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ANOVA: A Paradigm for Low Power and 
Misleading Measures of Effect Size? 

Rand R. Wilcox 
University of Southern California 

Over 30 years ago, Tukey made it evident that slight departures from 
normality can substantially lower power when means are compared, and 
that a popular measure of effect size can be highly misleading. At the time 
there were no methods for dealing with the problem raised in Tukey's paper, 
and some of the more obvious and seemingly intuitive solutions have since 
been found to be highly unsatisfactory. Today there are practical methods 
for not only dealing with the problem raised by Tukey, but also achieving 
more accurate confidence intervals and control over the probability of a 
Type I error. More generally, there are many robust and exploratory ways 
of comparing groups that can reveal important differences that are missed 
by conventional methods based on means, and even modern methods based 
solely on robust measures of location. This article reviews these new tech- 
niques. 

Suppose two methods of teaching high school algebra are being investigated. 
One group learns algebra using Method A, and an independent group uses Method 
B. Once data are collected, how should these two groups be compared? Of course, 
the most common approach in education and psychology is to compare means, 
though some would use the Mann-Whitney-Wilcoxon test instead. Today there 
are many alternative solutions that can reveal important and interesting differences 
that are missed by these more conventional techniques. Some of these newer 
methods are based on replacing the mean with some other measure of location. 
The term measure of location is formally defined below, but for now it suffices 
to think of it as a measure intended to represent the typical individual under 
study. The mean and median are the two best-known examples of measure of 
location, but other important measures of location are available which are 
reviewed in this article. Much of this article deals with comparing measures of 
location, but it is stressed that when attention is restricted to comparing measures 
of location, interesting differences between groups can be missed. One of the 
main goals in this introductory section is to describe methods that can supplement 
techniques based solely on measures of location and why they can be useful. 
These methods are generally called robust and exploratory techniques, and are 
described in more detail in the two books by Hoaglin, Mosteller, and Tukey 
(1983, 1985), which are written at a relatively nontechnical level. Here the goal 
is to supplement these two books by describing some recent graphical tools and 
related techniques for comparing groups. A related goal is to point out that 
popular measures of effect size can be highly misleading for reasons that are 
explained below. 
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Before continuing, one point should be stressed. While this article is critical 
of standard methods for comparing means and related measures of effect size, 
it is not being implied that all published research is inaccurate. On the positive 
side, when a researcher reports a significant result when testing some hypothesis, 
a truly significant result has probably been found. The concern is that many 
nonsignificant results might have been highly significant if some alternative 
method had been used, and there is the concern that significance levels and 
reported probability coverage of confidence intervals might be highly inaccurate. 
A more general and perhaps more important issue is that flexibility and alternative 
ways of viewing data can be very important. 

To begin to appreciate why global comparisons of distributions can be useful, 
as opposed to comparing measures of location, first consider the problem of 
comparing two independent and normally distributed random variables. More 
realistic situations are considered below. To be concrete, suppose Y corresponds 
to an experimental method for teaching algebra having mean xL,, and X represents 
a control or standard method with mean I2. Suppose IJ = 92 = 9, but Y has 
variance &o2 = .2, while X has variance oT = 1. Assume that high Y values 
indicate that the experimental method is more effective than the control. Of 
course, any method for comparing means should not reject Ho: [l- = ,p2, and for 
the situation at hand, none of the methods considered in this article for comparing 
alternative measures of location should reject, either. Yet there is a potentially 
important difference: Students who do poorly under the standard method benefit 
from the experimental method, but the experimental method is detrimental for 
students who do well using the standard technique. 

One way of dealing with this problem is to compare the quantiles of the two 
groups. For the situation at hand, one might also compare variances, but comparing 
quantiles can be more revealing for reasons that will become evident. Let xp be 
the pth quantile corresponding to the random variable X. Thus, x5 is the median. 
Consider graphing xp versus 8(xp) = yp - xp, the difference between the quantiles. 
If 8(xp) > 0, students who are at the pth quantile of the standard method would 
typically perform better under the experimental method; and if 6(xp) < 0, the 
experimental method is detrimental. Figure 1 shows a graph of 6 versus xp for 
the two normal distributions in the illustration for the deciles, p = .1, .2, .3, .4, 
.5, .6, .7, .8 and .9. 

The quantity 6(xp) is known as a shift function and has been studied by Doksum 
(1974, 1977) as well as Doksum and Sievers (1976). One concern is that groups 
might differ in more complicated ways than is the case in the illustration just 
given, and Doksum (1977) reanalyzes some data on the effect of radiation on 
mice to demonstrate this point. Here, data analyzed by Salk (1973) is used to 
provide yet another illustration. A portion of Salk's study dealt with weight gain 
in newborns weighing at least 3,500 grams at birth. These newborns were sepa- 
rated into two groups. The first group was continuously exposed to the recorded 
sound of a human heartbeat, while the other group acted as a control. The equality 
of the means of the two groups was tested with Student's t test and rejected at 
the .05 level of significance. Figure 2 shows an estimate of the shift function 
where the quantiles are estimated using the method derived by Harrell and 
Davis (1982). The Minitab macro dshift.mtb in Wilcox (in press-c) performs the 
necessary computations. The point here is that the graph descends, levels off, 
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FIGURE 1. Shift function for a hypothetical new teaching method 
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FIGURE 2. Estimated shift function for data on weight gain in newborns 
Note. Data are from Salk (1973). 
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and then descends again. This indicates that the largest effect occurs for babies 
who have a relatively large loss of weight without the treatment. Clearly 8(xp) 
can be important because it provides a more refined method of determining who 
might benefit from a particular treatment. Of particular importance is that 8(xp) 
can reflect differences not indicated by tpi - ,12 or by the difference in any other 
measure of location. A method for obtaining simultaneous confidence intervals 
for xp - yp when working with deciles is outlined in Wilcox (in press-c); the 
necessary computations are done with his Minitab macro mq.mtb, and details of 
how this method performs can be found in Wilcox (in press-b). 

Several other methods have been proposed which also capture the spirit of the 
shift function. The best known is the Kolmogorov-Smirov test, but it has rela- 
tively low power, and its power can increase slowly as the sample sizes get large 
(Randles & Wolfe, 1979, p. 384). Doksum and Sievers (1976) derived a confidence 
band for all quantiles using a Kolmogorov-Smirov statistic, and a related method 
was derived by Switzer (1976). Earlier related work is the quantile-quantile plot 
of Gnanadesikan and Wilk (1968), and a method based on ranks was proposed 
by O'Brien (1988). O'Brien provides additional illustrations of why these tech- 
niques can be important. Yet another graphical approach is to draw a boxplot of 
two groups, one on top of the other and on the same scale. An illustration is 
given in Wilcox (in press-c, chapter 8). For results on the properties of the 
boxplot, see Brant (1990). For graphical methods aimed at comparing multiple 
groups, see Tukey (1993). Finally, global measures of how groups differ can be 
obtained by estimating the distributions corresponding to each group using meth- 
ods such as those in Silverman (1986). 

Some Practical Reasons for Using Robust Measures of Location and 
Effect Size 

Now consider the problem of comparing groups based on some measure of 
location. There are two related concerns about power when sample means are 
used: outliers and heavy-tailed distributions. To illustrate the first, consider the 
data in Wilcox (1992d) which deals with a study on self-awareness. The sample 
means are 448 and 599. Using Welch's test of Ho: [LI > L2, the significance level 
is .24. However, comparing the groups in terms of 20% trimmed means or one- 
step M-estimators, which are robust measures of location described below, yields 
a significant difference at the .05 level. Moreover, various papers described 
below indicate that these tests generally provide better control over Type I 
error probabilities, especially when distributions are skewed. The reason for the 
discrepant results is that the first group has two extreme outliers (unusually large 
values relative to the bulk of the available data) that are revealed by a boxplot, 
and the second group has an extreme outlier, as well. Outliers inflate the standard 
error of the sample mean, which, in turn, lowers power. Many robust estimators 
of location have standard errors that are relatively insensitive to outliers, and in 
the illustration this is why it was possible to reject. However, even when there 
are no outliers, different measures of location can give different results for reasons 
explained below. 

Ever since Tukey (1960) published his work on the contaminated normal 
distribution, it has been clear that slight departures from normality can have 
devastating effects on power when means are compared, and that popular mea- 
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sures of effect size can be misleading, as well. The contaminated normal is an 
example of a distribution with a heavy or thick tail relative to the normal distribu- 
tion. Tukey's paper had no immediate impact on applied research because it was 
unclear at the time how a researcher might address the problem he discussed. 
During the ten years following Tukey's paper, a few mathematical statisticians 
began laying a foundation for getting better results. Of particular interest is the 
theory of robustness developed by Huber (1964) and Hampel (1968). By the 
year 1974, there were some practical solutions for the one- and two-sample cases, 
but general techniques for more complicated designs were not available even a 
few years ago. Today, any of the common experimental designs can be improved. 

Figure 3 shows a standard normal and a contaminated normal distribution. A 
contaminated normal is formed by sampling from a standard normal distribution 
(having mean 0 and variance 1) with probability 1 - e; alternatively, sampling 
is from a normal distribution having mean 0 and standard deviation K. (Readers 
interested in further technical details can refer to Hoaglin et al., 1983). In Figure 
I, E = .1 and K = 10. There is an obvious similarity between the two distributions. 
The tails of the contaminated normal actually lie above the tails of the normal, 
but this is difficult to discern without extending the range of x values and drawing 
the figure on a much larger scale. The main point is that while the standard 
normal has variance 1, the contaminated normal has variance 1 - E + EK2 = 
10.9. Put another way, if sampling is from the contaminated normal, even when 
the variance is known, the length of the confidence interval for the population 
mean ,L, will be over 3 times longer than what it is when sampling from the 
normal distribution instead, and this has obvious implications for power. The 
problem is that or, the standard deviation, is highly sensitive to the tails of a 
distribution, so seemingly small departures from normality can inflate the standard 
error of the sample mean, u/;n, where n is the sample size. One might try to 
salvage the situation by arguing that the contaminated normal distribution is 
actually a large departure from normality. The extreme quantiles differ substan- 
tially, which results in large differences between the standard deviations. But in 
terms of common metrics for comparing distributions (the Kolmogorov, Levy, 
and Prohorov, the latter two being discussed by Huber, 1981), there is little 
difference between the normal and contaminated normal. Gleason (1993) com- 
pares them in terms of what he calls elongation and concludes that there is 
little difference. 

f(x) 

.....o.. normal curve 

.......* 
* 

.. '?...... . X 

-3 -2 -1 0 1 2 3 
FIGURE 3. Normal and contaminated normal distributions 
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To add some perspective, look at Figure 4, which shows two normal distribu- 
tions with means 0 and 0.8, both having variance 1. Consider the common 
measure of effect size 

A = 1I - Ix21 
or 

where p,j is the mean of the jth group, and the groups have a common standard 
deviation a, = r2 = o. Cohen (1977, p. 26) defines a medium measure of effect 
size as one large enough to be visible to the naked eye, and for normal distributions 
he concludes that A values equal to .2, .5, and .8, correspond to small, medium, 
and large effect sizes. Thus, Figure 4 has A = .8, which is large. Now look at 
Figure 5, which shows two contaminated normals, again with means 0 and 0.8. 
Then A = .24, which is supposedly small, yet by appearances the effect size 
is large. 

It has already been illustrated that outliers can substantially reduce power 
when one is working with sample means, and in a similar manner, heavy-tailed 
distributions inflate the standard error of the sample mean. As a result, power 
might be low relative to methods based on other measures of location. For 
example, suppose sampling is from two normal distributions with R.I - Ip2 = 1 
and variances equal to 1. Then with o = .05, and n\ = n2 = 25, Student's t test 
has power .957, while Welch's (1951) test has power approximately equal to .93. 
If, instead, sampling is from contaminated normal distributions, again with 

f(x) 

-3 -2 -1 0 1 2 3 
FIGURE 4. Graphical display of A .8 for two normal distributions 
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FIGURE 5. Graphical display of A = .24 for two contaminated normals FIGURE 5. Graphical display of A = .24 for two contaminated normals 
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-i1 - 12 = 1, then these two procedures have power approximately equal to .28, 
based on simulations with 10,000 replications, and this agrees with the usual 
approximation for power derived under the assumption of normality. However, 
powers for three other procedures compared by Wilcox (1992d) range between 
.78 and .80, with little loss in power when distributions are normal. One of these 
is Yuen's (1974) method for trimmed means, based on 20% trimming, while the 
other two are recently developed methods for the median and a measure of 
location called a one-step M-estimator. (More details are given later in the article. 
Computational details, plus Minitab macros for applying these techniques, can 
be found in Wilcox, in press-c). Thus, to the extent that one wants to reject when 
groups differ, these newer procedures are of interest. There are a variety of other 
issues that one might consider before choosing a procedure; these are discussed 
below. Note that when dealing with power under nonnormality, Glass, Peckham, 
and Sanders (1972) focus exclusively on power as a function of A. Hence, the 
results just reported are consistent with their paper, but the point here is that 
other procedures can have substantially more power. 

To describe yet another problem related to outliers, let X, and X2 be the sample 
means corresponding to two groups, and suppose X2 > Xi, and that Ho: pl = 1x2 
is rejected with ao = .05 using either Welch's method or Student's t test. Now 
suppose the largest observation in the second group is made even larger, so 
X2 - X increases as well. It would seem that there is stronger evidence for 
concluding that 12 > RIL, yet eventually both tests for means will not reject 
because of the corresponding increase in the standard error. Illustrations are given 
in Staudte and Sheather (1990) as well as Wilcox (in press-c). 

It should be stressed that outliers are not the only reason for considering robust 
methods. Small shifts in a distribution can have a large impact on the mean 
which might render it a potentially misleading measure of the typical individual. 
Consider, for example, a chi-square distribution with 4 degrees of freedom which 
has mean 4. If the distribution is contaminated by multiplying an observation by 
10 with probability .1, it does not change very much based on typical metrics 
for comparing distributions. However, the mean is affected considerably as 
depicted in Figure 6, which also shows the location of the median, 0 = 3.75, 
and the 20% trimmed mean, 11t = 4.2, which is discussed in more detail in 

f(z) 

. = 3.75 
.*" '*-.pt = 4.2 ' 

=-. . p 7.6 

? x 
0 2 4 6 8 10 12 16 

FIGURE 6. Measures of location for a contaminated chi-square distribution 
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subsequent sections. The mean is increased to 7.6, and its value is so far in the 
right tail, one might argue that it is not a very good reflection of the typical person. 

During the early years of modem mathematical statistics, there were reasons 
to suspect that strict adherence to means, when describing and comparing groups, 
might be a problem (Pearson, 1931; Student, 1927). These results were overshad- 
owed by theoretical results, summarized by Tan (1982), indicating that when 
two or more groups have identical distributions, conventional hypothesis testing 
procedures provide good control over the probability of a Type I error when 
distributions are nonnormal. In terms of power, however, there are several serious 
problems. Tukey's (1960) results imply that departures from normality that are 
difficult to detect can inflate the variance by a large amount, and this implies 
that power will be lowered. Moreover, Tukey argued that heavy-tailed distribu- 
tions and outliers are common in applied research. If this is true, low power due 
to nonnormality could be common. Surveys of data occurring in applied work 
indicate that severe departures from normality can arise in practice (Micceri, 
1989; Wilcox, 1990a). 

The remainder of this article provides a brief and relatively nontechnical 
introduction to robust measures of location and scale, and how they can be used 
to compare groups. Some of these issues are summarized by Wilcox (1992d, 
1993d). This article takes a much broader view of the problems that arise and 
the solutions that have been proposed. Elementary descriptions of many of the 
recently developed robust methods examined here are given in the textbook by 
Wilcox (in press-c). With Wilcox's book comes a floppy containing over 150 
Minitab macros for applying techniques not found in standard statistical packages. 
Consequently, numerical descriptions of these methods are kept to a minimum. 
Here, attention is focused on general technical issues and practical details that 
are relevant to experienced researchers who want a relatively nontechnical under- 
standing of how and why modem robust methods are relevant to their research. 

Building a Mathematical Foundation for More Robust Methods 

Applied researchers who do not religiously follow developments in mathemati- 
cal statistics might still have the impression that robust methods are based on 
ad hoc procedures. The purpose of this section is to indicate that this is not at 
all the case. While technical details are kept to a minimum, some mathematical 
comments are needed in order to convey how the foundations of modem robust 
procedures were developed. 

There are two fundamental and related problems that must be addressed. The 
first is finding analogs of the population mean and variance, ,L and a2, that are 
relatively insensitive to slight changes in a distribution. When dealing with effect 
size, for example, it is desirable to have a measure that is consistent with A when 
distributions are normal, but which does not give a distorted view of the magnitude 
of the effect size under slight departures from normality. The second problem is 
finding estimators of location and scale with standard errors that are also relatively 
insensitive to slight changes in a distribution. In particular, small departures from 
normality should not drastically color our perceptions about how groups differ, 
nor should they substantially lower power. Today there is a well established 
mathematical foundation for addressing these problems which is summarized in 
the books by Huber (1981); Hampel, Ronchetti, Rousseeuw, and Stahel (1986); 
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and Staudte and Sheather (1990). This section briefly reviews some aspects of 
these results that are particularly relevant to applied researchers. One of the most 
striking results is that intuitions about how to deal with outliers and heavy-tailed 
distributions, based in part on notions related to normal distributions, turn out 
to be completely unsatisfactory. For example, discarding outliers and applying 
Student's t test to the data that remain results in a procedure based on estimated 
standard errors that are not even asymptotically correct. That is, the estimated 
standard errors do not converge to the correct value as the sample sizes increase. 
Another common misconception is that outliers can be detected using rules based 
on s, the sample standard deviation. Because s can become highly inflated due 
to outliers, methods for detecting outliers that are based on s are subject to 
"masking." That is, the very presence of outliers hinders the ability of methods 
based on s to find them. A more satisfactory approach is to use a measure of 
dispersion that is insensitive to outliers. (See Brant, 1990; Davies & Gather, 
1993; Hadi, 1994; Barett & Lewis, 1984; Goldberg & Iglewicz, 1992; 
Rousseeuw & Leroy, 1987; and Rousseeuw & van Zomeren, 1990 for methods 
dealing with the detection of outliers.) 

Three different ways of assessing an estimator play a prominent role in modem 
statistical methods: (a) the breakdown point, (b) the influence function, and (c) 
the continuity of a descriptive measure. These concepts are described by Staudte 
and Sheather (1990, p. 44) as quantitative robustness, infinitesimal robustness, 
and qualitative robustness. But before delving into greater detail, we should 
perhaps be more precise about what is meant by a measure of location. It is 
intended to represent the typical subject, but what basic properties should it have? 
There are four properties that are usually imposed (e.g., Staudte & Sheather, 
1990, p. 101), and a fifth condition (described below) that is sometimes added. 

Suppose X has distribution F, and let 0(X) be some descriptive measure of the 
distribution. Then 0(X) is a measure of location if for any constants a and b, 

0(X + b) = 0(X) + b, (Condition 1) 
0(-X) = -0(X), (Condition 2) 

X > 0 implies 0(X) > 0, and (Condition 3) 
0(aX) = a0(X). (Condition 4) 

Condition 1 is called location equivariance and simply requires that if b is added 
to every observation, then a measure of location should be increased by the same 
amount. Conditions 1-3 imply that any measure of location should have a value 
within the range of values of X. Condition 4 is called scale equivariance and 
guarantees that estimators of measures of location, such as the sample mean, 
give results independent of the unit of measurement. In the context of testing 
hypotheses, it should not be possible to multiply all the observations by the 
constant a and come to different conclusions about whether two groups differ. 
There are many measures of location in addition to the mean and median. To 
make judgments about how measures of location compare, additional desiderata 
must be imposed. 

The discussion of the contaminated normal and chi-square distributions sug- 
gests one approach to characterizing robust and resistant measures of location, 
and these distributions are examples of what is called a contamination neighbor- 
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hood. That is, they represent a family of distributions that are in some sense 
close to a distribution of interest, E Other neighborhoods have been defined, but 
they can be conceptually inadequate as argued by Huber (1981, pp. 11-12). A 
more satisfactory point of view has been developed, but involves technical details 
that go beyond the scope of this article. (In terms of determining whether a 
distribution is close to F, the Levy and Prohorov distances play an important 
role, but the technical details are not covered in this review. See Huber, 1981, 
for further information.) It is possible, however, to gain some sense of how to 
proceed by first considering a few comments about mathematics. 

Consider any function, say f(x), not necessarily a probability function, and 
suppose we want to impose restrictions on (x) so that it does not change substan- 
tially with very small changes in x. Two restrictions that might be imposed are 
that f(x) is differentiable, and that the derivative be bounded. For example, if 
f(x) = x2, and x is positive, then the rate at which f(x) increases gets larger as x 
goes to infinity. This rate is 2x, the derivative of f(x). A key element of modem 
robust statistical methods is an analog of these two restrictions for working with 
measures of location and scale. 

The analog is obtained by viewing descriptive measures as functionals, which 
are just mappings that assign real numbers to distributions. For example, the 
population mean i, can be written as 

T(F) = xdF(x), 

where F is any distribution function. That is, T(F) is a rule that maps any F into 
a real number. An advantage of this approach is that there are analogs of deriva- 
tives which indicate how sensitive T(F) happens to be in terms of slight changes 
in F, and it also leads to asymptotically correct estimators of standard errors. 
Derivatives of functionals are called Gateaux derivatives, and in the robustness 
literature they are generally known as an influence function. Thus, a basic require- 
ment of any measure of location and scale is that it have a bounded influence 
function. The population mean has the influence function IF(x) = x - i, which 
is unbounded. That is, it can be made arbitrarily large by increasing x. Put in more 
practical terms, for a skewed distribution, very small changes in a distribution, F, 
can have an arbitrarily large effect on px. The variance has an unbounded influence 
function as well, and this is why power can be poor when one is working with 
means, and A can be a misleading measure of effect size even with infinitely 
large sample sizes. 

The influence function approximates the relative influence on T(F) of small 
departures from F Roughly, it reflects the influence of adding an observation 
with value x to an already large sample. More formally, suppose 6x is a probability 
function where the value x occurs with probability 1. Then T((1 - E)F + E6,) 
is a functional, such as some measure of location, evaluated for a distribution 
where with probability 1 - e an observation is sampled from F, and with probabil- 
ity e the observed value is x. Put another way, there is probability 1 - e of 
getting a "good" observation, and probability e of getting a "bad" or contaminated 
value, x. Then T((1 - e)F + e8x) - T(F) measures the change due to including 
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x with probability e. Dividing this difference by e and taking the limit as E goes 
to zero provides the formal definition of the influence function. 

One of the more important roles played by the influence function is that when 
one is dealing with a measure of location other than the mean, it indicates how 
the standard error should be estimated. Let X, ..., Xn be a random sample, and 
let 0 be an estimator of 0, some measure of location that is of interest. For the 
more popular measures of location appearing in the robustness literature, 

0= 0 + IF(X,), (1) 

plus a remainder term that goes to zero in probability as the sample size increases. 
Thus, 0 can be written as the sum of independent and identically distributed 
random variables. Consequently, once the influence function has been determined, 
an estimator of the standard error is available as well from basic principles in 
mathematical statistics. 

As an illustration, consider the sample trimmed mean given by 

Xt = (X(g+l) + * +X(n g))/(n - 2g), 

where X(,) < * * * X(n) are the observations written in ascending order, and 
g = [kn], where k is some predetermined constant between 0 and .5, and the 
notation [kn] indicates that kn is rounded down to the nearest integer. (For 
example, [9.9] = 9.) In words, the sample trimmed mean is computed by removing 
the g largest and smallest observations and averaging the values that remain. 
(Choosing k, the proportion of observations to be trimmed, is discussed in the 
following section.) The influence function of the population trimmed mean can 
be used to show that the standard error of the sample trimmed mean, Xt, should 
be estimated as follows. Let 

1 
Xw = ((g + l)X(g+l) + X(g+2) + + X(n gl)+ (g + l)X(n-g)) 

be the Winsorized mean, and let 

SSD = (g + l)(X(g+) - Xw)2 + (X(g+2) - X)2 + * * 

+ (X(n-g-I) - X)2 + (g + 1)(X(-g)- X)2. 

The Winsorized sample variance is 

2 SSD 
n-1 

Then an asymptotically correct estimator of the standard error of the sample 
trimmed mean is swl{(l - 2k),n/}. Note that if you trim and then compute the 
sample variance with the data that remain, you do not get the Winsorized sample 
variance, s2w. The estimate of the standard error follows from the result that 
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Xt = C[t + - IF(X ), 

plus a remainder term that goes to zero in probability as n gets large, where pJt 
is the population trimmed mean and IF(Xi) is the influence function of the trimmed 
mean. That is, Xt can be written as the average of independent and identically 
distributed random variables, plus a term that can be ignored asymptotically, 
even though the order statistics used to compute Xt are dependent. When x is 
between Xk and x- k, the k and 1 - k quantiles of F, IF(x) = (x - L,w)/(1 - 2k), 
where Z,w is the population Winsorized mean estimated by Xw. When x > x -k, 
IF(x) = (x-_k - wL)/(l - 2k), while for x < Xk, IF(x) = (k - [Lw)/(1 - 2k). 
Note that the influence function is bounded below by (xk - gw)/(l - 2k), and 
it is bounded above by (xl-k - ILw)/(1 - 2k). (Readers interested in more technical 
details can refer to Huber, 1981, or Staudte & Sheather, 1990.) 

Another common criterion is the so-called finite sample breakdown point of 
an estimator. This refers to the proportion of observations which, when altered, 
can make an estimator arbitrarily large. Put another way, the finite sample break- 
down point reflects the amount of contamination that can be tolerated. For 
example, the finite sample breakdown point of the sample mean is only 1/n 
because if a single observation is increased indefinitely, then the sample mean 
goes to infinity. The sample variance has a finite sample breakdown point of 
only 1/n, as well. The limiting value of the finite sample breakdown point, as n 
gets large, provides a measure of the global stability of an estimator. For the 
sample mean this limit is zero, while for the trimmed mean it is k, the proportion 
of observations trimmed from both tails. The best that can be achieved is a finite 
sample breakdown point approximately equal to .5. The sample median has this 
property, and its standard error is relatively small when one samples from heavy- 
tailed distributions, but its standard error is relatively large for normal distribu- 
tions, resulting in potentially low power compared to other methods for compar- 
ing groups. 

M-Estimators 

There are many measures of location, including R-estimators, which are related 
to tests of hypotheses based on ranks. No attempt is made to describe all of these 
estimators here. A class of estimators of location that should be discussed, 
and which has received considerable attention in the statistics literature, is M- 
estimators, which contain maximum likelihood estimators as a special case. In 
their simplest form, M-estimators are estimates of measures of location, 0, where 
0 satisfies 

E{(x - 0)) = 0, (2) 

and T is some function chosen to have desirable properties. (For a more extensive 
yet relatively nontechnical discussion of M-estimators, see Hoaglin et al., 1983.) 
Note that for T(x) = x, 0 becomes the population mean, [L. M-estimators are 
mathematically appealing because they have a simple influence function, which 
aids in the choice of T. The two most popular choices for T are Tukey's biweight 
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and Huber's P, the latter given by P(x) = max -k, min(x, k)}. The constant k 
is a tuning constant chosen so that the estimator has good properties under 
normality. Typically k = 1.28, the .9 quantile of the standard normal distribution, 
and this value is used henceforth. There are serious estimation problems associated 
with Tukey's biweight (Freedman & Diaconis, 1982), so this approach is not 
discussed further. Using Huber's ', estimating 0 is easily accomplished and the 
estimator has a relatively high finite sample breakdown point (see Huber, 1981, 
p. 144), but other difficulties remain. Recall from Condition 4 for measures of 
location that if X has measure of location 0, then bX should have measure of 
location b0, whenever b > 0. In general, M-estimators satisfy all but the last 
criterion. This is easily corrected by incorporating a measure of scale into Equation 
2. The measure of scale typically used is the median absolute deviation statistic 
given by 

MAD = medlX, - MI, 

where M is the usual sample median. That is, subtract the median from each 
observation and then compute the absolute value of the resulting n observations, 
in which case MAD is the median of the absolute values just computed. MAD 
has a finite sample breakdown point of approximately .5, which is one reason it 
is commonly used. Iterative methods must be used to estimate 0, but typically 
one iteration via the Newton-Raphson method suffices. This yields 

_ 1.28(MAD)(i2 - i) + S 

n- il - i2 

where il is the number of observations Xi for which (Xi - M)IMAD < -k, i2 is 
the number for which (Xi - M)/MAD > k, and 

n-i2 

S= E Xi) 
i=il+l 

In other words, 0 empirically determines whether an observation is unusually 
large or small by comparing (Xi - M)IMAD to k; it then trims these observations 
and averages those that remain, but it also makes an adjustment based on a 
measure of scale, MAD. Note that when equal amounts of trimming are done 
(il = i2), MAD no longer plays a role in the estimate of 0. The estimator 0 is 
generally known as a one-step M-estimator of location. Although MAD has a 
finite sample breakdown point of .5, a criticism is that it is relatively inefficient. 
Rousseeuw and Croux (1993) consider alternative measures of deviation, but 
the implications of these measures, in terms of testing hypotheses, have not 
been explored. 

Bickel and Lehmann (1975) add a fifth criterion to the four that define a 
measure of location. Roughly, if the quantiles of a random variable X are greater 
than or equal to the quantiles of the random variable Y then any measure of 
location for X should be larger than the corresponding value for Y In general, 
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robust M-estimators do not satisfy this last criterion. Trimmed means satisfy all 
of the criteria described in this section, so some authorities believe they should be 
preferred in practice. Others argue that the one-step M-estimator is still reasonable 
because its value is close to the "bulk" of a distribution, and because it empirically 
determines how much trimming is done, while the trimmed mean does not. In 
particular, if a distribution is skewed to the right, say, it might seem preferable 
to trim more observations from the right tail compared to the left. Also, the one- 
step M-estimator includes the possibility of not trimming any observations at all. 

M-estimators in general, and the one-step M-estimator in particular, are asymp- 
totically normal. For symmetric distributions the one-step M-estimator has a 
fairly simple influence function, but for asymmetric distributions it takes on a 
rather complicated form (Huber, 1981, p. 140). Despite this, there are practical 
methods for making inferences about a one-step M-estimator, and estimates of 
its standard error can be obtained, as well. Details are given in some of the 
remaining sections of this article. 

For completeness, improvements on M-estimators appear to be possible (Mor- 
genthaler & Tukey, 1991), but many complications remain to be resolved, so 
they are not discussed. Still another possibility is the minimum volume ellipsoid 
estimator used by Rousseeuw and Leroy (1987). Also, other methods of empiri- 
cally determining how much trimming to do have been suggested (e.g., Hogg, 
1974), but technical difficulties typically render them of questionable value. (See 
the discussion following Hogg's article, particularly the comments by P. Huber.) 

Testing Hypotheses: The One-Sample Case 

This section takes up the problem of making inferences about a measure of 
location in the one-sample case. A general point of considerable practical impor- 
tance is that the measure of location chosen can be extremely important in terms 
of Type I errors, accuracy of a confidence interval, the interpretation of a measure 
of effect size, and power. In particular, rigid adherence to means can result in 
missing important differences even when there are large sample sizes. The ideal 
hypothesis testing procedure would have as much or more power than any other 
technique, but such a procedure has not been derived. In fact, despite the negative 
features related to means which are described in this section and the next, there 
are situations in which comparing means can have higher power than all other 
methods, even under nonnormality. Details and illustrations are given below. 

Attention is focused on trimmed means and one-step M-estimators of location 
because currently they seem to be two of the more important estimators for 
consideration in applied work. Issues that must be addressed are whether good 
control over Type I errors can be achieved, whether confidence intervals have 
accurate probability coverage, whether power compares well to methods based 
on means when distributions are normal, and whether there is a large difference 
in power when distributions have heavy tails. 

First consider trimmed means. Tukey and McLaughlin (1963) devised a method 
for testing hypotheses which uses Student's t distribution to approximate the null 
distribution with degrees of freedom v = n - 2g - 1. Results in Patel, Mudholkar, 
and Fernando (1988) support this approximation of the null distribution. More 
specifically, letting jit be the population trimmed mean, 
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n (1 - 2k)(X, - A,) 
T, = 

SW 

has, approximately, a Student's t distribution with n - 2g - 1 degrees of freedom. 
Using Tt to test hypotheses can yield substantially more power than Student's t 
test because the Winsorized standard deviation, sw, is less affected by heavy- 
tailed distributions and outliers. Note that s, effectively "pulls in" extreme values. 

To have any practical utility, a value for k, the amount of trimming, must be 
determined. Results in Rosenberger and Gasko (1983) indicate that k = .2 is a 
good choice, although with very small sample sizes they recommend k = .25 
or higher. Wilcox (1994c) derived analytic results showing that for skewed 
distributions, the more trimming is done, the better the control over the probability 
of a Type I error. However, if too much trimming is done, power might be poor 
for normal distributions. Wilcox found that a good compromise is k = .2, which 
gives good power for a shift model under normality, and which can yield substan- 
tially more power when there are outliers or distributions have heavy tails. 
Another point of view is that k be chosen according to how many outliers one 
expects based on experience with similar types of data. Yet another approach is 
to empirically determine the amount of trimming according to some criterion of 
interest, such as a relatively small standard error. These so-called adaptive trimmed 
means have been studied recently by Leger and Romano (1990a, 1990b) and 
Leger, Politis, and Romano (1992). 

While Student's t test is generally thought to be robust under nonnormality, 
control over the probability of a Type I error can be poor, especially when one 
is dealing with one-sided tests. For example, when one is testing Ho: [L > 0, and 
sampling is from a lognormal distribution, the actual probability of a Type I error 
is .124 with n = 80 and a = .05 (Westfall & Young, 1993, p. 40; Noreen, 1989, 
p. 74). Increasing n to 160, it is .109. The problem is that the null distribution 
is skewed, and the expected value of the test statistic is not zero as it is assumed 
to be. Sutton (1993) compared several methods and found that a method suggested 
by Johnson (1978), used in conjunction with a bootstrap procedure, gives good 
results depending on whether a distribution is skewed to the right or left (cf. 
Kleijnen, Kloppenburg, & Meeuwsen, 1986). (For a relatively nontechnical 
description of the bootstrap method, see Noreen, 1989; Wilcox, in press-c. For 
a review of the bootstrap written at a more technical level, see DiCiccio & 
Romano, 1988.) The Tukey-McLaughlin test for trimmed means gives better 
control over the probability of a Type I error than does Student's t test, but as 
with all methods for comparing means, problems remain. 

Westfall and Young (1993) suggest that when one is working with the mean, 
a particular form of Efron's (1982) bootstrap method be used. Their method 
improves control over the probability of a Type I error, but even with n = 80, 
the actual probability of a Type I error can be as high as .08. Just how serious 
this is will depend on the situation and judgments made about the importance 
of a Type I error. (Bradley, 1978, argues that when one is testing at the .05 level, 
the actual probability of a Type I error should not exceed .075.) The main point 
here is that combining the bootstrap with trimmed means gives even better results. 
For the lognormal distribution considered here, the probability of a Type I error 
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is .06 with only n = 12. Complete computational details are given in Wilcox 
(1994a), and thorough discussion of the general method is provided by Westfall 
and Young (1993). Briefly, set Ci = Xi - X, randomly sample n observations, 
with replacement, from the Ci values, and compute Tt based on the n values just 
sampled yielding T*. Repeat this process B times yielding T* ..., T*. Let p 
be the proportion of these B values less than Tt, the test statistic based on the 
observed data, X,, ..., X,,. Then p estimates the significance level when one is 
testing Ho: pLt > 0. If p < a, reject. Westfall and Young recommend B = 10,000 
although B = 1,000 seems to give good results. The Minitab macro trimlb.mtb, 
which is included on the floppy accompanying Wilcox's (in press-c) book, per- 
forms the calculations. 

When one is working with one-step M-estimators, and when distributions are 
skewed, it appears there is no simple method for approximating the null distribu- 
tion. However, results in Wilcox (1992a) suggest that fairly accurate confidence 
intervals can be obtained using a percentile bootstrap method. That is, obtain a 
bootstrap sample by randomly sampling n observations with replacement from 
XI, ..., Xn. Let 0* be the resulting value of the one-step M-estimator. Repeat 
this process B times yielding 0* .. ., O', which yields an estimate of the sampling 
distribution of 0, the one-step M-estimator based on the observed values X,,.... 
Xn. The percentiles of the estimated sampling distribution can be used to compute 
a confidence interval. B = 399 appears to give good results when one is computing 
a .95 confidence interval. B = 399 rather than B = 400 is recommended because 
of results in Hall (1986). The B bootstrap values can also be used to obtain an 
estimate of the standard error. Other forms of the bootstrap might give better 
results in some sense, but this remains to be seen. 

Comparing Two or More Groups 
Let 0, and 02 be any measures of location corresponding to two independent 

groups. This section takes up the problem of testing Ho: 09 = 02 or computing 
a 1 - a confidence interval for 09 - 02. As before, there are the general 
concerns about whether a measure of location is robust, about the possibility that 
a nonrobust measure can give a distorted view of how the typical individual in 
one group compares to the typical individual in another, and about accurate 
probability coverage, controlling the probability of a Type I error, and achieving 
relatively high power. 

For working with two or more groups, this article considers only heteroscedastic 
methods-that is, methods that allow unequal variances. There is now a vast 
literature indicating that the usual t test can be unsatisfactory in terms of Type 
I errors when distributions have unequal variances, and perhaps more importantly, 
that heteroscedastic methods can have substantially more power and more accu- 
rate probability coverage when computing confidence intervals. This is consistent 
with the review by Glass et al. (1972), and today there is even more evidence 
that homoscedastic methods are unsatisfactory, even under normality, as indicated 
in the review by Wilcox (1993d). This might appear to contradict well-known 
results in Box (1954), but Box limited his numerical results to situations where 
the ratio of the largest standard deviation to the smallest is less than or equal to 
the square root of 3. Surveys of published studies indicate that larger ratios 
are common, in which case problems arise even when sampling from normal 
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distributions. In fact, when distributions have different shapes, Cressie and Whit- 
ford (1986) describe general circumstances where Student's t test is not even 
asymptotically correct. That is, the variance of Student's t test does not approach 
1 as the sample sizes get large, so in particular it does not approach a standard 
normal distribution as is typically assumed. One of the negative aspects of 
Student's t test is poor control over Type I error probabilities when groups have 
unequal variances. It might be argued that it is unrealistic to have equal means 
but unequal variances, in which case Type I errors are not a concern; but when 
two groups are being compared, the problem of getting accurate confidence 
intervals remains, and homoscedastic methods have peculiar power properties, 
as well (Wilcox, in press-a). A natural approach is to test for equal variances 
and use conventional methods if a nonsignificant result is obtained; but even 
under normality, tests for equal variances do not have enough power to detect 
unequal variances in situations where violating the assumption causes problems 
(Markowski & Markowski, 1990; Moser, Stevens, & Watts, 1989; Wilcox, Char- 
lin, & Thompson, 1986), and there is the additional problem that most methods 
for comparing variances do not control Type I error probabilities (Wilcox, 1992c). 
This is true of the methods compared by Conover, Johnson, and Johnson (1981). 
The one method found by Wilcox (1992c) to control Type I errors also has 
relatively low power. 

One of the best-known methods for comparing means and handling unequal 
variances is Welch's (1951) adjusted degrees of freedom procedure. (See also 
Brown & Forsythe, 1974a, 1974b; Nanayakkara & Cressie, 1991; James, 1951; 
Krutchkoff, 1988; and Matuszewski & Sotres, 1986.) Algina, Oshima, and Lin 
(1994) describe situations where even with equal sample sizes, Welch's method 
can be unsatisfactory. For example, with n1 = n2 = 50, the actual probability of 
a Type I error can be .08 when one is sampling from a lognormal distribution 
with ac = .05. With n, = 33 and n2 = 67, the Type I error probability is .11. 
Similar problems are reported by Wilcox (1990b). As in the one-sample case, 
problems arise when one is working with skewed distributions. Cressie and 
Whitford (1986) describe correction terms based on estimated skewness, but their 
approach can actually make matters worse (Wilcox, 1990a). Tiku's (1982) method 
was also found to be unsatisfactory. Oshima and Algina (1992) compared two 
heteroscedastic methods for means and again found problems with controlling 
Type I errors. In general, heteroscedastic methods improve upon homoscedastic 
techniques, but problems remain. 

Yuen (1974) extended the Tukey-McLaughlin test for trimmed means to the 
two-sample case; this reduces to Welch's (1951) test for means when there is no 
trimming. An omnibus test for more than two groups is described by Wilcox (in 
press-a). For multiple comparison procedures, see Wilcox (in press-c). As in 
the one-sample case, analytic results indicate that confidence intervals for the 
difference between two trimmed means are generally more accurate than confi- 
dence intervals for means, especially when distributions are skewed (Wilcox, 
1994c). However, problems with controlling Type I error probabilities still remain, 
particularly when a directional test is performed. Better results can be obtained 
by using a straightforward analog of the bootstrap method for trimmed means 
described in the previous section. Computational details are given in Wilcox 
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(1994a), and the Minitab macro trim2b.mtb, which comes with Wilcox's (in 
press-c) book, performs the calculations. 

An appealing feature of trimmed means is that any of the common experimental 
designs can be analyzed, including repeated measures (Wilcox, 1993a) and ran- 
dom effects designs (Wilcox, 1994b). For linear contrasts, multiple comparisons, 
and two-way designs, see Wilcox (in press-c). More complicated designs are 
easily handled using similar techniques, but there are no published simulation 
results on how they perform. Results for the random effects model are striking 
not only in terms of power, but in improved control over the probability of a 
Type I error (Wilcox, 1994b). For example, the conventional F test can have 
Type I error probabilities exceeding .3, and for nonnormal distributions the 
heteroscedastic method suggested by Jeyaratnam and Othman (1985) can have 
a Type I error probability as high as .4. In contrast, using trimmed means with 
20% trimming yields Type I error probabilities that never exceed .075 for the 
same situations. 

Comparing one-step M-estimators for two or more independent groups can be 
accomplished using a bootstrap method (Wilcox, 1993b). (For a homoscedastic 
method of comparing groups using M-estimators, see Schrader & Hettmansperger, 
1980.) Currently, control over the probability of a Type I error appears to be 
reasonably good with ex = .05 and sample sizes of at least 20. In general, 
trimmed means with 20% trimming seem to give good control over Type I error 
probabilities for a larger range of situations. In principle, dependent groups can 
be compared using one-step M-estimators and a method similar to the one used 
for independent groups, but there are no results on how well this approach controls 
Type I errors. 

Though comparing groups with the usual sample median can mean relatively 
low power when distributions are normal, several improved methods for estimat- 
ing the population median which can have substantially smaller standard errors 
have appeared in the statistical literature. From Parrish (1990), an improved 
estimator that deserves consideration is one derived by Harrell and Davis (1982). 
Yoshizawa, Sen, and Davis (1985) show that the Harrell-Davis estimator is 
asymptotically normal. Their method consists of using a weighted linear combina- 
tion of all the ordered observations. Given n, the weights can be chosen so that 
the population median is estimated. Weighted sums of order statistics are generally 
called L-estimators, which include trimmed means as a special case. Comparing 
two or more independent groups can be accomplished with a bootstrap method 
as described in Wilcox (1991b), and dependent groups can be compared using 
a similar technique (Wilcox, 1992b). (See also Hettmansperger, 1984; and Lun- 
neborg, 1986.) 

To illustrate the extent to which different methods can give different results, 
Table 1 shows the power of six methods for three distributions when two indepen- 
dent groups with n, = n2 = 25 are compared. The mean of the first is 0, and 
the other measures of location considered here are equal to 0, as well. The second 
group has a mean of 1. The first distribution is normal, the second (CN1) is 
contaminated normal with e = .1 and K = 10, and the third (CN2) is also 
contaminated normal but with K = 20. Method M uses the usual sample median 
as described by Wilcox and Charlin (1986). Method C compares medians using 
the Harrell-Davis estimator, while Method H compares groups using one-step 
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TABLE 1 
Power of six methods for comparing two groups 

Yuen Yuen 
Distribution Welch M (10%) (20%) C H 

Normal .931 .758 .914 .890 .865 .894 
CN1 .278 .673 .705 .784 .778 .804 
CN2 .162 .666 .383 .602 .639 .614 

Note. Welch = Welch's (1951) adjusted degrees of freedom procedure; M = method 
using the usual sampling median as described by Wilcox & Charlin (1986); Yuen 
(10%) = Yuen's (1974) extension of the Tukey-McLaughlin test with 10% trim- 
ming; Yuen (20%) = Yuen's (1974) extension of the Tukey-McLaughlin test with 
20% trimming; C = method comparing medians using the Harrell-Davis estimator; 
H = method comparing groups using one-step M-estimators. 

M-estimators. As is evident, Welch's method is the most affected by nonnormality, 
with power dropping from .931 to .162. 

Though the latter three methods in Table 1 compare well to Welch's procedure, 
there are situations where Welch's method can have more power than any of the 
other methods considered here. The problem is that the mean is not equal to the 
trimmed mean, for example, when distributions are skewed, so it is possible to 
have jI- - I.2 > [Ltl - -Lt2. That is, the difference between the means is larger 
than the difference between the trimmed means. To see how this might happen, 
look at Figure 6, which shows a skewed distribution with mean 7.6 and a 20% 
trimmed mean of 4.2. Now imagine a second distribution that is symmetric with 
mean 4.2. Because the distribution is symmetric, the trimmed mean is also 4.2, 
so ILI - I2 = 7.6 - 4.2 = 3.4, while itl - Lt2 = 0. Put another way, detecting 
outliers does not necessarily imply that using means will result in less power 
relative to other methods based on robust measures of location. 

An anonymous referee summarized a general strategy and point of view for 
approaching the two-sample problem which is roughly as follows. Though the 
means of two distributions might be of some interest, a more general issue is 
where the distributions differ and by how much. For example, the shift function 
of the self-awareness data indicates that the upper deciles, starting with the 
median, differ substantially compared to the lower deciles, and other global 
differences between the distributions can be investigated in a variety of ways. 
The issue of outliers can be addressed by considering, in addition to "automatic" 
outlier detection methods such as the boxplot, how data were collected and the 
many delicate ways in which outliers could disguise themselves. If of interest, 
the distributions could be summarized by some measure of location, and compari- 
sons of robust measures of location could be compared to less robust (unbounded 
influence and low breakdown) measures such as the sample mean. 

Transformations 

Another common and natural approach to nonnormality is to transform the 
observations and apply methods for means. For example, it is common to replace 
each Xi with its logarithm. This often makes data look more normal, but outliers 
are not necessarily eliminated, and in some cases power remains poor. Wilcox 
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(in press-c) reanalyzed data from an actual study by replacing observations with 
their logarithms, but outliers remained and highly nonsignificant results remained 
nonsignificant; when trimmed means or one-step M-estimators are used, however, 
significant results are obtained. Rasmussen (1989) studied the Box-Cox transfor- 
mation; he found it to be useful in some cases but concluded that it can be 
unsatisfactory when dealing with low power due to outliers. 

Methods Based on Ranks 

Still another approach to nonnormality is to compare groups based on ranks, 
For example, a simple strategy is to pool all the observations, assign ranks, and 
then apply Student's t test to the ranks corresponding to each group. It turns out 
that this is tantamount to applying the Mann-Whitney test (Conover & Iman, 
1981). The Mann-Whitney test is satisfactory when there is no difference between 
groups and the distributions are, in fact, identical; when distributions differ, 
however, problems arise. For example, the Mann-Whitney test is both biased 
and inconsistent (Kendall & Stuart, 1973). That is, when the null hypothesis is 
false, there are situations where the probability of rejecting is less than the 
nominal ct value, and there are also situations where power does not approach 
1 as the sample sizes get large. One difficulty is getting a consistent estimate of 
the standard error of the average ranks when the null hypothesis is false. In 
particular, the estimated standard error used by the Mann-Whitney test can con- 
verge to the wrong value as the sample sizes increase. 

Zaremba (1962) derived an improvement on the Mann-Whitney test, but it 
can have relatively low power. Fligner and Policello (1981) proposed a method 
for comparing medians based on ranks. Their procedure is easy to use, it is 
closely related to a procedure where Welch's test is applied to the ranks, and it 
can have relatively high power when distributions have heavy tails. The Fligner- 
Policello procedure is unbiased and consistent if both distributions are symmetric. 
It is noted that for asymmetric distributions, the Fligner-Policello procedure is 
actually testing H( : p = .5, where p is the probability that a randomly sampled 
observation from the first group is larger than a randomly sampled observation 
from the second. Inferences about p are of interest in their own right, as argued 
by Cliff (1993). For results on computing a confidence interval for p, see Mee 
(1990). The Minitab macro mee.mtb in Wilcox (in press-c) does the necessary 
computations. For more recent results on using ranks, see Thompson (1991) and 
Akritas (1991). 

Comments About Multiple Comparison Procedures 
This section briefly comments on performing all pairwise comparisons of two 

or more groups. For working with means, Dunnett's (1980) T3 and C procedures 
stand out as providing relatively accurate confidence intervals (Hochberg & 
Tamhane, 1987). An important point is that Dunnett's method is designed to 
control the experimentwise Type I error probability (the probability of at least 
one Type I error among all tests to be performed) without any dependence on 
any other preliminary test. In particular, it does not require that an omnibus test 
for equal means be performed first, and in fact, if it is made contingent on an 
omnibus test being significant, results in Bernhardson (1975) imply that power 
might actually be lowered. (Analogs of Dunnett's method for trimmed means 
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are described in Wilcox, in press-c). This does not mean that omnibus tests have 
no value, but they should be used with caution. 

When distributions are normal, so called step-down procedures offer advan- 
tages in terms of all-pairs power, the probability of detecting all true differences 
among several groups. These techniques start with an omnibus test for all J 
groups. If significant, one then tests all subsets consisting of J - 1 groups, and 
the process continues until one tests all pairs of groups. Complete details are not 
important here; interested readers can refer to Hochberg and Tamhane (1987) or 
Wilcox (1991a; in press-c). The point here is best made with a simple illustration. 
Suppose five groups are being compared, and all five groups have unequal means. 
Also suppose the first four are normal, but the last group is nonnormal with 
heavy tails. Then the last group can cause any omnibus test for equal means to 
have low power, in which case the differences among the groups are unlikely to 
be detected, even though Dunnett's T3 has high power when comparing the first 
four groups. A numerical illustration is given in Wilcox (in press-c). Of course, 
if two or more groups have heavy-tailed distributions, power can again be rela- 
tively poor. However, replacing means with trimmed means can correct this 
difficulty, so step-down techniques might be of interest provided one is willing 
to sacrifice confidence intervals for a potential increase in all-pairs power. For 
more complete details relevant to trimmed means, see Wilcox (in press-c). 

Measures of Scale 

As a final note, there are many robust measures of scale in addition to the 
nonrobust sample standard deviation, s. One of these is MAD, already mentioned, 
which has a finite sample breakdown point of approximately .5, but which is 
relatively inefficient. Lax (1985) compared about 150 measures of location and 
found the so-called biweight midvariance to have good properties based on the 
criteria he used. In particular, it has high efficiency. It is related to M-estimators 
of location and discussed at some length, in conjunction with many other mea- 
sures, by Iglewicz (1983). From Goldberg and Iglewicz (1992), it appears to 
have a finite sample breakdown point of approximately .5, but a formal proof 
has not been found. For normal distributions, the biweight midvariance has a 
value very similar to the standard deviation (Shoemaker & Hettmansperger, 
1982), but unlike s, it is not overly affected by heavy tails. A method for comparing 
the biweight midvariances of two independent groups was investigated by Wilcox 
(1993c), and it appears to perform well over a wide range of distributions; 
software for performing the test accompanies the textbook by Wilcox (in press- 
c). For general results on measures of scale based on trimming and Winsorization, 
which include a derivation of their influence function, see Welsh and Morri- 
son (1990). 

One other issue concerning choosing a measure of scale should be mentioned. 
Let T, be a measure of scale associated with the random variable X. Bickel and 
Lehmann (1976) define Tr to be a measure of dispersion if T > T r whenever the 
quantiles of the distribution of IXI are larger than the corresponding quantiles of 
the distribution of I YI, and they argue that measures of scale should be measures 
of dispersion. The biweight midvariance is not a measure of dispersion, while 
the Winsorized variance is. Another measure of scale that is also a measure of 
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dispersion is the percentage bend variance discussed by Shoemaker and Hettman- 
sperger (1982). 
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