
Journal of Artificial Intelligence Research 19 (2003) 25-71 Submitted 10/02; published 08/03

Answer Set Planning Under Action Costs

Thomas Eiter EITER@KR.TUWIEN.AC.AT

Wolfgang Faber FABER@KR.TUWIEN.AC.AT

Institut für Informationssysteme, TU Wien
Favoritenstr. 9-11, A-1040 Wien, Austria

Nicola Leone LEONE@UNICAL .IT
Department of Mathematics, University of Calabria
I-87030 Rende (CS), Italy

Gerald Pfeifer PFEIFER@DBAI .TUWIEN.AC.AT

Axel Polleres POLLERES@KR.TUWIEN.AC.AT

Institut für Informationssysteme, TU Wien
Favoritenstr. 9-11, A-1040 Wien, Austria

Abstract

Recently, planning based on answer set programming has beenproposed as an approach to-
wards realizing declarative planning systems. In this paper, we present the languageKc, which
extends the declarative planning languageK by action costs.Kc provides the notion of admissi-
ble and optimal plans, which are plans whose overall action costs are within a given limit resp.
minimum over all plans (i.e., cheapest plans). As we demonstrate, this novel language allows for
expressing some nontrivial planning tasks in a declarativeway. Furthermore, it can be utilized for
representing planning problems under other optimality criteria, such as computing “shortest” plans
(with the least number of steps), and refinement combinations of cheapest and fastest plans. We
study complexity aspects of the languageKc and provide a transformation to logic programs, such
that planning problems are solved via answer set programming. Furthermore, we report experi-
mental results on selected problems. Our experience is encouraging that answer set planning may
be a valuable approach to expressive planning systems in which intricate planning problems can be
naturally specified and solved.

1. Introduction

Recently, several declarative planning languages and formalisms have been introduced, which allow
for an intuitive encoding of complex planning problems involving ramifications, incomplete infor-
mation, non-deterministic action effects, or parallel actions (see e.g., Giunchiglia & Lifschitz, 1998;
Lifschitz, 1999b; Lifschitz & Turner, 1999; McCain & Turner, 1998; Giunchiglia, 2000; Cimatti &
Roveri, 2000; Eiter et al., 2000b, 2003b).

While these systems are designed to generate any plans that accomplish the planning goals, in
practice one is often interested in particular plans that are optimal with respect to some objective
function by which the quality (or the cost) of a plan is measured. A common and simple objective
function is the length of the plan, i.e., the number of time steps to achieve the goal. Many systems
are tailored to compute shortest plans. For example, CMBP (Cimatti & Roveri, 2000) and GPT
(Bonet & Geffner, 2000) compute shortest plans in which eachstep consists of a single action,
while the Graphplan algorithm (Blum & Furst, 1997) and descendants (Smith & Weld, 1998; Weld,

c©2003 AI Access Foundation. All rights reserved.

EITER, FABER, LEONE, PFEIFER& POLLERES

Anderson, & Smith, 1998) compute shortest plans where in each step actions might be executed in
parallel.

However, there are other, equally important objective functions to consider. In particular, if
executing actions causes some cost, we may desire a plan which minimizes the overall cost of the
actions.

In answer set planning (Subrahmanian & Zaniolo, 1995; Dimopoulos, Nebel, & Koehler, 1997;
Niemelä, 1998; Lifschitz, 1999b), a recent declarative approach to planning where plans are en-
coded by the answer sets of a logic program, the issue of optimal plans under an objective value
function has not been addressed in detail so far (see Section8 for more details). In this paper, we
address this issue and present an extension of the planning languageK (Eiter et al., 2000b, 2003b),
where the user may associate costs with actions, which are then taken into account in the planning
process. The main contributions of our work are as follows.

• We define syntax and semantics of the planning languageKc, which modularly extends the
languageK: Costs are associated to an action by extending the action declarations with an
optional cost construct which describes the cost of executing the respective action.

The action costs can be static or dynamic, as they may depend on the current stage of the plan
when an action is considered for execution. Dynamic action costs are important and have
natural applications, as we show on a simple variant of the well-known Traveling Salesperson
Problem, which is cumbersome to model and solve in other, similar languages.

• We analyze the computational complexity of planning in the languageKc, and provide com-
pleteness results for major planning tasks in the propositional setting, which locate them in
suitable slots of the Polynomial Hierarchy and in classes derived from it. These results pro-
vide insight into the intrinsic computational difficultiesof the respective planning problems,
and give a handle for efficient transformations from optimalplanning to knowledge represen-
tation formalisms, in particular to logic programs.

• We show, in awareness of the results of the complexity analysis, how planning with action
costs can be implemented by a transformation to answer set programming, as done in a sys-
tem prototype that we have developed. The prototype, ready for experiments, is available at
http://www.dlvsystem.com/K/.

• Finally, we present some applications which show that our extended language is capable
of easily modeling optimal planning under various criteria: computing (1) “cheapest” plans
(which minimize overall action costs); (2) “shortest” plans (with the least number of steps);
and, refinement combinations of these, viz. (3) shortest plans among the cheapest, and (4)
cheapest plans among the shortest. Notice that, to our knowledge, task (3) has not been
addressed in other works so far.

The extension ofK by action costs provides a flexible and expressive tool for representing
various problems. Moreover, sinceK’s semantics builds on states of knowledge rather than on
states of the world, we can deal with both incomplete knowledgeandplan quality, which is, to the
best of our knowledge, completely novel.

Our experience is encouraging that answer set planning, based on powerful logic programming
engines, allows for the development of declarative planning systems in which intricate planning

26

ANSWERSET PLANNING UNDER ACTION COSTS

tasks can be specified and solved. This work complements and extends the preliminary results
presented in our previous work (Eiter et al., 2002a).

The remainder of this paper is organized as follows. In the next section, we briefly review
the languageK by informally presenting its main constituents and features on a simple planning
example. After that, we define in Section 3 the extension ofK by action costs, and consider some
first examples for the usage ofKc. Section 4 is devoted to the analysis of complexity issues. In
Section 5, we consider applications ofKc. We show that various types of particular optimization
problems can be expressed inKc, and also consider some practical examples. In Section 6, we
present a transformation ofKc into answer set programming, and in Section 7, we report about a
prototype implementation and experiments. After a discussion of related work in Section 8, we
conclude the paper with an outlook on ongoing and future work.

2. Short Review of LanguageK

In this section, we give a brief informal overview of the languageK, and refer to (Eiter et al., 2003b)
and to the Appendix for formal details. We assume that the reader is familiar with the basic ideas
of planning and action languages, in particular with the notions of actions, fluents, goals and plans.
For illustration, we shall use the following planning problem as a running example.

Problem 1 [Bridge Crossing Problem]Four persons want to cross a river at night over a plank
bridge, which can only hold up to two persons at a time. They have a lamp, which must be used
when crossing. As it is pitch-dark and some planks are missing, someone must bring the lamp back
to the others; no tricks (like throwing the lamp or halfway crosses, etc.) are allowed.

Fluents and states. A state inK is characterized by the truth values of fluents, describing relevant
properties of the domain of discourse. A fluent may be true, false, or unknown in a state – that is,
states inK arestates of knowledge, as opposed to states of the world where each fluent is either true
or false (which can be easily enforced inK, if desired). Formally, astateis any consistent sets of
(possibly negated) legal fluent instances.

An action is applicable only if some precondition (a list of literals over some fluents) holds in
the current state. Its execution may cause a modification of truth values of some fluents.

Background knowledge. Static knowledge which is invariant over time in aK planning domain
is specified in a normal (disjunction-free) Datalog programΠ that has a single answer set and can
be viewed as a set of facts. For our example, the background knowledge specifies the four persons:

person(joe). person(jack). person(william). person(averell).

Type declarations. Each fluent or action must have a declaration where the rangesof its argu-
ments are specified. For instance,

crossTogether(X, Y) requires person(X), person(Y), X < Y.1

specifies the arguments of the actioncrossTogether, where two persons cross the bridge together,
while

across(X) requires person(X).

1. “<” here is used instead of inequality to avoid symmetric rules.

27

EITER, FABER, LEONE, PFEIFER& POLLERES

specifies a fluent describing that a specific person is on the other side of the river. Here the literals
after “requires” must be classical literals of the static background knowledge (likeperson(X) and
person(Y)), or literals of built-in predicates (such asX < Y). Our implementation ofK, theDLVK-
system (Eiter, Faber, Leone, Pfeifer, & Polleres, 2003a), currently supports the built-in predicates
“A < B”, “ A <= B”, “ A != B” with the obvious meaning of less-than, less-or-equal and inequality for
strings and numbers, the arithmetic built-ins “A = B + C” and “A = B ∗ C” which stand for integer
addition and multiplication, and the predicate “#int(X)” which enumerates all integers (up to a
user-defined limit).

Causation rules. Causation rules (“rules” for brevity) are syntactically similar to rules of the
action languageC (Giunchiglia & Lifschitz, 1998; Lifschitz, 1999a; Lifschitz & Turner, 1999) and
are of the basic form:

caused f if B after A.

whereA is a conjunction of fluent and action literals, possibly including default negation,B is a
conjunction of fluent literals, again possibly including default negation, andf is a fluent literal.
Informally, such a rule reads: ifB is known to be true in the current state andA is known to be true
in the previous state, thenf is known to be true in the current state as well. Both theif-part and
theafter-part are allowed to be empty (which means that they are true). A causation rule is called
dynamic, if its after-part is not empty, and is calledstaticotherwise.

Causation rules are used to express effects of actions or ramifications. For example,

caused across(X) after cross(X), -across(X).
caused -across(X) after cross(X), across(X).

describe the effects of a single person crossing the bridge in either direction.

Initial state constraints. Static rules can apply to all states or only to the initial states (which
may not be unique). This is expressed by the keywords “always :” and “initially :” preceding
sequences of rules where the latter describesinitial state constraintsthat must be satisfied only in
the initial state. For example,

initially : caused -across(X).
enforces the fluentacross to be false in the initial state for anyX satisfying the declaration of the
fluentacross, i.e., for all persons. The rule is irrelevant for all subsequent states.

Executability of actions. This is expressed inK explicitly. For instance,

executable crossTogether(X, Y) if hasLamp(X).
executable crossTogether(X, Y) if hasLamp(Y).

declares that two persons can jointly cross the bridge if oneof them has a lamp. The same action
may have multiple executability statements. A statement

executable cross(X).

with empty body says thatcross is always executable, provided that the type restrictions on X are
respected. Dually,

nonexecutable a if B.

prohibits the execution of actiona if condition B is satisfied. For example,

nonexecutable crossTogether(X, Y) if differentSides(X, Y).

28

ANSWERSET PLANNING UNDER ACTION COSTS

says that personsX andY can not cross the bridge together if they are on different sides of the bridge.
In case of conflicts,nonexecutable A overridesexecutable A.

Default and strong negation. K supports strong negation (“¬,” also written as “-”). Note, how-
ever, that for a fluentf, in a state neitherf nor -f needs to hold. In this case the knowledge about
f is incomplete. In addition, weak negation (“not”), interpreted like default negation in answer set
semantics (Gelfond & Lifschitz, 1991), is permitted in rulebodies. This allows for natural model-
ing of inertia and default properties, as well as dealing with incomplete knowledge in general. For
example,

caused hasLamp(joe) if not hasLamp(jack), not hasLamp(william), not hasLamp(averell).

expresses the conclusion that by default,joe has the lamp, whenever it is not evident that any of the
other persons has it.

Macros. K provides a number of macros as “syntactic sugar”. For example,

inertial across(X).

informally states thatacross(X) holds in the current state, ifacross(X) held at the previous state,
unless -across(X) is explicitly known to hold. This macro expands to the rule

caused across(X) if not -across(X) after across(X).

Moreover, we can “totalize” the knowledge of a fluent by declaring total f. which is a shortcut for

caused f if not -f. caused -f if not f.

The intuitive meaning of these rules is that unless a truth value forf can be derived, the cases where
f resp.-f is true will both be considered.

Planning domains and problems. In K, aplanning domainPD = 〈Π, 〈D,R〉〉 has a background
knowledgeΠ, action and fluent declarationsD, and rules and executability conditionsR; aplanning
problemP = 〈PD, q〉 has a planning domainPD and aquery

q = g1, . . . , gm, not gm+1, . . . , not gn ? (l)

whereg1, . . . , gn are ground fluents andl ≥ 0 is the plan length. For instance, the goal query

across(joe), across(jack), across(william), across(averell)? (5)

asks for plans which bring all four persons across in 5 steps.
Plans are defined using a transition-based semantics, wherethe execution of a set of actions

transforms a current state into a new state. An(optimistic) planforP is a sequenceP = 〈A1, . . . , Al〉
of sets of action instancesA1, A2, . . . , Al in a trajectory T = 〈〈s0, A1, s1〉, 〈s1, A2, s2〉, . . . ,
〈sl−1, Al, sl〉〉 from a legal initial states0 to statesl in which all literals of the goal are true. That
is, starting ins0, the legal transitiont1 = 〈s0, A1, s1〉, modeling the execution of the actions inA1

(which must be executable), transformss0 into the states1. This is then followed by legal transitions
ti = 〈si−1, Ai, si〉, for i = 2, 3, . . . , l (cf. Appendix for details). A plan issequential, if |Ai| ≤ 1
for all i = 1, . . . , l, i.e., each step consists of at most one action; such plans can be enforced by
including the keywordnoConcurrency.

Besides optimistic plans, inK we also support strongersecure (or conformant) plans. A secure
plan must be guaranteed to work out under all circumstances (Eiter et al., 2000b), regardless of
incomplete information about the initial state and possible nondeterminism in the action effects.

29

EITER, FABER, LEONE, PFEIFER& POLLERES

For better readability, in the following we will not always describeK planning problemsP
strictly in terms of sets of declarations, rules and executability conditions, but optionally use the
more compact representation ofK programsof the following general form:

fluents : FD

actions : AD

initially : IR

always : CR

goal : q

where the (optional) sectionsfluents throughalways consist of lists of fluent declarationsFD ,
action declarationsAD , initial state constraintsIR and executability conditions and causation rules
CR , respectively. Together with the background knowledgeΠ and the goal queryq, they specify
aK planning problemP = 〈〈Π, 〈D,R〉〉, q〉, whereD is given byFD plusAD andR by IR plus
CR . 2

2.1 Solving the Bridge Crossing Problem

Using the above constructs, aK encoding of the Bridge Crossing Problem, assuming thatjoe

initially carries the lamp, is shown in Figure 1. There are simple five-step plans(l = 5), in which
joe always carries the lamp and brings all others across. One of them is:

P = 〈 {crossTogether(joe,jack)}, {cross(joe)}, {crossTogether(joe, william)},
{cross(joe)}, {crossTogether(joe,averell)} 〉

3. Actions with Costs

Using the languageK and the system prototype,DLVK, we can already express and solve some
involved planning tasks, cf. (Eiter et al., 2003b). However, K and DLVK alone offer no means
for finding optimal plans under an objective cost function. In general, different criteria of plan
optimality can be relevant, such as optimality wrt. action costs as shown in the next example, which
is a slight elaboration of the Bridge Crossing Problem, and awell-known brain teasing riddle:

Problem 2 [Quick Bridge Crossing Problem]The persons in the bridge crossing scenario need
different times to cross the bridge, namely 1, 2, 5, and 10 minutes, respectively. Walking in two
implies moving at the slower rate of both. Is it possible thatall four persons get across within 17
minutes?

On first thought this is infeasible, since the seemingly optimal plan wherejoe, who is the fastest,
keeps the lamp and leads all the others across takes 19 minutes altogether. Surprisingly, as we will
see, the optimal solution indeed only takes 17 minutes.

In order to allow for an elegant and convenient encoding of such optimization problems, we
extendK to the languageKc in which one can assign costs to actions.

3.1 Syntax ofKc

Let σact, σfl, andσvar denote (finite) sets of action names, fluent names and variable symbols.
Furthermore, letLact, Lfl, andLtyp denote the sets of action, fluent, and type literals, respectively,

2. This is also the format of the input files of our system prototype, which will be presented in Section 7.

30

ANSWERSET PLANNING UNDER ACTION COSTS

actions : cross(X) requires person(X).
crossTogether(X, Y) requires person(X), person(Y), X < Y.

takeLamp(X) requires person(X).

fluents : across(X) requires person(X).
differentSides(X, Y) requires person(X), person(Y).
hasLamp(X) requires person(X).

initially : -across(X). hasLamp(joe).

always : executable crossTogether(X, Y) if hasLamp(X).
executable crossTogether(X, Y) if hasLamp(Y).
nonexecutable crossTogether(X, Y) if differentSides(X, Y).

executable cross(X) if hasLamp(X).

executable takeLamp(X).
nonexecutable takeLamp(X) if hasLamp(Y), differentSides(X, Y).

caused across(X) after crossTogether(X, Y), -across(X).
caused across(Y) after crossTogether(X, Y), -across(Y).
caused -across(X) after crossTogether(X, Y), across(X).
caused -across(Y) after crossTogether(X, Y), across(Y).

caused across(X) after cross(X), -across(X).
caused -across(X) after cross(X), across(X).

caused hasLamp(X) after takeLamp(X).
caused -hasLamp(X) after takeLamp(Y), X != Y, hasLamp(X).

caused differentSides(X, Y) if across(X), -across(Y).
caused differentSides(X, Y) if -across(X), across(Y).

inertial across(X).
inertial -across(X).
inertial hasLamp(X).

noConcurrency.

goal : across(joe), across(jack), across(william), across(averell)? (l)

Figure 1:K encoding of the Bridge Crossing Problem

formed from the action names, fluent names, and predicates inthe background knowledge (including
built-in predicates), respectively, using terms from a nonempty (finite) set of constantsσcon.

Kc extends action declarations as inK with costs as follows.

Definition 3.1 Anaction declarationd in Kc is of the form:

p(X1, . . . ,Xn) requires t1, . . . , tm costs C where c1, . . . , ck. (1)

where (1)p ∈ σact has arityn ≥ 0, (2) X1, . . . ,Xn ∈ σvar , (3) t1, . . . , tm, c1, . . . , ck are from
Ltyp such that everyXi occurs int1, . . . , tm, (4) C is either an integer constant, a variable from the
set of all variables occurring int1, . . . , tm, c1, . . . , ck (denoted byσvar(d)), or the distinguished
variabletime, (5) σvar(d) ⊆ σvar ∪ {time}, and (6)time does not occur int1, . . . tm.

31

EITER, FABER, LEONE, PFEIFER& POLLERES

If m = 0, the keyword ‘requires’ is omitted; if k = 0, the keyword ‘where’ is omitted and
‘costs C ’ is optional. Here, (1) and (2) state that parameters to an action must be variables, and
not fixed values. Informally, (3) means that all parameters of an action must be “typed” in the
requires part. Condition (4) asserts that the cost is locally defined or given by the stage of the
plan, which is referenced through the global variabletime. Conditions (5) and (6) ensure that all
variables are known and that type information of action parameters is static, i.e., does not depend
on time.

Planning domains and planning problems inKc are defined as inK.

For example, in the elaborated Bridge Crossing Problem, thedeclaration ofcross(X) can be
extended as follows: suppose a predicatewalk(Person, Minutes) in the background knowledge
indicates thatPerson takesMinutes to cross. Then, we may simply declare

cross(X) requires person(X) costs WX where walk(X, WX).

3.2 Semantics ofKc

Semantically,Kc extendsK by the cost values of actions at points in time. In any planP =
〈A1, . . . , Al〉, at step1 ≤ i ≤ l, the actions inAi are executed to reach time pointi.

A ground actionp(x1, . . . , xn) is a legal action instanceof an action declarationd wrt. aKc

planning domainPD = 〈Π, 〈D,R〉〉, if there exists some ground substitutionθ for σvar(d) ∪
{time} such thatXiθ = xi, for 1 ≤ i ≤ n and{t1θ, . . . , tmθ} ⊆ M , whereM is the unique answer
set of the background knowledgeΠ. Any suchθ is called awitness substitutionfor p(x1, . . . , xn).
Informally, an action instance is legal, if it satisfies the respective typing requirements. Action costs
are now formalized as follows.

Definition 3.2 Let a = p(x1, . . . , xn) be a legal action instance of a declarationd of the form (1)
and letθ be a witness substitution fora. Then

costθ(p(x1, . . . , xn)) =







0, if thecosts part ofd is empty;
val(Cθ), if {c1θ, . . . , ckθ} ⊆ M ;
undefined otherwise.

whereM is the unique answer set ofΠ and val : σcon → IN is defined as the integer value for
integer constants and 0 for all non-integer constants.

By reference to the variabletime, it is possible to define time-dependent action costs; we shall con-
sider an example in Section 5.2. Usingcostθ, we now introduce well-defined legal action instances
and define action cost values as follows.

Definition 3.3 A legal action instancea = p(x1, . . . , xn) is well-definediff it holds that (i) for any
time pointi ≥ 1, there is some witness substitutionθ for a such thattime = i andcostθ(a) is an
integer, and (ii)costθ(a) = costθ′(a) holds for any two witness substitutionsθ, θ′ which coincide
ontime and have defined costs. For any well-defineda, its unique cost at time pointi ≥ 1 is given
by costi(a) = costθ(a) whereθ is as in (i).

In this definition, condition (i) ensures that some cost value exists, which must be an integer,
and condition (ii) ensures that this value is unique, i.e., any two different witness substitutionsθ and
θ′ for a evaluate thecost part to the same integer cost value.

32

ANSWERSET PLANNING UNDER ACTION COSTS

An action declarationd is well-defined, if all its legal instances are well-defined. This will be
fulfilled if, in database terms, the variablesX1, . . . ,Xn together withtime in (1) functionally deter-
mine the value ofC. In our framework, the semantics of aKc planning domainPD = 〈Π, 〈D,R〉〉
is only well-defined for well-defined action declarations inPD. In the rest of this paper, we assume
well-definedness ofKc unless stated otherwise.

Usingcosti, we now define costs of plans.

Definition 3.4 LetP = 〈PD,Q ? (l)〉 be a planning problem. Then, for any planP = 〈A1, . . . , Al〉
for P, its cost is defined as

costP(P) =
∑l

j=1

(

∑

a∈Aj
costj(a)

)

.

A planP is optimal for P, if costP(P) ≤ costP(P ′) for each planP ′ for P, i.e.,P has least cost
among all plans forP. The cost of a planning problemP, denotedcost∗P , is given bycost∗P =
costP(P ∗), whereP ∗ is an optimal plan forP.

In particular,costP(P) = 0 if P = 〈〉, i.e., the plan is void. Note thatcost∗P is only defined if a
plan forP exists.3

Usually one only can estimate someupper boundof the plan length, but does not know the exact
length of an optimal plan. Although we have only defined optimality for a fixed plan lengthl, we
will see in Section 5.1 that by appropriate encodings this can be extended to optimality for plans
with lengthat mostl.

Besides optimal plans, also plans with bounded costs are of interest, which motivates the fol-
lowing definition.

Definition 3.5 A planP for a planning problemP is admissiblewrt. costc, if costP(P)≤c.

Admissible plans impose a weaker condition on the plan quality than optimal plans. They are
particularly relevant if optimal costs are not a crucial issue, as long as the cost stays within a given
limit, and if optimal plans are difficult to compute. We mightface questions like “Can I make it
to the airport within one hour?”, “Do I have enough change to buy a coffee?” etc. which amount
to admissible planning problems. As we shall see, computingadmissible plans is complexity-wise
easier than computing optimal plans.

3.3 An Optimal Solution for the Quick Bridge Crossing Problem

To model the Quick Bridge Crossing Problem inKc, we first extend the background knowledge as
follows, where the predicate ‘walk’ describes the time a person needs to cross and ‘max’ determines
which of two persons is slower:

walk(joe, 1). walk(jack, 2). walk(william, 5). walk(averell, 10).

max(A, B, A) :- walk(, A), walk(, B), A >= B.

max(A, B, B) :- walk(, A), walk(, B), B > A.

Next, we modify the declarations forcross andcrossTogether from Figure 1 by adding costs:

3. In the following, subscripts will be dropped when clear from the context.

33

EITER, FABER, LEONE, PFEIFER& POLLERES

cross(X) requires person(X) costs WX where walk(X, WX).
crossTogether(X, Y) requires person(X), person(Y), X < Y

costs Wmax where walk(X, WX), walk(Y, WY), max(WX, WY, Wmax).

The declaration oftakeLamp remains unchanged, as the time to hand over the lamp is negligible.
Using this modified planning domain, the 5-step plan reported in Section 2.1 has cost 19. Ac-

tually, it is optimal for plan lengthl = 5. However, when we relinquish the first intuition that the
fastest person,joe, always has the lamp and consider the problem under varying plan length, then
we can find the following 7-step plan:

P = 〈 {crossTogether(joe,jack)}, {cross(joe)}, {takeLamp(william)},
{crossTogether(william, averell)}, {takeLamp(jack)}, {cross(jack)},
{crossTogether(joe,jack)} 〉

Here,costP(P) = 17, and thusP is admissible with respect to cost 17. This means that the Quick
Bridge Crossing Problem has a positive answer. In fact,P has least cost over all plans of length
l = 7, and is thus an optimal 7-step plan. Moreover,P has also least cost over all plans that emerge
if we consider all plan lengths. Thus,P is an optimal solution for the Quick Bridge Crossing
Problem under arbitrary plan length.

3.4 Bridge Crossing under Incomplete Knowledge

The languageK is well-suited to model problems which involve uncertaintysuch as incomplete
initial states or non-deterministic action effects at a qualitative level. The enriched languageKc

gracefully extends to secure (conformant) plans as well, which must reach the goal under all cir-
cumstances (Eiter et al., 2000b, 2003b). More precisely, anoptimistic plan〈A1, . . . , An〉 is secure,
if it is applicable under any evolution of the system: starting from any legal initial states0, the first
action setA1 (for plan lengthl ≥ 1) can always be executed (i.e., some legal transition〈s0, A1, s1〉
exists), and for every such possible states1, the next action setA2 can be executed etc., and after
having performed all actions, the goal is always accomplished (cf. Appendix for a formal definition).

While secure plans inherit costs from optimistic plans, there are different possibilities to define
optimality of secure plans. We may consider a secure plan as optimal, if it has least cost either

• among all optimistic plans, or

• among all secure plans only.

In the first alternative, there might be planning problems which have secure plans, but no optimal
secure plans. For this reason, the second alternative appears to be more appropriate.

Definition 3.6 A secure planP is optimal for a planning problemP, if it has least cost among all
secure plans forP, i.e.,costP(P) ≤ costP(P ′) for each secure planP ′ for P. Thesecure costof
P, denotedcost∗sec(P), is cost∗sec(P) = costP(P ∗), whereP ∗ is any optimal secure plan forP.

The notion of admissible secure plans is defined analogously.

For example, assume that it is known that at least one person in the bridge scenario has a lamp,
but that neither the exact number of lamps nor the allocationof lamps to persons is known. If the
four desperate persons now ask for a plan which brings them safely across the bridge, we need a
(fast) secure plan that works under all possible initial situations. InKc, this can be modeled by
replacing theinitially-part with the following declarations:

34

ANSWERSET PLANNING UNDER ACTION COSTS

initially : total hasLamp(X).
caused false if -hasLamp(joe), -hasLamp(jack),

-hasLamp(william), -hasLamp(averell).
The first statement says that each person either has a lamp or not, and the second that at least

one of them must have a lamp. For a detailed discussion on the use of the “total” statement for
modeling incomplete knowledge and non-determinism we refer to (Eiter et al., 2003b).

As we can easily see, an optimal secure solution will take at least 17 minutes, since the original
case (where onlyjoe has a lamp) is one of the possible initial situations, for which the cost of
an optimistic plan which is optimal over all plan lengths was17. However, a secure plan which
is optimal over all plan lengths requires at least 8 steps now(but no higher cost): Different from
optimistic plans, we need one extra step at the beginning which makes sure that one of those who
walk first (above,joe andjack) has the lamp, which is effected by the propertakeLamp action.

An example of such a plan is the following which has cost 17:

P = 〈 {takeLamp(joe)}, {crossTogether(joe, jack)}, {cross(joe)},
{takeLamp(william)}, {crossTogether(william, averell)}, {takeLamp(jack)},
{cross(jack)}, {crossTogether(joe, jack)} 〉

We can easily check thatP works for every possible initial situation. Thus, it is an optimal (secure)
plan for plan length 8, and moreover also for arbitrary plan length.

4. Computational Complexity

In this section, we will address the computational complexity of Kc, complementing similar results
for the languageK (Eiter et al., 2003b).

4.1 Complexity Classes

We assume that the reader is familiar with the basic notions of complexity theory, such asP, NP,
problem reductions and completeness; see e.g. (Papadimitriou, 1994) and references therein. We
recall that the Polynomial Hierarchy (PH) contains the classesΣP

0 = ΠP
0 = ∆P

0 = P andΣP
i+1 =

NPΣP
i , ΠP

i+1 = co-ΣP
i+1, ∆P

i+1 = PΣP
i , for i ≥ 0. In particular,ΣP

1 = NP and∆P
2 = PNP.

Note that these classes contain decision problems (i.e., problems where the answer is “yes” or
“no”). While checking well-definedness and deciding plan existence are such problems, computing
a plan is asearch problem, where for each problem instanceI a (possibly empty) finite setS(I) of
solutions exists. To solve such a problem, a (possibly nondeterministic) algorithm must compute the
alternative solutions from this set in its computation branches, ifS(I) is not empty. More precisely,
search problems are solved by transducers, i.e., Turing machines equipped with an output tape. If
the machine halts in an accepting state, then the contents ofthe output tape is the result of the
computation. Observe that a nondeterministic machine computes a (partial) multi-valued function.

As an analog toNP, the classNPMV contains those search problems whereS(I) can be com-
puted by a nondeterministic Turing machine in polynomial time; for a precise definition, see (Sel-
man, 1994). In analogy toΣP

i+1, by ΣP
i+1MV = NPMVΣP

i , i ≥ 0, we denote the generalization of
NPMV where the machine has access to aΣP

i oracle.
Analogs to the classesP and∆P

i+1, i ≥ 0, are given by the classesFP andF∆P
i+1, i ≥ 0,

which contain the partial single-valued functions (that is, |S(I)| ≤ 1 for each problem instance

35

EITER, FABER, LEONE, PFEIFER& POLLERES

I) computable in polynomial time using no resp. aΣP
i oracle. We say, abusing terminology, that

a search problemA is in FP (resp.F∆P
i+1), if there is a partial (single-valued) functionf ∈ FP

(resp.f ∈ F∆P
i+1) such thatf(I) ∈ S(I) and f(I) is undefined iffS(I) = ∅. For example,

computing a satisfying assignment for a propositional CNF (FSAT) and computing an optimal tour
in the Traveling Salesperson Problem (TSP) are inF∆P

2 under this view, cf. (Papadimitriou, 1994).
A partial functionf is polynomial-time reducible to another partial functiong, if there are

polynomial-time computable functionsh1 andh2 such thatf(I) = h2(I, g(h1(I))) for all I and
g(h1(I)) is defined wheneverf(I) is defined. Hardness and completeness are defined as usual.

4.2 Problem Setting

We will focus on the following questions:

Checking Well-Definedness:Decide whether a given action description is well-defined wrt. a
given planning domainPD, resp. whether a given planning domainPD is well-defined.

Admissible Planning: Decide whether for planning problemP an admissible (optimistic/secure)
plan exists wrt. a given cost valuec, and find such a plan.

Optimal Planning: Find an optimal (optimistic/secure) plan for a given planning problem.

Notice that (Eiter et al., 2003b) focused on deciding the existence of optimistic/secure plans,
rather than on actually finding plans, and presented a detailed study of the complexity of this task
under various restrictions for ground (propositional) planning problems. In this paper, we confine
the discussion to the case of planning problemsP = 〈PD,Q ? (l)〉 which look forpolynomial length
plans, i.e., problems where the plan lengthl is bounded by some polynomial in the size of the input.

We shall consider here mainly ground (propositional) planning, and assume that the planning
domains are well-typed and that the unique model of the background knowledge can be computed
in polynomial time. In the general case, by well-known complexity results on logic programming,
cf. (Dantsin, Eiter, Gottlob, & Voronkov, 2001), already evaluating the background knowledge is
EXPTIME-hard, and the problems are thus provably intractable. We recall the following results,
which appear in (or directly follow from) previous work (Eiter et al., 2003b).

Proposition 4.1 Deciding, given a propositional planning problemP and a sequenceP = 〈A1, . . . ,

Al〉 of action sets, (i) whether a given sequenceT = 〈t1, . . . , tl〉 is a legal trajectory witnessing that
P is an optimistic plan forP is feasible in polynomial time, and (ii) whetherP is a secure plan for
P is ΠP

2 -complete.

4.3 Results

We start by considering checking well-definedness. For thisproblem, it is interesting to investigate
the non-ground case, assuming that the background knowledge is already evaluated. This way we
can assess the intrinsic difficulty of this task obtaining the following result.

Theorem 4.2 (Complexity of checking well-definedness)Given aKc planning domainPD =
〈Π, 〈D,R〉〉 and the unique modelM of Π, checking (i) well-definedness of a given action dec-
laration d of form (1) wrt.PD and (ii) well-definedness ofPD are bothΠP

2 -complete.

36

ANSWERSET PLANNING UNDER ACTION COSTS

Proof. Membership:As for (i), d is violated if it has a nonemptycosts part and a legal action
instancea = p(x1, . . . , xn) such that either (1) there exist witness substitutionsθ andθ′ for a such
thattimeθ = timeθ′, costθ(a) = val(Cθ) andcostθ′(a) = val(Cθ′), andval(Cθ) 6= val(Cθ′),
or (2) there is no witness substitutionθ for a such thatcostθ(a) = val(Cθ) is an integer. Such
an a can be guessed and checked, via a witness substitution, in polynomial time, and along with
a also θ and θ′ as in (1); note that, by definition, all variables must be substituted by constants
from the background knowledge (including numbers), and so must be values fortime if it occurs in
c1, . . . , ck. Givena, we can decide (2) with the help of anNP oracle. In summary, disproving well-
definedness ofd is nondeterministically possible in polynomial time with an NP oracle. Hence,
checking well-definedness ofd is in co-ΣP

2 = ΠP
2 . The membership part of (ii) follows from (i),

since well-definedness ofPD reduces to well-definedness of all action declarations in it, andΠP
2 is

closed under conjunctions.
Hardness:We show hardness for (i) by a reduction from deciding whethera quantified Boolean
formula (QBF)

Q = ∀X∃Y.c1 ∧ · · · ∧ ck

where eachci = Li,1 ∨ · · · ∨ Li,ℓi
, i = 1, . . . , k, is a disjunction of literalsLi,j on the atoms

X = x1, . . . , xn andY = xn+1 . . . , xm, is true. Without loss of generality, we may assume that
eachci contains three (not necessarily distinct) literals, whichare either all positive or all negative.

We construct a planning domainPD andd as follows. The background knowledge,Π, is

bool(0). bool(1).
pos(1, 0, 0). pos(0, 1, 0). pos(0, 0, 1). pos(1, 1, 0). pos(1, 0, 1). pos(0, 1, 1). pos(1, 1, 1).
neg(0, 0, 0). neg(1, 0, 0). neg(0, 1, 0). neg(0, 0, 1). neg(1, 1, 0). neg(1, 0, 1). neg(0, 1, 1).

Here,bool declares the truth values 0 and 1. The factspos(X1, X2, X3) andneg(X1, X2, X3) state
those truth assignments toX1, X2, andX3 such that the positive clauseX1 ∨ X2 ∨ X3 resp. the
negative clause¬X1 ∨ ¬X2 ∨ ¬X3 is satisfied.

The rest of the planning domainPD consists of the single action declarationd of form

p(V1, ..., Vn) requires bool(V1), ..., bool(Vn) costs 0 where c∗1, ..., c
∗

k.

where

c∗i =

{

pos(Vi,1, Vi,2, Vi,3), if ci = xi,1 ∨ xi,2 ∨ xi,3,

neg(Vi,1, Vi,2, Vi,3), if ci = ¬xi,1 ∨ ¬xi,2 ∨ ¬xi,3,
i = 1, . . . , k.

For example, the clausec = x1 ∨ x3 ∨ x6 is mapped toc∗ = pos(V1, V3, V6). It is easy to see that
each legal action instancea = p(b1, . . . , bn) of d corresponds 1-1 to the truth assignmentσa of X

given byσa(xi) = bi, for i = 1, . . . , n. Furthermore,a has a cost value defined (which is 0) iff the
formula∃Y (c1σa ∧ · · · ∧ ckσa) is true. Thus,d is well-defined wrt.PD iff Q is true. SincePD and
d are efficiently constructible, this provesΠP

2 -hardness. 2

Observe that in the ground case, checking well-definedness is much easier. Since no substitu-
tions need to be guessed, the test in the proof of Theorem 4.2 is polynomial. Thus, by our assumption
on the efficient evaluation of the background program, we obtain:

Corollary 4.3 In the ground (propositional) case, checking well-definedness of an action descrip-
tion d wrt. a Kc planning domainPD = 〈Π, 〈D,R〉〉, resp. ofPD as a whole, is possible in
polynomial time.

37

EITER, FABER, LEONE, PFEIFER& POLLERES

We remark that checking well-definedness can be expressed asa planning task inK, and also
by a logic program; we refer to (Eiter, Faber, Leone, Pfeifer, & Polleres, 2002b) for details.

We now turn to computing admissible plans.

Theorem 4.4 (Complexity of admissible planning)For polynomial plan lengths, deciding whether
a given (well-defined) propositional planning problem〈PD, q〉 has (i) some optimistic admissible
plan wrt. to a given integerb is NP-complete, and finding such a plan is complete forNPMV, (ii)
deciding whether〈PD, q〉 has some secure admissible plan wrt. to a given integerb is ΣP

3 -complete,
and computing such a plan isΣP

3 MV-complete. Hardness holds in both cases for fixed plan length.

As for the proof we refer to the Appendix. We finally address the complexity of computing
optimal plans.

Theorem 4.5 (Complexity of optimal planning) For polynomial plan lengths, (i) computing an
optimal optimistic plan for〈PD,Q ? (l)〉 in Kc is F∆P

2 -complete, and (ii) computing an optimal
secure plan for〈PD,Q ? (l)〉 in Kc is F∆P

4 -complete. Hardness holds in both cases even if the plan
lengthl is fixed.

The proof again can be found in the in the Appendix.

We remark that in the case of unbounded plan length, the complexity of computing plans in-
creases and requires (at least) exponential time in general, since plans might have exponential length
in the size of the planning problem. Thus, in practical terms, constructing such plans is infeasible,
since they occupy exponential space. Furthermore, as follows from previous results (Eiter et al.,
2003b), deciding the existence of an admissible optimisticresp. secure plan for a planning prob-
lem wrt. a given cost is PSPACE-complete resp. NEXPTIME-complete. We leave a more detailed
analysis of complexity aspects ofKc for further work.

5. Applications

5.1 Cost Efficient versus Time Efficient Plans

In this section, we show how the languageKc can be used to minimize plan length in combination
with minimizing the costs of a plan. This is especially interesting in problem settings where parallel
actions are allowed (cf. (Kautz & Walser, 1999; Lee & Lifschitz, 2001)).

For such domains with parallel actions, Kautz and Walser propose various criteria to be op-
timized, for instance the number of actions needed, or the number of necessary time steps when
parallel actions are allowed, as well as combinations of these two criteria (1999). By exploiting
action costs and proper modeling, we can solve optimizationproblems of this sort. For example,
we can single out plans with a minimal number of actions simply by assigning cost 1 to all possible
actions.

We consider the following optimization problems:

(α) Find a plan with minimal cost (cheapest plan) for a given number of steps.

(β) Find a plan with minimal time steps (shortest plan).

(γ) Find a shortest among the cheapest plans.

38

ANSWERSET PLANNING UNDER ACTION COSTS

(δ) Find a cheapest among the shortest plans.

Problem (α) is what we have already defined as optimal plans so far. We will now show how to
express (β) in terms of optimal cost plans as well, and how to extend thiselaboration with respect
to the combinations (γ) and (δ).

5.1.1 CHEAPESTPLANS WITH GIVEN PLAN LENGTH (α)

As a guiding example, we refer to Blocks World with parallel moves allowed, where apart from
finding shortest plans also minimizing the total number of moves is an issue. AKc encoding for this
domain, where plans are serializable, is shown in Figure 2. Serializability here means that parallel
actions are non-interfering and can be executed sequentially in any order, i.e. the parallel plan can
be arbitrarily “unfolded” to a sequential plan.

fluents : on(B, L) requires block(B), location(L).
blocked(B) requires block(B).
moved(B) requires block(B).

actions : move(B, L) requires block(B), location(L) costs 1.

always : executable move(B, L) if B != L.

nonexecutable move(B, L) if blocked(B).
nonexecutable move(B, L) if blocked(L).
nonexecutable move(B, L) if move(B1, L), B < B1, block(L).
nonexecutable move(B, L) if move(B, L1), L < L1.

nonexecutable move(B, B1) if move(B1, L).

caused on(B, L) after move(B, L).
caused blocked(B) if on(B1, B).
caused moved(B) after move(B, L).
caused on(B, L) if not moved(B) after on(B, L).

Figure 2:Kc encoding for the Blocks World domain

The planning problem emerging from the initial state and thegoal state depicted in Figure 3 can
be modeled using the background knowledgeΠbw:

block(1). block(2). block(3). block(4). block(5). block(6).
location(table).
location(B) :- block(B).

and extending the program in Figure 2 as follows:
initially : on(1, 2). on(2, table). on(3, 4). on(4, table). on(5, 6). on(6, table).

goal : on(1, 3), on(3, table), on(2, 4), on(4, table), on(6, 5), on(5, table) ?(l)

42
31

3 4
21

6
5

5
6

Figure 3: A simple Blocks World instance

39

EITER, FABER, LEONE, PFEIFER& POLLERES

Each move is penalized with cost 1, which results in a minimization of the total number of moves.
LetPl denote the planning problem for plan lengthl.

For l = 2, we have an optimal plan which involves six moves, i.e.cost∗P2
= 6:

P2 = 〈 {move(1, table), move(3, table), move(5,table)}, {move(1, 3), move(2, 4), move(6, 5)} 〉

By unfolding the steps, this plan gives rise to similar plansof lengthl = 3, . . . , 6 that have cost 6.
For l = 3, we can find among others the following optimal plan, which has cost 5:

P3 = 〈 {move(3, table)}, {move(1, 3), move(5, table)}, {move(2, 4), move(6, 5)} 〉

This plan can not be further parallelized to having only two steps. For any plan lengthl > 3, we
will obtain optimal plans similar toP3, extended by void steps. Thus a plan which is cheapest over
all plan lengths has cost 5 and needs three steps. Note that shortest parallel plans (of length 2) are
more expensive, as explained above.

5.1.2 SHORTESTPLANS (β)

Intuitively, it should be possible to include the minimization of time steps in the cost function. We
describe a preprocessing method which, given aK planning domainPD, a listQ of ground literals,
and an upper boundi ≥ 0 for the plan length, generates a planning problemPβ(PD,Q, i) such that
the optimal plans forPβ correspond to shortest plans which reachQ in PD in at mosti steps, i.e.,
to plans for〈PD,Q ? (l)〉 such thatl ≤ i is minimal. We assume that no action costs are specified
in the original planning domainPD, and minimizing time steps is our only target.

First we rewrite the planning domainPD to PDβ as follows: We introduce a new distinct fluent
gr and a new distinct actionfinish, defined as follows:

fluents : gr.

actions : finish costs time.

Intuitively, the actionfinish represents a final action, which we use to finish the plan. The later
this action occurs, the more expensive the plan as we assigntime as cost. The fluentgr (“goal
reached”) shall be true and remain true as soon as the goal hasbeen reached, and it is triggered by
thefinish action.

This can be modeled inKc by adding the following statements to thealways section of the
program:

executable finish if Q, not gr.

caused gr after finish.

caused gr after gr.

Furthermore, we wantfinish to occur exclusively and we want to block the occurrence of any
other action once the goal has been reached. Therefore, for every actionA in PD, we add

nonexecutable A if finish.

and addnot gr to theif-part of each executability condition forA. Finally, to avoid any inconsis-
tencies from static or dynamic effects as soon as the goal hasbeen reached, we addnot gr to the
if part of any causation rule of thePD exceptnonexecutable rules which remain unchanged.4

We define nowPβ(PD,Q, i) = 〈PDβ , gr ?(i + 1)〉. We takei + 1 as the plan length since we
need one additional step to execute thefinish action.

4. There is no need to rewritenonexecutable rules because the respective actions are already “switchedoff” by
rewriting the executability conditions.

40

ANSWERSET PLANNING UNDER ACTION COSTS

By construction, it is easy to see that any optimal planP = 〈A1, . . . , Aj , Aj+1, . . . , Ai+1〉 for
the planning problemPβ must haveAj+1 = {finish} andAj+2 = . . . = Ai+1 = ∅ for some
j ∈ {0, . . . , i}. We thus have the following desired property.

Proposition 5.1 The optimal plans forPβ are in 1-1 correspondence to the shortest plans reach-
ing Q in PD. More precisely,P = 〈A1, . . . , Aj+1, ∅, . . . , ∅〉 is an optimal optimistic plan for
Pβ(PD,Q, i) and Aj+1 = {finish} if and only if P ′ = 〈A1, . . . , Aj〉 is an optimistic plan for
〈PD,Q ? (j)〉 wherej ∈ {0, . . . , i}, and〈PD,Q ? (j′)〉 has no optimistic plan for eachj′ < j.

In our Blocks World example, using this method we get all 2-step plans, if we choosei ≥ 2.
To compute shortest plans over all plan lengths, we can set the upper boundi large enough such

that plans of lengthl ≤ i are guaranteed to exist. A trivial such bound is the total number of legal
states which is in general exponential in the number of fluents.

However, many typical applications have an inherent, much smaller bound on the plan length.
For instance, in a Blocks World withn blocks, any goal configuration can be reached within at most
2n − sinit − sgoal steps, wheresinit andsgoal are the numbers of stacks in the initial and the goal
state, respectively.5 Therefore, 6 is an upper bound for the plan length of our simple instance.

We remark that this approach for minimizing plan length is only efficient if an upper bound
close to the optimum is known. Searching for a minimum lengthplan by iteratively increasing the
plan length may be much more efficient if no such bound is known, since a weak upper bound can
lead to an explosion of the search space (cf. the benchmarks in Section 7.2).

5.1.3 SHORTEST AMONG THECHEAPESTPLANS (γ)

In the previous subsection, we have shown how to calculate shortest plans forK programs without
action costs. Combining arbitraryKc programs and the rewriting method described there is easy.
If we want to find a shortest among the cheapest plans, we can use the same rewriting, with just a
little change. All we have to do is setting the costs of all actions exceptfinish at least as high as
the highest possible cost of thefinish action. This is is obviously the plan lengthi + 1. So, we
simply modify all action declarations

A requires B costs C where D.

in Pβ by multiplying the costs with factori + 1:
A requires B costs C1 where C1 = (i + 1) ∗ C, D.

This lets all other action costs take priority over the cost of finish and we can compute plans
satisfying criterion (γ). LetPγ denote the resultant planning problem. Then we have:

Proposition 5.2 The optimal plans forPγ are in 1-1 correspondence to the shortest among the
cheapest plans reachingQ in PD within i steps. More precisely,P = 〈A1, . . . , Aj+1, ∅, . . . , ∅〉
is an optimal optimistic plan forPγ(PD,Q, i) and Aj+1 = {finish} if and only if (i) P ′ =
〈A1, . . . , Aj〉 is a plan forPj = 〈PD,Q ? (j)〉, wherej ∈ {0, . . . , i}, and (ii) if P ′′ = 〈A1, . . . , Aj′〉
is any plan forPj′ = 〈PD,Q ? (j′)〉 wherej′ ≤ i, then eithercostPj′

(P ′′) > costPj
(P ′) or

costPj′
(P ′′) = costPj

(P ′) andj′ ≥ j.

Figure 4 showsPγ for our Blocks World instance wherei = 6. One optimal plan forPγ is

5. One can solve any Blocks World problem sequentially by first unstacking all blocks which are not on the table
(n − sinit steps) and then building up the goal configuration (n − sgoal steps).

41

EITER, FABER, LEONE, PFEIFER& POLLERES

fluents : on(B, L) requires block(B), location(L).
blocked(B) requires block(B).
moved(B) requires block(B).
gr.

actions : move(B, L) requires block(B), location(L) costs C where C = 7 ∗ 1.
finish costs time.

always : executable move(B, L) if B != L, not gr.

nonexecutable move(B, L) if blocked(B).
nonexecutable move(B, L) if blocked(L).
nonexecutable move(B, L) if move(B1, L), B < B1, block(L).
nonexecutable move(B, L) if move(B, L1), L < L1.

nonexecutable move(B, B1) if move(B1, L).

caused on(B, L) if not gr after move(B, L).
caused blocked(B) if on(B1, B), not gr.

caused moved(B) if not gr after move(B, L).
caused on(B, L) if not moved(B), not gr after on(B, L).

executable finish if on(1, 3), on(3, table), on(2, 4), on(4,table),
on(6, 5), on(5, table), not gr.

caused gr after finish.

caused gr after gr.

nonexecutable move(B, L) if finish.

initially : on(1, 2). on(2, table). on(3, 4). on(4, table). on(5, 6). on(6, table).

goal : gr? (7)

Figure 4: Computing the shortest plan for a Blocks World instance with a minimum number of
actions

P = 〈 {move(3, table)}, {move(1, 3), move(5, table)},
{move(2, 4), move(6, 5)}, {finish}, ∅, ∅, ∅ 〉,

which hascostPγ (P) = 39. We can now compute the optimal cost wrt. optimization (γ) by sub-
tracting the cost offinish and dividing byi + 1: (39 − 4) ÷ (i + 1) = 35 ÷ 7 = 5. Thus, we
need a minimum of 5 moves to reach the goal. The minimal numberof steps is obviously all steps,
except the finalfinish action, i.e.3. Thus, we need at least 3 steps for a plan with five moves.

5.1.4 CHEAPEST AMONG THESHORTESTPLANS (δ)

Again, we can use the rewriting for optimization (β). The cost functions have to be adapted similarly
as in the previous subsection, such that now the cost of the action finish takes priority over all other
actions costs. To this end, it is sufficient to set the cost offinish high enough, which is achieved
by multiplying it with a factorF higher than the sum of all action costs of all legal action instances
at all stepsj = 1, . . . , i + 1. LetPδ denote the resulting planning problem. We have:

Proposition 5.3 The optimal plans forPδ are in 1-1 correspondence to the cheapest among the
shortest plans reachingQ in PD within i steps. More precisely,P = 〈A1, . . . , Aj+1, ∅, . . . , ∅〉

42

ANSWERSET PLANNING UNDER ACTION COSTS

is an optimal optimistic plan forPδ(PD,Q, i) and Aj+1 = {finish} if and only if (i) P ′ =
〈A1, . . . , Aj〉 is a plan forPj = 〈PD,Q ? (j)〉, wherej ∈ {0, . . . , i}, and (ii) if P ′′ = 〈A1, . . . , Aj′〉
is any plan forPj′ = 〈PD,Q ? (j′)〉 wherej′ ≤ i, then eitherj′ > j, or j′ = j andcostPj′

(P ′′) ≥
costPj

(P ′).

In our example, there are 36 possible moves. Thus, we could take F = 36 ∗ (i + 1) and
would set the costs offinish to time ∗ 36 ∗ (i + 1). However, we only need to take into account
those actions which can actually occur simultaneously. In our example, at most six blocks can
be moved in parallel. Therefore, it is sufficient to setF = 6 ∗ (i + 1) and assignfinish cost
time ∗ F = time ∗ 42. Accordingly, the action declarations are modified as follows:

actions : move(B, L) requires block(B), location(L) costs 1.

finish costs C where C = time ∗ 42.

An optimal plan for the modified planning problemPδ is:

P = 〈 {move(1, table), move(3, table), move(5,table)},
{move(1, 3), move(2, 4), move(6, 5)}, {finish}, ∅, ∅, ∅, ∅〉

We havecostPδ
(P) = 132. Here, we can compute the optimal cost wrt. optimization (δ) by simply

subtracting the cost offinish, i.e. 132 − 3 ∗ 42 = 6, sincefinish occurs at time point3.
Consequently, we need a minimum of6 moves for a shortest plan, which has length3 − 1 = 2.

And indeed, we have seen that (and how) the optimization problems (α) through(δ) can be
represented inKc. We remark that the transformationsPβ ,Pγ , andPδ all work under the restrictions
to secure and/or sequential plans as well.

5.2 Traveling Salesperson

As another illustrating example for optimal cost planning,we will now introduce some elaboration
of the Traveling Salesperson Problem.

Traveling Salesperson Problem (TSP). We start with the classical Traveling Salesperson Prob-
lem (TSP), where we have a given set of cities and connections(e.g., roads, airways) of certain costs.
We want to know a most economical round trip which visits all cities exactly once and returns to
the starting point (if such a tour exists). Figure 5 shows an instance representing the capitals of all
Austrian provinces. The dashed line is a flight connection, while all other connections are roads;
each connection is marked with the costs in traveling hours.

brg ... Bregenz
eis ... Eisenstadt
gra ... Graz
ibk ... Innsbruck
kla ... Klagenfurt
lin ... Linz
sbg ... Salzburg
stp ... St. Pölten
vie ... Vienna

1

2 5

2

1
2

1

2

1lin stp

2
brg ibk 2

3

2
2

2
1

eis

vie

kla

gra

sbg
1 3

Figure 5: TSP in Austria

43

EITER, FABER, LEONE, PFEIFER& POLLERES

We represent this inKc as follows. The background knowledgeΠTSP defines two predicates
city(C) andconn(F, T, C) representing the cities and their connections with associated costs. Con-
nections can be traveled in both ways:

conn(brg, ibk, 2). conn(ibk, sbg, 2). conn(ibk, vie, 5). conn(ibk, kla, 3).
conn(sbg, kla, 2). conn(sbg, gra, 2). conn(sbg, lin, 1). conn(sbg, vie, 3).
conn(kla, gra, 2). conn(lin, stp, 1). conn(lin, vie, 2). conn(lin, gra, 2).
conn(gra, vie, 2). conn(gra, eis, 1). conn(stp, vie, 1). conn(eis, vie, 1).
conn(stp, eis, 2). conn(vie, brg, 1).
conn(B, A, C) :- conn(A, B, C).
city(T) :- conn(T, ,).

A possible encoding of TSP starting in Vienna (vie) is theKc program in Figure 6. It includes two
actions for traveling from one city to another and for directly returning to the starting point at the
end of the round trip as soon as all cities have been visited.

actions : travel(X, Y) requires conn(X, Y, C) costs C.

return from(X) requires conn(X, vie, C) costs C.

fluents : unvisited. end.

in(C) requires city(C).
visited(C) requires city(C).

always : executable travel(X, Y) if in(X).
nonexecutable travel(X, Y) if visited(Y).
executable return from(X) if in(X).
nonexecutable return from(X) if unvisited.

caused unvisited if city(C), not visited(C).
caused end after return from(X).
caused in(Y) after travel(X, Y).
caused visited(C) if in(C).
inertial visited(C).

noConcurrency.

initially : in(vie).
goal : end? (9)

Figure 6: Traveling Salesperson

The problem has ten optimal 9-step solutions with cost 15. Weshow only the first five here, as the
others are symmetrical:

P1 = 〈 {travel(vie, stp)}, {travel(stp, eis)}, {travel(eis, gra)}, {travel(gra, lin)},
{travel(lin, sbg)}, {travel(sbg, kla)}, {travel(kla, ibk)}, {travel(ibk, brg)},
{return from(brg)} 〉

P2 = 〈 {travel(vie, eis)}, {travel(eis, stp)}, {travel(stp, lin)}, {travel(lin, sbg)},
{travel(sbg, gra)}, {travel(gra, kla)}, {travel(kla, ibk)}, {travel(ibk, brg)},
{return from(brg)} 〉

P3 = 〈 {travel(vie, eis)}, {travel(eis, stp)}, {travel(stp, lin)}, {travel(lin, gra)},
{travel(gra, kla)}, {travel(kla, sbg)}, {travel(sbg, ibk)}, {travel(ibk, brg)},
{return from(brg)} 〉

P4 = 〈 {travel(vie, lin)}, {travel(lin, stp)}, {travel(stp, eis)}, {travel(eis, gra)},
{travel(gra, kla)}, {travel(kla, sbg)}, {travel(sbg, ibk)}, {travel(ibk, brg)},

44

ANSWERSET PLANNING UNDER ACTION COSTS

{return from(brg)} 〉
P5 = 〈 {travel(vie, gra)}, {travel(gra, eis)}, {travel(eis, stp)}, {travel(stp, lin)},

{travel(lin, sbg)}, {travel(sbg, kla)}, {travel(kla, ibk)}, {travel(ibk, brg)},
{return from(brg)} 〉

TSP with variable costs. Let us now consider an elaboration of TSP, where we assume that
the costs of traveling different connections may change during the trip. Note that three of the
five solutions in our example above include traveling from St.Pölten to Eisenstadt or vice versa on
the second day. Let us now assume that the salesperson, who starts on Monday, has to face some
exceptions which might increase the cost of the trip. For instance, (i) heavy traffic jams are expected
on Tuesdays on the route from St.Pölten to Eisenstadt or (ii) the salesperson shall not use the flight
connection between Vienna and Bregenz on Mondays as only expensive business class tickets are
available on this connection in the beginning of the week. Sowe have to deal with different costs
for the respective connections depending on the particularday.

To this end, we first add to the background knowledgeΠTSP a new predicatecost(A, B, W, C)
representing the costC of traveling connectionA to B on weekdayW which can take exceptional
costs into account:

cost(A, B, W, C) :- conn(A, B, C), #int(W), 0 < W, W <= 7, not ecost(A, B, W).
ecost(A, B, W) :- conn(A, B, C), cost(A, B, W, C1), C != C1.

The original costs in the predicateconn(A, B, C) now represent defaults, which can be overridden
by explicitly adding different costs. For instance, to represent the exceptions (i) and (ii), we add:

cost(stp, eis, 2, 10). cost(vie, brg, 1, 10).

setting the exceptional costs for these two critical connections to 10. Weekdays are coded by integers
from 1 (Monday) to 7 (Sunday). We represent a mapping from time steps to the weekdays by the
following rules which we also add toΠTSP :

weekday(1, 1).
weekday(D, W) :- D = D1+ 1, W = W1+ 1, weekday(D1, W1), W1 < 7.

weekday(D, 1) :- D = D1+ 1, weekday(D1, 7).

Note that although the modified background knowledgeΠTSP is not stratified (sincecost is defined
by cyclic negation), it has a total well-founded model, and thus a unique answer set.

Finally, we change the costs of traveling and returning in theKc program from Figure 6:
actions : travel(X, Y) requires conn(X, Y, C1) costs C

where weekday(time, W), cost(X, Y, W, C).
return from(X) requires conn(X, vie, C1) costs C

where weekday(time, W), cost(X, vie, W, C).

Since now the costs forP1 (which includes traveling from St.Pölten to Eisenstadt) on the second
day have increased due to exception (i), only four of the plans from above remain optimal. Note
that unlike the default costs, exceptional costs do not apply bidirectionally, so the exception does
not affectP2 andP3. Furthermore, due to exception (ii) the symmetrical round trips starting with
the flight trips to Bregenz are no longer optimal.

The presented encoding proves to be very flexible, as it allows for adding arbitrary exceptions
for any connection on any weekday by simply adding the respective facts; moreover, even more
involved scenarios, where exceptions are defined by rules, can be modeled.

45

EITER, FABER, LEONE, PFEIFER& POLLERES

5.3 A Small Example for Planning under Resource Restrictions

Although planning with resources is not the main target of our approach, the following encoding
shows that action costs can also be used in order to model optimization of resource consumption in
some cases. An important resource in real world planning is money. For instance, let us consider a
problem about buying and selling (Lee & Lifschitz, 2001):

“I have $6 in my pocket. A newspaper costs $1 and a magazine costs $3. Do I have
enough money to buy one newspaper and two magazines?”

In Kc, this can be encoded in a very compact way by the following background facts:

item(newspaper, 1). item(magazine, 2).

combined with the following shortKc program:
actions : buy(Item, Number) requires item(Item, Price), #int(Number)

costs C where C = Number ∗ Price.

fluents : have(Item, Number) requires item(Item, Price), #int(Number).

always : executable buy(Item, Number).
nonexecutable buy(Item, N1) if buy(Item, N2), N1 < N2.

caused have(Item, Number) after buy(Item, Number).

goal : have(newspaper, 1), have(magazines, 2) ? (1)

The actionbuy is always executable, but one must not buy two different amounts of a certain
item at once. Obviously, no admissible plan wrt. cost 6 exists, as the optimal plan for this problem,
〈{buy(newspaper, 1), buy(magazine, 2)} 〉 hascost∗P = 7. Therefore, the answer to the problem
is “no.”

Our approach considers only positive action costs and does not directly allow modeling full
consumer/producer/provider relations on resources in general, in favor of a clear non-ambiguous
definition of optimality. For instance, by allowing negative costs one could always add a producer
action to make an existing plan cheaper, whereas in our approach costs are guaranteed to increase
monotonically, allowing for a clear definition of plan costsand optimality.

On the other hand, we can encode various kinds of resource restrictions by using fluents to rep-
resent these resources. We can then model production/consumption as action effects on these fluents
and add restrictions as constraints. This allows us to modeleven complex resource or scheduling
problems; optimization, however, remains restricted to action costs.

6. Transformation to Logic Programming

In this section, we describe how planning under action costscan be implemented by means of a
transformation to answer set programming. It extends our previous transformation (Eiter et al.,
2003a), which maps ordinaryK planning problems to disjunctive logic programs under the answer
set semantics (Gelfond & Lifschitz, 1991), and takes advantage of weak constraints, cf. (Buccafurri,
Leone, & Rullo, 1997, 2000), as implemented in theDLV system (Faber & Pfeifer, 1996; Eiter,
Faber, Leone, & Pfeifer, 2000a). In addition, we show how this translation can be adapted to the
language of Smodels (Simons, Niemelä, & Soininen, 2002).

6.1 Disjunctive Logic Programs with Weak Constraints

First, we give a brief review of disjunctive logic programs with weak constraints.

46

ANSWERSET PLANNING UNDER ACTION COSTS

Syntax A disjunctive rule(for short,rule) R is a construct

a1 v · · · v an :- b1, · · · , bk, not bk+1, · · · , not bm. (2)

where allai andbj are classical literals over a function-free first-order alphabet, andn ≥ 0, m ≥
k ≥ 0. The part left (resp. right) of “:-” is the head(resp.body) of R, where “:-” is omitted if
m = 0. We letH(R) = {a1, . . ., an} be the set of head literals andB(R) = B+(R) ∪ B−(R)
the set of body literals, whereB+(R) = {b1,. . . , bk} andB−(R) = {bk+1, . . . , bm}. A (strong)
constraintis a rule with empty head (n = 0).

A weak constraintis a construct

:∼ b1, · · · , bk, not bk+1, · · · , not bm. [w :] (3)

wherew is an integer constant or a variable occurring inb1, . . . , bk and allbi are classical literals.6

B(R) is defined as for (2).
A disjunctive logic program (DLPw) (simply, program) is a finite set of rules, constraints and

weak constraints; here, superscriptw indicates the potential presence of weak constraints.

Semantics The answer sets of a programΠ without weak constraints are defined as usual (Gel-
fond & Lifschitz, 1991; Lifschitz, 1996). There is one difference, though: We do not consider
inconsistent answer sets. The answer sets of a programΠ with weak constraints are defined by
selection from the answer setsS of the weak-constraint free partΠ′ of Π as optimal answer sets.

A weak constraintc of form (3) is violated, if it has an instance for which its conjunction is
satisfied with respect to the candidate answer setS, i.e., there exists a substitution mappingθ from
the variables inc to the Herbrand base ofΠ such that{b1θ, · · · , bkθ} ⊆ S and{bk+1θ, · · · , bmθ}∩
M = ∅; we then callwθ the violation valueof c wrt. θ.7 Theviolation costof c wrt. S, denoted
costc(S), is the sum of all violation values over all violating substitutions forc wrt. S; thecost of
S, denotedcostΠ(S), is then

costΠ(S) =
∑

c∈weak constraints of Π

costc(S),

i.e., the sum of violation costs of weak constraints inΠ wrt. S. An answer setM of Π is now
selected (called anoptimal answer set), if costΠ(M) is minimal over all answer sets ofΠ.

From (Buccafurri et al., 2000) we know that given a head-cycle-free disjunctive program, decid-
ing whether a queryq is true in some optimal answer set is∆P

2 -complete. The respective class for
computing such an answer set isF∆P

2 -complete. Together with the results from Section 4 this indi-
cates that translations of optimal planning problems to head-cycle-free disjunctive logic programs
with weak constraints or the language of Smodels are feasible in polynomial time.

6.2 TranslatingKc to DLPw

We extend our original transformationlp(P), which naturally maps aK planning problemP into a
weak-constraint free program (Eiter et al., 2003a), to a newtranslationlpw(P), such that the optimal
answer sets oflpw(P) correspond to the optimal cost plans for theKc planning problemP.

6. The colon in[w :] stems from theDLV language, which allows to specify a priority layer after thecolon. We do not
need priority layers in our translation, but stick to theDLV syntax.

7. A weak constraintc is only admissible, if all possible violation values in all candidate answer setsS are integers.
Thus, ifw is a variable, thenΠ must guarantee thatw can only be bound to an integer.

47

EITER, FABER, LEONE, PFEIFER& POLLERES

Basically, inlp(P) fluent and action literals are extended by an additional timeparameter, and
executability conditions as well as causations rules are modularly translated (rule by rule) into cor-
responding program rules and constraints; disjunction is used for guessing the actions which should
be executed in the plan at each point in time.

6.2.1 REVIEW OF THE TRANSLATION lp(P)

The basic steps of the translation fromK programs to logic programs are as follows (cf. (Eiter et al.,
2003a) for details):

Step 0 (Macro Expansion): First, replace all macros in theK program by their definitions.

Step 1 (Background Knowledge): The background knowledgeΠ of P is already given as a logic
program and is included inlp(P), without further modification.

Step 2 (Auxiliary Predicates): To represent steps, we add the following facts tolp(P)

time(0)., . . . , time(l). next(0, 1)., . . . , next(l − 1, l).

wherel is the plan length of the queryq = G?(l) in P at hand.

Step 3 (Causation Rules): Causation rules are mapped to rules inlp(P) by adding type informa-
tion and extending fluents and actions with a time stamp usingtime andnext. For example,

caused across(X) after cross(X), -across(X).

leads to ruleacross(X, T1) :- cross(X, T0), -across(X, T0), person(X), next(T0, T1).
in lp(P) whereT1, T0 are new variables. Here, type informationperson(X) for across(X), and
-across(X), taken from the type declaration, is added, which helps to avoid unsafe logic program-
ming rules.

Step 4 (Executability Conditions): Similarly, each executability condition is translated to adis-
junctive rule “guessing” whether an action occurs at a certain time step. In our running example,

executable cross(X) if hasLamp(X).

becomescross(X, T0) ∨ -cross(X, T0) :- hasLamp(X, T0), person(X), next(T0, T1).

which encodes a guess whether at time pointT0 actioncross(X) should happen; again, type infor-
mationperson(X) is added as well asnext(T0, T1) to ensure thatT0 is not the last time point.

Step 5 (Initial State Constraints): Initial state constraints are transformed like static causation
rules in Step 3, but using the constant 0 instead of the variable T1 and thus need no auxiliary predi-
cate for the time stamp. For instance,

initially : caused -across(X).

becomes, by again adding the type information-across(X, 0) :- person(X).

Step 6 (Goal Query): Finally, the queryq:
goal : g1(t1), . . . , gm(tm), not gm+1(tm+1), . . . , not gn(tn) ? (l).

is translated as follows, wheregoal reached is a new 0-ary predicate symbol:

goal reached :- g1(t1, l), . . . , gm(tm, l), not gm+1(tm+1, l), . . . , not gn(tn, l).
:- not goal reached.

48

ANSWERSET PLANNING UNDER ACTION COSTS

6.2.2 EXTENDING THE TRANSLATION TO ACTION COSTS

The extended translationlpw(P) for aKc problemP first includes all rules oflp(Pnc), wherePnc

results fromP by stripping off all cost parts. Furthermore, the followingstep is added:

Step 7 (Action Costs): For any action declarationd of form (1) with a nonemptycosts-part, add:

(i) A new rulerd of the form
costp(X1, . . . , Xn, T, Cθ) :- p(X1, . . . , Xn, T), t1, . . . , tm,

c1θ, . . . , ckθ, U = T + 1.
(4)

wherecostp is a new symbol,T andU are new variables andθ = {time → U}. As an optimization,
U = T + 1 is only present ifU occurs elsewhere inrd.

(ii) A weak constraintwcd of the form :∼ costp(X1, . . . , Xn, T, C). [C :] (5)

For example, thecross action from the Quick Bridge Crossing Problem is translatedto

costcross(X, T, WX):- cross(X, T), person(X), walk(X, WX).

:∼ costcross(X, T, WX). [WX :]

As we showed in previous work (Eiter et al., 2003a), the answer sets oflp(P) correspond to
trajectories of optimistic plans forP. The following theorem states a similar correspondence result
for lpw(P) and optimal plans forP. We define, for any consistent set of ground literalsS, the sets
AS

j = {a(t) | a(t, j − 1) ∈ S, a ∈ σact} andsS
j = {f(t) | f(t, j) ∈ S, f(t) ∈ Lfl}, for all j ≥ 0.

Theorem 6.1 (Answer Set Correspondence)Let P = 〈PD, q〉 be a (well-defined)Kc planning
problem, and letlpw(P) be the above program. Then,

(i) for each optimistic planP = 〈A1, . . . , Al〉 ofP and supporting trajectoryT = 〈〈s0, A1, s1〉,
〈s1, A2, s2〉, . . . , 〈sl−1, Al, sl〉〉 of P , there exists some answer setS of lpw(P) such that
Aj = AS

j for all j = 1, . . . , l, sj = sS
j , for all j = 0, . . . , l andcostP(P) = costlpw(P)(S);

(ii) for each answer setS of lpw(P), the sequenceP = 〈A1, . . . , Al〉 is a solution ofP, i.e., an
optimistic plan, witnessed by the trajectoryT = 〈〈s0, A1, s1〉, 〈s1, A2, s2〉, . . . ,〈sl−1, Al, sl〉〉
with costP(P) = costlpw(P)(S), whereAj = AS

j and sk = sS
k for all j = 1, . . . , l and

k = 0, . . . , l.

The proof is based on the resp. correspondence result forK (Eiter et al., 2003a). For the details,
we refer to the Appendix.

From this result and the definitions of optimal cost plans andoptimal answer sets, we conclude
the following result:

Corollary 6.2 (Optimal answer set correspondence)For any well-definedKc planning problem
P = 〈PD,Q ? (l)〉, the trajectoriesT = 〈〈s0, A1, s1〉, . . . ,〈sl−1, Al, sl〉〉 of optimal plansP for P
correspond to the optimal answer setsS of lpw(P), such thatAj = AS

j for all j = 1, . . . , l and
sj = sS

j , for all j = 0, . . . , l.

Proof. For eacha ∈ Aj , the weak constraint (5) causes a violation value ofcostj(a). Further-
more, these are the only cost violations. Thus, a candidate answer setS is optimal if and only if
costlpw(P)(S) =

∑l
j=1

∑

a∈Aj
costj(a) = costP(P) is minimal, i.e.,S corresponds to an optimal

plan. 2

A similar correspondence result also holds for admissible plans:

49

EITER, FABER, LEONE, PFEIFER& POLLERES

Corollary 6.3 (Answer set correspondence for admissible plans) For any well-definedKc plan-
ning problemP = 〈PD,Q ? (l)〉, the trajectoriesT = 〈〈s0, A1, s1〉, . . . ,〈sl−1, Al, sl〉〉 of admissi-
ble plansP for P wrt. costc correspond to the answer setsS of lpw(P) havingcostlpw(P)(S) ≤ c,
such thatAj = AS

j for all j = 1, . . . , l andsj = sS
j , for all j = 0, . . . , l.

As for secure planning, we have introduced a technique to check security of an optimistic plan
for certain planning problem instances by means of a logic program (Eiter et al., 2003a). This
method carries over to planning with action costs in a straightforward way, and optimal resp. ad-
missible secure plans can be similarly computed by answer set programming.

6.3 Alternative Translation for Smodels

Apart from the presented translation using weak constraints, one could also choose an alternative
approach for the translation to answer set programming. Smodels (Simons et al., 2002) supports
another extension to pure answer set programming allowing to minimize over sets of predicates.

This approach could be used in an alternative formulation ofStep 7:

Step 7a: For action declarations with nonemptycosts-parts, we add a new rule of form

cost(p, X1, . . . , Xn, 0, . . . , 0, T, Cθ) :- t1, . . . , tm, c1θ, . . . , ckθ, U = T + 1. (6)

similar to Step 7 above, with two differences: (1) action namep is now a parameter, and (2) we add
l − n parameters with constant “0” betweenXn andT wherel is the maximum arity of all actions in
PD. This is necessary in order to get unique arityl + 2 for predicatecost. Furthermore, we add

occurs(p, X1, . . . , Xn, 0, . . . , 0, T) :- p(X1, . . . , Xn, T), t1, . . . , tm,. (7)

This second rule adds the same “0” parameters as for to achieve unique arityl + 1 of the new
predicateoccurs. Using Smodels syntax, we can now compute optimal plans by adding

minimize[occurs(A, X1, ..., Xl, T) : cost(A, X1, ..., Xl, T, C) = C].

Note that Smodels does not support disjunction in rule heads, so we also need to modify Step 4,
expressing the action guess via unstratified negation or Smodels’ choice rules.

7. Implementation

We have implemented an experimental prototype system,DLVK, for solving K planning prob-
lems (Eiter et al., 2003a). An improved version of this prototype it is now capable of optimal
and admissible planning with respect to the extended syntaxof Kc, available for experiments at
http://www.dlvsystem.com/K/ .

DLVK has been realized as a frontend to theDLV system (Faber & Pfeifer, 1996; Eiter et al.,
2000a). First, the planning problem at hand is transformed as described in the previous section.
Then, theDLV kernel is invoked to produce answer sets. Foroptimistic planningthe (optimal, if
action costs are defined) answer sets are then simply translated back into suitable output for the user
and printed.

In case the user specified thatsecure/conformant planningshould be performed, our system has
to check security of the plans computed. In normal (non-optimal) planning, this is simply done by
checking each answer set returned right before transforming it back to user output. In the case of

50

ANSWERSET PLANNING UNDER ACTION COSTS

optimal secure planning, on the other hand, the candidate answer set generation of theDLV kernel
has to be “intercepted”: The kernel proceeds computing candidate answer sets, returning an answer
set with minimal violation cost value, by running through all candidates. Here, in order to generate
optimal secure plans, the planning frontend interrupts computation, allowing only answer sets which
represent secure plans to be considered as candidates.

Checking plan security is done by rewriting the translated program wrt. the candidate answer
set/plan in order to verify whether the plan is secure. The rewritten “check program” is tested by a
separate invocation of theDLV kernel. As for further details on the system architecture werefer to
(Eiter et al., 2003a)

7.1 Usage

Suppose the background knowledge and the program depicted in Figure 1 with the cost extensions
from Section 3.3 are stored in filescrossing.bk andcrossing.plan; then, by invoking the
program with the command line

dlv− FPcrossing.plancrossing.bk− planlength = 7

we compute all optimal plans solving this problem in seven steps. In the output we find, after a
supporting trajectory, the following optimal plan:

PLAN : crossTogether(joe, jack) : 2; cross(joe) : 1; takeLamp(william);
crossTogether(william, averell) : 10; takeLamp(jack);
cross(jack) : 2; crossTogether(joe, jack) : 2 COST : 17

For each action, its cost is shown after a colon, if it is non-zero. The switch-planlength=i can
be used to set the plan length; it overrides any plan length given in thequery-part of the planing
problem. Using-planlength=5, we get plans with cost 19, as there are no cheaper plans of that
length.

The user is then asked whether to perform the optional security check and whether to look for
further (optimal) plans, respectively. The switch-FPsec can be used instead of-FP to obtain
secure plans only.

The command line option-costbound=N effects the computation of all admissible plans
with respect to costN . For example, the resource problem described in Section 5.3can be solved
by the following call to our prototype:

dlv− FPbuying.bkbuying.plan− N = 10− planlength = 1− costbound = 6

Correctly, no admissible plan is found. When calling the system again without cost bound, the
prototype calculates the following optimal cost plan:

PLAN : buy(newspaper, 1) : 1, buy(magazine, 2) : 6 COST : 7

The current prototype supports simple bounded integer arithmetics. The option-N=10 used
above sets an upper bound ofN = 10 for the integers which may be used in a program; the built-
in predicate#int is true for all integers 0 . . .N . SettingN high enough, taking into account
the outcome of built-in arithmetic predicatesA = B + C andA = B ∗ C, is important to get
correct results. Further details on the prototype are givenon theDLVK web site athttp://www.
dlvsystem.com/K/.

51

EITER, FABER, LEONE, PFEIFER& POLLERES

7.2 Experiments

Performance and experimental results forDLVK (without action costs and optimal planning) were
reported in previous work (Eiter et al., 2003a). In this section, we present some encouraging exper-
imental results for planning with action costs, in particular for parallel Blocks World and TSP. All
experiments were performed on a Pentium III 733MHz machine with 256MB of main memory run-
ning SuSE Linux 7.2. We set a time limit of 4000 seconds for each tested instance where exceeding
this limit is indicated by “-” in the result tables.

Where possible, we also report results for CCALC and CMBP, two other logic-based planning
systems whose input languages (C+ resp.AR) have capabilities similar toK resp.Kc.

CCALC. TheCausal Calculator(CCALC) is a model checker for the languages of causal theories
(McCain & Turner, 1997). It translates programs in the action languageC+ into the language of
causal theories which are in turn transformed into SAT problems; these are then solved using a SAT
solver (McCain & Turner, 1998). The current version of CCALCuses mChaff (Moskewicz et al.,
2001) as its default SAT solver. Minimal length plans are generated iteratively increasing the plan
length up to an upper bound. CCALC is written in Prolog. For our tests, we used version 2.04b of
CCALC which we obtained from<URL:http://www.cs.utexas.edu/users/tag/cc/
> and a trial version of SICStus Prolog 3.9.1. We used encodings taken from (Lee & Lifschitz,
2001) for parallel Blocks World adapted for CCALC 2.0. Theseencodings are included in the
current download version of the system. For sequential Blocks World we adapted the encodings
by adding theC+ command “noConcurrency.” which resembles the respectiveK command. All
results for CCALC include 2.30sec startup time.

CMBP. TheConformant Model Based Planner(CMBP) (Cimatti & Roveri, 2000) is based on the
model checking paradigm and exploits symbolic Boolean function representation techniques such
as Binary Decision Diagrams (Bryant, 1986). CMBP allows forcomputing sequential minimal
length plans, where the user has to declare an upper bound forthe plan length. Its input language
is an extension ofAR (Giunchiglia, Kartha, & Lifschitz, 1997). UnlikeK or action languages
such asC+ (Lee & Lifschitz, 2001), this language only supports propositional actions. CMBP is
tailored for conformant planning. The results reported complement a previous comparison which
also shows the encoding for sequential Blocks World in CMBP (Eiter et al., 2003a). For our tests,
we used CMBP 1.0, available at<URL:http://sra.itc.it/people/roveri/cmbp/>.

7.2.1 BLOCKS WORLD

Tables 1–4 show the results for our different Blocks World encodings in Section 5.1 on several
configurations: P0 denotes our simple instance from Figure 3, while P1–P5 are instances used in
previous work (Eiter et al., 2003a; Erdem, 1999).

Table 1 shows the results for finding a shortest sequential plan. The second and third column
show the number of blocks and the length of a shortest plan (i.e., the least number of moves) solving
the respective blocks world instance. The execution time for solving the problem using the shortest-
plan encodingPβ in Section 5.1 is shown in column five, using the upper bound shown in the fourth
column on the plan length. Column six shows the execution time for finding the shortest plan in
an incremental plan length search starting from 0, similar to the method used for CCALC. The
remaining two columns show the results for CCALC and CMBP.

52

ANSWERSET PLANNING UNDER ACTION COSTS

Problem #blocks min. #moves (=#steps) upper bound #steps DLVK DLVK
inc CCALC CMBP

P0 6 5 6 0.48s 0.29s 4.65s 21.45s
P1 4 4 4 0.05s 0.08s 3.02s 0.13s
P2 5 6 7 0.24s 0.27s 4.02s 8.44s
P3 8 8 10 25.32s 2.33s 10.07s -
P4 11 9 16 - 8.28s 27.19s -
P5 11 11 16 - 12.63s 32.27s -

Table 1: Sequential Blocks World - shortest plans

Problem #blocks #steps(fixed) min. #moves DLVK

P0 6 2 6 0.05s
P0 6 3 5 0.09s
P1 4 3 4 0.04s
P2 5 5 6 0.10s
P3 8 4 9 0.21s
P4 11 5 13 0.81s
P5 11 7 15 327s

Table 2: Parallel Blocks World - cheapest plans: Minimal number of moves at fixed plan length (α)

Table 2 shows the execution times for parallel blocks world with fixed plan length where the
number of moves is minimized, i.e. problem (α) in Section 5.1. We used the encoding in Figure 2,
which generates parallel serializable plans. As CCALC and CMBP do not allow for optimizing
other criteria than plan length, we only have results forDLVK here.

Next, Table 3 shows some results for finding a shortest parallel plan, i.e. problem (β) in Sec-
tion 5.1. First, the minimal possible number of steps is given. We processed each instance (i) using
the encodingPβ from Section 5.1, (ii) without costs by iteratively increasing the plan length and
(iii) using CCALC, by iteratively increasing the plan length until a plan is found. For every result,
the number of moves of the first plan computed is reported separately. As CMBP only supports
sequential planning, it is not included in this comparison.

Finally, Table 4 shows the results for the combined optimizations (γ) and (δ) for parallel Blocks
World as outlined in Section 5.1. The second column again contains the upper bound for the plan

upper bound min. #steps DLVK DLVK
inc CCALC

#moves time #moves time #moves time
P0 6 2 6 0.52s 6 0.09s 6 4.05s
P1 4 3 5 0.07s 5 0.08s 4 2.95s
P2 7 5 9 0.39s 9 0.21s 6 3.70s
P3 10 4 - - 12 0.43s 9 7.69s
P4 16 5 - - 18 1.54s 13 20.45s
P5 16 7 - - 26 3.45s 15 23.22s

Table 3: Parallel Blocks World - shortest plan (β)

53

EITER, FABER, LEONE, PFEIFER& POLLERES

(γ) (δ)

upper bound steps/moves DLVK DLVK
inc CCALC steps/moves DLVK DLVK

inc

P0 6 3/5 38.5s 0.18s 5.89s 2/6 0.26s 0.09s
P1 4 3/4 0.07s 0.11s 3.47s 3/4 0.08s 0.08s
P2 7 5/6 2.08s 0.21s 5.65s 5/6 0.78s 0.28s
P3 10 5/8 - 1.57s 15.73s 4/9 177s 0.45s
P4 16 9/9 - - 73.64s 5/13 - 1.86s
P5 16 11/11 - - 167s 7/15 - 323s

Table 4: Parallel Blocks World - (γ),(δ)

length of the respective instance. The following three columns present the results on finding a
shortest among the cheapest plans, i.e. problem (γ) in Section 5.1:

DLVK refers to the results for our combined minimal encodingPγ and as described in Section 5.1;

DLVKinc refers to the results for incrementally searching for the shortest among the cheapest plans:
This is done by means of the-costbound=i command line option taking the minimal
sequential costs (i.e., the shortest sequential plan length as computed in Table 1) as an upper
cost limit. As our encodings compute serializable plans, the minimal sequential length can be
used as cost limit in this special case.

CCALC A similar technique can be used with CCALC when encoding bound costs through “ad-
ditive fluents” (Lee & Lifschitz, 2001).

Note that the incremental strategy (used byDLVKinc and CCALC) takes advantage of our spe-
cific formulation of the parallel Blocks World problem: In general, when allowing parallel actions
which are not necessarily serializable and have arbitrary costs, the optimal parallel cost might differ
from the optimal sequential solution. In particular, planswhich are longer than the cheapest se-
quential plans (which, in this example, coincide with the shortest sequential plans) may need to be
considered. This makes incremental search for a solution ofproblem (γ) infeasible in general.

The last test is finding a cheapest among the shortest plans, that is, problem (δ) in Section 5.1.
Again we have tested the integrated encoding with an upper bound (Pδ) resp. incrementally finding
the shortest plan. Unlike for problem (γ), we cannot derive a fixed cost limit from the sequential
solution here; we really need to optimize costs, which makesan encoding in CCALC infeasible.

Blocks World – Results The Blocks World experiments show thatDLVK can solve various opti-
mization tasks in a more effective and flexible way than the systems compared. On the other hand,
as already stated above, for the minimal plan length encodings in Section 5.1, we can only solve
the problems where a tight upper bound for the plan length is known. Iteratively increasing the plan
length is more effective, especially if the upper bound is much higher than the actual optimal solu-
tion. This becomes drastically apparent when execution times seem to explode from one instance
to the next, in a highly non-linear manner as in Table 1 where asolution for P3 can be found in
reasonable time whereas P4 and P5 could not be solved within the time limit of 4000 seconds. This
observation is also confirmed in the other tables (instance P5 in Table 2, etc.) and is partly explained
by the behavior of the underlyingDLV system, which is not geared towards plan search, and as a
general purpose problem solver uses heuristics which mightnot work out well in some cases. In
particular, during the answer set generation process inDLV, no distinction is made between actions

54

ANSWERSET PLANNING UNDER ACTION COSTS

and fluents, which might be useful for planning tasks to control the generation of answer sets resp.
plans; this may be part of further investigations.

Interestingly, CCALC finds “better quality” parallel solutions for problem (β) (cf. Table 3), i.e.
solutions with fewer moves, although it is significantly slower than our system on these instances.
For the incremental encoding of problem (γ), CCALC seems even more effective than our system.
However, CCALC offers no means of optimization; it allows for admissible but not for optimal
planning. This makes our approach more flexible and general.As stated above, we could fortunately
exploit the fixed cost bound in this particular example for CCALC, which is not possible in general
instances of problem (γ).

Problem (γ) is also intuitively harder than simply finding a shortest plan or a cheapest among
all shortest plans in general: While these problems can always be solved incrementally, for (γ) we
must consider all plans of all lengths. A longer plan may be cheaper, so we cannot freeze the plan
length once a (shortest) plan has been incrementally found.

7.2.2 TSP

Some experimental results on TSP with variable costs are reported in Tables 5 and 6. Unlike for
blocks world, no comparable systems were available; none ofthe systems from above supports cost
optimal planning as needed for solving this problem. Here, the plan length is always given by the
number of cities.

Table 5 shows the results for our TSP instance on the Austrianprovince capitals as in Figure 5
(nine cities, 18 connections), with and without the exceptional costs as in Section 5.2 (with and with-
out subscriptexc in the table). Further instances reported in this table withdifferent cost exceptions
(we, lwe, rnd) are described below.

Results for some bigger TSP instances, given by the capitalsof the 15 members of the European
Union (EU) with varying connection graphs and exceptional costs are shown in Table 6. We have
used the flight distances (km) between the cities as connection costs. Instances TSPEU1–TSPEU6

have been generated by randomly choosing a given number of connections from all possible con-
nections between the 15 cities. Note that TSPEU1 has no solution; the time reported here is until
DLVK terminated, and for all other instances until the first optimal plan was found.

We have also tested some instances of more practical relevance than simply randomly choosing
connections: TSPEU7 is an instance where we have taken the flight connections of three carriers
(namely, Star Alliance, Alitalia, and Luxair), and in TSPEU8 we have included only direct connec-
tions of at most 1500km. Such a “capital hopping” is of interest for a small airplane with limited
range, for instance.

For each instance in Tables 5–6 we have measured the execution time:

• without exceptional costs,

• with 50% costs for all connections on Saturdays and Sundays (weekends,we)

• with 50% costs for all connections on Fridays, Saturdays andSundays (long weekends,lwe),

• for some random cost exceptions (rnd): We have added a number of randomly generated ex-
ceptions with costs between 0 and 10 for TSPAustria and between 0 and 3000 for the instances
EU1 to EU8.

55

EITER, FABER, LEONE, PFEIFER& POLLERES

Instance #cost exceptions cost/time
TSPAustria 0 15/0.31s
TSPAustria,exc 2 15/0.32s
TSPAustria,we 36 12/0.34s
TSPAustria,lwe 54 11/0.35s
TSPAustria,rnd 10 14/0.30s
TSPAustria,rnd 50 15/0.31s
TSPAustria,rnd 100 23/0.35s
TSPAustria,rnd 200 36/0.37s

Table 5: TSP – Results for TSPAustria with varying exceptions

Instance #conn. #except. cost/time
TSPEU1 30 0 -/9.11s
TSPEU1,we 30 60 -/11.93s
TSPEU1,lwe 30 90 -/13.82s
TSPEU1,rnd 30 100 -/11.52s
TSPEU1,rnd 30 200 -/12.79s
TSPEU1,rnd 30 300 -/14.64s
TSPEU1,rnd 30 400 -/16.26s
TSPEU2 30 0 16213/13.27s
TSPEU2,we 30 60 13195/16.41s
TSPEU2,lwe 30 90 11738/18.53s
TSPEU2,rnd 30 100 15190/15.54s
TSPEU2,rnd 30 200 13433/16.31s
TSPEU2,rnd 30 300 13829/18.34s
TSPEU2,rnd 30 400 13895/20.59s
TSPEU3 35 0 18576/24.11s
TSPEU3,we 35 70 15689/28.02s
TSPEU3,lwe 35 105 14589/30.39s
TSPEU3,rnd 35 100 19410/26.75s
TSPEU3,rnd 35 200 22055/29.64s
TSPEU3,rnd 35 300 18354/31.54s
TSPEU3,rnd 35 400 17285/32.66s
TSPEU4 35 0 16533/36.63s
TSPEU4,we 35 70 12747/41.72s
TSPEU4,lwe 35 105 11812/43.12s
TSPEU4,rnd 35 100 15553/39.17s
TSPEU4,rnd 35 200 13216/41.19s
TSPEU4,rnd 35 300 16413/43.51s
TSPEU4,rnd 35 400 13782/45.69s
TSPEU5 40 0 15716/91.83s
TSPEU5,we 40 80 12875/97.73s
TSPEU5,lwe 40 120 12009/100.14s
TSPEU5,rnd 40 100 13146/85.69s
TSPEU5,rnd 40 200 12162/83.44s
TSPEU5,rnd 40 300 12074/76.81s
TSPEU5,rnd 40 400 12226/82.97s
TSPEU5,rnd 40 500 13212/82.53s

Instance #conn. #except. cost/time
TSPEU6 40 0 17483/142.7s
TSPEU6,we 40 80 14336/150.3s
TSPEU6,lwe 40 120 13244/154.7s
TSPEU6,rnd 40 100 15630/142.5s
TSPEU6,rnd 40 200 14258/137.2s
TSPEU6,rnd 40 300 11754/120.5s
TSPEU6,rnd 40 400 11695/111.4s
TSPEU6,rnd 40 500 12976/120.8s
TSPEU7 55 0 15022/102.6s
TSPEU7,we 55 110 12917/112.2s
TSPEU7,lwe 55 165 11498/116.2s
TSPEU7,rnd 55 100 13990/104.2s
TSPEU7,rnd 55 200 12461/100.8s
TSPEU7,rnd 55 300 13838/106.9s
TSPEU7,rnd 55 400 12251/96.58s
TSPEU7,rnd 55 500 16103/109.2s
TSPEU7,rnd 55 600 14890/110.3s
TSPEU7,rnd 55 700 17070/110.7s
TSPEU8 64 0 10858/3872s
TSPEU8,we 64 128 9035/3685s
TSPEU8,lwe 64 192 8340/3324s
TSPEU8,rnd 64 100 10283/2603s
TSPEU8,rnd 64 200 9926/1372s
TSPEU8,rnd 64 300 10028/1621s
TSPEU8,rnd 64 400 8133/597.7s
TSPEU8,rnd 64 500 8770/573.3s
TSPEU8,rnd 64 600 8220/360.7s
TSPEU8,rnd 64 700 6787/324.6s
TSPEU8,rnd 64 800 11597/509.5s

Table 6: TSP – Various instances for the capitals of the 15 EU members

56

ANSWERSET PLANNING UNDER ACTION COSTS

TSP – Results Instance TSPEU8 shows the limits of our system: the given data allows for many
possible tours, so finding an optimal one gets very tricky. Onthe other hand, a realistic instance like
TSPEU7 with real airline connections is solved rather quickly, which is not very surprising: Most
airlines have a central airport (for instance Vienna for Austrian Airlines) and few direct connections
between the destinations served. This allows for much fewercandidate answer sets, when (as in
reality) the number of airlines we consider is limited. E.g., TSPEU7 has no solution at all if only
two out of Star Alliance, Alitalia, and Luxair are allowed. Of course, we cannot compete with
dedicated TSP solvers/algorithms, which are able to solve much bigger TSP instances and have not
been considered here. However, to our knowledge, none of these solvers can deal with features such
as incomplete knowledge, defaults, time dependent exceptional costs, etc. directly. Our results even
show that execution times are stable yet in case of many exceptions. In contrast, instance TSPEU8

shows that exceptions can also cause a significant speedup. This is due to the heuristics used by the
underlyingDLV system, which can single out better solutions faster if costs are not spread evenly
like in TSPEU8 without exceptional costs.

Note that, we have also experimented with the alternative Smodels translation sketched in Sec-
tion 6.3. We refrain from detailed discussion here, since the (i) translation is optimized forDLV and
Smodels performance was worse (around factor10 for the tested TSP instances) thanDLV and (ii)
there is no integrated planning frontend available for Smodels providing a high-level planning lan-
guage. Nevertheless, we have shown that our approach can, with minor modifications, be adopted
in a planning system based on Smodels.

8. Related Work

In the last years, it has been widely recognized that plan length alone is only one criterion to be
optimized in planning. Several attempts have been made to extend planners to also consider action
costs.

The PYRRHUS system (Williams & Hanks, 1994) is an extension of UCPOP planning which
allows for optimal planning with resources and durations. Domain-dependent knowledge can be
added to direct the heuristic search. A “utility model” has to be defined for a planning problem
which can be used to express an optimization function. This system supports a language extension
of ADL (Pednault, 1989), which is a predecessor of PDDL (Ghallab et al., 1998). The algorithm is
a synthesis of branch-and-bound optimization with a least-commitment, plan-space planner.

Other approaches based on heuristic search include the use of an A* strategy together with
action costs in the heuristics (Ephrati, Pollack, & Mihlstein, 1996) and work by Refanidis and
Vlahavas who use multi-criteria heuristics to obtain near-optimal plans, considering multiple criteria
apart from plan length alone (Refanidis & Vlahavas, 2001). However, the described heuristics is not
fully admissible, and only guarantees optimal plans under certain restrictions (Haslum & Geffner,
2000). In fact, most heuristic state-space planners are notable to guarantee optimality.

A powerful approach has been suggested by Nareyek, who describes planning with resources
as a structural constraint satisfaction problem (SCSP), and then solves that problem by local search
combined with global control. However, this work promotes the inclusion of domain-dependent
knowledge; the general problem has an unlimited search space, and no declarative high-level lan-
guage is provided (Nareyek, 2001).

Among other related approaches, Kautz and Walser generalize the “Planning as Satisfiability”
approach to use integer optimization techniques for encoding optimal planning under resource pro-

57

EITER, FABER, LEONE, PFEIFER& POLLERES

duction/consumption (Kautz & Walser, 1999). First, they recall that integer logic programming
generalizes SAT, as a SAT formula can be translated to a system of inequalities. Second, they ex-
tend effects and preconditions of actions similar to a STRIPS extension proposed by Koehler for
modeling resource consumption/production (Koehler, 1998). Kautz and Walser allow for arbitrary
optimization functions but they use a non-declarative, low-level representation based on the alge-
braic modeling language AMPL (Fourer, Gay, & Kernighan, 1993). They mention that Koehler’s
STRIPS-like formalization can be mapped to their approach.However, they can not express non-
determinism or incomplete knowledge. There is an implementation of this approach called ILP-
PLAN, which uses the AMPL package (http://www.ampl.com/). Unfortunately, AMPL is
not freely available, so we could not compare the system withour approach experimentally.

Lee and Lifschitz describe the extensionC+ of the action languageC which allows for an in-
tuitive encoding of resources and costs by means of so called“additive fluents” (Lee & Lifschitz,
2001). This way admissible planning can be realized, but optimization has not been considered in
that framework so far. An implementation of a planner based on this language is CCALC (McCain,
1999) which has already been described in the previous section. Another implementation of a plan-
ning system based on the action languageC is Cplan (Giunchiglia, 2000; Ferraris & Giunchiglia,
2000). The Cplan system mainly focuses on conformant planning and does not support the advanced
features ofC+. Furthermore, the code is no longer maintained.

Son and Pontelli propose to translate action languageB to prioritized default theory and answer
set programming. They allow to express preferences betweenactions and rules at the object level
in an interpreter but not as a part of the input language (Son &Pontelli, 2002). However, these
preferences are orthogonal to our approach as they model qualitative preferences as opposed to our
overall value function of plans/trajectories.

9. Conclusion and Outlook

This work continues a research stream which pursues the usage of answer set programming for
building planning systems which offer declarative planning languages based on action languages,
where planning tasks are specified at a high level of abstraction (Lifschitz, 1999a, 1999b). For
representation of practical planning problems, such languages must have high expressiveness and
provide convenient constructs and language elements.

Towards this goal, we have presented the planning languageKc, which extends the declarative
planning languageK (Eiter et al., 2000b, 2003a) by action costs which are taken into account for
generating optimal plans, i.e., plans that have least totalexecution cost, and for admissible plans
wrt. a given cost bound, i.e., plans whose total execution cost stays within a given limit. As a basis
for implementation issues, we have investigated the computational complexity of the major plan-
ning tasks in this language, where we have derived complexity results sharply characterizing their
computational cost. Furthermore, we have presented a transformation of optimal and admissible
planning problems inKc to logic programming under the optimal answer set semantics(Buccafurri
et al., 1997, 2000), and we have described theDLVK prototype implemented on top of the KR tool
DLV, which computes this semantics.

As we have shown,Kc allows for the representation of intricate planning problems. In particular,
we have demonstrated this for a variant of the Traveling Salesperson Problem (TSP), which could
be conveniently specified inKc. A strength ofKc is that, via the underlying languageK, states of
knowledge, i.e., incomplete states, can be suitably respected in secure plans, i.e., conformant plans

58

ANSWERSET PLANNING UNDER ACTION COSTS

which work under all circumstances, including nondeterministic action effects.Kc is a flexible
language which, by exploiting time-dependent action costs, allows for the representation of planning
under various optimality criteria such as cheapest plans, shortest plans, and combinations thereof.

Our experiments have shown that various instances of the problems we considered, including
realistic instances of the TSP variant, could be decently solved. On the other hand, the current
version ofDLVK does not scale to large problem instances in general, and, unsurprisingly, can not
compete with high-end planning tools or specialized algorithms for a particular problem such as
TSP. We do not see this as a shortcoming, though, since our main goal at this point was to demon-
strate the usefulness of the expressive capabilities of ourformalism to easily represent non-trivial
planning and optimization tasks, which are especially involved from the viewpoint of knowledge
representation. In this way, non-trivial instances of suchproblems of medium size (which one may
often encounter) can be solved with little effort.

Several issues remain for further work. As for the implementation, performance improvements
may be gained via improvements of the underlyingDLV engine, which are subject of current work.
Furthermore, alternative, more efficient transformationsof Kc to logic programming might be re-
searched, e.g. ones that involve preprocessing of the planning problem performing means-end anal-
ysis to simplify the logic program constructed.

Another issue is further language extensions. For example,a crucial difference between our
approach and resource-based approaches is that the former hinges on action costs, while the latter
build on fluent values, which is a somewhat different view of the quality of a plan. A possible way to
encompass this in our language is to allow that dynamic fluentvalues contribute to action costs; this
needs to be carefully elaborated, though: While for deterministic planning under complete knowl-
edge this extension is straightforward, in non-deterministic domains with incomplete knowledge it
would possibly result in ambiguities. Different trajectories of the same plan possibly yield different
costs when fluent values contribute to action costs. In favorof an intuitive definition of plan costs
and optimality we refrained from this extension at the current state.

A further possible extension are negative action costs, which are useful for modeling pro-
ducer/consumer relations among actions and resources. Allowing for different priorities among
actions, i.e., different cost levels, would increase the flexibility and allow for optimizing different
criteria at once. Finally, the duration of actions is an important issue. In the current language, the
effects of actions are assumed to materialize in the next state. While by coding techniques, we
may express delayed effects over several states in time and/or interleaving actions, constructs in the
language would be desirable. Investigating these issues ispart of our ongoing and future work.

Acknowledgments

We are are grateful to Joohyung Lee for his help on using CCALCand to Paul Walser for his useful
informations on ILPPLAN. Furthermore, we thank Michael Gelfond for interesting discussions and
suggestions, and the anonymous reviewers for their detailed and helpful comments.

This work was supported by FWF (Austrian Science Funds) under the projects P14781 and
Z29-N04 and the European Commission under project FET-2001-37004 WASP and IST-2001-
33570 INFOMIX.

A preliminary, shorter version of this paper was presented at the 8th European Conference on
Logics in Artificial Intelligence (JELIA’02), Cosenza, Italy, September 2002.

59

EITER, FABER, LEONE, PFEIFER& POLLERES

Appendix A. The LanguageK

This appendix contains, in shortened form, the definition ofthe languageK and a translation ofK
to answer set programs; see (Eiter et al., 2003b, 2003a) for more details and examples.

A.1 Basic Syntax

We assumeσact, σfl, andσtyp disjoint sets of action, fluent and type names, respectively, i.e.,
predicate symbols of arity≥ 0, and disjoint setsσcon andσvar of constant and variable symbols.
Here,σfl, σact describedynamic knowledgeandσtyp describesstatic background knowledge. An
action (resp. fluent, type) atomis of formp(t1, . . . , tn), wherep ∈ σact (resp.σfl, σtyp) has arityn
andt1, . . . , tn ∈ σcon ∪ σvar. An action (resp. fluent, type) literall is an action (resp. fluent, type)
atoma or its negation¬a, where “¬” (alternatively, “–”) is the true negation symbol. We define
¬.l = a if l = ¬a and¬.l = ¬a if l = a, wherea is an atom. A setL of literals isconsistent, if
L ∩ ¬.L = ∅. Furthermore,L+ (resp.L−) is the set of positive (resp. negative) literals inL. The
set of all action (resp. fluent, type) literals is denoted asLact (resp.Lfl, Ltyp). Furthermore,Lfl,typ

= Lfl ∪ Ltyp, Ldyn= Lfl ∪ L+
act, andL = Lfl,typ ∪ L+

act.
All actions and fluents must be declared using statements as follows.

Definition A.1 (action, fluent declaration) Anaction(resp.fluent) declaration, is of the form:

p(X1, . . . , Xn) requires t1, . . . , tm (8)

wherep ∈ L+
act (resp.p ∈ L+

fl), X1, . . . ,Xn ∈ σvar wheren ≥ 0 is the arity ofp, t1, . . . , tm ∈
Ltyp, m ≥ 0, and everyXi occurs int1, . . . , tm.

If m = 0, the keywordrequires may be omitted. Causation rules specify dependencies of
fluents on other fluents and actions.

Definition A.2 (causation rule) A causation rule(rule, for short) is an expression of the form

caused f if b1, . . . , bk, not bk+1, . . . , not bl after a1, . . . , am, not am+1, . . . , not an (9)

wheref ∈Lfl∪{false}, b1, . . . , bl∈Lfl,typ, a1, . . . , anL, l≥k≥ 0, andn≥m≥ 0.

Rules wheren = 0 arestatic rules, all othersdynamic rules. Whenl = 0 (resp.n = 0), “if” (resp.
“after”) is omitted; if bothl = n = 0, “caused” is optional.

We access parts of a causation ruler by h(r) = {f}, post+(r) = {b1, . . . , bk}, post−(r) =
{bk+1, . . . , bl}, pre+(r) = {a1, . . . , am}, pre−(r) = {am+1, . . . , an}, andlit(r) = {f, b1, . . . , bl,

a1, . . . , an}. Intuitively, pre(r) = pre+(r) ∪ pre−(r) (resp.post(r) = post+(r) ∪ post−(r))
accesses the state before (resp. after) some action(s) happen.

Special static rules may be specified for the initial states.

Definition A.3 (initial state constraint) An initial state constraintis a static rule of the form (9)
preceded by “initially.”

The languageK allows conditional execution of actions, where several alternative executability
conditions may be specified.

60

ANSWERSET PLANNING UNDER ACTION COSTS

Definition A.4 (executability condition) Anexecutability conditione is an expression of the form

executable a if b1, . . . , bk, not bk+1, . . . , not bl (10)

wherea ∈ L+
act andb1, . . . , bl ∈ L, andl ≥ k ≥ 0.

If l = 0 (i.e., executability is unconditional), “if” is skipped. The parts ofe are accessed byh(e) =
{a}, pre+(e) = {b1, . . . , bk}, pre−(e) = {bk+1, . . . , bl}, andlit(e) = {a, b1, . . . , bl}. Intuitively,
pre(e) = pre+(e) ∪ pre−(e) refers to the state at which some action’s suitability is evaluated. The
state after action execution is not involved; for convenience, we definepost+(e) = post−(e) = ∅.

All causal rules and executability conditions must satisfythe following condition, which is
similar to safety in logic programs: Each variable in a default-negated type literal must also occur in
some literal which is not a default-negated type literal. Nosafety is requested for variables appearing
in other literals. The reason is that variables appearing influent and action literals are implicitly safe
by the respective type declarations.

Notation. For any causal rule, initial state constraint, and executability conditionr andν ∈ {post, pre, b},
we defineν(r) = ν+(r) ∪ ν−(r), wherebs(r) = posts(r) ∪ pres(r).

A.1.1 PLANNING DOMAINS AND PLANNING PROBLEMS

Definition A.5 (action description, planning domain) Anaction description〈D,R〉 consists of a
finite setD of action and fluent declarations and a finite setR of safe causation rules, safe initial
state constraints, and safe executability conditions which do not contain positive cyclic dependen-
cies among actions. AK planning domainis a pair PD = 〈Π, AD〉, whereΠ is a disjunction-free
normal Datalog program (thebackground knowledge) which is safe and has a total well-founded
model (cf. (van Gelder, Ross, & Schlipf, 1991))8 and AD is an action description. We callPD

positive, if no default negation occurs inAD.

Definition A.6 (planning problem) A planning problemP = 〈PD, q〉 is a pair of a planning do-
mainPD and aqueryq, i.e.,

g1, . . . , gm, not gm+1, . . . , not gn ? (i) (11)

whereg1, . . . , gn ∈ Lfl are variable-free,n ≥ m ≥ 0, andi ≥ 0 denotes the plan length.

A.2 Semantics

We start with the preliminary definition of the typed instantiation of a planning domain. This is
similar to the grounding of a logic program, with the difference being that only correctly typed
fluent and action literals are generated.

Let PD = 〈Π, 〈D,R〉〉 be a planning domain, and letM be the (unique) answer set ofΠ (Gel-
fond & Lifschitz, 1991). Then,θ(p(X1, . . . ,Xn)) is a legal action(resp.fluent) instanceof an ac-
tion (resp. fluent) declarationd ∈ D of the form (8), ifθ is a substitution defined overX1, . . . ,Xn

such that{θ(t1), . . . , θ(tm)} ⊆ M . By LPD we denote the set of all legal action and fluent in-
stances. The instantiation of a planning domain respectingtype information is as follows.

8. A total well-founded model, if existing, corresponds to the unique answer set of a datalog program. Allowing for
multiple answer sets ofΠ would eventually lead to ambiguities in our language.

61

EITER, FABER, LEONE, PFEIFER& POLLERES

Definition A.7 (typed instantiation) For any planning domainPD = 〈Π, 〈D,R〉〉, its typed in-
stantiationis given byPD↓ = 〈Π↓, 〈D,R↓〉〉, whereΠ↓ is the grounding ofΠ (over σcon) and
R↓ = {θ(r) | r ∈ R, θ ∈ Θr}, whereΘr is the set of all substitutionsθ of the variables inr using
σcon, such thatlit(θ(r)) ∩ Ldyn ⊆ LPD ∪ (¬.LPD ∩ L−

fl).

In other words, inPD↓ we replaceΠ andR by their ground versions, but keep of the latter only
rules where the atoms of all fluent and action literals agree with their declarations. We say that a
PD = 〈Π, 〈D,R〉〉 is ground, if Π andR are ground, and moreover that it iswell-typed, if PD and
PD↓ coincide.

A.2.1 STATES AND TRANSITIONS

Definition A.8 (state, state transition) A statew.r.t a planning domainPD is any consistent set
s ⊆ Lfl ∩ (lit(PD) ∪ lit(PD)−) of legal fluent instances and their negations. Astate transition
is any tuplet = 〈s,A, s′〉 wheres, s′ are states andA ⊆ Lact ∩ lit(PD) is a set of legal action
instances inPD.

Observe that a state does not necessarily contain eitherf or ¬f for each legal instancef of a
fluent, and may even be empty (s = ∅). State transitions are not constrained; this will be done in the
definition of legal state transitionsbelow. We proceed in analogy to the definition of answer sets
(Gelfond & Lifschitz, 1991), considering first positive (i.e., involving a positive planning domain)
and then general planning problems.

In what follows, we assume thatPD = 〈Π, 〈D,R〉〉 is a well-typed ground planning domain
and thatM is the unique answer set ofΠ. For any otherPD, the respective concepts are defined
through its typed groundingPD↓.

Definition A.9 (legal initial state) A states0 is a legal initial statefor a positivePD, if s0 is the
least set (w.r.t.⊆) such thatpost(c) ⊆ s0 ∪ M impliesh(c) ⊆ s0, for all initial state constraints
and static rulesc ∈ R.

For a positivePD and a states, a setA ⊆ L+
act is calledexecutable action setw.r.t.s, if for each

a ∈ A there exists an executability conditione ∈ R such thath(e) = {a}, pre+(e)∩Lfl,typ ⊆ s∪M ,
pre+(e)∩L+

act ⊆ A, andpre−(e)∩(L+
act∪s∪M) = ∅. Note that this definition allows for modeling

dependent actions, i.e. actions which depend on the execution of other actions.

Definition A.10 (legal state transition) Given a positivePD, a state transitiont = 〈s,A, s′〉 is
called legal, if A is an executable action set w.r.t.s ands′ is the minimal consistent set that satisfies
all causation rules w.r.t.s∪A∪M . That is, for every causation ruler ∈ R, if (i) post(r) ⊆ s′∪M ,
(ii) pre(r) ∩ Lfl,typ ⊆ s ∪ M , and (iii) pre(r) ∩ Lact ⊆ A all hold, thenh(r) 6= {false} and
h(r) ⊆ s′.

This is now extended to general a well-typed groundPD containing default negation using a
Gelfond-Lifschitz type reduction to a positive planning domain (Gelfond & Lifschitz, 1991).

Definition A.11 (reduction) Let PD be a ground and well-typed planning domain, and lett =
〈s,A, s′〉 be a state transition. Then, thereductionPDt = 〈Π, 〈D,Rt〉〉 of PD by t is the planning
domain whereRt is obtained fromR by deleting

62

ANSWERSET PLANNING UNDER ACTION COSTS

1. eachr ∈ R, where eitherpost−(r)∩(s′ ∪ M) 6= ∅ or pre−(r)∩(s∪A∪M) 6= ∅, and

2. all default literalsnot L (L ∈ L) from the remainingr ∈ R.

Note thatPDt is positive and ground. We extend further definitions as follows.

Definition A.12 (legal initial state, executable action set, legal state transition) For any planning
domainPD, a states0 is a legal initial state, if s0 is a legal initial state forPD〈∅,∅,s0〉; a setA is an
executable action setw.r.t. a states, if A is executable w.r.t.s in PD〈s,A,∅〉; and, a state transition
t = 〈s,A, s′〉 is legal, if it is legal in PDt.

A.2.2 PLANS

Definition A.13 (trajectory) A sequence of state transitionsT = 〈〈s0, A1, s1〉, 〈s1, A2, s2〉, . . .,
〈sn−1, An, sn〉〉, n ≥ 0, is atrajectoryfor PD, if s0 is a legal initial state ofPD and all〈si−1, Ai, si〉,
1 ≤ i ≤ n, are legal state transitions ofPD.

If n = 0, thenT = 〈〉 is empty and hass0 associated explicitly.

Definition A.14 (optimistic plan) A sequence of action sets〈A1, . . . , Ai〉, i ≥ 0, is anoptimistic
plan for a planning problemP = 〈PD, q〉, if a trajectory T = 〈〈s0, A1, s1〉, 〈s1, A2, s2〉, . . . ,
〈si−1, Ai, si〉〉 exists inPD which accomplishes the goal, i.e.,{g1, . . . gm} ⊆ si and{gm+1, . . . , gn}∩
si = ∅.

Optimistic plans amount to “plans”, “valid plans” etc as defined in the literature. The term
“optimistic” should stress the credulous view in this definition, with respect to incomplete fluent
information and nondeterministic action effects. In such cases, the execution of an optimistic plan
P might fail to reach the goal. We thus resort to secure plans.

Definition A.15 (secure plans (alias conformant plans))An optimistic plan〈A1, . . . , An〉 is ase-
cure plan, if for every legal initial states0 and trajectoryT = 〈〈s0, A1, s1〉, . . . ,〈sj−1, Aj , sj〉〉 such
that0 ≤ j ≤ n, it holds that (i) ifj = n thenT accomplishes the goal, and (ii) ifj < n, thenAj+1

is executable insj w.r.t. PD, i.e., some legal transition〈sj, Aj+1, sj+1〉 exists.

Note that plans admit in general the concurrent execution ofactions. We call a plan〈A1, . . . , An〉
sequential(or non-concurrent), if |Aj | ≤ 1, for all 1 ≤ j ≤ n.

A.3 Macros

K includes several macros as shorthands for frequently used concepts. Leta ∈ L+
act denote an

action atom,f ∈ Lfl a fluent literal,B a (possibly empty) sequenceb1, . . . , bk, not bk+1, . . . ,

not bl where eachbi ∈ Lfl,typ, i = 1, . . . , l, and A a (possibly empty) sequencea1, . . . , am,

not am+1, . . . , not an where eachaj ∈ L, j = 1, . . . , n.
Inertia To allow for an easy representation of fluent inertia,K provides

inertial f if B after A. ⇔ caused f if not ¬.f, B after f, A.

Defaults A default value of a fluent can be expressed by the shortcut
default f. ⇔ caused f if not ¬.f.

It is in effect unless some other causation rule provides evidence to the opposite value.

63

EITER, FABER, LEONE, PFEIFER& POLLERES

Totality For reasoning under incomplete, but total knowledgeK provides (f positive):

total f if B after A. ⇔
caused f if not −f, B after A.

caused −f if not f, B after A.

This is is for instance useful to model non-deterministic action effects. For a discussion of the
full impact of this statement in modeling planning under incomplete knowledge and non-determinism,
we refer to our previous paper on the languageK (Eiter et al., 2003b).

State Integrity For integrity constraints that refer to the preceding state, K provides
forbidden B after A. ⇔ caused false if B after A.

Non-executability For specifying that some action isnot executable,K provides
nonexecutable a if B. ⇔ caused false after a, B.

By this definition,nonexecutable overridesexecutable in case of conflicts.
Sequential Plans To exclude simultaneous execution of actions,K provides

noConcurrency. ⇔ caused false after a1, a2.

wherea1 anda2 range over all possible actions such thata1, a2 ∈ LPD ∩ Lact anda1 6= a2.

In all macros, “if B” (resp. “after A”) can be omitted, ifB (resp.A) is empty.

Appendix B. Proofs

Proof of Theorem 4.4: Membership (i):The problems are inNP resp.NPMV, since ifl is poly-
nomial in the size ofP, any optimistic planP = 〈A1, . . . , Al〉 for P with a supporting trajectory
T = 〈t1, . . . , ti〉 for P can be guessed and, by Proposition 4.1, verified in polynomial time. Fur-
thermore,costP(P) ≤ b can be efficiently checked, sincecostP(P) is easily computed (all costs
are constants).
Hardness (i):K is a fragment ofKc, and eachK planning problem can be viewed as the problem
of deciding the existence of resp. finding an admissible planwrt. cost 0. As was previously shown
(Eiter et al., 2003b), deciding existence of an optimistic plan for a givenK planning problem is
NP-hard for fixed plan lengthl; hence, it is alsoNP-hard forKc.

We show that finding an optimistic plan is hard forNPMV by a reduction from the well-known
SAT problem, cf. (Papadimitriou, 1994), whose instances are CNFsφ = c1∧· · ·∧ck of clausesci =
Li,1 ∨ · · · ∨Li,mi

, where eachLi,j is a classical literal over propositional atomsX = {x1, . . . , xn}.
Consider the following planning domainPDφ for φ:
fluents : x1. . . . xn. state0. state1.

actions : c1 costs 1. . . . ck costs 1.

ax1. . . . axn.

initially : total x1. . . . total xn.

caused state0.

always : caused state1 after state0.

executable c1 after ¬.L1,1, . . . , ¬.L1,m1
.

forbidden after ¬.L1,1, . . . , ¬.L1,m1
, not c1.

· · ·
executable ck after ¬.Lk,1, . . . , ¬.Lk,mk

.

forbidden after ¬.Lk,1, . . . , ¬.Lk,mk
, not ck.

executable ax1 after x1. forbidden after x1, not ax1.

· · ·
executable axn after xn. forbidden after xn, not axn.

64

ANSWERSET PLANNING UNDER ACTION COSTS

The fluentsxi andstate0 and thetotal statements in theinitially-section encode the can-
didate truth assignments. The subsequent statements forcecj to be executed iff the corresponding
clause is violated by the truth assignment encoded in the initial state. The final pairs ofexecutable
andforbidden statements force actionsaxi to be executed iff the corresponding fluentsxi hold.
This is because it is necessary to directly extract the computed truth assignments from the plan,
since we are dealing with a function class. The fluentstate1 identifies the state at time 1.

Consider now the planning problemPφ = 〈PDφ, state1?(1)〉. Clearly, each optimistic plan
P for P corresponds to a truth assignmentσP of X and vice versa, andcostPφ

(P) is the number
of clauses violated byσP . Thus, the admissible optimistic plans forPφ wrt. cost 0 correspond 1-1
to the satisfying assignments ofφ. Clearly, constructingPφ from φ is efficiently possible, as is
constructing a satisfying truth assignmentσ from a corresponding planP (because of the actions
axi). This concludes the hardness proof.
Membership (ii):Since the security of each optimistic plan admissible wrt. costk can be checked,
by Proposition 4.1, with a call to aΠP

2 -oracle, membership inΣP
3 resp. inΣP

3 MV follows by
analogous considerations as in (i) (where no oracle was needed).
Hardness (ii):For the decision variant,ΣP

3 -hardness is again immediately inherited from theΣP
3 -

completeness of deciding the existence of a secure plan of a problem in the languageK, with
hardness even for fixed plan length (Eiter et al., 2003b). Forthe plan computation variant, we give
a reduction from the followingΣP

3 MV-complete problem: An instanceI is an open QBF

Q[Z] = ∀X∃Y Φ[X,Y,Z]

whereX = x1, . . . , xl, Y = y1, . . . , ym, andZ = z1, . . . , zn, respectively, andΦ[X,Y,Z] is
(w.l.o.g.) a 3CNF formula overX, Y , andZ. The solutionsS(I) are all truth assignments overZ

for whichQ[Z] is satisfied.
Suppose thatΦ[X,Y,Z] = c1∧ . . .∧ck whereci = ci,1∨ci,2∨ci,3. Now consider the following

planning domainPDQ[Z] for Q[Z], which is a variant of the planning domain given in the proof of
Theorem 5.5 in (Eiter et al., 2003b):

fluents : x1. . . . xl. y1. . . . ym. z1. . . . zn. state0. state1.

actions : az1 costs 0. . . . azn costs 0.

initially : total x1. . . . total xl.

caused state0.

always : caused state1 after state0.

executable az1. executable az2. . . . executable azn.

caused x1 after x1. caused − x1 after − x1.

· · ·
caused xl after xl. caused − xl after − xl.

total y1 after state0. . . . total ym after state0.

caused z1 after az1. caused − z1 after not az1.

· · ·
caused zn after azn. caused − zn after not azn.

forbidden ¬.C1,1,¬.C1,2,¬.C1,3 after state0.

· · ·
forbidden ¬.Ck,1,¬.Ck,2,¬.Ck,3 after state0.

There are2|X| many legal initial statess1, . . . , s2|X|
for PDQ[Z], which correspond 1-1 to the

possible truth assignments toX and all these initial states containstate0. Starting from any initial
statesi, executing a set of actions represents a truth assignment tothe variables inZ. Since all

65

EITER, FABER, LEONE, PFEIFER& POLLERES

actions are always executable, there are2|Z| executable action setsA1, . . . ,A2|Z| , which represent
all truth assignments toZ.

For each pairsi andAj there exist2|Y | many successor state candidatessi,1, . . . ,si,2|Y |
, which

contain fluents according to the truth assignment toX represented bysi, fluents according to the
truth assignment toZ represented byAj , and fluents according to a truth assignment toY , and the
fluentstate1. Of these candidate states, only those satisfying all clauses inΦ[X,Y,Z] are legal,
by virtue of theforbidden statements.

It is not hard to see that an optimistic plan of formP = 〈A1〉 (whereA1 ⊆ {azi | zi ∈ Z}) for
the goalstate1 exists wrt.PDQ[Z] iff there is an assignment to all variables inX ∪ Y ∪ Z such
that the formulaΦ[X,Y,Z] is satisfied. Furthermore,P is secure iffA1 represents an assignment
to the variables inZ such that, regardless of which assignment to the variables in X is chosen
(corresponding to a legal initial statesi), there is some assignment to the variables inY such that all
clauses ofΦ[X,Y,Z] are satisfied (i.e., there is at least one statesi,k reachable fromsi by executing
A1); any suchsi,k containsstate1. In other words,P is secure iffΦ[X,Y,Z] is true. Thus, the
admissible secure plans ofPDQ[Z] wrt. cost 0, correspond 1-1 with the assignments toZ for which
Q[Z] is true.

SincePDQ[Z] is constructible fromΦ[X,Y,Z] in polynomial time, it follows that computing a
secure plan forP = 〈PDQ[Z], q〉, whereq = state1 ? (1), is ΣP

3 MV-hard. 2

Proof of Theorem 4.5: Membership (i):Concerning membership, by performing a binary search
on the range[0,max] (wheremax is an upper bound on the plan costs for a plan of polynomial
length l given byl times the sum of all action costs) we can find out the least integer v such that
any optimistic planP for P which is admissible wrt. costv exists (if any optimistic plan exists);
clearly, we havecostP(P) = v andcost∗P = v, and thus any such planP is optimal. Sincemax

is single exponential in the representation size ofP, the binary search, and thus computingcost∗P ,
is, by Theorem 4.4, feasible in polynomial time with anNP oracle. Subsequently, we can construct
an optimistic planP such thatcostP(P) = cost∗P by extending a partial planPi = 〈A1, . . . , Ai〉,
i = 0, . . . , l − 1 step by step as follows. LetA = {a1, . . . , am} be the set of all legal action
instances. We initializeBi+1 := A and ask the oracle whetherPi can be completed to an optimistic
plan P = 〈A1, . . . , Al〉 admissible wrt.cost∗P such thatAi+1 ⊆ (Bi+1 \ {a1}). If the answer is
yes, then we updateBi+1 := Bi+1 \ {a1}, else we leaveBi+1 unchanged. We then repeat this test
for aj, j = 2, 3, . . . ,m; the resultingBi+1 is an action set such thatPi+1 = 〈A1, . . . , Ai, Ai+1〉
whereAi+1 = Bi+1 can be completed to an optimistic plan admissible wrt.cost∗P . Thus,Ai+1 is
polynomial-time constructible with anNP oracle.
In summary, we can construct an optimal optimistic plan in polynomial time with anNP oracle.
Thus, the problem is inF∆P

2 .
Hardness (i):We show hardness for plan lengthl = 1 by a reduction from problem MAX WEIGHT
SAT (Papadimitriou, 1994), where an instance is a SAT instanceφ = c1 ∧ · · · ∧ ck as in the proof
of Theorem 4.4.(i), plus positive integer weightswi, wherei = 1, . . . , k. Then,S(I) contains those
truth assignmentsσ of X for whichwsat(σ) =

∑

i : ciσ=true wi is maximal.
To that end, we take the planning domainPDφ as in the proof of Theorem 4.4 and modify the

cost ofci to wi, for i = 1, . . . , k, thus constructing a new planning domainPDI . Consider now the
planning problemPI = 〈PDI , state1?(1)〉. Since the actionscj are the only actions with nonzero
cost, any plan (corresponding to a truth assignmentσ) will be associated with the sum of weights
of violated clauses,wvio(σ) = (

∑k
i=1 wi) − wsat(σ). Since

∑k
i=1 wi is constant forI, minimizing

66

ANSWERSET PLANNING UNDER ACTION COSTS

wvio(σ) is equivalent to maximizingwsat(σ). Hence, there is a one-to-one correspondence between
optimal optimistic plans ofPI (for whichwvio(σ) is minimal) and maximal truth assignments forI.
Furthermore, computingPI from I and extracting a MAX-WEIGHT SAT solution from an optimal
planP is efficiently possible. This provesF∆P

2 -hardness.
Membership (ii):The proof is similar to the membership proof of (i), but uses an oracle which asks
for completion of a partial secure planPi = 〈A1, . . . , Ai〉 to a secure planP = 〈A1, . . . , Al〉 such
thatAi+1 ⊆ (Bi+1 \ {aj}) andP is admissible wrt.cost∗P , rather than of a partial optimistic plan.
This oracle is, as easily seen, inΣP

3 . Thus, computing an optimal secure plan is inF∆P
4 .

Hardness (ii): We show hardness by a reduction from the following problem, which is F∆P
4 -

complete (cf. (Krentel, 1992)): Given an open QBFQ[Z] = ∀X∃Y Φ[X,Y,Z] like in the proof
of Theorem 4.4.(ii), compute the lexicographically first truth assignment ofZ for which Q[Z] is
satisfied.

This can be accomplished by changing the cost of each actionazi in PDQ[Z] from 0 to 2n−i,
i = 1, . . . , n. Let PD′[Q[Z]] be the resulting planning domain. Since the cost ofazi (i.e., assigning
zi the value true) is greater than the sum of the costs of allazj for i + 1 ≤ j ≤ n, an optimal
secure plan for the planning problem〈PD′[Q[Z]], state1 ? (1)〉 amounts to the lexicographically
first truth assignment forZ such thatQ[Z] is satisfied. Thus,F∆P

4 -hardness of the problem follows.
2

Proof of Theorem 6.1:We prove the result by applying the well-known Splitting SetTheorem for
logic programs (Lifschitz & Turner, 1994). This theorem applies to logic programsπ that can be
split into two parts such that one of them, the “bottom” part,does not refer to predicates defined in
the “top” part at all. The answer sets of the “bottom” part canthen be extended to the answer sets
of the whole program by looking at the remaining (“top”) rules. Informally, a splitting set ofπ is
a setU of ground literals defining the “bottom” partbU (π) of a program. Each answer setSb of
bU (π) can then be used to reduce the remaining rulesπ \ bU (π) to a programeU (π \ bU (π), Sb)
involving only classical literals which do not occur inbU (π), by evaluating the literals frombU (π)
wrt. Sb. For each answer setSe of eU (π \ bU (π), Sb), the setS = Sb ∪ Se then is an answer set of
the original program.

Disregarding weak constraints, we can split the programlpw(P) into a bottom part consisting
of lp(Pnc), wherePnc is P with the cost information stripped off, and a top part containing the
remaining rules; we then derive the correspondence betweenoptimistic plans forP and answer sets
of lpw(P) from a similar correspondence result forlp(Pnc) (Eiter et al., 2003a).

In detail, Theorem 3.1 in (Eiter et al., 2003a) states for anyK-planning problemP a corre-
spondence between the answer setsS of lp(P) and supporting trajectoriesT of optimistic plans
P = 〈A1, . . . , Al〉 as in items (i) and (ii), with costs discarded. Thus, any answer setS′ of lp(Pnc)
corresponds to some trajectoryT ′ of an optimistic planP ′ for Pnc and vice versa.

In what follows, when talking aboutlp(Pnc) and lpw(P), we mean the respective grounded
logic programs.lpw(P) augmentslp(Pnc) by rules (4) and weak constraints (5). Let nowU =
lit(lp(Pnc)) be the set of all literals occurring inlp(Pnc). Clearly,U splits lpw(P) as defined in
(Lifschitz & Turner, 1994), where we disregard weak constraints in lpw(P), since the rules of form
(4) introduce only new head literals. Consequently, we getbU (lpw(P)) = lp(Pnc). Then, for any
answer setS′ of lp(Pnc), each rule ineU (lpw(P) \ bU (lpw(P)), S′) is of the form

costa(x1, . . . , xn, t, c) :- Body.

67

EITER, FABER, LEONE, PFEIFER& POLLERES

From the fact that all these rules are positive, we can conclude that with respect to the split byU ,
any answer setS′ of lp(Pnc) induces a unique answer setS ⊇ S′ of lpw(P). Therefore, modulo
costs, a correspondence between supporting trajectoriesT and candidate answer setsS as claimed
follows directly from Theorem 3.1 in (Eiter et al., 2003a).

It remains to prove thatcostP(P) = costlpw(P)(S) holds for all candidate answer setsS corre-
sponding to an optimistic planP = 〈A1, . . . , Al〉 for P. By the correspondence shown above,
any actionp(x1, . . . , xn) ∈ Aj corresponds to exactly one atomp(x1, . . . , xn, j − 1) ∈ AS

j ,
j ∈ {1, . . . , l}. Therefore, ifp(x1, . . . , xn) is declared with a non-emptycost part, by (4) and
well-definedness, modulox1, . . . , xn, there is exactly one factcostp(x1, . . . , xn, j − 1, c) in the
model ofeU (lpw(P) \ bU (lpw(P)), S).

Furthermore, by definition of (4), we have thatc = costj(p(x1, . . . , xn)), i.e., the cost of action
instancep(x1, . . . , xn) at timej. Consequently, the violation value of the weak constraintwc of
form (5) for p in lpw(P) is costwc(S) =

∑l
j=1

∑

p(x1,...,xn)∈Aj
costj(p(x1, . . . , xn)). Since all

violation values stem from weak constraints (5), in total wehavecostlpw(P)(S) = costP(P). This
proves the result. 2

References

Blum, A. L., & Furst, M. L. (1997). Fast Planning Through Planning Graph Analysis.Artificial
Intelligence, 90, 281–300.

Bonet, B., & Geffner, H. (2000). Planning with Incomplete Information as Heuristic Search in
Belief Space. In Chien, S., Kambhampati, S., & Knoblock, C. A. (Eds.),Proceedings of the
Fifth International Conference on Artificial IntelligencePlanning and Scheduling (AIPS’00),
pp. 52–61, Breckenridge, Colorado, USA.

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation.IEEE Transac-
tions on Computers, C-35(8), 677–691.

Buccafurri, F., Leone, N., & Rullo, P. (1997). Strong and Weak Constraints in Disjunctive Datalog.
In Dix, J., Furbach, U., & Nerode, A. (Eds.),Proceedings of the 4th International Conference
on Logic Programming and Non-Monotonic Reasoning (LPNMR’97), No. 1265 in Lecture
Notes in AI (LNAI), pp. 2–17, Dagstuhl, Germany. Springer Verlag.

Buccafurri, F., Leone, N., & Rullo, P. (2000). Enhancing Disjunctive Datalog by Constraints.IEEE
Transactions on Knowledge and Data Engineering, 12(5), 845–860.

Cimatti, A., & Roveri, M. (2000). Conformant Planning via Symbolic Model Checking.Journal of
Artificial Intelligence Research, 13, 305–338.

Dantsin, E., Eiter, T., Gottlob, G., & Voronkov, A. (2001). Complexity and Expressive Power of
Logic Programming.ACM Computing Surveys, 33(3), 374–425.

Dimopoulos, Y., Nebel, B., & Koehler, J. (1997). Encoding Planning Problems in Nonmonotonic
Logic Programs. InProceedings of the European Conference on Planning 1997 (ECP-97),
pp. 169–181. Springer Verlag.

Eiter, T., Faber, W., Leone, N., & Pfeifer, G. (2000a). Declarative Problem-Solving Using the
DLV System. In Minker, J. (Ed.),Logic-Based Artificial Intelligence, pp. 79–103. Kluwer
Academic Publishers.

68

ANSWERSET PLANNING UNDER ACTION COSTS

Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2000b). Planning under Incomplete
Knowledge. In Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Palamidessi, C.,
Pereira, L. M., Sagiv, Y., & Stuckey, P. J. (Eds.),Computational Logic - CL 2000, First In-
ternational Conference, Proceedings, No. 1861 in Lecture Notes in AI (LNAI), pp. 807–821,
London, UK. Springer Verlag.

Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2002a). Answer Set Planning under
Action Costs. In Flesca, S., Greco, S., Ianni, G., & Leone, N.(Eds.),Proceedings of the
8th European Conference on Artificial Intelligence (JELIA), No. 2424 in Lecture Notes in
Computer Science, pp. 186–197.

Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2002b). Answer Set Planning under Ac-
tion Costs. Tech. rep. INFSYS RR-1843-02-13, Institut fürInformationssysteme, Technische
Universität Wien.

Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2003a). A Logic Programming Approach
to Knowledge-State Planning, II: theDLVK System. Artificial Intelligence, 144(1–2), 157–
211.

Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2003b). A Logic Programming Approach
to Knowledge-State Planning: Semantics and Complexity. Toappear in ACM Transactions
on Computational Logic.

Ephrati, E., Pollack, M. E., & Mihlstein, M. (1996). A Cost-directed Planner: Preliminary Report.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96),
pp. 1223 – 1228. AAAI Press.

Erdem, E. (1999). Applications of Logic Programming to Planning: Computational Experiments.
Unpublished draft.http://www.cs.utexas.edu/users/esra/papers.html.

Faber, W., & Pfeifer, G. (since 1996).DLV homepage..http://www.dlvsystem.com/.

Ferraris, P., & Giunchiglia, E. (2000). Planning as Satisfiability in Nondeterministic Domains. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI’00), July
30 – August 3, 2000, Austin, Texas USA, pp. 748–753. AAAI Press / The MIT Press.

Fourer, R., Gay, D. M., & Kernighan, B. W. (1993).AMPL: A Modeling Language for Mathematical
Programming. Duxbury Press.

Gelfond, M., & Lifschitz, V. (1991). Classical Negation in Logic Programs and Disjunctive
Databases.New Generation Computing, 9, 365–385.

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A.,Veloso, M., Weld,
D., & Wilkins, D. (1998). PDDL — The Planning Domain Definition lan-
guage. Tech. rep., Yale Center for Computational Vision andControl. Available at
http://www.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz.

Giunchiglia, E. (2000). Planning as Satisfiability with Expressive Action Languages: Concurrency,
Constraints and Nondeterminism. In Cohn, A. G., Giunchiglia, F., & Selman, B. (Eds.),Pro-
ceedings of the Seventh International Conference on Principles of Knowledge Representation
and Reasoning (KR 2000), April 12-15, Breckenridge, Colorado, USA, pp. 657–666. Morgan
Kaufmann.

69

EITER, FABER, LEONE, PFEIFER& POLLERES

Giunchiglia, E., Kartha, G. N., & Lifschitz, V. (1997). Representing Action: Indeterminacy and
Ramifications.Artificial Intelligence, 95, 409–443.

Giunchiglia, E., & Lifschitz, V. (1998). An Action LanguageBased on Causal Explanation: Prelim-
inary Report. InProceedings of the Fifteenth National Conference on Artificial Intelligence
(AAAI ’98), pp. 623–630.

Haslum, P., & Geffner, H. (2000). Admissible Heuristics forOptimal Planning. In Chien, S., Kamb-
hampati, S., & Knoblock, C. A. (Eds.),Proceedings of the Fifth International Conference on
Artificial Intelligence Planning and Scheduling (AIPS’00), pp. 140–149, Breckenridge, Col-
orado, USA. AAAI Press.

Kautz, H., & Walser, J. P. (1999). State-space planning by integer optimization. InProceedings of
the 16th National Conference on Artificial Intelligence (AAAI-99), pp. 526–533.

Koehler, J. (1998). Planning Under Resource Constraints. In Proceedings of the 13th European
Conference on Artificial Intelligence (ECAI’98), pp. 489–493.

Krentel, M. (1992). Generalizations of Opt P to the Polynomial Hierarchy.Theoretical Computer
Science, 97(2), 183–198.

Lee, J., & Lifschitz, V. (2001). Additive Fluents. In Provetti, A., & Cao, S. T. (Eds.),Proceedings
AAAI 2001 Spring Symposium on Answer Set Programming: Towards Efficient and Scalable
Knowledge Representation and Reasoning, pp. 116–123, Stanford, CA. AAAI Press.

Lifschitz, V., & Turner, H. (1994). Splitting a Logic Program. In Van Hentenryck, P. (Ed.),Pro-
ceedings of the 11th International Conference on Logic Programming (ICLP’94), pp. 23–37,
Santa Margherita Ligure, Italy. MIT Press.

Lifschitz, V., & Turner, H. (1999). Representing Transition Systems by Logic Programs. In Gelfond,
M., Leone, N., & Pfeifer, G. (Eds.),Proceedings of the 5th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’99), No. 1730 in Lecture Notes in AI
(LNAI), pp. 92–106, El Paso, Texas, USA. Springer Verlag.

Lifschitz, V. (1996). Foundations of Logic Programming. InBrewka, G. (Ed.),Principles of Knowl-
edge Representation, pp. 69–127. CSLI Publications, Stanford.

Lifschitz, V. (1999a). Action Languages, Answer Sets and Planning. In Apt, K., Marek, V. W.,
Truszczyński, M., & Warren, D. S. (Eds.),The Logic Programming Paradigm – A 25-Year
Perspective, pp. 357–373. Springer Verlag.

Lifschitz, V. (1999b). Answer Set Planning. In Schreye, D. D. (Ed.), Proceedings of the 16th
International Conference on Logic Programming (ICLP’99), pp. 23–37, Las Cruces, New
Mexico, USA. The MIT Press.

McCain, N. (1999). The Causal Calculator Homepage..http://www.cs.utexas.edu/
users/tag/cc/.

McCain, N., & Turner, H. (1997). Causal Theories of Actions and Change. InProceedings of the
15th National Conference on Artificial Intelligence (AAAI-97), pp. 460–465.

McCain, N., & Turner, H. (1998). Satisfiability Planning with Causal Theories. In Cohn, A. G.,
Schubert, L., & Shapiro, S. C. (Eds.),Proceedings Sixth International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR’98), pp. 212–223. Morgan Kaufmann
Publishers.

70

ANSWERSET PLANNING UNDER ACTION COSTS

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engineering an
Efficient SAT Solver. InProceedings of the 38th Design Automation Conference, DAC 2001,
Las Vegas, NV, USA, June 18-22, 2001, pp. 530–535. ACM.

Nareyek, A. (2001). Beyond the Plan-Length Criterion. InLocal Search for Planning and Schedul-
ing, ECAI 2000 Workshop, Vol. 2148 of Lecture Notes in Computer Science, pp. 55–78.
Springer.

Niemelä, I. (1998). Logic Programs with Stable Model Semantics as a Constraint Programming
Paradigm. In Niemelä, I., & Schaub, T. (Eds.),Proceedings of the Workshop on Computa-
tional Aspects of Nonmonotonic Reasoning, pp. 72–79, Trento, Italy.

Papadimitriou, C. H. (1994).Computational Complexity. Addison-Wesley.

Pednault, E. P. D. (1989). Exploring the Middle Ground between STRIPS and the Situation Calcu-
lus. InProceedings of the 1st International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’89), pp. 324–332, Toronto, Canada. Morgan Kaufmann Publishers,
Inc.

Refanidis, I., & Vlahavas, I. (2001). A Framework for Multi-Criteria Plan Evaluation in Heuristic
State-Space Planning. InIJCAI-01 Workshop on Planning with Resources.

Selman, A. L. (1994). A Taxonomy of Complexity Classes of Functions.Journal of Computer and
System Sciences, 48(2), 357–381.

Simons, P., Niemelä, I., & Soininen, T. (2002). Extending and Implementing the Stable Model
Semantics.Artificial Intelligence, 138, 181–234.

Smith, D. E., & Weld, D. S. (1998). Conformant Graphplan. InProceedings of the Fifteenth
National Conference on Artificial Intelligence, (AAAI’98), pp. 889–896. AAAI Press / The
MIT Press.

Son, T. C., & Pontelli, E. (2002). Reasoning About Actions inPrioritized Default Theory. In Flesca,
S., Greco, S., Ianni, G., & Leone, N. (Eds.),Proceedings of the 8th European Conference on
Artificial Intelligence (JELIA), No. 2424 in Lecture Notes in Computer Science, pp. 369–381.

Subrahmanian, V., & Zaniolo, C. (1995). Relating Stable Models and AI Planning Domains. In
Sterling, L. (Ed.),Proceedings of the 12th International Conference on Logic Programming,
pp. 233–247, Tokyo, Japan. MIT Press.

van Gelder, A., Ross, K., & Schlipf, J. (1991). The Well-Founded Semantics for General Logic
Programs.Journal of the ACM, 38(3), 620–650.

Weld, D. S., Anderson, C. R., & Smith, D. E. (1998). ExtendingGraphplan to Handle Uncertainty
& Sensing Actions. InProceedings of the Fifteenth National Conference on Artificial Intelli-
gence, (AAAI’98), pp. 897–904. AAAI Press / The MIT Press.

Williams, M., & Hanks, S. (1994). Optimal Planning with a Goal-Directed Utility Model. In
Hammond, K. J. (Ed.),Proceedings of the Second International Conference on Artificial In-
telligence Planning Systems (AIPS-94), pp. 176–181. AAAI Press.

71

