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Abstract

The point of departure of the present paper is Anscombe’s seminal 1952-paper on limit theo-
rems for randomly indexed processes. We discuss the importance of this result and mention
some of its impact, mainly on stopped random walks. The main aim of the paper is to illus-
trate the beauty and efficiency of, what will be called, the Stopped Random Walk-method (the
SRW-method).

1 Introduction

The typical or standard procedure for estimating a parameter or to test some hypothesis concerning
the parameter is to take a sample and perform the necessary analysis. Now, the first obvious
(polemic) remark against this procedure is that one might have taken an unnecessarily large sample;
a smaller one would have been sufficient, and this would also have saved lives. Alternatively, the
sample was not large enough in order to allow for a (sufficiently) significant conclusion.

A natural suggestion thus would be to take an appropriately defined random size sample, where
the (random) size typically would be defined by stopping when something particular occurs.

The first obvious task that then suggests itself would be to check, that is, to prove or disprove,
certain (standard) results that hold for processes with fixed index or time for the setting with a
random index or time.

A first example illustrating that things may go wrong is the following.

Example 1.1. Let X, X1, X2, . . . be independent, identically distributed (i.i.d.) coin-tossing
random variables, that is, P (X = 1) = P (X = −1) = 1/2, set Sn =

∑n
k=1Xk, n ≥ 1, and let

N = min{n : Sn = 1}.

Since {Sn, n ≥ 1} is a centered random walk, we know that

E Sn = 0 for all n.

However, we immediately observe that, since SN = 1 a.s., we must have

E SN = 1 6= 0.

So, the natural guess that E Sn = 0 might be replaced by

E SN = EN · EX,

does not seem to be true.
Or, ... is it true “sometimes”?
The answer to this one is “yes”. Sometimes. In the present example the problem is that

EN = +∞, which implies that the RHS equals ∞ · 0. 2

Hmmm, ... but, with regard to Anscombe’s theorem, what about the central limit theorem?
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Example 1.2. Consider the same example with

N(n) = the index of the actual partial sum at the time of the nth visit to 0, n ≥ 1.

Now, from random walk theory we know that P (Sn = 0 i.o.) = 1, so that N(n)
a.s.→ ∞ as n→∞.

However
SN(n)√
N(n)

= 0 for all n,

which is far from asymptotic normality. Thus, something more than N(n)
a.s.→ +∞ as n → ∞

seems to be necessary in order to ensure a positive result. 2

Example 1.3. I toss a coin until the first head appears, after which you toss a coin the same
number of times. Clearly the outcomes for your coin are independent of the number of tosses
required for me to succeed. 2

Although this is not a particularly interesting example, it illustrates how the outcomes of some
process under investigation is independent of the number of performances of the process. However,
a natural context with this kind of independence is the Galton–Watson process, where “the size of
next generation” is determined by a random sum in which the summands are the children of “the
current generation” and the upper summation index equals “the number of sisters and brothers
of the current generation”. Thus, in this important example the number of terms in the sum is
indeed independent of the summands.

The mathematically most interesting case is when the family of indices constitutes a family
of stopping times, in particular, relative to the random walk at hand. Formally, (cf. [20]) if
{Sn, n ≥ 1} is a random walk and {τ(t), t ≥ 0} is a family of random indices, such that

{τ(t) ≤ n} is σ{S1, S2, . . . , Sn}-measurable,

we call the family
{Sτ(t), t ≥ 0} a Stopped Random Walk.

The central point of this paper is to show how one can take an ordinary limit theorem, such as
the law of large numbers and the central limit theorem, as point of departure, and then, via a
random index version, obtain some desired result. In several instances it is, in fact, not necessary
for the indices to be stopping times. The two limit theorems just mentioned are such examples;
the stopping time property is essential when martingale methods come into play, for example in
results concerning existence of moments. We shall nevertheless call the approach the “Stopped
random walk method”, the SRW-method for short. As we shall see the method leads to efficient
and neat proofs.

And, in order to illustrate all of this, Anscombe’s theorem is a beautiful point of departure and
source of inspiration.

In Section 2 we present a random-sum-SLLN and a random-sum-CLT. The latter is a special
case of Anscombe’s theorem, which, in this form with a direct proof, is due to Rényi [33]. We also
state and prove an extension of his result to weighted sums for later use. After this, Section 3 is
devoted to renewal theory for random walks, Section 4 to a two-dimensional extension, after which
we include a section containing some applications to probabilistic models in various contexts where
random sums are the key object. Continuing down the road, Section 6 is devoted to perturbed
random walks, followed by a section on repeated significance tests. We close with a section on
records, which, on the one hand is not immediately related to random walks, but, on the other,
illustrates how certain results can be obtained with the aid of an interesting generalization of
Anscombe’s theorem to a non-i.i.d. setting.

2 Anscombe’s theorem

As mentioned in the introduction, it might, sometimes, in practice, be more natural to study
random processes during fixed time intervals, which means that the number of observations is
random.

Following is the celebrated result due to Anscombe [2], which was established as “recently” as
in 1952.
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Theorem 2.1. Suppose that Y1, Y2, . . . are random variables, such that

Yn
d→ Y as n→∞,

and that {τ(t), t ≥ 0} is a family of positive, integer valued random variables, such that, for some
family of positive reals {b(t), t ≥ 0}, where b(t)↗∞ as t→∞,

τ(t)

b(t)

p→ 1 as t→∞. (2.1)

Finally, suppose that, given ε > 0, there exist η > 0 and n0, such that, for all n > n0,

P
(

max
{k:|k−n|<nδ}

|Yk − Yn| > ε
)
< η. (2.2)

Then
Yτ(t)

d→ Y as t→∞.

Remark 2.1. Condition (2.2) is called the Anscombe condition; Anscombe calls the condition
uniform continuity in probability.

Remark 2.2. The important feature of the theorem is that nothing is assumed about independence
between the random sequence {Yn, n ≥ 1} and the index family.

Remark 2.3. It is no restriction to assume that the limit in (2.1) equals 1, since any other value
could be absorbed into the normalizing sequence.

Remark 2.4. The limit in (2.1) may, in fact, be replaced by a positive random variable; see, e.g.,
[3] and [38]. 2

In order to keep ourselves within reasonable bounds we shall in the remainder of the paper
(basically) confine ourselves to randomly indexed partial sums of i.i.d. random variables, in which
case Anscombe’s theorem turns into a “random sum central limit theorem”. The following version
was first given with a direct proof by Rényi [33]. The essence is that, instead of verifying the
Anscombe condition, Rényi provides a direct proof (which essentially amounts to the same work).

For completeness (and since we shall need it later) we begin with a “random sum strong law”,
which is a consequence of the Kolmogorov strong law and the fact that the union of two null sets
is, again, a null set.

Theorem 2.2. Let X1, X2, . . . be i.i.d. random variables with finite mean µ, set Sn =
∑n
k=1Xk,

n ≥ 1, and suppose that {τ(t), t ≥ 0} is a family of positive, integer valued random variables, such

that τ(t)
a.s.→ +∞ as t→∞. Then

Sτ(t)

τ(t)

a.s.→ µ and
Xτ(t)

τ(t)

a.s.→ 0 as t→∞.

If, in addition, τ(t)/t
a.s.→ θ as t→∞ for some θ ∈ (0,∞), then

Sτ(t)

t

a.s.→ µθ as t→∞.

Here is now Rényi’s adaptation of Anscombe’s theorem to random walks.

Theorem 2.3. Let X1, X2, . . . be i.i.d. random variables with mean 0 and positive, finite, variance
σ2, set Sn =

∑n
k=1Xk, n ≥ 1, and suppose that {τ(t), t ≥ 0} is a family of positive, integer valued

random variables, such that

τ(t)

t

p→ θ (0 < θ <∞) as t→∞. (2.3)

Then
Sτ(t)

σ
√
τ(t)

d→ N(0, 1) and
Sτ(t)

σ
√
θt

d→ N(0, 1) as t→∞.

Remark 2.5. The normalization with t in (2.3) can be replaced by more general increasing
functions of t, such as t raised to some power. This influences only the second assertion. 2

Instead of providing Rényi’s direct proof of this landmark result, we shall, in the following
subsection, adapt it to a generalization to weighted sums.
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2.1 An Anscombe-Rényi theorem for weighted sums

Theorem 2.4. Let X1, X2, . . . be i.i.d. random variables with mean 0 and positive, finite, variance
σ2, let γ > 0, and set Sn =

∑n
k=1 k

γXk, n ≥ 1. Suppose that {τ(t), t ≥ 0} is a family of positive,
integer valued random variables, such that

τ(t)

tβ
p→ θ (0 < θ <∞) as t→∞, (2.4)

for some β > 0. Then

Sτ(t)

(τ(t))γ+(1/2)

d→ N
(
0,

σ2

2γ + 1

)
and

Sτ(t)

tβ(2γ+1)/2

d→ N
(
0,
σ2θ2γ+1

2γ + 1

)
as t→∞.

Proof. First of all, for weighted sums it is well known (and/or easily checked with the aid of
characteristic functions) that

Sn
nγ+(1/2)

d→ N
(
0,

σ2

2γ + 1

)
as n→∞. (2.5)

In the remainder of the proof we assume w.l.o.g. that σ2 = θ = 1. With n0 = [tβ ] we then obtain

Sτ(t)

τ(t)γ+(1/2)
=
( Sn0

n
γ+(1/2)
0

+
Sτ(t) − Sn0

n
γ+(1/2)
0

)( n0

τ(t)

)γ+(1/2)

,

so that, in view of (2.4) and (2.5), it remains to show that

Sτ(t) − Sn0

n
γ+(1/2)
0

p→ 0 as t→∞

for the first claim, which, in turn, yields the second one.
Toward that end, let ε ∈ (0, 1/3), and set n1 = [n0(1 − ε3)] + 1 and n2 = [n0(1 + ε3)]. Then,

by exploiting the Kolmogorov inequality, we obtain

P (|Sτ(t) − Sn0
| > εn

γ+(1/2)
0 ) = P

(
{|Sτ(t) − Sn0

| > εn
γ+(1/2)
0 } ∩ {τ(t) ∈ [n1, n2]}

)
+P
(
{|Sτ(t) − Sn0

| > εn
γ+(1/2)
0 } ∩ {τ(t) /∈ [n1, n2]}

)
≤ P ( max

n1≤k≤n0

|Sk − Sn0 | > εn0
γ+(1/2)) + P ( max

n0≤k≤n2

|Sk − Sn0 | > εn
γ+(1/2)
0 )

+P (τ(t) /∈ [n1, n2])

≤
∑n0

k=n1+1 k
2γ

ε2n2γ+1
0

+

∑n2

k=n0+1 k
2γ

ε2n2γ+1
0

+ P (τ(t) /∈ [n1, n2]) ≤ (n2 − n1)n2γ
2

ε2n2γ+1
0

+ P (τ(t) /∈ [n1, n2])

≤ 2n0ε
3(n0(1 + ε3))2γ

ε2n2γ+1
0

+ P (τ(t) /∈ [n1, n2]) = 2ε(1 + ε3)2γ + P (τ(t) /∈ [n1, n2]) ,

so that, recalling (2.4),

lim sup
t→∞

P (|Sτ(t) − Sn0
| > εn

γ+(1/2)
0 ) ≤ 2ε(1 + ε3)2γ ,

which, due to the arbitrariness of ε, proves the conclusion. 2

2.2 A generalized Anscombe-Rényi theorem

There also exist versions for more general sums of non-i.i.d. distributed random variables based
on the Lindeberg conditions, at times under Generalized Anscombe Conditions. Since Anscombe’s
theorem is the main focus of this paper, and since, in fact, we shall, in our final section on records,
apply the following generalization due to Csörgő and Rychlik [5, 6], we present it here.

Toward this end the authors need the following generalized Anscombe condition: A sequence
Y1, Y2, . . . satisfies the generalized Anscombe condition with norming sequence {kn, n ≥ 1} if, for
every ε > 0, there exists δ > 0, such that

lim sup
n→∞

P ( max
{j:|k2j−k2n|≤δk2n}

|Yj − Yn| > ε) < ε). (2.6)
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Theorem 2.5. Let X1, X2, . . . be independent random variables with finite variances, and set, for
k ≥ 1, EXk = µk, VarXk = σ2

k, and, for n ≥ 1, Sn =
∑n
k=1Xk, and s2

n =
∑n
k=1 σ

2
k. Suppose that

the Lindeberg conditions are satisfied, that {(Sn −
∑n
k=1 µk)/sn, n ≥ 1} satisfies the generalized

Anscombe condition for some normalizing sequence {kn, n ≥ 1}, and that {τn, n ≥ 1} is a sequence
of positive, integer valued random variables, such that

kτn
kan

p→ 1 as n→∞, (2.7)

for some sequence {an, n ≥ 1} of positive integers increasing to +∞. Then,

Sτn −
∑τn
k=1 µk

sτn

d→ N(0, 1) as n→∞.

3 Renewal theory

A random walk {Sn, n ≥ 0} is a sequence of random variables starting at S0 = 0 with i.i.d. in-
crements X1, X2, . . . . A renewal process is a random walk with nonnegative increments. The
canonical example is a lightbulb, (more generally, some machine), that whenever it (some compo-
nent) fails is instantly replaced by a new, identical one, which, upon failure is replaced by another
one, and so on.

The central object of interest is the (renewal) counting process,

N(t) = max{n : Sn ≤ t}, t ≥ 0 ,

which counts the number of replacements during the time interval (0, t].
A discrete example is the binomial process, in which the durations are independent, Be(p)-

distributed random variables. This means that with probability p there is a new occurrence after
one time unit and with probability 1 − p after zero time (an instant occurrence). The number of
occurrences N(t) up to time t follows a (translated) negative binomial distribution; some references
are [8, 9, 32, 20].

A related topic is that of recurrent events, for which we refer to Feller’s classic [7], see also [8],
Chapter XIII, [32], Chapter 5.

Limit theorems, such as the strong law and the central limit theorem for the counting process,
were originally established via inversion, technically via the relation

{Sn ≤ t} = {N(t) > n}. (3.1)

In addition, the lattice case and the nonlattice case were treated separately. Furthermore, the
inversion method relies heavily on the fact that the summands are nonnegative. We refer to the
above sources for details.

Before closing this short introduction to renewal theory we mention that the elements N(t) of
the counting process are not stopping times, whereas the first passage times

τ(t) = min{n : Sn > t}, t ≥ 0,

indeed are stopping times. We also note that for practical purposes, say, if one observes some
random process it seems more reasonable to take action the first time some strange event occurs,
rather than the last time it does not.

Next, we turn our attention to the case when the summands are not necessarily nonnegative,
although having positive expectation. But first some pieces on notation.

A random variable without index is interpreted as a generic random variable for the corre-
sponding i.i.d. sequence, x+ = max{x, 0} and x− = −min{x, 0} for x ∈ R.

3.1 Renewal theory for random walks

Let X1, X2, . . . be i.i.d. random variables with positive, finite, mean µ, partial sums Sn, n ≥ 1,
and the associated first passage process, {τ(t), t ≥ 0} as above.
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Now, whereas τ(t) = N(t)+1 for all t for renewal processes this is no longer true here. Moreover,
the inversion relation (3.1) breaks down in the random walk case, so one has to seek other methods
of proof. In addition one can show that, for r ≥ 1,

E(τ(t))r <∞ ⇐⇒ E(X−)r <∞,

whereas

E(N(t))r <∞ ⇐⇒ E(X−)r+1 <∞;

cf. [29], [20], Chapter 3. The “price” for lacking the stopping time property for the counting process
is additional integrability.

The important point is that all proofs to follow will be based on the SRW-method. In particular,
Anscombe’s theorem will be the decisive tool for the central limit theorem.

Before we step into results and proofs here is one fundamental piece involved in the SRW-
method, namely “the sandwich lemma”.

Lemma 3.1. We have

t < Sτ(t) ≤ t+Xτ(t) = t+X+
τ(t).

Proof. The result is an immediate consequence of the facts that

Sτ(t)−1 ≤ t < Sτ(t),

and that the final jump is necessarily positive. 2

Here is now the strong law for first passage times.

Theorem 3.1. In the above setup,

τ(t)

t

a.s.→ 1

µ
as t→∞.

Proof. First of all, τ(t)
p→ ∞ as t → ∞, and is nondecreasing, so that, in fact, τ(t)

a.s.→ ∞ as
t→∞, which, via Theorem 2.2, tells us that

Sτ(t)

τ(t)

a.s.→ µ and that
Xτ(t)

τ(t)

a.s.→ 0 as t→∞. (3.2)

An application of the sandwich lemma concludes the proof. 2

Next is the corresponding central limit theorem.

Theorem 3.2. If, in addition, VarX = σ2 <∞, then

τ(t)− t/µ√
σ2t
µ3

d→ N(0, 1) as t→∞.

Proof. The central limit theorem and Anscombe’s theorem (notably Theorem 2.3) together yield

Sτ(t) − µτ(t)√
σ2τ(t)

d→ N(0, 1) as t→∞.

By Theorem 2.2 and the sandwich formula we next obtain

t− µτ(t)√
σ2τ(t)

d→ N(0, 1) as t→∞,

which, via the strong law Theorem 3.1, applied to the denominator, and the symmetry of the
normal distribution finishes the proof. 2
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3.2 A short intermediate summary

We observe that the proofs above cover all cases; lattice, nonlattice, pure renewal, as well as random
walks. Because of its efficiency and usefulness we call it, as mentioned in the introduction, “the
SRW-method”.

To summarize we observe that the ingredients of the SRW-method are:

♠ An ordinary limit theorem, such as the strong law or the central limit theorem;

♠ A transitory theorem that tells us that the ordinary result is also valid for random sums,
such as Theorem 2.2 and Anscombe’s theorem (for our purposes Rényi’s version);

♠ A sandwich inequality, typically Lemma 3.1.

3.3 A remark on additional results

As mentioned earlier our main focus is on the central limit theorem. However, let us, in passing
and for completeness, briefly mention that there also exist

] Marcinkiewicz-Zygmund type moment inequalities, cf. [10, 20];

] Marcinkiewicz-Zygmund laws, cf. [10, 20];

] LIL results, cf. [37, 15, 20];

] Stable analogs, cf. [10, 19, 20];

] Weak invariance principles, viz., Anscombe-Donsker results, cf. [20], Chapter 5, and further
references given there;

] Strong invariance principles, cf. [25, 26, 27, 28, 4, 36];

] Analogs for curved barriers, typically τ(t) = min{n : Sn > tnα}, where 0 < α < 1, cf. most
of the above sources;

] Results for random processes with i.i.d. increments, cf. [11, 17, 18].

3.4 Renewal theory with a trend

In a recent paper [21] the following situation was considered.
Let Y1, Y2, . . . be i.i.d. random variables with finite mean 0 and set Xk = Yk + kγµ for k ≥ 1,

γ ∈ R and some µ > 0. Further, set Tn =
∑n
k=1 Yk and Sn =

∑n
k=1Xk, n ≥ 1, and

τ(t) = min{n : Sn > t}, t ≥ 0.

For γ = 0 the problem reduces to “Renewal theory for random walks”. The case of interest here
is γ ∈ (0, 1]. By comparing with the case γ = 0 one easily finds that τ(t) <∞ almost surely, and,
via the sandwich inequality (Lemma 3.1), that τ(t)↗ +∞ as t→∞.

Here is the corresponding strong law, followed by the central limit theorem with hints to the
proofs, which in the latter case (of course) involves Anscombe’s theorem.

Theorem 3.3. For 0 < γ ≤ 1, we have

τ(t)

t1/(γ+1)

a.s.→
(γ + 1

µ

)1/(γ+1)

as t→∞.

Proof. Upon noticing that
∑n
k=1 k

γ ∼ 1
γ+1n

γ+1 as n→∞, the (ordinary) strong law becomes

Sn − µ
γ+1n

γ+1

n
=
Tn
n

+

µ
γ+1n

γ+1 − µ
∑n
k=1 k

γ

n

a.s.→ 0 as n→∞,
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from which it follows that

Sn
nγ+1

a.s.→ µ

γ + 1
and that

Xn

nγ+1

a.s.→ 0 as n→∞. (3.3)

Combining this with Theorem 2.2 and Lemma 3.1 we conclude that

Sτ(t)

(τ(t))γ+1

a.s.→ µ

γ + 1
,

Xτ(t)

(τ(t))γ+1

a.s.→ 0,
t

(τ(t))γ+1

a.s.→ µ

γ + 1
as t→∞. 2

Theorem 3.4. Let γ ∈ (0, 1/2). If, in addition, VarY = σ2 <∞, then

τ(t)−
( (γ+1)t

µ

)1/(γ+1)

t(1−2γ)/(2(γ+1))

d→ N
(

0, σ2 · (γ + 1)(1−2γ)/(γ+1)

µ3/(γ+1)

)
as t→∞.

Proof. By the ordinary central limit theorem (and the fact that γ ∈ (0, 1/2)), we first have

Sn − µ
γ+1n

γ+1

σ
√
n

=
Tn
σ
√
n

+

µ
γ+1n

γ+1 − µ
∑n
k=1 k

γ

σ
√
n

d→ N(0, 1) as n→∞,

so that, by Anscombe’s theorem and Theorem 3.3,

Sτ(t) − µ
γ+1 (τ(t))γ+1

σ
( (γ+1)t

µ

)1/(2(γ+1))

d→ N(0, 1) as t→∞. (3.4)

Next we note that

Xn√
n

=
Xn − nγµ√

n
+
nγµ√
n

=
Yn√
n

+ nγ−(1/2)µ
a.s.→ 0 as n→∞,

since VarY <∞ (and 0 < γ < 1/2), so that, by Theorem 2.2,

Xτ(t)√
τ(t)

a.s.→ 0 as t→∞. (3.5)

Combining (3.4), (3.5) and the sandwich lemma leads (after some reshuffling) to( µ

γ + 1

)(2γ+3)/(2(γ+1))

· (τ(t))γ+1 − (γ + 1)t/µ

σt1/(2(γ+1))

d→ N(0, 1) as t→∞. (3.6)

The proof is now completed by exploiting the delta-method (cf. e.g. [19], Section 7.4.1) applied to
the function g(x) = x1/(γ+1), the details of which we omit (since they are not of interest here). 2

3.5 Alternating renewal theory

A more general model, which allows for repair times, is the alternating renewal process. Here
the lifetimes can be considered as the time periods during which some device functions, and an
additional random sequence that may be interpreted as repair times is introduced. In, for example,
queueing theory, lifetimes might correspond to busy times and repair times to idle times.

A natural problem in this context would be to find expressions for the availability, i.e. the
relative amount of time that the device is functioning, or the relative amount of time that the
server is busy.

This problem can be modeled within a more general framework, namely a special kind of two-
dimensional random walk that is stopped when the second component reaches a given level, after
which the first component is evaluated at that particular time point. This is our next topic, which
is followed by a brief return to the alternating renewal process.
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4 Stopped two-dimensional random walks

Motivated by a problem in chromatograpy [22], the following topic emerged as joint work with
Svante Janson [23], see also [20], Section 4.2.

Let {(U (1)
n , U

(2)
n ), n ≥ 1} be a two-dimensional random walk with i.i.d. increments (X

(1)
k , X

(2)
k ),

k ≥ 1, such that µ2 = EX(2) > 0 and µ1 = EX(1) exists, finite. Nothing is assumed about

independence between the components X
(1)
k and X

(2)
k , which, typically, is an essential point in

many applications. Furthermore, set Fn = σ{(X(1)
k , X

(2)
k ) : k ≤ n} for n ≥ 1, and define the first

passage time process

τ(t) = min{n : U (2)
n > t}, t ≥ 0 .

We observe immediately that everything we know about renewal theory for random walks applies

to {τ(t), t ≥ 0} as well as to {U (2)
τ(t), t ≥ 0} since µ2 > 0.

The process of our concern is the stopped random walk

{U (1)
τ(t), t ≥ 0}. (4.1)

In the sources cited above one finds a variety of results for this process. Here we confine ourselves
to the usual strong law and central limit theorem, where, once again, Anscombe’s theorem does
the main job.

Theorem 4.1.

U
(1)
τ(t)

t

a.s.→ µ1

µ2
as t→∞.

Proof. We have

U
(1)
τ(t)

t
=
U

(1)
τ(t)

τ(t)
· τ(t)

t

a.s.→ µ1 ·
1

µ2
as t→∞.

The convergence of the first factor is justified by Theorem 2.2, and that of the second one by
Theorem 3.1. 2

Theorem 4.2. Suppose, in addition, that σ2
1 = VarX(1) <∞, σ2

2 = VarX(2) <∞ and that

v2 = Var (µ2X
(1) − µ1X

(2)) > 0.

Then

U
(1)
τ(t) −

µ1

µ2
t

vµ
−3/2
2

√
t

d→ N(0, 1) as t→∞.

Proof. Using a device originating in [33] we set

Sn = µ2U
(1)
n − µ1U

(2)
n , n ≥ 1, (4.2)

thus fabricating a random walk {Sn, n ≥ 1} whose increments have mean 0 and positive, finite
variance v2.

The ordinary central limit theorem, together with Theorem 4.1, Theorem 2.2 and Anscombe’s
theorem, now tells us that

Sτ(t)

v
√
µ−1

2 t

d→ N(0, 1) as t→∞,

which, rewritten, is the same as

µ2U
(1)
τ(t) − µ1U

(2)
τ(t)

v
√
µ−1

2 t

d→ N(0, 1) as t→∞.



10 Allan Gut

Sandwiching U
(2)
τ(t), that is, noticing that

0 ≤
U

(2)
τ(t) − t√

t
≤
X

(2)
τ(t)√
t

a.s.→ 0 as t→∞,

and some rearranging finishes the proof. 2

As promised above, here is a quick return to the alternating renewal process.

Let T
(b)
k and T

(i)
k , k ≥ 1 be the busy and idle periods in a queueing system or the periods when

a device functions or is being repaired, respectively. Then, with

U (1)
n =

n∑
k=1

T
(b)
k and U (2)

n =

n∑
k=1

(T
(b)
k + T

(i)
k ), n ≥ 1, (4.3)

we note that {U (2)
n , n ≥ 1} measures time in general and that {U (1)

n , n ≥ 1} measures busy

time/the time the device is functioning. Stopping {U (2)
n , n ≥ 1} and checking {U (1)

n , n ≥ 1} then

should provide availability, that is, U
(1)
τ(t) should model availability during the time interval (0, t].

Apart from some sandwiching.
We shall return to this example and to some further applications in Section 5.

4.1 Stopped two-dimensional random walks with a trend

This subsection is devoted to two-dimensional versions of the random walk with a trend from
Subsection 3.4. We shall mainly consider the cases when there is trend in the stopping (second)
component, but none in the first one, and when there is the same trend in both components.

We thus let {(U (1)
n , U

(2)
n ), n ≥ 1} be a two-dimensional random walk with i.i.d. increments

(X
(1)
k , X

(2)
k ), k ≥ 1, where, in turn, for i = 1, 2, X

(i)
k = Y

(i)
k + kγiµi, with µ1 ∈ R, µ2 > 0, and

γi ∈ [0, 1]; zero is included in order to cover the case when there is no trend in the first components.
As before we define

τ(t) = min{n : U (2)
n > t}, t ≥ 0,

and wish to establish results for

{U (1)
τ(t), t ≥ 0}. (4.4)

From Subsection 3.4 we know that

τ(t)

t1/(γ2+1)

a.s.→
(γ2 + 1

µ2

)1/(γ2+1)

as t→∞, (4.5)

so that, by arguing as there, we immediately obtain

U
(1)
τ(t)

t(γ1+1)/(γ2+1)
=

U
(1)
τ(t)

(τ(t))γ1+1
·
( τ(t)

t1/(γ2+1)

)γ1+1 a.s.→ µ1

γ1 + 1
·
(γ2 + 1

µ2

)(γ1+1)/(γ2+1)

as t→∞,

which establishes the following strong law.

Theorem 4.3.

U
(1)
τ(t)

t(γ1+1)/(γ2+1)

a.s.→ µ1

γ1 + 1
·
(γ2 + 1

µ2

)(γ1+1)/(γ2+1)

as t→∞.

As for a corresponding central limit theorem the procedure is the analogous one, except for
the fact that the expression for the variance v2 emerging from the special mean zero random walk
{Sn, n ≥ 1} constructed in the proof (recall (4.2)) becomes more or less tractable depending on
the trends.

Here we shall consider only two cases. In the first one we assume that the trend is the same in
both components. If, for example, both components represent the same kind of measurement, and
one seeks some kind of availability (cf. Subsection 3.5), then this might be reasonable.
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In the second example we assume that there is no trend in the first component. This might
be relevant if, for example, one “fears” that the assumption γ2 = 0 is violated, in which case the

“reward” U
(1)
τ(t) turns into the cost for a possible disaster.

Thus, let us turn to the first case, in which the trends are the same, viz., γ1 = γ2 = γ. Recalling
the proof of Theorem 4.2 we find that the appropriate random walk is

Sn = µ2U
(1)
n − µ1U

(2)
n =

n∑
k=1

(µ2X
(1)
k − µ1X

(2)
k )

=

n∑
k=1

(
µ2(Y

(1)
k − kγµ1)− µ1(Y

(2)
k − kγµ2)

)
=

n∑
k=1

(µ2Y
(1)
k − µ1Y

(2)
k ) , n ≥ 1,

where the summands are i.i.d. with mean 0 and variance v2 = Var (µ2Y
(1) − µ1Y

(2)).
By combining the proofs of Theorems 4.2 and 3.3 we first obtain

µ2U
(1)
τ(t) − µ1U

(2)
τ(t)

v(µ−1
2 (γ + 1)t)1/(2(γ+1)

d→ N(0, 1) as t→∞,

and after sandwiching U
(2)
τ(t) the following result emerges.

Theorem 4.4. If, in addition, VarY (1) <∞, VarY (2) <∞, γ1 = γ2 = γ ∈ (0, 1/2), and

v2 = Var (µ2Y
(1) − µ1Y

(2)) > 0,

then
U

(1)
τ(t) −

µ1

µ2
t

t1/(2(γ+1)

d→ N
(
0, v2µ

(2γ+3)/(γ+1)
2 (γ + 1)1/(γ+1)

)
as t→∞.

In the second case we thus assume (fear) that the second, running, component has some trend
(γ2 = γ), and that the first one has no trend (γ1 = 0).

However, we redefine the first component in that we introduce the trend of the second compo-
nent as a kind of discount factor; viz.,

U (1)
n =

n∑
k=1

kγX
(1)
k =

n∑
k=1

kγ(Y
(1)
k + µ1) for n ≥ 1.

This means that “the reward” in the k th step has a discount factor kγ .
The corresponding centered random walk then is

Sn = µ2U
(1)
n − µ1U

(2)
n =

n∑
k=1

(µ2k
γX

(1)
k − µ1X

(2)
k )

=

n∑
k=1

(
µ2k

γ(Y
(1)
k + µ1)− µ1(Y

(2)
k + kγµ2)

)
=

n∑
k=1

(µ2k
γY

(1)
k − µ1Y

(2)
k ) , n ≥ 1.

Since we have redefined the first component we first need a corresponding strong law.

Theorem 4.5.
U

(1)
τ(t)

t

a.s.→ µ1

µ2
as t→∞.

Proof. Recalling that
∑n
k=1 k

γ ∼ nγ+1

γ+1 as n→∞, an application of the wellknown strong law of
large numbers for weighted sums yields

U
(1)
n

nγ+1
=

∑n
k=1 k

γY
(1)
k

nγ+1
+ µ1

∑n
k=1 k

γ

nγ+1

a.s.→ 0 +
µ1

γ + 1
=

µ1

γ + 1
as n→∞,

after which the remaining piece of the proof runs as that of Theorem 4.3. 2
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In order to prove a central limit theorem, the first step is to establish asymptotic normality for

Sn as n → ∞. Toward that end we first consider S
(1)
n =

∑n
k=1 µ2k

γY
(1)
k , n ≥ 1, for which (2.5)

tells us that
S

(1)
n

nγ+(1/2)

d→ N
(
0,

µ2
2σ

2
1

2γ + 1

)
as n→∞.

Next, since asymptotic normality for
∑n
k=1 µ1Y

(2)
k requires normalization with

√
n, it follows that∑n

k=1 µ1Y
(2)
k

nγ+(1/2)

p→ 0 as n→∞,

so that, by joining the last two conclusions, we obtain

Sn
nγ+(1/2)

d→ N
(
0,

µ2
2σ

2
1

2γ + 1

)
as n→∞. (4.6)

After this we are in the position to apply Theorem 2.4 (with β = 1/(γ + 1)) to conclude that

Sτ(t)

(τ(t))γ+(1/2)

d→ N
(
0,

µ2
2σ

2
1

2γ + 1

)
as t→∞,

which is the same as

µ2U
(1)
τ(t) − µ1U

(2)
τ(t)

(τ(t))γ+(1/2)

d→ N
(
0,

µ2
2σ

2
1

2γ + 1

)
as t→∞,

which, in turn, in view of (4.5) (remember Theorem 3.3), yields

µ2U
(1)
τ(t) − µ1U

(2)
τ(t)

t
2γ+1

2(γ+1)

d→ N
(

0,
((γ + 1)/µ2)

2γ+1
2(γ+1)µ2

2σ
2
1

2γ + 1

)
as t→∞.

Sandwiching U
(2)
τ(t) and rearranging, finally, establishes the following result.

Theorem 4.6. If, in addition, VarY (1) <∞, VarY (2) <∞, γ1 = 0 and γ2 = γ ∈ (0, 1/2), then

U
(1)
τ(t) −

µ1

µ2
t

t
2γ+1

2(γ+1)

d→ N
(

0,
σ2

1

2γ + 1
·
(γ + 1

µ2

) 2γ+1
2(γ+1)

)
as t→∞.

5 Some applications

After these theoretical findings we provide some contexts where stopped random walks naturally
enter into the probabilistic models, and, in particular, illustrate the usefulness of our results con-

cerning the quantity U
(1)
τ(t) from Section 4.

Chromatography

In May 1979 I received a telephone call from a friend of a friend who wanted help with a problem
in chromatography. This, in turn, led to [22] and, later, to the model of Section 4 (for more on
this we refer once more to [23]; cf. also [20], Chapter 4.

The basis for chromatographic separation is a sample of molecules that is injected onto a column
and, during its transport along the column, oscillates between a mobile phase and a stationary
phase (where the molecules do not move) in order to separate the compounds.

By identifying the two phases with the busy periods (the functioning of some component) and
the idle periods (the repair times), respectively, in the language of Subsection 3.5, we realize that
we are faced with an alternating renewal process. The relative time spent in the mobile phase thus
corresponds to availability, and assuming constant velocity v in the mobile phase, we easily obtain
the distance travelled at time t with the aid of the results from Section 4.

In addition, by letting {(X(1)
k , X

2)
k ), k ≥ 1} be the times in the mobile and stationary phases,

respectively, then U
(1)
n =

∑n
k=1(X

(1)
k + X

2)
k ) and U

(2)
n =

∑n
k=1 vX

(1)
k , n ≥ 1, represent time and

distance travelled, respectively, so that, with τ(L) = min{n : U
(2)
n > L}, where L = the length of

a column, U
(1)
τ(L) provides information about the elution time.
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Markov renewal theory

In [1] some of the results above are generalized to Markov renewal processes, which (i.a.) allows
the mobile phase in the previous example to be split into several layers, which makes the model
more realistic.

Queuing theory

This was already hinted at in Subsection 3.5. On the other hand, if X
(2)
k are the times between

customers arriving at a cash register, and X
(1)
k are the amounts of their purchases, then, in the

usual notation, U
(1)
τ(t) equals the amount of money in the cash register at time t. Or, if X

(1)
k = 1

whenever a customer makes a purchase and 0 otherwise, then U
(1)
τ(t) equals the number of customers

that did purchase something before time t.

Replacement policies

In replacement based on age one replaces an object or component upon failure or at som prescribed
age whichever occurs first (death or retirement for humans). Comparing with the queueing system
we immediately see how to model the number of components replaced because of failure during
the time interval (0, t].

Shock models

Shock models are systems that at random times are subject to shocks of random magnitudes. In
cumulative shock models systems break down because of a cumulative effect (and in extreme shock
models systems break down because of one single large shock).

If {(X(1)
k , X

2)
k ), k ≥ 0} are (nonnegative) i.i.d. two-dimensional random vectors, where X

(1)
k

represents the time between the (k − 1) st and the k th shock, and X
(2)
k the magnitude of the k th

shock, then the number of shocks until failure can be described by

τ(t) = min{n :

n∑
k=1

X
(2)
k > t},

and the failure time by
∑τ(t)
k=1X

(1)
k , and Section 4 is in action again.

Remark 5.1. Note how, obviously, the two components of the various random walks above are
not independent. 2

Insurance risk theory

The number of claims as well as the claim sizes during a given time period are random, so that
the total amount claimed is a random sum, typically, a compound Poisson process. We refer to
the abundance of books and papers in the area.

6 Renewal theory for perturbed random walks

Throughout this section X1, X2, . . . are i.i.d. random variables with positive, finite mean µ and
partial sums {Sn, n ≥ 1}. In addition we let {ξn, n ≥ 1}, with increments {ηk, k ≥ 1}, be a
sequence of random variables, such that

ξn
n

a.s.→ 0 as n→∞ . (6.1)

Definition 6.1. A process {Zn, n ≥ 1}, such that

Zn = Sn + ξn, n ≥ 1,

where {Sn, n ≥ 1}and {ξn, n ≥ 1} are as above, is called a perturbed random walk. 2

A main reference here is [16]; see also [20], Chapter 6.
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Remark 6.1. This definition is more general than that of nonlinear renewal theory as introduced
in [30, 31] and further developed in [39, 35], in that we do not assume that VarX <∞, and neither
that the elements of the perturbing process are independent of the future of the random walk nor
that the perturbing process satisfies the Anscombe condition. 2

Once again we define the first passage times

τ(t) = min{n : Sn > t}, t ≥ 0.

Following are the strong law and central limit theorem in this setting.

Theorem 6.1.
τ(t)

t

a.s.→ 1

µ
as t→∞.

In order to formulate the central limit theorems to follow we need the following condition.

Definition 6.2. The sequence {ξn, n ≥ 1} satisfies Condition AP if

ξn√
n

a.s.→ 0 as n→∞ or if

ξn√
n

p→ 0 as n→∞ and
{ ξn√

n
, n ≥ 1

}
satisfies the Anscombe condition. 2

Theorem 6.2. Suppose, in addition, that σ2 = VarX < ∞. If {ξn, n ≥ 1} satisfies Condition
AP, then

τ(t)− t/µ
σµ−3/2

√
t

d→ N(0, 1) as t→∞.

The proofs are based on the SRW-method along the lines of the proof of Theorem 4.2, the point
being that the assumptions are exactly those needed for the additional perturbing contribution to
vanish asymptotically. In addition one needs the following sandwich inequality:

t < Zτ(t) ≤ t+Xτ(t) + ητ(t) ≤ t+X+
τ(t) + η+

τ(t) . (6.2)

6.1 The case Zn = n · g(Ȳn)

Let Y1, Y2, . . . be i.i.d. random variables with positive finite mean, θ, and finite variance, ν2, and
suppose that g is a positive function, that is twice continuously differentiable in some neighborhood
of θ. Finally, set

Zn = n · g(Ȳn), n ≥ 1, (6.3)

where Ȳn = 1
n

∑n
k=1 Yk, n ≥ 1.

Although this case is less general it covers many important applications, in particular various
sequential testing procedures; we shall provide a hint on this in Subsection 7.1 below.

To see that {Zn, n ≥ 1} defines a perturbed random walk we make a Taylor expansion of g at
θ to obtain

Zn = n · g(θ) + n · g′(θ)(Ȳn − θ) + n · g
′′(ρn)

2
(Ȳn − θ)2, (6.4)

where ρn = ρn(ω) lies between θ and Ȳn.
By setting Xk = g(θ) + g′(θ)(Yk − θ), k ≥ 1, we obtain an i.i.d. sequence of random variables

with mean µ = g(θ) + g′(θ) · 0 = g(θ) > 0 and variance σ2 = ν2(g′(θ))2. Thus, with

Sn =

n∑
k=1

Xk =

n∑
k=1

(
g(θ) + g′(θ)(Yk − θ)

)
and ξn =

ng′′(ρn)

2
(Ȳn − θ)2, n ≥ 1,

the former sequence defines a random walk with positive mean, and the second one a perturbing
component, since

ξn
n

=
g′′(ρn)

2
(Ȳn − θ)2 a.s.→ 0 as n→∞,

in view of the continuity of g′′ and the strong law of large numbers.
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The strong law and central limit theorem turn into

τ(t)

t

a.s.→ 1

g(θ)
as t→∞,

and
τ(t)− t/g(θ)

νg′(θ)(g(θ))−3/2
√
t

d→ 1

g(θ)
as t→∞,

respectively.

Remark 6.2. One can in fact even verify that this case defines a nonlinear renewal process
as treated in the sources cited above. However, weakening the differentiability and integrability
assumptions, still yields a perturbed random walk. But no longer a nonlinear renewal process. 2

6.2 Renewal theory for perturbed random walks with a trend

Let, as in Subsection 4.1, Y1, Y2, . . . be i.i.d. random variables with mean 0, let ξ1, ξ2, . . . be the
perturbations, let γ ∈ (0, 1], and set, for k ≥ 1, Xk = Yk + kγµ, with Sn =

∑n
k=1Xk, n ≥ 1, and,

finally, Zn = Sn + ξn, n ≥ 1.
In order to complete the setup we introduce the family of first passage times

τ(t) = min{n : Zn > t}, t ≥ 0.

Combining the arguments from Subsection 4.1, together with an additional caretaking of the
perturbing part, leads to the following results.

Theorem 6.3. For 0 < γ ≤ 1, we have

τ(t)

t1/(γ+1)

a.s.→
(γ + 1

µ

)1/(γ+1)

as t→∞.

Proof. Recalling that
∑n
k=1 k

γ ∼ 1
γ+1n

γ+1 as n→∞, and invoking the (ordinary) strong law we
obtain

Zn − µ
γ+1n

γ+1

nγ+1
=

Tn
nγ+1

+

µ
γ+1n

γ+1 − µ
∑n
k=1 k

γ

nγ+1
+

ξn
nγ+1

a.s.→ 0 as n→∞.

By copying the proof of Theorem 3.3 it then follows that

Zn
nγ+1

a.s.→ µ

γ + 1
and that

Xn

nγ+1

a.s.→ 0 as n→∞,

and in this case also that ηn/n
γ+1 a.s.→ 0.

An application of Theorem 2.2 and sandwiching, recall (6.2), concludes the proof. 2

Theorem 6.4. Let γ ∈ (0, 1/2). If, in addition, VarY = σ2 <∞, and Condition AP is satisfied,
then

τ(t)−
( (γ+1)t

µ

)1/(γ+1)

t(1−2γ)/(2(γ+1))

d→ N
(

0, σ2 · (γ + 1)(1−2γ)/(γ+1)

µ3/(γ+1)

)
as t→∞.

The proof consists of a modification of the proof of Theorem 3.4 along the lines of the previous
proof, the details of which we leave to the reader(s).

6.3 Stopped two-dimensional perturbed random walks

Just as the results in Section 4 are extensions from renewal theory to a two-dimensional case, one
can obtain corresponding analogs for perturbed random walks. This is interesting in its own right,
but, more importantly, the results are useful in certain multiple testing procedures, as will shall
soon see.
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Thus, let, as before, {(U (1)
n , U

(2)
n ), n ≥ 1} be a two-dimensional random walk with i.i.d. in-

crements {(X(1)
k , X

(2)
k ), k ≥ 1}, and suppose that µ2 = EX(2) > 0 and that µ1 = EX(1) exists,

finite. Furthermore, {ξ(1)
n , n ≥ 1} and {ξ(2)

n , n ≥ 1} are perturbing sequences in the sense of (6.1).
Given this, we define the two-dimensional perturbed random walk

(Z(1)
n , Z(2)

n ) = (U (1)
n + ξ(1)

n , U (2)
n + ξ(2)

n ), n ≥ 1,

and the first passage time process

τ(t) = min{n : Z(2)
n > t}, t ≥ 0.

Clearly, the first passage times are stopping times (relative to the sequence of σ-algebras generated
by the perturbed random walk). Moreover, since µ2 > 0 the results from the early part of the
present section apply to the second component.

We are thus set in order to investigate stopped perturbed random walk

{Z(1)
τ(t), t ≥ 0}.

And, no surprise, we end up as follows:

Theorem 6.5. We have
Z

(1)
τ(t)

t

a.s.→ µ1

µ2
as t→∞.

Theorem 6.6. Suppose, in addition, that σ2
1 = VarX(1) <∞, that σ2

2 = VarX(1) <∞ and that

v2 = Var (µ2X
(1) − µ1X

(2)) > 0.

If {ξ(1)
n , n ≥ 1} and {ξ(2)

n , n ≥ 1} satisfy Condition AP, then

Z
(1)
τ(t) −

µ1

µ2
t

vµ
−3/2
2

√
t

d→ N(0, 1) as t→∞.

6.4 The case (Z
(1)
n , Z

(2)
n ) =

(
n · g1(Ȳ

(1)
n ), n · g2(Ȳ

(2,1)
n , Ȳ

(2,2)
n )

)
Without further ado we just mention that the special case from the one-dimensional setting car-
ries over also to this situation. For completeness we state the two usual results; the notation is
selfexplanatory. Besides, this is the variant we shall exploit later.

A glance at the heading tells us that we consider the two-dimensional perturbed random walk

(Z
(1)
n , Z

(2)
n ) = (n · g1(Ȳ

(1)
n ), n · g2(Ȳ

(2,1)
n , Ȳ

(2,2)
n )), n ≥ 1, and the first passage time process

τ(t) = min{n : Z(2)
n > t}, t ≥ 0,

with focus on the stopped family

{Z(1)
τ(t), t ≥ 0}.

Theorem 6.7. We have

Z
(1)
τ(t)

t

a.s.→ g1(θ1)

g2(θ
(2,1)
2 , θ

(2,2)
2 )

as t→∞.

Theorem 6.8. Suppose, in addition, that VarY (1) < ∞, Cov Y(2) is positive definite, and that

g′1, ∂g2

∂y
(2)
1

and ∂g2

∂y
(2)
2

are continuous at θ1 and (θ
(2,1)
2 , θ

(2,2)
2 ), respectively. Then

Z
(1)
τ(t) −

g1(θ1)

g2(θ
(2,1)
2 ,θ

(2,2)
2 )

t

v
(
g2(θ

(2,1)
2 , θ

(2,2)
2 )

)−3/2√
t

d→ N(0, 1) as t→∞,
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where

v2 = Var
(
g2(θ

(2,1)
2 , θ

(2,2)
2 )g′1(θ1)Y (1)

−g1(θ1)
{ ∂g2

∂y
(2)
1

(θ
(2,1)
2 , θ

(2,2)
2 ) · Y (2,1) +

∂g2

∂y
(2)
2

(θ
(2,1)
2 , θ

(2,2)
2 ) · Y (2,2)

})
is assumed to be positive.

6.5 Stopped two-dimensional perturbed random walks with a trend

Consider the (obvious) two-dimensional version of the perturbed random walk with a trend from
Subsection 6.2, or, else, the perturbed version of the two-dimensional random walk from Subsection
4.1, that is, the two-dimensional perturbed random walk

(Z(1)
n , Z(2)

n ) = (U (1)
n + ξ(1)

n , U (2)
n + ξ(2)

n ), n ≥ 1,

where we now assume that X
(i)
k = Y

(i)
k +kγiµi, with µ1 ∈ R, µ2 > 0 and γi ∈ [0, 1], where, in turn,

Y
(i)
1 , Y

(i)
2 , . . . are sequences of i.i.d. random variables with mean 0, i = 1, 2.

The first passage time process is the usual one, namely

τ(t) = min{n : Z(2)
n > t}, t ≥ 0,

and the object in focus is (of course)

{Z(1)
τ(t), t ≥ 0}. (6.5)

The following three results are the same as those for the two-dimensional random walk in
Subsection 4.1, and the proofs, which we omit, follow the same lines as there. The perturbation is
throughout of an asymptotically vanishing order.

Theorem 6.9.

Z
(1)
τ(t)

t(γ1+1)/(γ2+1)

a.s.→ µ1

γ1 + 1
·
(γ2 + 1

µ2

)(γ1+1)/(γ2+1)

as t→∞.

Theorem 6.10. Suppose, in addition, that VarY (1) <∞, VarY (2) <∞, γ1 = γ2 = γ ∈ (0, 1/2),
and that

v2 = Var (µ2Y
(1) − µ1Y

(2)) > 0.

If {ξ(1)
n , n ≥ 1} and {ξ(2)

n , n ≥ 1} satisfy Condition AP, then

Z
(1)
τ(t) −

µ1

µ2
t

t1/(2(γ+1)

d→ N
(
0, v2µ

(2γ+3)/(γ+1)
2 (γ + 1)1/(γ+1)

)
as t→∞.

For the second case we recall from Subsection 4.1 that the first component of the random walk
contribution is defined as

U (1)
n =

n∑
k=1

kγX
(1)
k =

n∑
k=1

kγ(Y
(1)
k + µ1) for n ≥ 1.

Theorem 6.11. If, in addition, VarY (1) <∞, VarY (2) <∞, γ1 = 0 and γ2 = γ ∈ (0, 1/2), and

{ξ(1)
n , n ≥ 1} and {ξ(2)

n , n ≥ 1} satisfy Condition AP, then

U
(1)
τ(t) −

µ1

µ2
t

t
2γ+1

2(γ+1)

d→ N
(

0,
σ2

1

2γ + 1
·
(γ + 1

µ2

) 2γ+1
2(γ+1)

)
as t→∞.



18 Allan Gut

7 Repeated significance tests

This is an important topic in the theory of sequential analysis. In the following we shall see how
some procedures depend on results for perturbed random walks, in particular, from the model from
Subsections 6.1 and 6.4.

7.1 Repeated significance tests in one-parameter exponential families

Consider the family of distributions

Gθ(dx) = exp{θx− ψ(θ)}λ(dx), θ ∈ Θ ,

where λ is a nondegenerate, σ-finite measure on (−∞,∞) and Θ a nondegenerate real interval,
let Y1, Y2, . . . be i.i.d. random variables with distribution function Gθ for some θ ∈ Θ, where θ is
unknown, and suppose that we wish to test the hypothesis

H0 : θ = θ0 vs H1 : θ 6= θ0,

where we w.l.o.g. assume that θ0 = 0 and that ψ(0) = ψ′(0) = 0.
For this model it is well-known that the moment generating function Eθ exp{tY } exists for

t+ θ ∈ Θ, that ψ is convex, and that EθY = ψ′(θ) and VarθY = ψ′′(θ) > 0, under the assumption
that ψ is twice differentiable in a neighborhood of θ0 = 0.

Moreover, the log-likelihood ratio is

Tn = sup
θ∈Θ

log

n∏
k=1

exp{θYk − ψ(θ)} = n · sup
θ∈Θ
{θȲn − ψ(θ)} = n · g

(
Ȳn
)
,

where g(x) = supθ
(
θx − ψ(θ)

)
, x ∈ R, is the convex (Fenchel) conjugate of ψ. It follows that

{Tn, n ≥ 1} is a perturbed random walk in the special sense of Subsection 6.1.
Since the corresponding sequential test procedure amounts to rejecting H0 as soon as Tn exceeds

some critical value, the stopping time of interest is

τ(t) = min{n : Tn > t}, t > 0,

which shows that we are, indeed, in the realm of Subsection 6.1.

Example 7.1. For Y ∈ N(θ, 1) we have ψ(θ) = 1
2θ

2, g(x) = 1
2x

2, and Tn = 1
2n(Ȳn)2, that is, we

rediscover the classical square root boundary problem.

Example 7.2. If Y is exponential with mean 1/(1− θ), then g(x) = x− 1− log x and

τ(t) = min{n : n
(
Ȳn − 1− log Ȳn

)
> t}, t ≥ 0. 2

Further details can be found in [16] and/or [20], Section 6.9. For additional material we refer
to [39, 35].

7.2 Repeated significance tests in two-parameter exponential families

This is more than just an extension from the previous subsection, in that the two-parameter model,
i.a., provides relations between marginal one-parameter tests and joint tests. The special scenario
we have in mind is when the two-dimensional test statistic falls into its (two-dimensional) critical
region, whereas none of the (one-dimensional) marginal test statistics fall into theirs, which means
that one can only conclude that “something is wrong somewhere” but not where or what.

The example to follow is taken from [24], where further details and background can be found
(cf. also [20], Section 6.12).

In order to put this into mathematics, consider the two-dimensional version of the previous
subsection, namely, the family of distributions

Gθ1,θ2(dy1, dy2) = exp{θ1y1 + θ2y2 − ψ(θ1, θ2)}λ(dy1, dy2), (θ1, θ2) ∈ Θ,

where λ is a nondegenerate, σ-finite measure on R2, Θ a convex subset of R2 and ψ is, for simplicity,
strictly convex and twice differentiable.
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Now, let (Y
(1)
k , Y

(2)
k ), k ≥ 1, be i.i.d. two-dimensional random variables with distribution

functionGθ1,θ2 , where the parameters are unknown, and suppose that we wish to test the hypothesis

H0 : θ1 = θ01, θ2 = θ02 vs. H1 : θ1 6= θ01 or θ2 6= θ02,

where w.l.o.g. we assume that (θ01, θ02) = (0, 0) ∈ Θ and that ψ(0, 0) = ∂ψ
∂θ1

(0, 0) = ∂ψ
∂θ2

(0, 0) = 0.

The log-likelihood ratio then turns out as Tn = n · g
(
Ȳ

(1)
n , Ȳ

(2)
n

)
, where, for −∞ < y1, y2 <∞,

g(y1, y2) = supθ1,θ2
(
θ1y1 +θ2y2−ψ(θ1, θ2)

)
is the convex conjugate of ψ with the usual properties,

so that {Tn, n ≥ 1} is a two-dimensional perturbed random walk in the sense of Subsection 6.4.
However, we may carry this one step further. Namely, consider Tn, n ≥ 1, as a second com-

ponent of a two-dimensional perturbed random walk as treated in Subsection 6.4, and suppose,

for the sake of illustration, that (Y
(1)
k , Y

(2)
k )′, k ≥ 1, are i.i.d. normal random vectors with mean

(θ1, θ2)′ and common variance 1. Then ψ(θ1, θ2) = 1
2 (θ2

1 + θ2
2) and g(y1, y2) = 1

2 (y2
1 + y2

2), from
which it follows that

Tn =
n

2

((
Ȳ (1)
n

)2
+
(
Ȳ (2)
n

)2)
=

1

2n

(( n∑
k=1

Y
(1)
k

)2

+
( n∑
k=1

Y
(2)
k

)2)
=

1

2n
((Σ(1)

n )2 + (Σ(2)
n )2) ,

which compares naturally with the one-dimensional case above.

With Σn = (Σ
(1)
n ,Σ

(2)
n )′ and ‖ · ‖ denoting Euclidean distance in R2, the appropriate stopping

time becomes
τ(t) = min{n : ‖Σn‖ >

√
2tn}, t ≥ 0,

which might be interpreted as a generalization of the square root boundary problem.
Given this setup, here are two conclusions under relevant alternatives.

♣ Theorem 6.7 with g1(x) ≡ 1 and g2(y1, y2) = g(y1, y2), yields

τ(t)

t

a.s.→ 2

θ2
1 + θ2

2

as t→∞.

Since the corresponding strong laws for the marginal tests are

τi(t)

t

a.s.→ 2

θ2
i

as t→∞, i = 1, 2.

it follows that, under the alternative, we would, at stopping, encounter a two-dimensional
rejection, but, possibly not (yet?) a one-dimensional rejection (i.e., someting is wrong but
nothing more).

♣ If Ti,n, i = 1, 2, denote the marginal log-likelihood ratios, and g1(x) = 1
2x

2, then, for θ1θ2 6= 0,

Ti,τ(t) −
θ2i

θ21+θ22
t

θ1θ2
θ21+θ22

√
2t

d→ N(0, 1) as t→∞, i = 1, 2.

This result provides information about the size of the marginal likelihood at the moment of
rejection of the joint null hypothesis. Once again we might arrive at the point “something
seems wrong somewhere”, but, again, without any hint on where.

8 Records

In this, final, section we turn our attention to a somewhat different kind of problem, the motivation
being that the SRW-method provides a nice alternative method of proof.

Let X1, X2, . . . be i.i.d. continuous random variables, with record times L(1) = 1 and, recur-
sively, L(n) = min{k : Xk > XL(n−1)}, n ≥ 2.

The associated counting process, {µ(n), n ≥ 1}, is defined by

µ(n) = # records among X1, X2, . . . , Xn = max{k : L(k) ≤ n} =

n∑
k=1

Ik,
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where Ik = 1 when Xk is a record, and Ik = 0 otherwise, i.e., Ik ∈ Be(1/k), k ≥ 1. Moreover, one
can show that the indicators are independent. The standard background reference is [34].

Since the indicators are independent (although not identically distributed) and bounded it is
an easy task to prove the following limit theorem.

Theorem 8.1. We have

µ(n)

log n

a.s.→ 1 as n→∞;

µ(n)− log n√
log n

d→ N(0, 1) as n→∞.

In order to prove the corresponding result for the record times, Rényi exploited the inversion
formula

{L(n) ≥ k} = {µ(k) ≤ n}.

Now, with the inversion formula (3.1), the renewal counting process, and the SRW-type proofs for
first passage times processes in mind, one might guess that this kind of SRW-approach would work
here too.

And, indeed, it does; cf. [13] (also [20], Section 6.13). The only obstacle is that Anscombe’s
theorem is not applicable, and here Theorem 2.5 comes in handy. A compensatory relief is that
the boundary is hit exactly, viz.,

µ(L(n)) = n, (8.1)

so that no sandwich inequality is needed.
The following result emerges.

Theorem 8.2. We have

logL(n)

n

a.s.→ 1 as n→∞;

logL(n)− n√
n

d→ N(0, 1) as n→∞.

Proof. To prove the strong law, we first apply Theorem 2.2, to obtain

µ(L(n))

logL(n)

a.s.→ 1 as n→∞,

so that, recalling (8.1), we are done after turning the conclusion upside down.
As for asymptotic normality, the usual procedure with Theorem 2.5 replacing Anscombe’s

theorem does it. 2
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[34] Rényi, A. (1962). On the extreme elements of observations. MTA III, Oszt. Közl. 12, 105-121.
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