)$$

for which z(x) = I(x). The function λx_+ is the solution of (2.3) for which z(x) = G(x), and since in general (2.3) has the solution Z = z * U, we can write

$$(2.4) V(x) \equiv U(x) - \lambda x_{+} = \int_{-\infty}^{\infty} (I(x-u) - G(x-u)) dU(u).$$

Observe that the nonnegativity of I - G and the nondecreasing nature of U ensure that $U(x) - \lambda x_+ \ge 0$ (all x).

The strategy used below to bound V is to bound I - G and appeal to (2.4); this principle is essentially used also in Feller (1948). So far we have been successful in bounding I - G in a useful manner only when F(0 -) = 0. Then U(x) = 0 (x < 0), and also

$$(2.5) 1 - G(x) \le 2G(x)(1 - G(x)) \le 2(G(x) - G^{2*}(x))$$

provided $G(x) \ge .5$, which is certainly the case for all $x \ge \beta/2\lambda$ because 1 - G is convex and has integral $\beta/2\lambda$ (see (2.2)).

Define $z_0(x) = 1$ or $2(G(x) - G^{2*}(x))$ as $\lambda x < \text{or } \ge \beta/2$. Then writing $\xi = \beta/2\lambda$,

(2.6)
$$V(x + \xi) \leq (z_0 * U)(x + \xi)$$
$$\leq U(x + \xi) - U(x) + 2((I - G) * G * U)(x + \xi).$$

Now

(2.7)
$$(I - G) * G * U = (I - G) * (\lambda x_{+}) * (I - F) * U$$
$$= (I - G) * (\lambda x_{+}) \le \beta/2 ,$$

so putting $x = \zeta$, rearranging, and recalling (1.9),

(2.8)
$$U(\zeta) - \lambda(\zeta + \hat{\xi}) = \gamma \beta - \lambda \hat{\xi} \le \beta,$$

whence $C = \sup \gamma(F) \leq 1.5$ and (1.3).

3. Refinement and proof of (1.4). Our more detailed analysis depends in the first place on examining

$$(3.1) C_{\beta} \equiv \sup_{F \in \mathscr{C}_{\beta}} \gamma(F)$$

where \mathscr{G}_{β} denotes the class of df's G defined as at (2.1) in terms of F with the properties stated there.

LEMMA 1. $C_{\scriptscriptstyle B}$ is a nondecreasing function of β .

PROOF. Given a rv X with the df F, define a new rv X_q (0 < q < 1) by $X_q = X$ with probability q, = 0 otherwise. Let F_q be the df of X_q , and let

$$(3.2) U_q = \sum_0^\infty F_q^{n^*} = \sum_0^\infty ((1-q)I + qF)^{n^*} = \sum_0^\infty F^{n^*}/q$$

be its renewal function. Then since

$$\lambda_q \equiv 1/EX_q = 1/qEX = \lambda/q$$
, $\beta_q \equiv \lambda_q^2 EX_q^2 = q\lambda_q^2 EX^2 = \beta/q$, $\gamma(F_q)\beta_q = \sup_x (U_q(x) - \lambda_q x_+) = \sup_x (U(x) - \lambda x_+)/q = \gamma(F)\beta/q$,

and so $\gamma(F_q) = \gamma(F)$. Thus, the family of sets $\{\tau : \gamma(F) = \tau \text{ for some } F \in \mathscr{G}_{\beta}'\}$ is monotone nondecreasing in β , and hence the lemma.

It will be convenient from this point on to take $\lambda = 1$, and to define \mathcal{G}_{β} as \mathcal{G}'_{β} so restricted (there is no loss of generality in this procedure) and also restricted to the df's of nonnegative rv's X (the lemma above does not need this restriction). Then any G in \mathcal{G}_{β} has

(3.3)
$$G(0) = 0 \le G'(0+) = 1 - F(0+) \le 1,$$

and since G(x) is concave on $(0, \infty)$ and satisfies (2.2) with $\lambda = 1$,

(3.4)
$$x \ge G(x) \ge x/\beta$$
 for $0 \le x \le \beta/2$.

Indeed, it is somewhat tedious but not difficult to use (2.2) and the first part of (3.4) to show that the class \mathcal{G}_{β} generates the set

(3.5)
$$\mathscr{D}_{\beta} = \{(x, G(x)) : G \in \mathscr{G}_{\beta}, x \ge 0\}$$
$$\equiv \{(x, y) : 0 \le y < 1, y \le x \le \xi(\beta, y)\} \cup \{(x, 1) : x \ge \beta\}$$

where

(3.6)
$$\xi(\beta, y) = \beta y \qquad 0 \le y \le .5$$
$$= (\beta - (2y - 1)^2)/4(1 - y) \qquad .5 \le y < 1.$$

Refer back to (2.5)—(2.8), interpret ξ more generally, and define

(3.7)
$$z_1(x) = 1$$

$$= (G(x) - G^{2*}(x))/y_1$$

$$0 \le x \le \xi$$

$$x > \xi$$

for some $y_1 > 0$. It is clear that

$$(3.8) z_1(x) \ge 1 - G(x)$$

for $x \le \xi$, and also for x and G such that $G(x) = y \ge y_1$ (cf. (2.5)). If (3.8) holds for all x, then the argument from (2.6) to (2.8) shows that

$$(3.9) C \leq \xi/\beta + 1/2y_1.$$

It remains to determine ξ and y_1 jointly, in an optimal fashion. We give an outline of the argument in which a key step is Lemma 2.

LEMMA 2. Given y = G(x) and $x = O(\beta)$ for large β ,

(3.10)
$$G(x) - G^{2*}(x) \ge y(1-y) + (y-\eta)^2/2 + o(1)$$

(3.11)
$$= y(1-y) - \frac{(1-y)^2}{2} + \frac{(1-y)^2}{1 + \left[1 - \left(\frac{\beta}{2x(1-y)} - 1\right)^{-2}\right]^{\frac{1}{2}}} + o(1).$$

Fix y_0 in $.5 \le y_0 < 1$ so that by (3.6),

$$(3.12) x \leq \xi_0 \equiv \beta/4(1-y_0) + O(1).$$

We shall use (3.11) to show that if $x \ge \xi_0$ and

$$(3.13) y = G(x) \le y_1 = 1 - b + by_0$$

for a certain constant b, then

(3.14)
$$G(x) - G^{2*}(x) \ge y_1(1-y),$$

and hence (3.9) does indeed hold. As an immediate consequence we have that

(3.15)
$$C \leq \inf_{.5 \leq y_0 < 1} \{ 1/4(1 - y_0) + 1/2(1 - b(1 - y_0)) \}$$
$$= (2 + (2b)^{\frac{1}{2}})^2/8.$$

PROOF OF LEMMA 2. Let y = G(x). Then

(3.16)
$$G^{2*}(x) = \int_0^x G(x-u) dG(u) \le \int_0^x G_{\eta}(x-u) dG(u)$$
$$= \int_0^x G(x-u) dG_{\eta}(x-u) \le G_{\eta}^{2*}(x)$$

where $\eta \equiv \eta(x, y)$ is the index of the extremal $G_{\eta} \in \mathcal{G}_{\beta}$ for which $G_{\eta}(x) = y$ and

(3.17)
$$G_{\eta}(z) = z$$
 $0 \le z \le \eta$
= $1 - (1 - \eta)(\beta - \eta - (1 - \eta)z)_{\perp}/(\beta - 1 + (1 - \eta)^2)_{\perp}$ $z > \eta$

observing that η (in case of possible ambiguity) is the larger positive root of

$$(3.18) \qquad (\beta - 1 + (1 - \eta)^2)(1 - y) = (1 - \eta)(\beta - \eta - (1 - \eta)x).$$

For $x = O(\beta)$ and large β , (3.18) can be written as

$$(3.19) \qquad (y-\eta)^2 - 2(y-\eta)[\beta/2x - (1-y)] + (1-y)^2 + o(1) = 0.$$

Also, rewriting the part of (3.17) relating to $z = O(\beta) \gg \eta$ in the form

$$G_{\eta}(z) = \eta + (1 - \eta)^2 z / \beta + o(1)$$

it follows that

$$G_n^{2*}(x) = y^2 - (y - \eta)^2/2 + o(1).$$

Combining (3.16) and (3.20) yields (3.10), and substituting from the solution of (3.19) into (3.10) yields (3.11).

Take $1 > y_1 > y_0$, and suppose that the right-hand side of (3.11) exceeds $y_1(1-y)$ for given y in $y_0 < y < y_1$ for all $\xi_0 < x < \beta/4(1-y)$. Then since the infimum of (3.11) with respect to x occurs at $x = \xi_0$, we can define

$$(3.21) y_1 = \inf_{y_0 < y < y_1} \left\{ y - (1 - y)/2 + \frac{1 - y}{1 + \left[1 - \left(\frac{2(1 - y_0)}{1 - y} - 1\right)^{-2}\right]^{\frac{1}{2}}} \right\}.$$

Put
$$Y = (1 - y_0)/(1 - y)$$
, and $Y_1 = (1 - y_0)/(1 - y_1)$. Then

$$(3.22) y_1 = 1 - (1 - y_0) \sup_{1 \le Y \le Y_1} \frac{1}{Y} \left\{ \frac{3}{2} - \frac{1}{1 + [1 - (2Y - 1)^{-2}]^{\frac{1}{2}}} \right\}.$$

Assuming the supremum occurs at some point interior to the interval $(1, Y_1)$, differentiation shows that it occurs where

$$(3.23) 1.5 - 1/(1 + W) = 2Y/\{(1 + W)^2W(2Y - 1)^3\}$$

where $W^2 = 1 - (2Y - 1)^{-2}$. Simplifying, we get first

$$W(3W+1) = 2(1-W)(1+(1-W^2)^{\frac{1}{2}}),$$

and then (rejecting the root W = 0)

$$13W^3 + 10W^2 - 3W - 4 = 0.$$

The only root in (0, 1) is at $W = .5725 \cdots$, whence $Y = 1.1098 \cdots$ and the supremum equals .778562774 = b as at (3.13). Substitution in (3.15) yields (1.4). Note that $(1 - y_0)^{-1} = b + (2b)^{\frac{1}{2}} = 2.026 \cdots$ so $y_0 > .5$ and the infimum at (3.15) does occur in .5 $< y_0 < 1$. Also, $Y_1 = (1 - y_0)/(1 - y_1) = b^{-1} > 1.1098$, so the supremum at (3.22) is interior to $(1, Y_1)$.

4. Concluding remarks. If X is a bounded rv, $X \le \sigma \beta$ a.s. say, for some finite $\sigma > 1$, then we can put ξ at (2.6) equal to $\sigma \beta$, dispense with the other term bounding 1 - G(x) for $x \ge \sigma \beta$, and conclude that $U(x) \le \lambda x_+ + \sigma \beta$ (all x). This refinement is useful only if $\sigma \le 1.3186 \cdots$.

114 D. J. DALEY

It should be noted that $\lambda^{-1}U(x)-x=V(x)EX$ is the expected length of 'overshoot' of a renewal process beyond x: that is, if $S_0=0, S_1, \dots, S_n=S_{n-1}+X_n, \dots$ are the successive epochs of a renewal process with $\{X_n\}$ i.i.d. like X, and $N(x)=\inf\{n\colon S_n\geq x\}$, then $V(x)EX=ES_{N(x)}-x$. This interpretation does not appear to be of any use for studying $\gamma(F)$.

For any particular df F for which EX = 1, and with $G(G^{-1}(y)) = y$ for 0 < y < 1, the argument behind (3.9) yields

(4.1)
$$\gamma(F) \leq \inf_{0 < y < 1} \{ G^{-1}(y) / \beta + 1/2y \} .$$

For example, if F is such that $G(\beta/4) = \frac{2}{3}$, then immediately $\gamma(F) \le 1$. However, since $G^{-1}(y) \ge y$ (all 0 < y < 1) (cf. (3.4)), the infimum at (4.1) can be ≤ 1 only if $\beta \ge 2$.

In cases where F has a density function f and the hazard rate f(x)/R(x) is a monotone function, rather better bounds than (1.1) and (2.6) may be available. If the mean residual life E(X-x|X>x) is a bounded function of x (which requires that $R(x)=o(x^{-\alpha})$ for every positive α as $x\to\infty$), then Marshall (1973) has given bounds that may be still tighter. A review of related results is contained in Butterworth and Marshall (1974).

REFERENCES

- BUTTERWORTH, R. W. and MARSHALL, K. T. (1974). A survey of renewal theory with emphasis on approximations, bounds, and applications. Tech. Report NPS-55BD74051, Operations Res. and Admin. Sci. Dept., Naval Post-Graduate School, Monterey, California.
- Daley, D. J. (1976). Upper bounds for the renewal function via Fourier methods. Unpublished manuscript.
- Feller, W. (1948). On probability problems in the theory of counters. In Studies and Essays presented to R. Courant on his 60th Birthday 105-115 (Courant Anniversary Volume). Interscience, New York.
- Feller, W. (1971). An Introduction to Probability Theory and its Applications 2, 2nd ed. Wiley, New York.
- Marshall, K. T. (1973). Linear bounds on the renewal function. SIAM J. Appl. Math. 24 245-250.
- Stone, C. J. (1972). An upper bound for the renewal function. Ann. Math. Statist. 43 2050-2052.

STATISTICS DEPARTMENT (IAS)
AUSTRALIAN NATIONAL UNIVERSITY
P.O. Box 4
CANBERRA, A.C.T. 2600, AUSTRALIA