
 Open access  Posted Content  DOI:10.21203/RS.3.RS-96858/V1

Answer ALS: A Large-Scale Resource for Sporadic and Familial ALS Combining
Clinical Data with Multi-Omics Data from Induced Pluripotent Cell Lines
— Source link 

Jeffrey D. Rothstein, James D. Berry, Clive N. Svendsen, Leslie M. Thompson ...+22 more authors

Published on: 28 Oct 2020

Share this paper:    

View more about this paper here: https://typeset.io/papers/answer-als-a-large-scale-resource-for-sporadic-and-familial-
4lzu8jvtmp

https://typeset.io/
https://www.doi.org/10.21203/RS.3.RS-96858/V1
https://typeset.io/papers/answer-als-a-large-scale-resource-for-sporadic-and-familial-4lzu8jvtmp
https://typeset.io/authors/jeffrey-d-rothstein-kqkv0tqole
https://typeset.io/authors/james-d-berry-2dqs1wgc67
https://typeset.io/authors/clive-n-svendsen-w8pxhaf78v
https://typeset.io/authors/leslie-m-thompson-1fk28w5ioo
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/answer-als-a-large-scale-resource-for-sporadic-and-familial-4lzu8jvtmp
https://twitter.com/intent/tweet?text=Answer%20ALS:%20A%20Large-Scale%20Resource%20for%20Sporadic%20and%20Familial%20ALS%20Combining%20Clinical%20Data%20with%20Multi-Omics%20Data%20from%20Induced%20Pluripotent%20Cell%20Lines&url=https://typeset.io/papers/answer-als-a-large-scale-resource-for-sporadic-and-familial-4lzu8jvtmp
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/answer-als-a-large-scale-resource-for-sporadic-and-familial-4lzu8jvtmp
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/answer-als-a-large-scale-resource-for-sporadic-and-familial-4lzu8jvtmp
https://typeset.io/papers/answer-als-a-large-scale-resource-for-sporadic-and-familial-4lzu8jvtmp


Page 1/39

Answer ALS: A Large-Scale Resource for Sporadic
and Familial ALS Combining Clinical Data with
Multi-Omics Data from Induced Pluripotent Cell
Lines
Jeffrey Rothstein  (  jrothstein@jhmi.edu )

Johns Hopkins University https://orcid.org/0000-0003-2001-8470
James Berry 

Massachusetts General Hospital
Clive Svendsen 

Cedars-Sinai Board of Governors Regenerative Medicine Institute https://orcid.org/0000-0001-8696-
3446
Leslie Thompson 

Univ California Irvine
Steven Finkbeiner 

Gladstone Institute https://orcid.org/0000-0002-3480-394X
Jennifer Van Eyk 

Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center
https://orcid.org/0000-0001-9050-148X

Ernest Fraenkel 
Massachusetts Institute of Technology https://orcid.org/0000-0001-9249-8181

Merit Cudkowicz 
Massachusetts General Hospital

Nicholas Maragakis 
Johns Hopkins University https://orcid.org/0000-0002-7311-9614

Dhruv Sareen 
Cedars-Sinai Medical Center https://orcid.org/0000-0002-0898-9656

Raquel Norel 
IBM Research https://orcid.org/0000-0001-7737-4172

Victoria Dardov 
Cedars Sinai

Alyssa Coyne 
Johns Hopkins University https://orcid.org/0000-0002-3658-5325

Aaron Frank 
Cedars Sinai

https://doi.org/10.21203/rs.3.rs-96858/v1
mailto:jrothstein@jhmi.edu
https://orcid.org/0000-0003-2001-8470
https://orcid.org/0000-0001-8696-3446
https://orcid.org/0000-0002-3480-394X
https://orcid.org/0000-0001-9050-148X
https://orcid.org/0000-0001-9249-8181
https://orcid.org/0000-0002-7311-9614
https://orcid.org/0000-0002-0898-9656
https://orcid.org/0000-0001-7737-4172
https://orcid.org/0000-0002-3658-5325


Page 2/39

Andrea Matlock 
Cedars Sinai

Rakhi Pandey 
Cedars Sinai

Vineet Vibhav 
Cedars Sinai

Leandro Lima 
Gladstone Institute

Jie Wu 
Univ California Irvine

Divya Ramamoorthy 
MIT https://orcid.org/0000-0001-9438-0419

Ryan Lim 
Univ California Irvine

Julia Kaye 
Gladstone Institute

Jonathan Li 
Massachusetts Institute of Technology

Terri Thompson 
One Point Scienti�c

Emily Baxi 
Johns Hopkins University

Answer ALS 
Johns Hopkins University

Biological Sciences - Article

Keywords: Longitudinal Study, Smartphone-based App, Speech Patterns, Integrated Clinical and
Biological Signatures

Posted Date: October 28th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-96858/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Version of Record: A version of this preprint was published at Nature Neuroscience on February 3rd, 2022.
See the published version at https://doi.org/10.1038/s41593-021-01006-0.

https://orcid.org/0000-0001-9438-0419
https://doi.org/10.21203/rs.3.rs-96858/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41593-021-01006-0


Page 3/39

Abstract
Answer ALS is a comprehensive multi-omics approach to ALS to ascertain, at a population level, the
various clinical-molecular- biochemical subtypes of sporadic ALS. This national program enrolled 1046
ALS and ALS/FTD patients along with a cohort of 100 matched control patients followed longitudinally
over at least one year. A smartphone-based app was employed to collect deep clinical data including �ne
motor activity, speech, breathing and linguistics/cognition. Analytics of the speech patterns revealed a
strong correlation between clinical progression indices and speech. In parallel, blood-derived iPS motor
neurons were generated from each patient and the cells underwent multi-omics analytics including whole
genome sequencing, RNA transcriptomics, ATAC-Seq and proteome along with quality assurance
standards. HIPPA compliant cloud data bases were employed to store all data. There are more than 6
billion clinical and molecular data points per patient generated in the program. The program was
designed, and patient consented, to be open access to all clinical, biological and molecular data as well
as public release of all generated iPS cell lines. A web portal is available to academics as well as
commercial researchers. The ultimate intent of this data is for the generation of Integrated clinical and
biological signatures using bioinformatics, statistics and computational biology to establish patterns that
may lead to a better understanding of the underlying mechanisms of disease including subgroup
identi�cation. Overall, this community based clinical and science program provides for the identi�cation
of distinct reliably identi�able subgroups among the sporadic and familial patients and the great utility in
iPS based approaches to disease pathophysiology and therapy discovery. Although the data is ALS
centric, given the large number of both ALS and control data sets, it would also be enormously useful to
others studying frontotemporal dementia, Alzheimer’s, Parkinson’s disease and others.

Introduction
 

Over the last several decades, tremendous progress in the optimization of therapies for various medical
conditions, such as cancer, has been realized. Many factors underlie this therapeutic success, including
optimization of clinical trial design, novel pathway-speci�c pharmaceuticals, and the coordination of
participant recruitment efforts across clinics. Perhaps one of the most powerful and fundamental
reasons for the success of some cancer therapies is the ability to sample diseased tissues and thereby
distinguish the biological and molecular events responsible for individual diseases or disease subgroups
within a disease cluster. Thus, skin, breast or prostate biopsies have been important starting points for
the investigation of various types of melanomas and breast or prostate cancers. Neurodegenerative
diseases such as ALS, Alzheimer’s and Huntington’s disease, however, have not seen such advances.
Clinical trials in human subjects, often based on �ndings from non-human model systems, have
repeatedly proven disappointing. Although there are likely many reasons for such failures (e.g. poor
pharmakokinetics, wrong biological pathway, lack of target engagement), a critical reason is the inability
to identify disease pathways in patient tissues and to segment patients for clinical trials according to
these pathways. Because of the high risk of disability, brain and spinal cord biopsies for tissue analysis
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are not feasible in neurodegenerative diseases and therefore, unlike the biopsy of other organs and
tissues, obtaining neural tissue during the disease course is a signi�cant hurdle to effective therapeutic
development.

 

An alternative is to use stem cell technology and infer disease pathways from cell lines derived from the
patients’ own blood. In the case of familial ALS (fALS), the study of genetic models of ALS has led to
signi�cant progress in our understanding of disease mechanisms. But for the majority of ALS patients,
who have sporadic disease (sALS), these discoveries have yet to translate into meaningful therapies. A
major barrier has been the lack of a predictive preclinical human model for sALS. However, with advances
in induced pluripotent stem cell (iPSC) technology and the unprecedented data and specimen collection
efforts of Answer ALS, we can now take an iPSC-based approach to unraveling mechanisms that may
cause or contribute to the heterogeneous clinical spectra of sALS, such as pattern and speed of spread
and certain non-motor manifestations. Notably, multiple genes are already known to cause fALS, and
represent quite diverse pathways: RNA metabolism, nuclear transport, protein aggregation, axonal
tra�cking, glial dysfunction, etc. Curiously, the variability in clinical features is nearly as great when
comparing patients with any single mutated gene as it is when comparing across genes or to sALS.  Little
is known about the derangements in speci�c biological pathway(s) driving sALS or whether there are ALS
subgroups de�ned by speci�c biological derangements.  Knowledge of these biological subgroups may
be critically important and the success of disease modifying therapies may depend on treating the right
“subgroup” with the proper pathway-targeting drug.

With the Answer ALS program (AALS), we take a step away from the previous focus on genetic rodent
models of ALS by generating iPSCs from a large number of people with sALS and applying well-
established molecular, biochemical, and imaging techniques to understand the heterogeneity of sALS. 
After ensuring that results were reproducible, we assembled comprehensive biological datasets from
iPSC work and linked them to the longitdudinal clinical data. In contrast to smaller previous iPSC
experiments, studies of iPSCs from a large population, like AALS, provide the �rst opportunity to explore
biologically relevant subgroups of sALS. This program was designed with the core goals of providing
large clinical and biological datasets in an open source-like application that affords researchers the
proper tools to identify biological subgroups and an extensive collection of IPSC lines with which to test
ALS therapies and hypotheses about ALS pathogenesis.

Program Outline And Process
Overall Design (Figure 1).  The overall AALS program, from clinical enrollment, to app data collection,
iPSC line generation, biological data generation, and data storage is outlined in Figure 1
(ClinicalTrials.gov: NCT02574390).  Below, we explain in detail the individual elements of the program.

1. Enrollment, Clinical Characterization and Sample Collection
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The clinical portions of AALS were coordinated through Massachusetts General Hospital and Johns
Hopkins University.  The eight enrolling neuromuscular clinics were distributed across the USA and
included Johns Hopkins University, Massachusetts General Hospital, Ohio State, Emory University,
Washington University, Northwestern University, Cedars Sinai and Neurology Group at Texas (Extended
Table 1 and Extended Figure 1). The clinics were chosen for their geographic distribution, expertise in ALS
clinical research and ability to recruit participants rapidly based on prior Northeast ALS Consortium 
(NEALS) clinical research studies (https://www.neals.org).

The study was approved by local institutional review boards, and all participants provided written
informed consent prior to undergoing any study procedures.  Consent was uniform across all sites and
included agreement to share data broadly for medical research, in accordance with the mission of the
overall program (see Data Access below for speci�cs). Subjects with sALS, fALS and related motor
neuron diseases, including those with primary lateral sclerosis, progressive bulbar palsy, and progressive
muscular atrophy, were enrolled in AALS.  Age matched control participants without ALS or a family
history of ALS were also enrolled.   

Upon enrollment, participants were assigned a NeuroGUID (global unique identi�er;
https://nctu.partners.org/neurobank), used to link participant data within AALS and across studies. 
Clinical data were entered and stored in a centralized, custom web based electronic data capture system,
(NeuroBank). All people over 18 years of age diagnosed with ALS or related motor neuron diseases were
eligible to join the study irrespective of disease severity. Control participants were recruited at the same
clinics - many were spouses, partners, or caregivers.

Participants were monitored every three months for a year. When possible, the ALS Functional Rating
Scale-Revised (ALSFRS-R) was conducted by telephone every three months for another year thereafter.
Visits included collection of baseline descriptors  followed by measures of ALS progression.  Baseline
descriptors included: demographics and vital signs, genetic and family history of MND, general medical
history, CNS -lability and a brief focused history of environmental exposures.  Concomitant medications,
and past medical history were collected at enrollment and updated throughout study participation. 
Measures of ALS progression included: deep tendon re�exes (DTR),  Ashworth Spasticity Scale, Hand
Held Dynamometry (HHD), ALS Functional Rating Scale – Revised (ALSFRS-R), and pulmonary slow vital
capacity (SVC). (See ExtendedTables  2,3 and Supplementary data forms).

At each in-clinic visit, approximately 50–100 ml of blood was collected from each participant and
processed according to methods outlined in the Supplemental Methods.  In addition, at the �rst visit,
whole blood was collected, processed (see Supplemental methods) and shipped to Cedar-Sinai for
generation of primary peripheral blood mononuclear cell (PBMC)-derived induced pluripotent cell lines. 

Answer ALS Smartphone Application

To increase the density of the clinical data collection, we deployed a custom smartphone app to a self-
selected subset of participants.  AALS app study participants were active participants in the main study,



Page 6/39

over 18, and used a personal smartphone device regularly. This AALS-accompanying study was approved
by local institutional review boards, and all participants provided written consent prior to undergoing any
study procedures.  Data were collected and stored brie�y on the phone before upload via cell carrier data
plan or WiFi to a HIPAA-compliant Box account.  Access was controlled using a secure password. 

The app has seven modules designed to gather information about upper limb motor function, respiration,
bulbar function and cognition (See Supplementary Data and Methods).  The app, designed for both iOS
and Android platforms,  was made available in both the Apple App and Google Play stores.  During an
AALS main study visit, the app was downloaded to the participant’s personal smartphone from the app
store, activated by study staff using a unique code to initiate data collection, and used to collect select
baseline demographic data (e.g. handedness).  The participant was then able to carry out study app
activities. 

The app captured detailed information about actively performed tasks.  It prompted participants to
perform one task daily, though unperformed tasks remained accessible for the entire week.  All seven
tasks were repeated weekly.  Six modules measured arm function: �nger tapping, �nger tracing, and
phone tilt tracing, each  performed using the right and left hand separately (Figure 2a). The speech
module (Figure 2c), consisted of three tasks, rotated weekly to reduce learning effect: 1) Single-Breath
Count, in which participants were instructed to draw in a deep breath and count at a measured pace (a
surrogate for forced vital capacity)1  2) Read Aloud Passage, in which participants read aloud one of four
standardized passages from their screen, and 3) Picture Description, in which participants described one
of three line-art illustration over 30-120 seconds.

We analyzed compliance over time (total tasks completed per week) to evaluate for app engagement.  We
extracted relevant features for each task. For arm function tasks, error metrics such as Hausdorff and
dynamic time warping distances were calculated, and  the number of points acquired by the device during
the tracing task was used to estimate movement speed. For speech task analysis, we used standard
acoustic features to assess motor speech degradation such as pitch variations, prosody features, vowel
space, vowel quality, noise measurements, mel frequency cepstral coe�cients (MFCCs), tremor features
and others. 

Picture description recordings were manually transcribed because automated speech-to-text engines were
unable to reliably transcribe dysarthric speech. From the transcripts, we extracted linguistic features to
evaluate word diversity and complexity of thought such as semantic similarity, dispersion, and frequency.
More details of the methodology have been reported2.  To evaluate the potential of the tasks to assess
different clinical variables used to monitor ALS (e.g. ALSFRS-R, vital capacity, cognitive behavioral
screen), the extracted features were entered into three machine learning algorithms (linear, ridge, lasso
regression) and validated using 10-fold cross validation.

Return of Answer ALS Results
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            Participants with ALS were offered the opportunity to receive the results of their whole genome
sequencing for �ve ALS genes (C9orf72, SOD1, FUS, TARDBP, and TBK1), as well 59 genes designated as
medically actionable by the American College of Medical Genetics3, as part of a sub-study, Return of
Answer ALS Results (ROAR).  ROAR participants completed a separate online consent after enrollment in
the parent study. A separate variant interpretation pipeline was applied for the purposes of return of
results.  Clinical con�rmation of each identi�ed variant interpreted as Pathogenic or Likely Pathogenic
and genetic counseling by a licensed genetic counselor  was offered to all participants in this study. 

2. iPSC generation from PBMCs and motor neuron differentiation

iPSC line generation

Blood from participants with motor neuron disease and controls was sent to a central iPSC generation
lab (Cedars Sinai) by overnight service where PBMCs were isolated, logged and frozen until iPSC
generation (see Extended Tables 4 and 5 for all participant demographics). iPSCs were then generated by
reprogramming the cryopreserved and non-expanded PBMCs using a method based on a non-integrating
episome.  Clones were isolated, expanded and maintained according to standard feeder-free protocols
and characterized extensively as described in Extended Table 6. iPSC lines were generated from ~25
patients per month and stored frozen until they were differentiated (Figure 3A).  As of October 2020 ~700
iPS cell lines from participants have been generated. PBMCs were used instead of �broblasts to limit the
potential for genetic defects and facilitate sampling from the large number of patients enrolled in our
study. Overall, blood draws are less invasive and carry lower risk for patients than skin biopsies, which
improved the overall risk-to-bene�t ratio for the study.  In addition, it was widely felt that patients would
be less likely to consent to a skin biopsy than a blood collection.

Generation of motor neurons

The iPSCs were differentiated into motor neurons according to the direct iPSC-derived motor neuron
(diMNs) protocol (Figure 3B, Extended Table 6, Supplemental Methods), which comprises three main
stages. In stage 1, neural induction and hindbrain speci�cation of iPSCs is achieved by dual inhibition of
the SMAD and GSK3β pathways. During stage 2, speci�cation of spinal motor neuron precursors is
achieved by addition of Shh agonists and retinoic acid. Maturation of these precursors into neurons with
more complex processes and neurites occurs during stage 3 with the addition of neurotrophins and Notch
pathway antagonists. This protocol generates a mixed population of neurons consisting of ~75% (+/-9%)
βIII-tubulin (TuJ1) and ~70% (+/-11%) NF-H positive cells, ~19% (+/-7%) Islet-1 and ~35% (+/-10%) Nkx6.1
positive spinal motor neurons, and ~18% (+/13%) S100B and ~38% (+/-17%) nestin positive progenitors
32 days after the onset of differentiation. As of October 2020, successful motor neuron differentiations
from ~ 350 iPSC lines have been completed by the AALS program.  

Program Quality Controls: Cell generation batch controls.
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Reproducibility of disease signatures from iPSC-based experiments can be confounded not only by
genetic differences between donors (diseased and healthy controls), but also by experimental variability
in iPSC differentiation experiments that can be impacted by variations in differentiation e�ciency, cellular
composition, transcript and protein abundance. To detect and compensate for such confounders all
differentiations were conducted in a single facility and included two key control groups of biological
samples: batch differentiation controls (BDC), were differentiated with each batch from the same original
line to assess inter-batch variablity of iPSC diffrentiation to diMNs and Batch Technical controls (BTC),
consisting of a single differentiation of the same line was frozen, aliquoted and distributed with each
batch to assess technical variability of the omics assay batch runs were performed as detailed in
Supplemental Methods.

3. Multi-omics data generation for each iPSC-derived motor neuron line

At the end of the 32-day differentiation protocol, the spinal neurons were harvested for RNA-Seq,
proteomics, or epigenome pro�ling as detailed below and in Supplemental Methods. Whole-genome
sequencing was performed on PBMCs.

Whole-genome sequencing and analysis.

PBMCs were sent by each clinic to the New York Genome Center (NYGC) for DNA extraction and
subsequent whole-genome sequencing (WGS) on the Illumina X10. Sequence data were processed on a
NYGC automated pipeline. Paired-end 150-bp reads were aligned to the GRCh38 human reference using
the Burrows-Wheeler Aligner (BWA-MEMv0.7.8) and processed using the GATK best-practices work�ow,
which includes the marking of duplicate reads with Picard tools (v1.83, http://picard.sourceforge.net),
local realignment around indels, and base quality score recalibration (BQSR) via Genome Analysis Toolkit
(GATK v3.4.0). 4 5

The variant calls from NYGC were assessed by examining the reads for alignment issues and spot-
checking the BAM �les for speci�c variants in IGV and were determined to be of good quality. The VCFs
were converted into GVCFs, and we performed custom annotation and intersected a subset of the omics
data (RNA-Seq, ATAC Cluster) with the WGS data. The annotation pipeline was customized to incorporate
elements from ANNOVAR6 and KGGseq7, from which a report was generated that included the genotypes
of all samples. The annotate genes and exonic variants that have clinical signi�cance, we incorporated
the Clinical Genomic Database (CGD)8, the Online Mendelian Inheritance in Man (OMIM)9, ClinVar10 and
genes listed in the American College of Medical Genetics and Genomics (ACMG)11 database as well.
Intervar, which is based upon the ACMG and AMP standards and guidelines for interpretation of variants,
was also incorporated. This tool uses 18 criteria to ascribe clinical signi�cance and classi�es genes
based on a �ve-tier system12. To �ag ALS genes, we incorporated ALS gene lists and variants from
ALSoD13 (http://alsod.iop.kcl.ac.uk/), a highly curated list from Dr. John Landers, Dr. Matt Harms and
ALS Association from the DisGeNet database14. For each variant, we also incorporated functional in
silico predictions from nine programs, including databases such as SIFT15, PolyPhen216, and Mutation

http://alsod.iop.kcl.ac.uk/
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Taster17 and those described in Li et al., 201318. Additional databases were included that assess the
variant tolerance of each gene using the RVIS19 and the Gene Damage Index (GDI)20 and are adding
LoFTool21. For variants in genes that are highly expressed in the brain, we incorporated data from the
Human Protein Atlas22 (http://www.proteinatlas.org) and expression data from GTEx portal 23 24, 
(https://gtexportal.org/home/) for the cortex and spinal cord. Frequency information from three
databases on all known variants from ExAC25, the NHLBI Exome Sequencing Project (ESP)26, and the
1000 Genomes Project27.

A separate annotation pipeline was developed for variants that map to intergenic and regulatory regions.
We report the variant as found next to the closest gene, and as either intronic, upstream or downstream
(up to 4 KBs from the 5’ and 3’ UTRs). The annotation came from RegulomeDB, which annotates variants
with known or predicted regulatory elements such as transcription factor binding sites (TFBS), eQTLs,
validated functional SNPs and DNase sensitivity28. The source data comes from ENCODE 29 30  and
GEO31. We also included other regulatory databases such as Target Scan, an algorithm that uses 14
features to predict and identify microRNA target sites within mRNAs32 and  miRBase33-35.

RNA-Seq

Total RNA was isolated from the iPSC-derived neuronal lines from each AALS subject (control or ALS)
using QIAshredders and RNeasy mini RNA prep kits (Qiagen). Samples with RIN >8 were used for
subsequent library preparation and were entered into an electronic tracking system and processed at the
University of California, Irvine, Genomics High-Throughput Facility.  rRNAs were removed and libraries
generated using TruSeq Stranded Total RNA library prep kit with Ribo-Zero (Qiagen). RNA-Seq libraries
were titrated by qPCR (Kapa), normalized according to size (Agilent Bioanalyzer 2100 High Sensitivity
chip). Each cDNA library was then subjected to 100 Illumina (Novaseq 6000) paired end (PE) sequencing
cycles to obtain over 50 million PE reads per sample. After sequencing, raw reads were subject to QC
measures and reads with quality scores over 20 collected and analyzed. Reads were mapped to the
GRCh38 reference genome, QCed, and gene expression and differential expression were quanti�ed using
Hisat2, featureCounts36  and DESeq237. Normalized and transformed count data were then used for
exploratory analysis and differentially expressed (DE) genes (FDR <0.1) were analyzed with commercial
and open-source pathway and network analysis tools, including Ingenuity Pathway Analysis (IPA), GSEA,
GOrilla, Cytoscape, and other tools to identify transcriptional regulators, predict epigenomic changes, and
determine potential effects on downstream pathways and cellular functions.

ATAC seq

We used the Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-Seq) to assess
chromatin accessibility and identify functional regulatory sites involved in driving transcriptional changes
associated with ALS. ATAC-Seq detects open chromatin sites genome-wide and maps transcription factor
binding events in global regulatory elements without needing prior information about which proteins are
present. ATAC-seq sample prep, sequencing, and peak generation was carried out by Diagenode Inc as

http://www.proteinatlas.org/
https://gtexportal.org/home/
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previously described  (Supplemental Methods). 38 After sequencing, chromatin accessibility signatures
were generated for each sample individually using the peak-calling software MACS2 and then determined
differentially open sites using DiffBind with DESeq2 (FDR<0.1). The sequencing quality was assessed
using FastQC, and the reads were aligned to GRCh38 genome build using Bowtie2. We identi�ed open
chromatin regions separately for each sample using the peak-calling software MACS2 39 and determined
differentially open sites using DESeq2 (FDR<0.1). Peaks were assigned to unique genes using the default
HOMER parameters, and gene ontology analysis was performed using GOrilla. 40

Proteomics

Frozen diMNs were processed following Expedeon FASP protocol. Processed samples were subjected to
acquisition on the SCIEX 6600. Samples were acquired in data-dependent acquisition (DDA) mode for
library building and in data-independent acquisition (DIA) mode over 100 variable windows similar to
previously described acquisition protocols 41,42. DDA �les were run through Trans Proteome Pipeline
(TPP) using a human canonical FASTA �le (Uniprot). A consensus peptide library with decoys was
generated. Previously described DDA library build principles 43 were utilized to generate a cell-speci�c
library, which allowed for more accuracy in matching DIA data to the DDA library during OpenSWATH, as
indicated by higher d-scores in PyProphet. These data were also analyzed using commercial and open-
source pathway and network analysis tools, including Ingenuity pathway analysis and GOrilla to identify
upstream regulators and determine the cellular pathways affected.

Longitudinal single-cell imaging and analysis

Differentiated diMNs from a subset of the AALS iPSC lines were plated on 96-well plates for longitudinal
single-cell imaging with robotic microscopy. Days after plating, cells were transfected with expression
marker plasmids to visualize cell morphology and viability. After transfection, cells were automatically
imaged with robotic microscopy once per day for 10–14 days. A �ducial mark on each 96-well plate was
used to bring each plate back to its initial position at each imaging run, which allowed the system to
collect images of the same microscope �elds over the course of the experiment and to identify and track
individual diMNs. Images of different microscope �elds from the same well were stitched together into
montages and montages assembled at different time points were organized into composite �les in
temporal order. A computational pipeline constructed within the open source program Galaxy was used to
perform cell survival analysis and other morphological measurements. Independently, images from
diMNs from ALS patients and healthy volunteers were analyzed with machine learning and deep learning
methods in a relatively unbiased fashion to discover if they could be strati�ed or substrati�ed to predict
which diMNs were derived from ALS patients.

4. Data Storage and Data Integration/Analytics

Answer ALS was designed to be an “open source” program. All of the clinical data sets, the various omics
results, including whole genome, proteome, transcriptome and epigenome along with the data integration
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have been posted to a portal for data sharing and crowd sourcing (http://data.answerals.org; Extended
Table 3). Data are available for download to all academic and commercial researchers.  A required data
use agreement provides assurance that users will not attempt to violate the GUID privacy, as well as share
or sell the raw data without Answer ALS permissions.  There are no intellectual property restrictions on
the use of the data.

Web-based analytics.  We have included online analytics for the many ALS researchers who will neither
need nor want to download the full dataset. The current set of tools available at
http://data.answerals.org/analyze allow users to select genes/pathways of interest and visualize them
using braid maps, heat maps, volcano plots, bar charts or networks (Figure 5).

Results
AALS Clinical Demographics and Clinical Data Generation

Enrollment. All participants were enrolled at the eight geographically distributed clinics from Jan 2016
through June 2019 (Figure 4; Extended Figure1; ExtendedTable 1).   Enrollment proceeded as planned at a
rapid and regular pace (Figure 6). To ensure rapid enrollment, clinics were assigned a designated clinic
coordinator to work full, half or quarter time, depending on historical rates of monthly enrollment from
previous ALS clinical trials.  Full clinics were assumed to enroll 5–10 participants/mo, half clinics 2.5–5
participants/mo and quarter clinics 1–3 participant/mo.

Population Demographics (Table 1 and Extended Table 4, 5).  The enrolled participant population had
clinical characteristics comparable to past large sporadic ALS population demographics, with a slightly
higher number of male than female participants, a clinical site of onset predominantly limb rather than
bulbar, and a mean age of disease onset of approximately 57. The mean delay in clinical diagnosis for
ALS participants included in the study was 14.8 months. In agreement with prior population studies, a
higher percentage of patients with rapid progression had bulbar onset disease.

ALS Progression: ALSFRS-R.  Of the 1046 ALS participants enrolled, over 570 were seen in at least 3
follow-up visits, allowing us to generate disease progression curves based on the ALSFRS-R total
assigned values. As shown in Figure 4B,C, there was a wide range of disease progression rates over the
time period of observation, which ranged from 3 to 40 months. A subset of participants declined rapidly,
as de�ned by a dip in ALSFRS-R slope by 1.8 or more points/month.

App-Based Voice Recordings – Motor and Motor Speech Analyses. 

Compliance.  Compliance for using the smartphone app was analyzed over 28 months from the
beginning of the app rollout to a subset of study subjects. Data from 80 participants was analyzed.  Only
a modest decrease in compliance was observed with increased duration of use (see Figure 5A).

Smartphone App data. Features derived from the voice tasks (Single-Breath Count, Read Aloud Passage,
and Free Speech; Extended Figure 2) each correlated highly with the bulbar subdomain of the ALSFRS-R 
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(Pearson R = 0.8; slope = 1.14, Pearson R = 0.89; slope = 0.98; Pearson R = 0.71; slope = 1.12
respectively).  Features from the �nger tracing showed modest individual correlations with the ALSFRS-R
total score  (Figure 5B, Extended Figure 2).  Importantly, the combination of features from all of these
tasks correlated very highly with the ALSFRS-R total score (Pearson R = 0.89; slope = 1.16; Figure 5. App
5C).

Features obtained from the single breath counting task correlated well with vital capacity (R=0.63). This
task also predicted well the ALSFRS-R speech sub score (see Figure 5B); however, models using features
from the reading task outperformed the counting and picture description tasks. A more detailed account
of these results is reported elsewhere2.  Semantic analysis of the picture description task was highly
correlated with the ALS-CBS (R=0.72)  and less correlated with the CNS lability scale (R=0.45).

These results demonstrate that the modules implemented to assess hand function and speech may be
useful to quantify ALS function.  Furthermore, the picture description task may be useful to evaluate
cognitive function in ALS.  The potential to record voice and store it encrypted in the cloud could provide
a powerful clinical tool to assess change over time that could be used clinically and in ALS trials. 

 

Induced Pluripotent Cell Line Production

PBMC Processing. A total of 1,030 whole-blood samples were collected and sent to Cedars-Sinai for
PBMC isolation and cryopreservation.  Of the 1,030 samples, 32 were unusable due to issues with sample
collection or shipment and 34 samples were redrawn. The average cell count was ~25 million PBMCs per
sample with an average cell viability of 91%. In total, the iPSC Core at Cedars-Sinai has frozen 2579 vials
of PBMCs from 964 unique participants, comprising of 860 ALS participants and 104 healthy controls.

 

iPSC Reprogramming. The iPSC Core at Cedars-Sinai Medical Center reprograms PBMCs using a non-
integrating episomal plasmid method. As of October, 2020, the iPSC Core has initiated the
reprogramming of 637 unique PBMC samples. Thus far, ~700 iPSC lines have been successfully
reprogrammed and one clone line banked and characterized per donor. Out of the ~700 unique samples,
only 18 lines (~3%) failed reprogramming. When reprogramming fails, a new attempt is made from a
blood sample collected at a follow-up clinic visit (Figure 3A). An average of two additional iPSC clones
per donor were banked at an early passage and reserved as backup. Each iPSC line was banked in an
average of 50 vials from multiple passages, including 25 vials at the distribution bank around passage
20. In all, the AALS program has created ~30,000 iPSC vials from all the individual PBMCs reprogrammed
thus far.

 

Generation of Multi-Omics data
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Genomics

We analyzed 830 whole-genome sequences from AALS participants. Of these, 706 were ALS cases, 92
were controls without neurological disease, 16 were individuals diagnosed with a motor neuron disease
that is not ALS, 5 had another neurological disorder, 5 were pre-familial ALS (pre-fALS), and 6 had
undiagnosed clinical syndromes (Extended Figure 3; Extended Table 4).  We evaluated this AALS cohort
using NYGC’s ancestry pipeline44.   The majority of participants were Caucasian and had European
descent (91.45%), the remainder had ancestry consistent with the Americas (1.69%), Africa (4.94%), East
Asia (1.33%) and South Asia (0.6%) (Extended Figure 3). On average, each sample harbored a total of ~
4.1 million variants and ~ 9,800 protein-altering variants, including SNPs, frameshift and non-frameshift
deletions and insertions, and protein–truncating variants (Table 2 and Extended Figure 3A).  This is
similar to what has been previously reported51. The samples with African descent had a higher number of
variants than other ethnic populations, as expected45 (Extended Figure 3B).

We used principal component analysis (PCA)46,47 to visualize the ancestry background of the AALS
cohort and a set of 2504 samples from the 1000 genomes project with well-de�ned ancestry. We used a
set of 10,000 randomly chosen autosomal SNPs (singletons and multiallelic SNPs were removed) that
were present in both datasets, and removed correlated SNPs by LD-pruning. We implemented randomized
PCA48  using the Python library scikit-allel package49 (Extended Figure 4).  PC1 showed that African
samples (green) clustered apart from the other populations, and PC2 that Asian samples (red/brown)
were distinct from European samples (purple), with admixed American were located in between. The
majority of the AALS samples were clustered with the European samples, although some were closer to
the African group and a few clustered with the Asian group (Extended Figure 4), corroborating the NYGC
ancestry results (Extended Figure 3B).

We �rst evaluated pathogenic or likely pathogenic variants reported in ClinVar (C-PLP) for all genes. We
observed between 22 and 48 C-PLP variants per individual, with an average of ~ 34 variants per ALS case
and control, similar to what has been reported for Caucasian individuals45.  The number of rare (<1%) C-
PLP variants was approximately 5.2 per ALS case and 5 per control (Table 2 and Extended Table 1). We
also examined pathogenic variants called by Intervar Li, (PMC3326332) (I-PLP), and observed that a
typical sample (from an ALS case or control) harbored approximately 3 I-PLP variants (Table 2 and
Extended Table 2). The majority of I-P/LP variants called by Intervar were rare.

Lastly, we investigated the number of predicted damaging variants as called by in silico prediction tools,
where 6 or more out of 9 algorithms predicted a variant to have a functional impact (IS-D). We observed
between 82 and 195 IS-D variants per individual. ALS cases had an average of 112 IS-D variants per
sample, and controls had 113 IS-D variants per sample (Table 2 and Extended Table 3).
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Variants in ALS genes

There are 33 genes in which mutations have been associated with ALS50,51, speci�cally: ALS252,53,
ANG54-56, ANXA11, ATXN2, C21orf2, C9orf72, CAMTA1, CCNF, CHCHD10, DAO, DCTN1, FIG4, FUS,
HNRNPA1, HNRNPA2B, KIF5, MATR3, MOBP, NEK1, OPTN, PFN1, SCFD1, SETX, SOD1, SQSTM1, TAF15,
TARDBP57-59, TBK1, TUBA4A, UBQLN2, UNC13A, VAPB and VCP60. We refer to these as the “33-ALS”
genes.   Within the 830 samples, we observed 440 exonic variants in the 33-ALS genes that were less than
1% frequent (Table 2 and Extended Table 4). Both controls and ALS cases averaged 1.5 rare ALS variant
per individual within the 33-ALS genes. 79% of these were single nucleotide polymorphisms (SNPs), 13%
uncharacterized, ~1% splicing, ~1% non-frameshift deletion, 1% frameshift deletion, 1% frameshift
insertion, 2% frameshift insertion, 2% non-frameshift insertion, 1% stop-gain (Extended Table 4).

 

We �rst evaluated how many pathogenic or likely pathogenic existed as reported in ClinVar (C-PLP) in the
33-ALS genes. We found that 12% of ALS cases harbored a C-PLP variant within one of the 33-ALS gene
(Extended Table 4 and 5). All of these C-PLP variants were rare (<1% frequency within the population)
except 2 found within the OPTN gene.  For example, we observed 5 SOD1 C-PLP variants (within 8 ALS
patients), 2 TDP43 C-PLP variants (within 2 ALS patients), and 1 C-PLP FUS variant in an ALS patient
(Extended Table 4 and 5). C-PLP variants were also detected in individuals that did not show signs of ALS
at the time of the clinic visit, and there were 11 C-PLP variants within control samples (within ALS2, SETX,
OPTN and PFN1), 4 C-PLP variants in the Pre-fALS cohort (within FIG4, OPTN and CHCHD10), 3 C-PLP
variants within individuals with other motor neuron disease (OMND) (within SQSTM1, OPTN, and PFN1)
and 3 C-PLP variants in uncharacterized individuals (within SQSTM1 and SETX) (Extended Table 5). In
summary, rare C-PLP variants were observed in 3.11% (22 total) in ALS cases and 1% in controls (1 out of
92 samples). 

 

The majority of samples that harbored a C-PLP variant harbored only one. However, there were a few
examples where individuals sustained more than one pathogenic variant. We observed a C-PLP variant in
SQSTM1 and one in OPTN in one ALS case, 2 C-PLP variants in the SETX genes in an uncharacterized
individual and a control, C-PLP variants in both OPTN and CHCHD10 in a Pre-fALS individual, and 2 C-
PLP variants, in FIG4 and CHCHD10, in another Pre-fALS individual (Extended Table 5).

 

Intervar called signi�cantly fewer P/LP variants (3.54%, 25 variants total) than Clinvar. However, Intervar
called more SOD1 P/LP variants than �agged by ClinVar (12 variants within 16 individuals with ALS;
Extended Table 4 and 6).  We observed no I-PLP variants in controls, preF-ALS, OMND, or unknown
samples.  Using a combination of ACMG gene criteria as well as the in silico prediction and family-based
segregation data, a list of high-con�dence causal variants in 11 genes—ALS2, CCNF, CHCHD10, FUS,
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OPTN, PFN1, SOD1, TARDBP, TBK1, UBQLN2, VAPB, and VCP—has been curated and designated the H-
PLP variants. We observed 24 H-PLP variants in our cohort of ALS cases (Extended Table 4 and 7). We
observed one H-PLP variant in PFN1 in a control, and one in an (Other Motor Neuron Disease) OMND
individual.

 

We also investigated IS-D variants in the 33-ALS genes. 98 individuals harbored at least 1 IS-D variant in
the 33-ALS genes, and 9 individuals harbored 2 IS-D variants in the 33 genes associated with ALS as
described above 50,51 (Extended Table 4 and 8). In general, Intervar called a variant as pathogenic or likely
pathogenic much less than Clinvar and hence appears to be more stringent in its pathogenic
determination. However, its unclear if Intervar provides a more rigorous calling of bona �de ALS variants.

 

Expansions in C9orf72 and ATXN2

Using Expansion Hunter61 to identify repeat expansions within WGS data, we found 601 expanded
regions in the 830 samples. In total, 41 ALS patients and 4 Pre-fALS subjects harbored hexanucleotide
expansions in C9orf72 that were greater than 26 repeats (Extended Figure 5 and Extended Table 9. We
also observed 35 ALS patients, 4 controls and one uncharacterized individual harboring CAG triplet repeat
expansions in ATXN2 greater than 26 repeats (Extended Figure 5 and Extended Table 10). For carriers of
expansions in both  ATXN2 and C9orf72 simultaneously, we found no correlation between age of ALS
onset and expansion size (Extended Figure 6 and Extended Tables 9 and 19).   Interestingly, 4 ALS
patients harbored both C9orf72 and ATXN2 expansions greater than 27 repeats (Extended Table 10).  We
also observed that one Pre-fALS patient that had a C9orf72 expansion also harbored two C-PLP variants,
one in FIG4 and one in CHCD10. In addition, one individual who harbored an ATXN2 expansion of 28
repeats, also harbored a C-PLP variant in TDP-43. Another individual with ALS that harbored an ATXN2
expansion of 26 had a I-PLP and H-PLP variant in SOD1 (V69A). 

 

ACMG Genes

Pathogenic or likely pathogenic variants  in 59 genes are currently considered medically actionable by the
ACMG, due to the potential for medical intervention to modify morbidity and mortality in carriers of such
variants.3. Within the 830 samples, we identi�ed 73 C-PLP variants within 32 ACMG genes (Extended
Table 11).  50.4% of individuals did not harbor a C-PLP variant in an ACMG gene, 41.2% harbored 1, 7.6%
harbored 2, and 0.84% harbored 3 C-PLP variants.    66 of these variants found within 110 individuals
were rare (<1%) (Extended Table 11).  We also found 42 I-PLP variants within ACMG genes within 51
individuals, all of which were rare (Extended Table 12). Participants were offered to receive the results of
these medically actionable genes through the RoAR substudy.
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Transcriptomics    

For each of the omics assays, vials from an identical pool of differentiated motor neurons were
processed to ensure comparability (Extended Figure 7), including BDCs and BTCs from the control 2AE8
line.  For the RNA-Seq data, the initial set of 102 samples were processed and passed all quality controls
(QC) metrics including RNA integrity (Figure 6A), library, and sequencing QC metrics. After read mapping
and expression quanti�cation, we evaluated data composition and quality. To assess data quality and
technical batch effects, pairwise gene level SERE scores (Simple Error Rate Estimate, 0 = identical
samples) were generated for the batch differentiation controls (BDCs), batch technical controls (BTCs),
and all other samples (Figure 6D). These data show low SERE scores in the BTC and BDC controls,
relative to all other samples, indicating minimal to no technical confounders and low batch effects
between differentiations. The highest SERE values were found between different individuals. A heatmap
of SERE scores between all samples with hierarchical clustering (Extended Figure 7) shows tht while
BTCs form their own cluster, the rest of the samples fall info multiple small clusters with no clear relation
to their disease status.

Annotation of quanti�ed reads revealed various RNA species that were captured during the sequencing
with protein coding RNAs accounting for the majority of all RNAs as well as lncRNAs (Figure 7A). A low
proportion of reads mapped to small RNAs and a very minimal portion to rRNAs, which were depleted
during library preparation and act as a technical quality assessment. The use of total RNAseq and deeper
sequencing allows for differential alternative splicing and exon usage analyses as well as circular RNA
and cryptic exon analyses. We chose to assess the ability of our cell model and RNAseq methods to
capture known alt-splicing that has been previously reported in ALS samples. Figure 7B shows a sashimi
plot of POLDIP3, a gene that has been previously shown to have alterations in splicing associated with
loss of TDP-43 in ALS tissues 62. Similar to previously reported data, splice variant 2 (with exon 3
skipped) is enriched in our ALS samples. These data indicate that both gene expression differences and
RNA splicing differences could be captured by our iPSC model and through our RNAseq methods. These
data can be explored for additional novel alterations in ALS and potential associations with ALS subtype
and clinical data, and with other omics data that are being captured from these samples.

Proteomics

Proteomics data was generated for an initial 66 samples which were processed as a single batch and run
sequentially on the MS instrument in blocks of 14. Each block of samples was comprised of case,
control, BDC (differential batch control) samples and HEK293 cell control samples (the latter processed
on the 96-well digestion plate for use as a sample plate digestion control). The numbers of proteins and
peptides quanti�ed for all 66 samples were very consistent (Figure 6C), a QC measure which indicates
accurate processing consistency and the stability of the intra-batch data acquisitions on the instrument
across all samples. The % coe�cient of variation (CV) for the proteins quanti�ed were calculated for the
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BTC and BDC samples (Figure 6F). 80% of the proteins identi�ed in the technical replicates of BTC and
BDC samples across all MS batches have % CV less than or equal to 25%, indicating proteomics data
acquisitions between batches were highly reproducible.  Individual samples are normalized to the total
MS2 spectra  intensity across the chromatographic pro�le of eluting peptides to smooth any
inconsistencies in sample loading onto the MS instrument thereby eliminating systemic variation in
signal intensities (Figure 7E). Finally, in a correlation plot of the protein level data for all 66 samples, we
�nd BTCs and BDCs (both originating from 2AE8 CTR cell line) cluster tightly (Extended Fig 7C) indicating
minimal drift between the MS batches.  In total, greater than 25,000 peptides corresponding to more than
3,600 proteins per sample were quanti�ed. Although cases and control iMNs clusters are interspersed,
indicating their overall similarity, these iMN models have signi�cant individual protein level differences
and we selected four representative proteins ANXA2, PCKGM, ECH1, SYPL1) that show signi�cant (p≤ 
0.05) differences, based on what is seen in the differential analysis-based evidence (Figure 6F).

Epigenomics

ATAC-seq data quality was determined according to ENCODE 63. The distribution of fragment sizes
across all samples revealed a clear nucleosome-free region and regular peaks corresponding to n-
nucleosomal fractions (Figure 6B). Mitochondrial DNA contamination was low (mtDNA fraction: 0.07 ±
0.01), and the fraction of reads in called peak regions (FRiP) indicated a good signal-to-noise ratio for our
library (Figure 7C, mean ± SD = 0.160 ± 0.048), with no difference in quality score between ALS and
control samples (p =0.32).As expected, replicates from our batch control line were highly correlated with
each other, with batch technical controls (BTC) having an even smaller variation in correlation values
compared to batch differentiation controls (BDC) (Figure 6E).

Next, we generated a consensus set of peaks present in >10% of samples using DiffBind (Extended Figure
8) and characterized transcription factor motif enrichment within these peaks using HOMER40.
Consistent with our expected cell composition, we observed an overrepresentation of transcription factors
implicated in neuronal differentiation, such as Pdx1, Cux2, and the Lhx family (Figure 7D). We then
obtained a counts matrix of reads mapped to each peak in the consensus peakset across all samples
and performed hierarchical clustering using the same approach as the RNA-seq data (Extended Figure 8).
Subjects did not cluster by disease status, presence of C9 mutation, sex, or by processing batch.

 

Data Dissemination: Data Portal

The Answer ALS Data Portal (http://data.answerals.org/; Extended Table 3) was designed to provide
information about the various types of biological data generated by the AALS partners and to allow easy
visualization/access to the metadata, data and biosamples released. To ful�ll the �rst goal, the portal
provides an overview of the data release notes, assays, data level descriptions and links to sites for
viewing cell lines/biosamples associated with the program. To ful�ll the second goal, the website
provides users a way to browse all available metadata (using �lter and text search functions), download

http://data.answerals.org/
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all data and metadata or a �ltered subset and �nd iPSC lines that can be ordered from Cedars-Sinai
Biomanufacturing Center. Additional details regarding the portal can be found in Supplemental Methods

Users interested in downloading datasets are required to submit an online form, acknowledge data use
parameters and return a signed Data Use Agreement (DUA). These measures serve to protect our enrolled
participants’ privacy in compliance with HIPAA. In addition, results generated using AALS have the
possiblity of being shared for collaborative and open science purposes.

Discussion
The pathogenesis of sporadic ALS remains a mystery and few comprehensive data collections, on a
population scale, exist to truly inform researchers as to the biological underpinnings of the disease or the
possibility of disparate biological subgroups.  To date clinical studies alone have not yielded reliable data
to suggest a common pathway, or, more importantly, a means to target relevant biological subgroups. 
The identi�cation of biological subgroups has been impactful in various cancers, where the ability to
actually sample disease tissues from skin, liver, prostate, or pancreas biopsies, coupled with clinical
characteristics of tumor type, has led to marked improvements in therapeutic approaches, drug
treatments and decisions regarding disease management64,65.

 

The core goal of Answer ALS was to provide a comprehensive set of tools including deeply phenotyped
longitudinal clinical data and biological tools such as iPSC  lines and a multi-omics platform consisting
whole genome, cell-enriched proteome, transcriptome and epigenome, in order to uncover underlying
biological subgroups.

 

Our reagent collection includes individual iPSC lines from approximately 700  sproadic ALS and control
participants (soon to reach >1100), the iPSC-derived spinal neurons form each participant, their
longitudinal clinical data (collected over one year), sequentially amassed �uid biospecimens (blood and
CSF) and the early multi-omics data generated from each participant’s blood (whole genome) as well as
from their “spinal cord biopsy equivalent”- diMN cell lines.  The collection also includes autopsy samples
and pathology data from a subset of participants. The autopsy pathology data and CNS specimens will
eventually be available and coupled with the iPSC lines from these participants.

 

This population and its dataset were never envisioned to enable the identi�cation of new ALS genes: a
cohort of 1000 ALS participants does not amount to a large enough database for new gene
identi�cations, although sharing the whole genome sequences from this data set has aided in the
identi�cation of a new ALS gene, Kif5A66.  In fact, the estimated 6+ billion data points generated from
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each participant,  combining the longitudinal clinical demographic and observational data, the
longitudinal smartphone app data (motor activity, speech, breathing, cognition), and the aggregate multi-
omics data (whole genome, epigenome, proteome, transcriptome), represent an exceptionally large set of
data per participant.  Furthermore, the core omics data re�ect the human cells affected in individual ALS
paricipants—spinal neurons—and act as an organ- or tissue-speci�c biopsy.  When this combined
longitudinal and multidimensional clinical and biological data is analyzed by integrative methods, such
as arti�cal intelligence, clinical and biological subgroups might emerge, potentially assigning a unique
risk or modi�er gene or a unique molecular pathway to a speci�c patient subgroup, which might one day
enable patient-speci�c interventions, or serve as drug target engagement marker or subgroup biomarker.

 

The other strong research advantage to such a dataset and living tools is the immediate ability to test for
potentially ALS-relevant pathogenic pathways using the participant’s own iPSCs/iPSC-derived spinal
neurons to test drugs for candidate pathogenic pathways and, importantly, to develop CNS biomarkers
from the iPSCs and validate drug target engagement. Libraries of iPSC lines derived from participants
with neurological diseases, including Alzheimer’s disease and frontotemporal dementia have been
growing in the last several years and represent valuable tool to truly examine speci�c disease
pathways67,68.  Most of these iPSC libraries are relatively small, including our orginal library of 22 familial
ALS iPS cell lines69, with a few selected lines for each disease mutation and when appropriate, isogenic
controls.  None are representative of the far more common sporadic forms of the disease.  Furthermore,
most do not provide deep longitudinal clinical and extensive multi-omics data.

 

The overall clinical demographics and population genomics in the Answer ALS program re�ect accurately
the ALS subject population described in prior studies.  This observation validates the Answer ALS iPSC
lines and multi-omics platform as a database that others can employ to generate and test biological
hypotheses.

 

Importantly, all the clinical data, multi-omic data and iPSC lines were generated to be freely accessible to
all researchers, academic and commercial, free of restrictions other than standard HIPAA compliance
rules.  A web portal for downloading �ltered datasets, e.g. proteome, whole genome, etc. has been set up
with minimal but appropriate requirements for data access (Extended Table 3).  The iPSC lines, matched
to datasets, are also fully available for research studies, for a minimal fee (to cover the replacement of
the depleted stock of cells).  Biospecimens longitudinally collected from patients (e.g. plasma) are also
available (Extended Table 3).
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Longitudinal Smartphone App utilization:

The preliminary results from our AALS app demonstrate that the modules implemented to assess limb-
function and speech may be useful to identify early bulbar symptoms in ALS and track disease
progression over time. Speci�cally, limb-function tests reveal that it can be useful to infer ALSFRS-R
scores.  Importantly, we observed that by combining the features from multiple domains, motor tests and
all the voice tests highly correlated with the ALS functional rating scale, now commonly used as primary
or secondary outcome measure in ALS clinical trials, thereby providing a reliable tool for at-home
longitudinal monitoring of patient progression. Furthermore, the single-breath testing also correlated well
with in-clinic forced vital capacity, often a prominent secondary outcome measure in clinical trials.   This
test typically requires in-clinic testing, which limits enrollment or followup data collection in clinical trials. 
The application of this app test alone could greatly enhance patient participation in nationwide clinical
trials—especially in those areas where travel to testing center is challenging.  Overall, we observe that
quantitative motor speech analysis holds tremendous promise in both identifying changes not only
limited to ALS rating scales but also to others such as cognitive assessment. The potential to record
voice, and store it encrypted in the cloud could provide a powerful clinical tool to assess change over time
for use clinically and in ALS trials.  Overall, the app data, coupled with in-clinic data, provide deep and
longitudinal clinical data sets available for muti-domain biological and clinical correlations for future
users.
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Figure 1

Answer ALS Research Program. Graphic illustration of overall program �ow.

Figure 2

Smartphone App. A. Main Menu, B. Upper limb motor tests, C. Bulbar activities, including single breath
counting, speech and cognition, D. Example of cartoon used for speech/cognition analytics.
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Figure 3

Production of ALS and control iPSC spinal motor neurons. A. Example of IPS Generation Schedule. B.
Method of generating iPSC derived motor neuron cell lines using the diMNs protocol. C. Bright�eld
images show the morphology of the cells during differentiation from iPSC stage to the generation of
motor neurons over a period of 32 days. D Production �ow and harvesting schematic of diMNs for multi-
omics analyses. E. Quality control of the diMNs produced from iPSCs is performed by imaging of
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representative wells for immunohistochemical staining with neuronal, motor neuron and glial markers
after 32 days of differentiation¬¬

Figure 4

Clinical Enrollment and Characteristics: ALSFRS-R progression curves for all Answer ALS clinic enrolled
subjects over a 40-month period. A. Answer ALS patient and control subject enrollment. B. ALSFRS-R
Total Slope Distribution. Kernel density estimation with Gaussian kernels used to estimate probability
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density function of ALSFRS-R slope. Dashed line indicates the mean ALSFRS-R slope. C. Longitudinal
ALSFRS-R measurements with fast and slow progressors. Participants with 3 or more visits and a
maximum visit date within 8 years of symptom onset included. N indicates the number of participants in
fast and slow progressing groups, sorted by ALSFRS-R slope.

Figure 5
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Smartphone use and analytics. A) Smartphone app compliance. Compliance was calculated using the
average number of tasks done per day and per subject. B) Results of inferring ALFRS-R total. Pearson
correlation values were obtained using each individual task as well as the combination of all the tasks.
The highest performance was obtained using all tasks (R=0.89, p<1E-5), C) Results of inferring ALSFRS-R
scores using only speech related tasks. Pearson values were calculated independently for each of the 3
speech tasks to infer FVC and ALSFRS-R speech and bulbar sub-scores. Highest performance was
obtained using information from the reading task for both ALSFRS-R sub-scores obtaining up to R=0.89
(p<1E-5) for ALSFRS-R bulbar sub-score. On the other hand, counting task information produced the best
result when infer FVC score (R=0.65, p=2E-2).
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Figure 6

Omics Quality Control metrics. A. Histogram of RNA integrity numbers for current AALS samples. Density
plot and histogram of RIN values for all current AALS samples with RNAseq data. Plot shows all
processed samples have RIN > 8. B. fragment size distribution Size distribution of ATAC seq data, with
peaks representing different n-nucleosomal fragments and clear nucleosome-free regions separated by
~147bp, the size of a nucleosome. C. Number of Proteins and peptide identi�cation consistency in the
data generation batches of AALS samples. D. Violin plot of SERE values for RNAseq data for current
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AALS samples. Violin plot showing variance of SERE values in BTC (green) and BDC (red) control
samples relative to all other (blue) current AALS samples. BTC shows lowest score with the least amount
of variance indicating that samples are true technical replicates, while BDC and other samples show
increase variance. E. Violing plot of SERE values for ATACseq data for current AALS samples. Similar to
RNA data the BTC (green) show lowest variability indicating low technical confounds. F. Coe�cient of
Variation (CV) for Batch Technical Control (BTC) and Batch differentiation control (BDC) replicates
showing 80% proteins to be under a CV of 25%.

Figure 7
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Omics exploratory analysis of results. A. Barplot showing counts of RNA species identi�ed in the current
AALS samples. Barplot showing the different number of RNA species/types across all current AALS
samples. As expected, protein coding and lncRNAs represent the largest proportion while rRNA, which
have been depleted, are the lowest. Types represented are: protein coding, lncRNA, miRNA, snRNA,
snoRNA, and rRNA in green, red, gold, purple, blue, and lightblue, respectively. B. Sashimi Plot showing
POLDIP3 Splicing in AALS samples. Sashimi plot shows alt-splicing results of POLDIP3 in the current
AALS samples, CTR in red and ALS in blue. Showing increased exon 3 skipping in ALS samples, which
has previously been described in ALS. C. Peak functional annotations. Analysis of read distribution
across all ATAC-seq samples shows an enrichment in known open chromatin regions, such as DNAse 1
hypersensitive sites (DHS) and previously annotated enhancers and promoters. D. Motifs. The most
overrepresented genomic motifs corresponding to known transcription factors as determined by the
HOMER discovery algorithm for ATAC-seq. Motifs for transcription factors implicated in neuronal identity,
such as Pdx1, Cux2, and the Lhx family, are signi�cantly enriched. E. log2 protein intensity distribution
unnormalized (top) and normalized (bottom). F. Log 10 protein intensity comparison of selected proteins
(PCKGM, ECH1) showing differential expression between ALS and Controls.
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