Journal of Atrtificial Intelligence Research 19 (2003) 25-71 Submitted 10/02; published 08/03

Answer Set Planning Under Action Costs

Thomas Eiter EITER@KR.TUWIEN.AC.AT
Wolfgang Faber FABER@KR.TUWIEN.AC.AT
Institut fur Informationssysteme, TU Wien

Favoritenstr. 9-11, A-1040 Wien, Austria

Nicola Leone LEONE@UNICAL.IT
Department of Mathematics, University of Calabria
[-87030 Rende (CS), Italy

Gerald Pfeifer PFEIFER@DBAI.TUWIEN.AC.AT
Axel Polleres POLLERES@KR.TUWIEN.AC.AT
Institut fur Informationssysteme, TU Wien

Favoritenstr. 9-11, A-1040 Wien, Austria

Abstract

Recently, planning based on answer set programming hasgrepnsed as an approach to-
wards realizing declarative planning systems. In this pape present the languadgé’, which
extends the declarative planning langu#géy action costsX¢ provides the notion of admissi-
ble and optimal plans, which are plans whose overall actagiscare within a given limit resp.
minimum over all plans (i.e., cheapest plans). As we dematgstthis novel language allows for
expressing some nontrivial planning tasks in a declarataye Furthermore, it can be utilized for
representing planning problems under other optimalityedd, such as computing “shortest” plans
(with the least number of steps), and refinement combingtidrcheapest and fastest plans. We
study complexity aspects of the langudgeand provide a transformation to logic programs, such
that planning problems are solved via answer set progragnfiurthermore, we report experi-
mental results on selected problems. Our experience isueagimg that answer set planning may
be a valuable approach to expressive planning systems ohwrtricate planning problems can be
naturally specified and solved.

1. Introduction

Recently, several declarative planning languages anddiisms have been introduced, which allow
for an intuitive encoding of complex planning problems imig ramifications, incomplete infor-
mation, non-deterministic action effects, or parallel@ts (see e.g., Giunchiglia & Lifschitz, 1998;
Lifschitz, 1999b; Lifschitz & Turner, 1999; McCain & Turnet998; Giunchiglia, 2000; Cimatti &
Roveri, 2000; Eiter et al., 2000b, 2003b).

While these systems are designed to generate any planstimmhplish the planning goals, in
practice one is often interested in particular plans thatomtimal with respect to some objective
function by which the quality (or the cost) of a plan is measurA common and simple objective
function is the length of the plan, i.e., the number of timepstto achieve the goal. Many systems
are tailored to compute shortest plans. For example, CMBR4dtl & Roveri, 2000) and GPT
(Bonet & Geffner, 2000) compute shortest plans in which estelp consists of a single action,
while the Graphplan algorithm (Blum & Furst, 1997) and destzats (Smith & Weld, 1998; Weld,

(©2003 AI Access Foundation. All rights reserved.

EITER, FABER, LEONE, PFEIFER& POLLERES

Anderson, & Smith, 1998) compute shortest plans where ih etap actions might be executed in
parallel.

However, there are other, equally important objective fiams to consider. In particular, if
executing actions causes some cost, we may desire a plah wimémizes the overall cost of the
actions.

In answer set planning (Subrahmanian & Zaniolo, 1995; Dioubgs, Nebel, & Koehler, 1997;
Niemela, 1998; Lifschitz, 1999b), a recent declarativprapch to planning where plans are en-
coded by the answer sets of a logic program, the issue of apptans under an objective value
function has not been addressed in detail so far (see Se&fimnmore details). In this paper, we
address this issue and present an extension of the plarariggdgéC (Eiter et al., 2000b, 2003b),
where the user may associate costs with actions, which aretéiken into account in the planning
process. The main contributions of our work are as follows.

e We define syntax and semantics of the planning langué&gevhich modularly extends the
languageXC: Costs are associated to an action by extending the actidardéons with an
optional cost construct which describes the cost of exegutie respective action.

The action costs can be static or dynamic, as they may depetid @urrent stage of the plan
when an action is considered for execution. Dynamic actmstscare important and have
natural applications, as we show on a simple variant of tHekmewn Traveling Salesperson
Problem, which is cumbersome to model and solve in otheilailanguages.

e We analyze the computational complexity of planning in gregluageCe, and provide com-
pleteness results for major planning tasks in the propwsiti setting, which locate them in
suitable slots of the Polynomial Hierarchy and in classeel@ from it. These results pro-
vide insight into the intrinsic computational difficultie$ the respective planning problems,
and give a handle for efficient transformations from optiplahning to knowledge represen-
tation formalisms, in particular to logic programs.

e We show, in awareness of the results of the complexity aiglhew planning with action
costs can be implemented by a transformation to answer @gtggnming, as done in a sys-
tem prototype that we have developed. The prototype, readgxperiments, is available at
http://ww.dl vsystem com K/ .

e Finally, we present some applications which show that odereled language is capable
of easily modeling optimal planning under various critewamputing (1) “cheapest” plans
(which minimize overall action costs); (2) “shortest” psafwith the least number of steps);
and, refinement combinations of these, viz. (3) shortesisptanong the cheapest, and (4)
cheapest plans among the shortest. Notice that, to our kdge| task (3) has not been
addressed in other works so far.

The extension ofC by action costs provides a flexible and expressive tool fpresenting
various problems. Moreover, sindgé’s semantics builds on states of knowledge rather than on
states of the world, we can deal with both incomplete knoggsahd plan quality, which is, to the
best of our knowledge, completely novel.

Our experience is encouraging that answer set planningdb@s powerful logic programming
engines, allows for the development of declarative plagrapstems in which intricate planning

26

ANSWERSET PLANNING UNDER ACTION COSTS

tasks can be specified and solved. This work complements xtedds the preliminary results
presented in our previous work (Eiter et al., 2002a).

The remainder of this paper is organized as follows. In thda section, we briefly review
the languageC by informally presenting its main constituents and featursa a simple planning
example. After that, we define in Section 3 the extensioit dify action costs, and consider some
first examples for the usage &f°. Section 4 is devoted to the analysis of complexity issues. |
Section 5, we consider applications /6f. We show that various types of particular optimization
problems can be expressed/if, and also consider some practical examples. In Section 6, we
present a transformation @& into answer set programming, and in Section 7, we reporttaédou
prototype implementation and experiments. After a disoussf related work in Section 8, we
conclude the paper with an outlook on ongoing and future work

2. Short Review of LanguageC

In this section, we give a brief informal overview of the lalage/C, and refer to (Eiter et al., 2003b)
and to the Appendix for formal details. We assume that thderes familiar with the basic ideas
of planning and action languages, in particular with théamst of actions, fluents, goals and plans.
For illustration, we shall use the following planning prein as a running example.

Problem 1 [Bridge Crossing Problem]Four persons want to cross a river at night over a plank
bridge, which can only hold up to two persons at a time. Thexelmlamp, which must be used
when crossing. As it is pitch-dark and some planks are ngssiomeone must bring the lamp back
to the others; no tricks (like throwing the lamp or halfwapsses, etc.) are allowed.

Fluents and states. A state inK is characterized by the truth values of fluents, describeheyant
properties of the domain of discourse. A fluent may be trdsefeor unknown in a state — that is,
states i arestates of knowledg@s opposed to states of the world where each fluent is ertreer t
or false (which can be easily enforcedAn if desired). Formally, &tateis any consistent setof
(possibly negated) legal fluent instances.

An action is applicable only if some precondition (a list bédals over some fluents) holds in
the current state. Its execution may cause a modificatioruthf talues of some fluents.

Background knowledge. Static knowledge which is invariant over time irkaplanning domain
is specified in a normal (disjunction-free) Datalog progrdnthat has a single answer set and can
be viewed as a set of facts. For our example, the backgroumdl&dge specifies the four persons:

person(joe). person(jack). person(william). person(averell).

Type declarations. Each fluent or action must have a declaration where the rapigigs argu-
ments are specified. For instance,

crossTogether(X,Y) requires person(X), person(Y), X < Y.1

specifies the arguments of the actiarbssTogether, where two persons cross the bridge together,
while

across(X) requires person(X).

1. “<” here is used instead of inequality to avoid symmetric rules

27

EITER, FABER, LEONE, PFEIFER& POLLERES

specifies a fluent describing that a specific person is on thex side of the river. Here the literals
after “requires” must be classical literals of the static background knolgke(likeperson(X) and
person(Y)), or literals of built-in predicates (such #s< Y). Our implementation ok, the DLV*-
system (Eiter, Faber, Leone, Pfeifer, & Polleres, 2003a)ently supports the built-in predicates
“A < B","A <= B", " A!=B"with the obvious meaning of less-than, less-or-equal arduality for
strings and numbers, the arithmetic built-ins= B + C” and “A = B « C” which stand for integer
addition and multiplication, and the predicatgint(X)” which enumerates all integers (up to a
user-defined limit).

Causation rules. Causation rules (“rules” for brevity) are syntacticallynilar to rules of the
action languagé€ (Giunchiglia & Lifschitz, 1998; Lifschitz, 1999a; Lifsctzi & Turner, 1999) and
are of the basic form:

caused f if Bafter A.

whereA is a conjunction of fluent and action literals, possibly utthg default negatiorB is a
conjunction of fluent literals, again possibly includingfaldt negation, and is a fluent literal.
Informally, such a rule reads: ¥ is known to be true in the current state ang known to be true
in the previous state, thehis known to be true in the current state as well. Bothihepart and
theafter-part are allowed to be empty (which means that they are.tAieausation rule is called
dynamig if its after-part is not empty, and is callesatic otherwise.

Causation rules are used to express effects of actions dicatnons. For example,

caused across(X) after cross(X), -across(X).
caused -across(X) after cross(X), across(X).

describe the effects of a single person crossing the bridgéher direction.

Initial state constraints. Static rules can apply to all states or only to the initiatega(which
may not be unique). This is expressed by the keywosdsi&ys :” and “initially :” preceding
sequences of rules where the latter describigial state constraintdhat must be satisfied only in
the initial state. For example,

initially: caused -across(X).
enforces the fluenicross to be false in the initial state for anysatisfying the declaration of the
fluentacross, i.e., for all persons. The rule is irrelevant for all suhsen states.

Executability of actions. This is expressed ift explicitly. For instance,

executable crossTogether(X,Y) if hasLamp(X).
executable crossTogether(X,Y) if hasLamp(Y).

declares that two persons can jointly cross the bridge ifafrteem has a lamp. The same action
may have multiple executability statements. A statement

executable cross(X).

with empty body says thatross is always executable, provided that the type restriction® are
respected. Dually,

nonexecutablea if B.
prohibits the execution of actionif condition B is satisfied. For example,
nonexecutable crossTogether(X,Y) if differentSides(X,Y).

28

ANSWERSET PLANNING UNDER ACTION COSTS

says that persorsandY can not cross the bridge together if they are on differertssaf the bridge.
In case of conflictsponexecutable A overridesexecutable A.

Default and strong negation. K supports strong negation-{;” also written as “-"). Note, how-
ever, that for a fluent, in a state neithef nor -f needs to hold. In this case the knowledge about
f is incomplete. In addition, weak negatiom{t”), interpreted like default negation in answer set
semantics (Gelfond & Lifschitz, 1991), is permitted in rbledies. This allows for natural model-
ing of inertia and default properties, as well as dealindiwitomplete knowledge in general. For
example,

caused hasLamp(joe) if not hasLamp(jack),not hasLamp(william),not hasLamp(averell).

expresses the conclusion that by defajdie has the lamp, whenever it is not evident that any of the
other persons has it.

Macros. K provides a number of macros as “syntactic sugar”. For exampl
inertial across(X).

informally states thadcross(X) holds in the current state, #éfcross(X) held at the previous state,
unless across(X) is explicitly known to hold. This macro expands to the rule

caused across(X) if not -across(X) after across(X).
Moreover, we can “totalize” the knowledge of a fluent by denfatotal £. which is a shortcut for
caused f if not -f. caused -f if not f.

The intuitive meaning of these rules is that unless a trultheviorf can be derived, the cases where
f resp.- f is true will both be considered.

Planning domains and problems. In K, aplanning domainPD = (II, (D, R)) has a background
knowledgell, action and fluent declaratiori, and rules and executability conditiofs aplanning
problemP = (PD, q) has a planning domaiffD and aquery

q=4g1,---;9m,n0t gm41,...,n0t gn? (l)

wheregy, . . ., g, are ground fluents and> 0 is the plan length. For instance, the goal query
across(joe), across(jack), across(william), across(averell)? (5)

asks for plans which bring all four persons across in 5 steps.

Plans are defined using a transition-based semantics, vlerexecution of a set of actions
transforms a current state into a new state (dptimistic) planfor P is a sequenc® = (A, ..., A;)
of sets of action instanced;, As,..., A; in atrajectory T = ((sg, A1,s1), (s1,A2,82), ...,
(si—1, A1, s;)) from a legal initial states, to states; in which all literals of the goal are true. That
is, starting insg, the legal transitiort; = (sg, A1, s1), modeling the execution of the actionsdn
(which must be executable), transformdnto the states;. This is then followed by legal transitions
t; = (si—1, A, s;), fori = 2,3,...,1 (cf. Appendix for details). A plan isequentiglif |4;] < 1
forall: = 1,...,[, i.e., each step consists of at most one action; such planbea@&nforced by
including the keywordoConcurrency.

Besides optimistic plans, ik we also support strongsecure (or conformant) plan#\ secure
plan must be guaranteed to work out under all circumstariier (et al., 2000b), regardless of
incomplete information about the initial state and possimndeterminism in the action effects.

29

EITER, FABER, LEONE, PFEIFER& POLLERES

For better readability, in the following we will not alwaygstribe/C planning problemsP
strictly in terms of sets of declarations, rules and exaddilitya conditions, but optionally use the
more compact representation /6fprogramsof the following general form:

fluents: Fp
actions: Ap
initially: Ig
always : Cr
goal : q

where the (optional) sectioruents throughalways consist of lists of fluent declarationsp,
action declarationsl p, initial state constraint$z and executability conditions and causation rules
Cr, respectively. Together with the background knowletigand the goal query, they specify

a K planning problemP = ((II, (D, R)), q), whereD is given byFp plus Ap andR by I plus
Cg.?

2.1 Solving the Bridge Crossing Problem

Using the above constructs, & encoding of the Bridge Crossing Problem, assuming flat
initially carries the lamp, is shown in Figure 1. There arage five-step plangl = 5), in which
joe always carries the lamp and brings all others across. Orfeeat ts:

P ={({crossTogether(joe, jack)}, {cross(joe)}, {crossTogether(joe,william)},
{cross(joe)}, {crossTogether(joe,averell)})

3. Actions with Costs

Using the languag&C and the system prototyp®LVX, we can already express and solve some
involved planning tasks, cf. (Eiter et al., 2003b). Howevérand DLVX alone offer no means
for finding optimal plans under an objective cost functiom geeneral, different criteria of plan
optimality can be relevant, such as optimality wrt. actiosts as shown in the next example, which
is a slight elaboration of the Bridge Crossing Problem, anglknown brain teasing riddle:

Problem 2 [Quick Bridge Crossing Problem] The persons in the bridge crossing scenario need
different times to cross the bridge, namely 1, 2, 5, and 1Qutaf respectively. Walking in two
implies moving at the slower rate of both. Is it possible thiafour persons get across within 17
minutes?

On first thought this is infeasible, since the seeminglyroptiplan wheregjoe, who is the fastest,
keeps the lamp and leads all the others across takes 19 siaitagether. Surprisingly, as we will
see, the optimal solution indeed only takes 17 minutes.

In order to allow for an elegant and convenient encoding chsaptimization problems, we
extend/C to the languagéC® in which one can assign costs to actions.

3.1 Syntax ofC¢

Let o2, ¢!, ando¥*" denote (finite) sets of action names, fluent names and vargjhbols.
Furthermore, leL,., £, andLy,, denote the sets of action, fluent, and type literals, resdyt

2. This is also the format of the input files of our system pigie, which will be presented in Section 7.

30

ANSWERSET PLANNING UNDER ACTION COSTS

actions: cross(X) requires person(X).
crossTogether(X,Y) requires person(X), person(Y), X <Y.
takeLamp(X) requires person(X).

fluents: across(X) requires person(X).
differentSides(X,Y) requires person(X), person(Y).
hasLamp(X) requires person(X).

initially: -across(X). hasLamp(joe).

always : executable crossTogether(X,Y) if hasLamp(X).
executable crossTogether(X,Y) if hasLamp(Y).
nonexecutable crossTogether(X,Y) if differentSides(X,Y).

executable cross(X) if hasLamp(X).

executable takeLamp(X).
nonexecutable takeLamp(X) if hasLamp(Y), differentSides(X,Y).

, -across(X).

(
caused across(X) after crossTogether(
(-across(Y

caused across(Y) after crossTogether (Y).
caused -across(X) after crossTogether(X,Y), across(X).
caused -across(Y) after crossTogether(X,Y), across(Y).

7Y)
7Y)’

X
X
(

caused across(X) after cross(X), -across(X).
caused -across(X) after cross(X), across(X).

caused hasLamp(X) after takeLamp(X).
caused -hasLamp(X) after takeLamp(Y), X!=Y, hasLamp(X).

caused differentSides(X,Y) if across(X), -across(Y).
caused differentSides(X,Y) if -across(X), across(Y).

inertial across(X).
inertial -across(X).
inertial hasLamp(X).

noConcurrency.

goal : across(joe), across(jack), across(william), across(averell)? (I)

Figure 1:X encoding of the Bridge Crossing Problem

formed from the action names, fluent names, and predicathe background knowledge (including
built-in predicates), respectively, using terms from aerapty (finite) set of constants™”.
K¢ extends action declarations askinwith costs as follows.

Definition 3.1 Anaction declaratior in /¢ is of the form:

p(Xi,...,X,) requires ty,...,t,, costs C where cy,...,ck. Q)
where (1)p € 0% has arityn > 0, (2) X1,...,X, € ¢, 3) t1,...,tm, c1,...,c are from
Lyyp such that evenk; occurs inty, . .., t,,, (4) C'is either an integer constant, a variable from the

set of all variables occurring iy, ..., tn, c1,...,c; (denoted by (d)), or the distinguished
variable time, (5) 0¥ (d) C 0" U {time}, and (6)time does not occur iy, . .. t,.

31

EITER, FABER, LEONE, PFEIFER& POLLERES

If m = 0, the keyword requires’ is omitted; if & = 0, the keyword where’ is omitted and
‘costs C" is optional. Here, (1) and (2) state that parameters to #inraust be variables, and
not fixed values. Informally, (3) means that all parametdraroaction must be “typed” in the
requires part. Condition (4) asserts that the cost is locally definedieen by the stage of the
plan, which is referenced through the global variablee. Conditions (5) and (6) ensure that all
variables are known and that type information of action pears is static, i.e., does not depend
on time.

Planning domains and planning problemgihare defined as if.

For example, in the elaborated Bridge Crossing Problemdéutaration ofcross(X) can be
extended as follows: suppose a predicaigk(Person, Minutes) in the background knowledge
indicates thaPerson takesMinutes to cross. Then, we may simply declare

cross(X) requires person(X) costs WX where walk(X, WX).
3.2 Semantics ofC*

Semantically, ¢ extends/C by the cost values of actions at points in time. In any plan=
(A1,...,A)), atstepl < i <, the actions in4; are executed to reach time point

A ground actionp(x1, ..., x,) is alegal action instancef an action declaratiod wrt. a ¢
planning domainPD = (II, (D, R)), if there exists some ground substitutiérfor ¢"*"(d) U
{time} such thatX;0 = z;,for1 < i < nand{t0,...,t,0} C M,whereM is the unique answer
set of the background knowled@ke Any suchd is called awitness substitutiofor p(x1, ..., z,).
Informally, an action instance is legal, if it satisfies teepective typing requirements. Action costs
are now formalized as follows.

Definition 3.2 Leta = p(z1,...,x,) be alegal action instance of a declaratianof the form (1)
and letd be a witness substitution far Then

0, if the costs part of d is empty;
costg(p(x1,...,xn)) =< val(CO), if{c16,...,c,0} C M;
undefined otherwise

where M is the unique answer set of andwval : 0 — N is defined as the integer value for
integer constants and O for all non-integer constants.

By reference to the variableime, it is possible to define time-dependent action costs; wik cbia:
sider an example in Section 5.2. Usiagsty, we now introduce well-defined legal action instances
and define action cost values as follows.

Definition 3.3 A legal action instance = p(z1,. .., z,) is well-definediff it holds that (i) for any
time pointi > 1, there is some witness substitutiérior a such thattime = i and costy(a) is an
integer, and (ii)costg(a) = costy(a) holds for any two witness substitutiofis?’ which coincide
ontime and have defined costs. For any well-defiagds unique cost at time poirt> 1 is given
by cost;(a) = costg(a) whered is as in (i).

In this definition, condition (i) ensures that some cost gadxists, which must be an integer,
and condition (ii) ensures that this value is unique, iy, o different witness substitutiosand
¢’ for a evaluate theost part to the same integer cost value.

32

ANSWERSET PLANNING UNDER ACTION COSTS

An action declarationi is well-defined if all its legal instances are well-defined. This will be
fulfilled if, in database terms, the variabldsy, . .., X,, together withtime in (1) functionally deter-
mine the value o In our framework, the semantics of& planning domainPD = (II, (D, R))
is only well-defined for well-defined action declarationsih. In the rest of this paper, we assume
well-definedness of’¢ unless stated otherwise.

Using cost;, we now define costs of plans.

Definition 3.4 LetP = (PD,Q 7 (1)) be a planning problem. Then, for any pléh= (A4,..., A;)
for P, its cost is defined as

costp(P) = Eé-:l (Z:aeAj costj(a)) .

A plan P is optimalfor P, if costp(P) < costp(P’) for each planP’ for P, i.e., P has least cost
among all plans forP. The cost of a planning problef®, denotedcost},, is given bycost}, =
costp(P*), whereP* is an optimal plan forP.

In particular,costp(P) = 0if P = (), i.e., the plan is void. Note thabst}, is only defined if a
plan for P exists?

Usually one only can estimate somgper boundf the plan length, but does not know the exact
length of an optimal plan. Although we have only defined optity for a fixed plan length, we
will see in Section 5.1 that by appropriate encodings this lwa extended to optimality for plans
with lengthat mosti.

Besides optimal plans, also plans with bounded costs amtereist, which motivates the fol-
lowing definition.

Definition 3.5 A plan P for a planning problenP is admissiblewrt. costc, if costp(P) <c.

Admissible plans impose a weaker condition on the plan tyutidan optimal plans. They are
particularly relevant if optimal costs are not a crucialissas long as the cost stays within a given
limit, and if optimal plans are difficult to compute. We mighte questions like “Can | make it
to the airport within one hour?”, “Do | have enough changeuy & coffee?” etc. which amount
to admissible planning problems. As we shall see, computimissible plans is complexity-wise
easier than computing optimal plans.

3.3 An Optimal Solution for the Quick Bridge Crossing Problem

To model the Quick Bridge Crossing Problemiili, we first extend the background knowledge as
follows, where the predicateralk’ describes the time a person needs to cross asgl determines
which of two persons is slower:

walk(joe, 1). walk(jack,?2). walk(william,5). walk(averell, 10).

max(A,B,A) ;- walk(_,A), walk(_,B), A >=B.

max(A,B,B) :- walk(_,A), walk(_,B), B > A.

Next, we modify the declarations fatross andcrossTogether from Figure 1 by adding costs:

3. In the following, subscripts will be dropped when cleamfrthe context.

33

EITER, FABER, LEONE, PFEIFER& POLLERES

cross(X) requires person(X) costs WX where walk(X,WX).
crossTogether(X,Y) requires person(X), person(Y), X <Y
costs Wmax where walk(X,WX),walk(Y,WY), max(WX, WY, Wmax).

The declaration ot akeLamp remains unchanged, as the time to hand over the lamp is iiglig

Using this maodified planning domain, the 5-step plan regbiteSection 2.1 has cost 19. Ac-
tually, it is optimal for plan lengtli = 5. However, when we relinquish the first intuition that the
fastest personjoe, always has the lamp and consider the problem under varyarglength, then
we can find the following 7-step plan:

P ={({crossTogether(joe, jack)}, {cross(joe)}, {takeLamp(william)},
{crossTogether(william, averell)}, {takeLamp(jack)}, {cross(jack)},
{crossTogether(joe, jack)})

Here,costp(P) = 17, and thusP is admissible with respect to cost 17. This means that thelQui
Bridge Crossing Problem has a positive answer. In fRBchas least cost over all plans of length
I =7, and is thus an optimal 7-step plan. Moreovehas also least cost over all plans that emerge
if we consider all plan lengths. Thug; is an optimal solution for the Quick Bridge Crossing
Problem under arbitrary plan length.

3.4 Bridge Crossing under Incomplete Knowledge

The languageC is well-suited to model problems which involve uncertaistych as incomplete
initial states or non-deterministic action effects at alifptéve level. The enriched languadé”
gracefully extends to secure (conformant) plans as welichvimust reach the goal under all cir-
cumstances (Eiter et al., 2000b, 2003b). More preciselgptimistic plan(A, ..., A,) is secure
if it is applicable under any evolution of the system: stagtirom any legal initial statey, the first
action setA; (for plan lengthl > 1) can always be executed (i.e., some legal transitignA, s;)
exists), and for every such possible statethe next action setl; can be executed etc., and after
having performed all actions, the goal is always accometigief. Appendix for a formal definition).
While secure plans inherit costs from optimistic plansretere different possibilities to define
optimality of secure plans. We may consider a secure plapt@sal, if it has least cost either

e among all optimistic plans, or
e among all secure plans only.

In the first alternative, there might be planning problemsctvinave secure plans, but no optimal
secure plans. For this reason, the second alternative i&jjpdae more appropriate.

Definition 3.6 A secure planP is optimalfor a planning problenP, if it has least cost among all
secure plans foP, i.e., costp(P) < costp(P’) for each secure pla#®’ for P. Thesecure cospf
P, denotedcost?, .(P), is cost},.(P) = costp(P*), whereP* is any optimal secure plan fap.

sec sec

The notion of admissible secure plans is defined analogously

For example, assume that it is known that at least one pensitie ibridge scenario has a lamp,
but that neither the exact number of lamps nor the allocaifdamps to persons is known. If the
four desperate persons now ask for a plan which brings théatysacross the bridge, we need a
(fast) secure plan that works under all possible initialaions. InK¢, this can be modeled by
replacing theinitially-part with the following declarations:

34

ANSWERSET PLANNING UNDER ACTION COSTS

initially: total hasLamp(X).
caused false if -hasLamp(joe), -hasLamp(jack),
-hasLamp(william), -hasLamp(averell).

The first statement says that each person either has a lamgs, @nd the second that at least
one of them must have a lamp. For a detailed discussion onsthefuthe “total” statement for
modeling incomplete knowledge and non-determinism we teféEiter et al., 2003b).

As we can easily see, an optimal secure solution will takeaattl17 minutes, since the original
case (where onlyoe has a lamp) is one of the possible initial situations, forakhihe cost of
an optimistic plan which is optimal over all plan lengths wias However, a secure plan which
is optimal over all plan lengths requires at least 8 steps fimwno higher cost): Different from
optimistic plans, we need one extra step at the beginninghwimiakes sure that one of those who
walk first (above joe andjack) has the lamp, which is effected by the propekeLamp action.

An example of such a plan is the following which has cost 17:

P = ({takeLamp(joe)}, {crossTogether(joe,jack)}, {cross(joe)},
{takeLamp(william)}, {crossTogether(william,averell)}, {takeLamp(jack)},
{cross(jack)}, {crossTogether(joe,jack)})

We can easily check th& works for every possible initial situation. Thus, it is artiopal (secure)
plan for plan length 8, and moreover also for arbitrary pmgth.

4. Computational Complexity

In this section, we will address the computational compyest ¢, complementing similar results
for the languagéC (Eiter et al., 2003b).

4.1 Complexity Classes

We assume that the reader is familiar with the basic notidrm®mplexity theory, such aB, NP,
problem reductions and completeness; see e.g. (Papadimit©994) and references therein. We
recall that the Polynomial Hierarchy (PH) contains thes#a&] = II}’ = Al = P andxl, =
NP, 17, = coxl,, AL, = P¥', fori > 0. In particular, X7 = NP and A} = PP,
Note that these classes contain decision problems (i.eblggns where the answer is “yes” or
“no”). While checking well-definedness and deciding plais#nce are such problems, computing
a plan is asearch problemwhere for each problem instanée (possibly empty) finite sef(7) of
solutions exists. To solve such a problem, a (possibly nenahénistic) algorithm must compute the
alternative solutions from this set in its computation lofees, ifS(7) is not empty. More precisely,
search problems are solved by transducers, i.e., Turindnimes equipped with an output tape. If
the machine halts in an accepting state, then the contertteeadutput tape is the result of the
computation. Observe that a nondeterministic machine céespa (partial) multi-valued function.

As an analog tiNP, the classNPMV contains those search problems whg(é) can be com-
puted by a nondeterministic Turing machine in polynomialgj for a precise definition, see (Sel-
man, 1994). In analogy 87, ;, by ©2 MV = NPMVE! | i > 0, we denote the generalization of
NPMYV where the machine has access t/aoracle.

Analogs to the classeB and A% ,, i > 0, are given by the classé& andFAL ,, i > 0,
which contain the partial single-valued functions (that|&(7)| < 1 for each problem instance

35

EITER, FABER, LEONE, PFEIFER& POLLERES

I) computable in polynomial time using no resptf oracle. We say, abusing terminology, that
a search problemt is in FP (resp.FAfirl), if there is a partial (single-valued) functigh e FP
(resp.f € FAL) such thatf(I) € S(I) and f(I) is undefined iffS(I) = 0. For example,
computing a satisfying assignment for a propositional CREAT) and computing an optimal tour
in the Traveling Salesperson Problem (TSP) arBAx,’ under this view, cf. (Papadimitriou, 1994).
A partial function f is polynomial-time reducible to another partial functignif there are
polynomial-time computable functioris, and hy such thatf(I) = ho(I, g(hi(1))) for all I and
g(h1(I)) is defined whenevef (1) is defined. Hardness and completeness are defined as usual.

4.2 Problem Setting

We will focus on the following questions:

Checking Well-Definedness:Decide whether a given action description is well-defined. ar
given planning domai®D, resp. whether a given planning doma&p is well-defined.

Admissible Planning: Decide whether for planning problefd an admissible (optimistic/secure)
plan exists wrt. a given cost valueand find such a plan.

Optimal Planning: Find an optimal (optimistic/secure) plan for a given plaxgproblem.

Notice that (Eiter et al., 2003b) focused on deciding thetexice of optimistic/secure plans,
rather than on actually finding plans, and presented a ddtatudy of the complexity of this task
under various restrictions for ground (propositional)nplimg problems. In this paper, we confine
the discussion to the case of planning probléms (PD, @ ? (1)) which look forpolynomial length
plans i.e., problems where the plan lendtis bounded by some polynomial in the size of the input.

We shall consider here mainly ground (propositional) pilapnand assume that the planning
domains are well-typed and that the unique model of the lracikgl knowledge can be computed
in polynomial time. In the general case, by well-known coexjily results on logic programming,
cf. (Dantsin, Eiter, Gottlob, & Voronkov, 2001), alreadyatyating the background knowledge is
EXPTIME-hard, and the problems are thus provably intrdetabVe recall the following results,
which appear in (or directly follow from) previous work (Eftet al., 2003b).

Proposition 4.1 Deciding, given a propositional planning problefand a sequenc® = (A, ...,
A;) of action sets, (i) whether a given sequefite: (¢4, ...,t;) is alegal trajectory witnessing that
P is an optimistic plan fofP is feasible in polynomial time, and (ii) wheth&ris a secure plan for
P is I15'-complete.

4.3 Results

We start by considering checking well-definedness. Forgitoblem, it is interesting to investigate
the non-ground case, assuming that the background know/isdgready evaluated. This way we
can assess the intrinsic difficulty of this task obtaining fibllowing result.

Theorem 4.2 (Complexity of checking well-definednessiiven a K¢ planning domainPD =

(I1, (D, R)) and the unique model/ of I, checking (i) well-definedness of a given action dec-
laration d of form (1) wrt. PD and (i) well-definedness @D are bothII}’-complete.

36

ANSWERSET PLANNING UNDER ACTION COSTS

Proof. Membership:As for (i), d is violated if it has a nonemptyosts part and a legal action
instancea = p(z1,...,x,) such that either (1) there exist witness substitutiéasdé’ for a such
thattimef = timef’, costy(a) = val(CH) andcosty (a) = val(CH"), andval(CO) # val(CH'),
or (2) there is no witness substitutiéhfor a such thatcosty(a) = val(C8) is an integer. Such
ana can be guessed and checked, via a witness substitution yingooial time, and along with
a alsof andf’ as in (1); note that, by definition, all variables must be &tiied by constants
from the background knowledge (including numbers), and gstipe values fotime if it occurs in
c1,...,c,. Givena, we can decide (2) with the help of &P oracle. In summary, disproving well-
definedness of is hondeterministically possible in polynomial time with &P oracle. Hence,
checking well-definedness dfis in cox4’ = I1¥’. The membership part of (ii) follows from (i),
since well-definedness @&tD reduces to well-definedness of all action declarations bmimIH§ is
closed under conjunctions.
Hardness: We show hardness for (i) by a reduction from deciding whethguantified Boolean
formula (QBF)

Q=VXIAY.c1 AN---Ncp

where eachy; = L; V.-V Ly, @ = 1,...,k, is a disjunction of literals.; ; on the atoms
X =ux1,...,zpandY = x,41 ..., 2y, IS true. Without loss of generality, we may assume that
eache; contains three (not necessarily distinct) literals, wtdoh either all positive or all negative.
We construct a planning domai?D andd as follows. The background knowleddé, is
bo01(0). bool(1).
pos(1,0,0). pos(0,1,0). pos(0,0,1). pos(1,1,0). pos(1,0,1). pos(0,1,1). pos(1,1,1).
neg(0,0,0). neg(1,0,0). neg(0,1,0). neg(0,0,1). neg(1,1,0). neg(1,0,1). neg(0,1,1).
Here,bool declares the truth values 0 and 1. The fagis(X;, X2, X3) andneg(X;, X», X3) State
those truth assignments £,, X,, and X3 such that the positive claus€; v X, Vv X3 resp. the
negative clause-X; vV =X, VvV - X35 is satisfied.
The rest of the planning domaidD consists of the single action declarati@of form
p(Vi,...,Vy) requires bool(Vy),..., bool(V,) costs O where cf,..., c}.

where

i=1,...,k.

« _ J pos(Vi1,Vio, Vig), ifc=azinVaiaVas,
‘ neg(Vi 1, Vi, Vigz), if ¢; =21V xioV w3,

For example, the clause= z; V x3 V x4 is mapped ta* = pos(Vy, Vs, V). It is easy to see that
each legal action instanee= p(by, ..., b,) of d corresponds 1-1 to the truth assignmeptof X
given byo,(z;) = b;, fori = 1,...,n. Furthermoreg has a cost value defined (which is 0) iff the
formuladY (cioq A - -+ A cxog) IS true. Thusd is well-defined wrt.PD iff) is true. SincePD and

d are efficiently constructible, this provél, -hardness. O

Observe that in the ground case, checking well-definedisasaich easier. Since no substitu-
tions need to be guessed, the test in the proof of Theorem gahinomial. Thus, by our assumption
on the efficient evaluation of the background program, weiabt

Corollary 4.3 In the ground (propositional) case, checking well-defiresdnof an action descrip-
tion d wrt. a K¢ planning domainPD = (II, (D, R)), resp. of PD as a whole, is possible in
polynomial time.

37

EITER, FABER, LEONE, PFEIFER& POLLERES

We remark that checking well-definedness can be expressaglasning task iriC, and also
by a logic program; we refer to (Eiter, Faber, Leone, Pfe&ePolleres, 2002b) for details.
We now turn to computing admissible plans.

Theorem 4.4 (Complexity of admissible planning)For polynomial plan lengths, deciding whether
a given (well-defined) propositional planning probl€fD, ¢) has (i) some optimistic admissible
plan wrt. to a given integeb is NP-complete, and finding such a plan is completeN&MV, (ii)
deciding whethet PD, ¢) has some secure admissible plan wrt. to a given integeE.4’-complete,
and computing such a plan 12’ MV-complete. Hardness holds in both cases for fixed plan length

As for the proof we refer to the Appendix. We finally address tiomplexity of computing
optimal plans.

Theorem 4.5 (Complexity of optimal planning) For polynomial plan lengths, (i) computing an
optimal optimistic plan fol PD,Q? (1)) in K¢ is FAY-complete, and (i) computing an optimal
secure plan fol PD, Q ? (1)) in K¢ is FAF-complete. Hardness holds in both cases even if the plan
lengthl is fixed.

The proof again can be found in the in the Appendix.

We remark that in the case of unbounded plan length, the @pdtplof computing plans in-
creases and requires (at least) exponential time in gesaraé plans might have exponential length
in the size of the planning problem. Thus, in practical terammstructing such plans is infeasible,
since they occupy exponential space. Furthermore, asMelfoom previous results (Eiter et al.,
2003b), deciding the existence of an admissible optimigt#p. secure plan for a planning prob-
lem wrt. a given cost is PSPACE-complete resp. NEXPTIMEolete. We leave a more detailed
analysis of complexity aspects &F for further work.

5. Applications
5.1 Cost Efficient versus Time Efficient Plans

In this section, we show how the languafjé can be used to minimize plan length in combination
with minimizing the costs of a plan. This is especially iet&ing in problem settings where parallel
actions are allowed (cf. (Kautz & Walser, 1999; Lee & Lif€ehi2001)).

For such domains with parallel actions, Kautz and Walsep@se various criteria to be op-
timized, for instance the number of actions needed, or tlmebeun of necessary time steps when
parallel actions are allowed, as well as combinations ofehevo criteria (1999). By exploiting
action costs and proper modeling, we can solve optimizgtiotlems of this sort. For example,
we can single out plans with a minimal number of actions synyylassigning cost 1 to all possible
actions.

We consider the following optimization problems:

() Find a plan with minimal costcheapest planfor a given number of steps.
(8) Find a plan with minimal time stepsljortest plah

() Find a shortest among the cheapest plans.

38

ANSWERSET PLANNING UNDER ACTION COSTS

(6) Find a cheapest among the shortest plans.

Problem §) is what we have already defined as optimal plans so far. Wena show how to
express §) in terms of optimal cost plans as well, and how to extend ¢lagoration with respect
to the combinationsy() and ¢).

5.1.1 QHEAPESTPLANS WITH GIVEN PLAN LENGTH (&)

As a guiding example, we refer to Blocks World with parallebvas allowed, where apart from
finding shortest plans also minimizing the total number ofesds an issue. A¢ encoding for this
domain, where plans are serializable, is shown in Figuree?ializability here means that parallel
actions are non-interfering and can be executed sequgntiany order, i.e. the parallel plan can
be arbitrarily “unfolded” to a sequential plan.

fluents: on(B,L) requires block(B), location(L).
blocked(B) requires block(B).
moved(B) requires block(B).

actions: move(B,L) requires block(B), location(L) costs 1.

always : executable move(B,L) if B!=L.
nonexecutable move(B,L) if blocked(B)
nonexecutable move(B,L) if blocked(L)
nonexecutable move(B,L) if move(B1,L), B < B1, block(L).
nonexecutable move(B,L) if move(B,L1), L < L1.
nonexecutable move(B,B1) if move(B1,L).

caused on(B,L) after move(B,L).

caused blocked(B) if on(B1,B).

caused moved(B) after move(B,L).

caused on(B,L) if not moved(B) after on(B,L).

Figure 2: K¢ encoding for the Blocks World domain

The planning problem emerging from the initial state andgib&l state depicted in Figure 3 can
be modeled using the background knowledhe :

block(1). block(2). block(3). block(4). block(5). block(6).
location(table).
location(B):- block(B).

and extending the program in Figure 2 as follows:
initially: on(1,2). on(2,table). on(3,4). on(4,table). on(5,6). on(6,table).

goal : on(1,3), on(3,table), on(2,4), on(4,table), on(6,5), on(5,table) ?(I)

AR — e
12 4] 6] 31145
L]

Figure 3: A simple Blocks World instance

39

EITER, FABER, LEONE, PFEIFER& POLLERES

Each move is penalized with cost 1, which results in a miratidn of the total number of moves.
Let P, denote the planning problem for plan length
Forl = 2, we have an optimal plan which involves six moves, i@st},, = 6:

P, = ({move(1,table),move(3, table),move(5, table)}, {move(1,3),move(2,4),move(6,5)})

By unfolding the steps, this plan gives rise to similar plahtengthl = 3, ..., 6 that have cost 6.
For! = 3, we can find among others the following optimal plan, whick bast 5:

P; = ({move(3,table)}, {move(1,3),move(5,table)}, {move(2,4),move(6,5)})

This plan can not be further parallelized to having only tweps. For any plan length> 3, we

will obtain optimal plans similar td?;, extended by void steps. Thus a plan which is cheapest over
all plan lengths has cost 5 and needs three steps. Note thégsthparallel plans (of length 2) are
more expensive, as explained above.

5.1.2 SHORTESTPLANS ()

Intuitively, it should be possible to include the minimizet of time steps in the cost function. We
describe a preprocessing method which, givéh@anning domainPD, a list@ of ground literals,
and an upper bound> 0 for the plan length, generates a planning probfeaiPD, @, i) such that
the optimal plans foPs correspond to shortest plans which redgim PD in at most; steps, i.e.,
to plans for(PD, @ 7 (1)) such that < i is minimal. We assume that no action costs are specified
in the original planning domai®D, and minimizing time steps is our only target.

First we rewrite the planning domai?D to PDg as follows: We introduce a new distinct fluent
gr and a new distinct actiofiinish, defined as follows:

fluents: gr.
actions: finish costs time.
Intuitively, the actionfinish represents a final action, which we use to finish the plan. ates |
this action occurs, the more expensive the plan as we assiggm as cost. The fluengr (“goal
reached”) shall be true and remain true as soon as the gobelkeasreached, and it is triggered by
thefinish action.
This can be modeled ifC¢ by adding the following statements to th@éways section of the
program:
executable finish if (), not gr.
caused gr after finish.
caused gr after gr.

Furthermore, we warftinish to occur exclusively and we want to block the occurrence gf an

other action once the goal has been reached. Thereforeyeior actiona in PD, we add
nonexecutable A if finish.

and addnot gr to theif-part of each executability condition far Finally, to avoid any inconsis-
tencies from static or dynamic effects as soon as the godides reached, we adabot gr to the
if part of any causation rule of tHéD exceptonexecutable rules which remain unchangéd.

We define nowPg(PD, Q,i) = (PDg,gr ?(i + 1)). We takei + 1 as the plan length since we
need one additional step to execute fhaish action.

4. There is no need to rewriteonexecutable rules because the respective actions are already “switcfiedy
rewriting the executability conditions.

40

ANSWERSET PLANNING UNDER ACTION COSTS

By construction, it is easy to see that any optimal paa= (Ay,..., A4, Aj11,..., Ai4q) for
the planning problenP3 must haved;.; = {finish} and A, = ... = A;1; = 0 for some
j €H{0,...,i}. We thus have the following desired property.

Proposition 5.1 The optimal plans fo®z are in 1-1 correspondence to the shortest plans reach-
ing Q in PD. More precisely,P = (Ai,...,A;+1,0,...,0) is an optimal optimistic plan for
Ps(PD,Q,i) and A; 11 = {finish} if and only if P/ = (A;,..., A;) is an optimistic plan for
(PD,Q7(j)) wherej € {0,...,i}, and(PD, Q7 (5')) has no optimistic plan for eacfi < j.

In our Blocks World example, using this method we get allépstlans, if we choose> 2.

To compute shortest plans over all plan lengths, we can setgher bound large enough such
that plans of length < i are guaranteed to exist. A trivial such bound is the total imemof legal
states which is in general exponential in the number of flient

However, many typical applications have an inherent, muahller bound on the plan length.
For instance, in a Blocks World with blocks, any goal configuration can be reached within at most
2n — Sinit — Sqoal StEPS, Whera,,;; ands,,,; are the numbers of stacks in the initial and the goal
state, respectiveRy.Therefore, 6 is an upper bound for the plan length of our sinmstance.

We remark that this approach for minimizing plan length i$yasfficient if an upper bound
close to the optimum is known. Searching for a minimum lenmém by iteratively increasing the
plan length may be much more efficient if no such bound is kn@inte a weak upper bound can
lead to an explosion of the search space (cf. the benchmafksation 7.2).

5.1.3 SHORTEST AMONG THECHEAPESTPLANS (v)

In the previous subsection, we have shown how to calculaigest plans fokC programs without
action costs. Combining arbitra programs and the rewriting method described there is easy.
If we want to find a shortest among the cheapest plans, we @thasame rewriting, with just a
little change. All we have to do is setting the costs of all@tt excepttinish at least as high as
the highest possible cost of tHénish action. This is is obviously the plan lengtht+ 1. So, we

simply modify all action declarations
A requires B costs C where D.
in Pg by multiplying the costs with factar+- 1:
A requires B costs C; where C; = (¢+1)*C, D.
This lets all other action costs take priority over the cdsfinish and we can compute plans
satisfying criterion {). Let P, denote the resultant planning problem. Then we have:

Proposition 5.2 The optimal plans fofP, are in 1-1 correspondence to the shortest among the
cheapest plans reachin@ in PD within i steps. More precisely? = (Ay,...,A4;11,0,...,0)

is an optimal optimistic plan fo,(PD,Q,7) and A;j;; = {finish} if and only if (i) P’ =
(A1,...,A;j)isaplanforP; = (PD,Q7?(j)), wherej € {0,... 4}, and (i) if P" = (A1,..., Ajr)

is any plan forP; = (PD,Q7(j')) wherej’ < 4, then eithercostp ,(P") > costp,(P') or
costpj,(P”) = costp,(P") andj’ > j.

Figure 4 showsP,, for our Blocks World instance whetie= 6. One optimal plan fof?, is

5. One can solve any Blocks World problem sequentially by firsstacking all blocks which are not on the table
(n — sinit Steps) and then building up the goal configuration{sgoa: Steps).

41

EITER, FABER, LEONE, PFEIFER& POLLERES

fluents: on(B,L) requires block(B), location(L).
blocked(B) requires block(B).
moved(B) requires block(B).

gr.

actions: move(B,L) requires block(B), location(L) costs C where C=7x1.
finish costs time.

always: executable move(B,L) if B!=L not gr.
nonexecutable move(B,L) if blocked(B).
nonexecutable move(B,L) if blocked(L).
nonexecutable move(B,L) if move(B1,L), B < B1, block(L).
nonexecutable move(B,L) if move(B,L1), L <L1.
nonexecutable move(B,B1) if move(B1,L).

caused on(B,L) if not gr after move(B,L).

caused blocked(B) if on(B1,B), not gr.

caused moved(B) if not gr after move(B,L).

caused on(B,L) if not moved(B), not gr after on(B,L).

executable finish if on(1,3),0n(3,table),on(2,4),on(4,table),
on(6,5),on(5, table),not gr.

caused gr after finish.

caused gr after gr.

nonexecutable move(B,L) if finish.

initially: on(1,2). on(2,table). on(3,4). on(4,table). on(5,6). on(6,table).

goal : gr? (7)

Figure 4: Computing the shortest plan for a Blocks Worlddnse with a minimum number of
actions

P={({move(3,table)}, {move(1,3),move(5,table)},
{move(2,4),move(6,5)}, {finish}, 0, 0, 0),

which hascostp, (P) = 39. We can now compute the optimal cost wrt. optimizatioh fy sub-
tracting the cost of inish and dividing by: + 1: (39 —4) = (i + 1) = 35+ 7 = 5. Thus, we
need a minimum of 5 moves to reach the goal. The minimal numbstieps is obviously all steps,
except the finafinish action, i.e.3. Thus, we need at least 3 steps for a plan with five moves.

5.1.4 GHEAPEST AMONG THESHORTESTPLANS (¢)

Again, we can use the rewriting for optimizatiofi)(The cost functions have to be adapted similarly
as in the previous subsection, such that now the cost of tl@&d nish takes priority over all other
actions costs. To this end, it is sufficient to set the codtiafish high enough, which is achieved
by multiplying it with a factorF’ higher than the sum of all action costs of all legal actiotanses
atall stepsgi = 1,...,i + 1. LetP; denote the resulting planning problem. We have:

Proposition 5.3 The optimal plans fofPs are in 1-1 correspondence to the cheapest among the
shortest plans reaching in PD within i steps. More precisely? = (A1, ..., 4;11,0,...,0)

42

ANSWERSET PLANNING UNDER ACTION COSTS

is an optimal optimistic plan foPs(PD,Q,i) and A;y; = {finish} if and only if (i) P’
(A1,...,Aj)isaplanforP; = (PD,Q?(j)), wherej € {0,...,i}, and (i) if P” = (A;,..., A
is any plan forP;; = (PD, Q7 (j')) wherej’ < i, then eitherj’ > j, orj' = j andcostp, (P")
costp, (P').

~

y/

J

v

In our example, there are 36 possible moves. Thus, we cokéd Fa= 36 * (i + 1) and
would set the costs dfinish to time * 36 * (i + 1). However, we only need to take into account
those actions which can actually occur simultaneously. unexample, at most six blocks can
be moved in parallel. Therefore, it is sufficient to gét= 6 = (: + 1) and assigrfinish cost
time * F' = time x 42. Accordingly, the action declarations are modified as fedo

actions: move(B,L) requires block(B), location(L) costs 1.
finish costs C where C = time % 42.

An optimal plan for the maodified planning probleRy is:

P ={({move(1,table),move(3, table),move(5, table)},
{move(1, 3),move(2,4),move(6,5)}, {finish}, 0, 0, 0, 0)

We havecostp, (P) = 132. Here, we can compute the optimal cost wrt. optimizatigrby simply
subtracting the cost ofinish, i.e. 132 — 3 x 42 = 6, sincefinish occurs at time poin8.
Consequently, we need a minimumeimoves for a shortest plan, which has length 1 = 2.

And indeed, we have seen that (and how) the optimizationl@nab ¢) through (4) can be
represented ifC¢. We remark that the transformatioRg, 7, andP; all work under the restrictions
to secure and/or sequential plans as well.

5.2 Traveling Salesperson

As another illustrating example for optimal cost planning, will now introduce some elaboration
of the Traveling Salesperson Problem.

Traveling Salesperson Problem (TSP). We start with the classical Traveling Salesperson Prob-
lem (TSP), where we have a given set of cities and connecteogs roads, airways) of certain costs.
We want to know a most economical round trip which visits #les exactly once and returns to
the starting point (if such a tour exists). Figure 5 showsrateince representing the capitals of all
Austrian provinces. The dashed line is a flight connectionilenall other connections are roads;
each connection is marked with the costs in traveling hours.

brg ... Bregenz
eis ... Eisenstadt
gra ... Graz

ibk ... Innsbruck
kla ... Klagenfurt
lin ... Linz

sbg ... Salzburg
stp ... St. Pdlten
vie ... Vienna

Figure 5: TSP in Austria

43

EITER, FABER, LEONE, PFEIFER& POLLERES

We represent this if'C¢ as follows. The background knowledd@krsp defines two predicates
city(C) andconn(F, T, C) representing the cities and their connections with astmtieosts. Con-
nections can be traveled in both ways:

conn(brg, ibk, 2). conn(ibk, sbg, 2). conn(ibk, vie, 5

conn(sbg, kla, 2). conn(sbg, gra, 2)

conn(kla, gra,?2). conn(lin, stp, 1)

conn(gra,vie, 2). conn(gra, eis, 1)
(()
(

(). conn(ibk, kla, 3).
.conn(sbg,1lin, 1). conn(sbg, vie, 3).
.conn(lin,vie,2). conn(lin, gra, 2).
.conn(stp,vie,1). conn(eis,vie, 1).
conn(stp, eis,2). conn(vie, brg,1).
conn(B,A,C):- conn(A,B,C).
city(T) :- conn(T,_,.).
A possible encoding of TSP starting in Vienna §) is the ¢ program in Figure 6. It includes two

actions for traveling from one city to another and for dikgceturning to the starting point at the
end of the round trip as soon as all cities have been visited.

actions: travel(X,Y) requires conn(X,Y,C) costs C.
return from(X) requires conn(X,vie,C) costs C.

fluents: unvisited. end.
in(C) requires city(C).
visited(C) requires city(C).

always : executable travel(X,Y) if in(X).
nonexecutable travel(X,Y) if visited(Y).
executable return from(X) if in(X).
nonexecutable return_from(X) if unvisited.

caused unvisited if city(C), not visited(C).
caused end after return from(X).
caused in(Y) after travel(X,Y).
caused visited(C) if in(C).
inertial visited(C).
noConcurrency.
initially: in(vie).
goal: end? (9)

Figure 6: Traveling Salesperson

The problem has ten optimal 9-step solutions with cost 15sksv only the first five here, as the
others are symmetrical:

P, = ({travel(vie,stp)}, {travel(stp,eis)}, {travel(eis,gra)}, {travel(gra,lin)},
{travel(lin,sbg)}, {travel(sbg,kla)}, {travel(kla,ibk)}, {travel(ibk,brg)},
{return_from(brg)})

Py, = ({travel(vie,eis)}, {travel(eis,stp)}, {travel(stp,lin)}, {travel(lin,sbg)},
{travel(sbg,gra)}, {travel(gra,kla)}, {travel(kla,ibk)}, {travel(ibk,brg)},
{return from(brg)})

P; = ({travel(vie,eis)}, {travel(eis,stp)}, {travel(stp,lin)}, {travel(lin,gra)},

{travel(gra,kla)}, {travel(kla,sbg)}, {travel(sbg,ibk)}, {travel(ibk,brg)},

{return_from(brg)})

P, = ({travel(vie,lin)}, {travel(lin,stp)}, {travel(stp,eis)}, {travel(eis,gra)},

{travel(gra,kla)}, {travel(kla,sbg)}, {travel(sbg,ibk)}, {travel(ibk,brg)},

44

ANSWERSET PLANNING UNDER ACTION COSTS

{return from(brg)})

Ps = ({travel(vie,gra)}, {travel(gra,eis)}, {travel(eis,stp)}, {travel(stp,lin)},
{travel(lin, sbg)}, {travel(sbg,kla)}, {travel(kla,ibk)}, {travel(ibk,brg)},
{return from(brg)})

TSP with variable costs. Let us now consider an elaboration of TSP, where we assune tha
the costs of traveling different connections may changeénduthe trip. Note that three of the
five solutions in our example above include traveling fronPSkien to Eisenstadt or vice versa on
the second day. Let us now assume that the salesperson, avtsost Monday, has to face some
exceptions which might increase the cost of the trip. Fdaimse, (i) heavy traffic jams are expected
on Tuesdays on the route from St.Polten to Eisenstadt)dhéisalesperson shall not use the flight
connection between Vienna and Bregenz on Mondays as onBneik business class tickets are
available on this connection in the beginning of the weekwgdave to deal with different costs
for the respective connections depending on the particiagr

To this end, we first add to the background knowletlyg;p a new predicateost(A, B, W,C)
representing the cost of traveling connectiom to B on weekdayw which can take exceptional
costs into account:

cost(A,B,W,C) :- conn(A,B,C), #int(W), 0 <W, W<=7, not ecost(4,B,W).

ecost(A,B,W) :- conn(4,B,C), cost(A,B,W,Cl), C!=C1.
The original costs in the predicatenn(A, B, C) now represent defaults, which can be overridden
by explicitly adding different costs. For instance, to eg@ant the exceptions (i) and (ii), we add:

cost(stp,eis, 2,10). cost(vie,brg,1,10).

setting the exceptional costs for these two critical cotioes to 10. Weekdays are coded by integers
from 1 (Monday) to 7 (Sunday). We represent a mapping frone tsteps to the weekdays by the
following rules which we also add tdgp:

weekday(1,1).

weekday(D,W):- D=D1+41, W= W1+ 1, weekday(D1,W1), W1 < 7.

weekday(D,1):- D =D1+ 1, weekday(D1,7).

Note that although the modified background knowletige p is not stratified (sinceost is defined
by cyclic negation), it has a total well-founded model, amakta unique answer set.

Finally, we change the costs of traveling and returning @t program from Figure 6:
actions: travel(X,Y) requires conn(X,Y,Cl) costs C
where weekday(time,W), cost(X,Y,W,C).
return from(X) requires conn(X,vie,Cl) costs C
where weekday(time,W), cost(X,vie,W,C).

Since now the costs fd?, (which includes traveling from St.Pdlten to Eisenstadt}iue second
day have increased due to exception (i), only four of the pfaom above remain optimal. Note
that unlike the default costs, exceptional costs do notyapidirectionally, so the exception does
not affect”, and P;. Furthermore, due to exception (ii) the symmetrical roumuststarting with
the flight trips to Bregenz are no longer optimal.

The presented encoding proves to be very flexible, as it alfowadding arbitrary exceptions
for any connection on any weekday by simply adding the rdsmetacts; moreover, even more
involved scenarios, where exceptions are defined by ruéesbe modeled.

45

EITER, FABER, LEONE, PFEIFER& POLLERES

5.3 A Small Example for Planning under Resource Restriction

Although planning with resources is not the main target af approach, the following encoding

shows that action costs can also be used in order to modetiaption of resource consumption in

some cases. An important resource in real world planningoiseym For instance, let us consider a
problem about buying and selling (Lee & Lifschitz, 2001):

“I have $6 in my pocket. A newspaper costs $1 and a magazirts §8s Do | have
enough money to buy one newspaper and two magazines?”

In K¢, this can be encoded in a very compact way by the followindkdpanzind facts:
item(newspaper,1). item(magazine,?2).

combined with the following shoi’¢ program:
actions: buy(Item,Number) requires item(Item,Price), #int(Number)
costs C where C = Number *x Price.

fluents: have(Item,Number) requires item(Item,Price), #int(Number).

always : executable buy(Item, Number).
nonexecutable buy(Item,N1) if buy(Item,N2), N1 < N2.
caused have(Item,Number) after buy(Item,Number).
goal : have(newspaper, 1), have(magazines,2)? (1)

The actionbuy is always executable, but one must not buy two different arteoaf a certain
item at once. Obviously, no admissible plan wrt. cost 6 exias$ the optimal plan for this problem,
({buy(newspaper, 1), buy(magazine, 2)}) hascost} = 7. Therefore, the answer to the problem
is “no.”

Our approach considers only positive action costs and doeslirectly allow modeling full
consumer/producer/provider relations on resources irrgénin favor of a clear non-ambiguous
definition of optimality. For instance, by allowing negatigosts one could always add a producer
action to make an existing plan cheaper, whereas in our approosts are guaranteed to increase
monotonically, allowing for a clear definition of plan cosisd optimality.

On the other hand, we can encode various kinds of resourttectiess by using fluents to rep-
resent these resources. We can then model productionfoptism as action effects on these fluents
and add restrictions as constraints. This allows us to mexdah complex resource or scheduling
problems; optimization, however, remains restricted tmaaosts.

6. Transformation to Logic Programming

In this section, we describe how planning under action costsbe implemented by means of a
transformation to answer set programming. It extends oevipus transformation (Eiter et al.,
2003a), which maps ordinarg planning problems to disjunctive logic programs under thenger
set semantics (Gelfond & Lifschitz, 1991), and takes acgabf weak constraints, cf. (Buccafurri,
Leone, & Rullo, 1997, 2000), as implemented in ey system (Faber & Pfeifer, 1996; Eiter,
Faber, Leone, & Pfeifer, 2000a). In addition, we show how trinslation can be adapted to the
language of Smodels (Simons, Niemela, & Soininen, 2002).

6.1 Disjunctive Logic Programs with Weak Constraints

First, we give a brief review of disjunctive logic programghwveak constraints.

46

ANSWERSET PLANNING UNDER ACTION COSTS

Syntax A disjunctive rule(for short,rule) R is a construct
ay v -+ V Gy - by, -+ b, not by, -, not by,. 2

where alla; andb; are classical literals over a function-free first-orderhalpet, anch > 0, m >
k > 0. The part left (resp. right) of:* " is the head(resp.body) of R, where “ - " is omitted if
m=0. We letH(R) = {a1,..., a,} be the set of head literals ai®(R) = B*(R) U B~ (R)
the set of body literals, wherB*(R) = {b1,...,bx} and B~ (R) = {bg+1, .., bm}. A (Strong)
constraintis a rule with empty heach(= 0).

A weak constraints a construct

i~ by, b, not bgyq, -+, not by,. [w] 3)

wherew is an integer constant or a variable occurringin. . . , b, and allb; are classical literal$.
B(R) is defined as for (2).

A disjunctive logic program (DLP) (simply, progran is a finite set of rules, constraints and
weak constraints; here, superscriptndicates the potential presence of weak constraints.

Semantics The answer sets of a prograrhwithout weak constraints are defined as usual (Gel-
fond & Lifschitz, 1991; Lifschitz, 1996). There is one diféace, though: We do not consider
inconsistent answer sets. The answer sets of a proffamith weak constraints are defined by
selection from the answer sefsof the weak-constraint free pditt of IT as optimal answer sets.

A weak constraint of form (3) is violated, if it has an instance for which its qumction is
satisfied with respect to the candidate answelSseée., there exists a substitution mappthgom
the variables in: to the Herbrand base of such thafb,6, - - - , b0} C S and{by4+16,--- , byp8}N
M = (; we then calkwf the violation valueof ¢ wrt. .” Theviolation costof ¢ wrt. S, denoted
cost.(S), is the sum of all violation values over all violating subtions forc wrt. S; the cost of
S, denotectostr(S), is then

costry(S) = Z cost.(S),

c € weak constraints of II

i.e., the sum of violation costs of weak constraintdlrwrt. S. An answer sefl/ of II is now
selected (called aoptimal answer s@tif costr; (M) is minimal over all answer sets oF.

From (Buccafurri et al., 2000) we know that given a head-&ye disjunctive program, decid-
ing whether a query is true in some optimal answer setAg’-complete. The respective class for
computing such an answer sefid2’-complete. Together with the results from Section 4 thig-ind
cates that translations of optimal planning problems talkseale-free disjunctive logic programs
with weak constraints or the language of Smodels are feasilpolynomial time.

6.2 Translating K¢ to DLPY

We extend our original transformatidp(P), which naturally maps & planning problenf into a
weak-constraint free program (Eiter et al., 2003a), to atamslation/p™ (P), such that the optimal
answer sets dip" (P) correspond to the optimal cost plans for #&planning problenf.

6. The colon inw :] stems from thdLV language, which allows to specify a priority layer after dodon. We do not
need priority layers in our translation, but stick to fBeV syntax.

7. A weak constraint is only admissible, if all possible violation values in alirdlidate answer sefs are integers.
Thus, ifw is a variable, thefl must guarantee that can only be bound to an integer.

47

EITER, FABER, LEONE, PFEIFER& POLLERES

Basically, inip(P) fluent and action literals are extended by an additional par@meter, and
executability conditions as well as causations rules aréulaoly translated (rule by rule) into cor-
responding program rules and constraints; disjunctiosésidor guessing the actions which should
be executed in the plan at each point in time.

6.2.1 REVIEW OF THE TRANSLATION Ip(P)

The basic steps of the translation fré@rprograms to logic programs are as follows (cf. (Eiter et al.,
2003a) for details):

Step 0 (Macro Expansion): First, replace all macros in tHé program by their definitions.

Step 1 (Background Knowledge): The background knowleddé of P is already given as a logic
program and is included itp(P), without further modification.

Step 2 (Auxiliary Predicates): To represent steps, we add the following factgid)
time(0).,...,time(l). next(0,1).,...,next(l — 1,1).

wherel is the plan length of the query= G?(l) in P at hand.

Step 3 (Causation Rules): Causation rules are mapped to ruleg;iiP) by adding type informa-
tion and extending fluents and actions with a time stamp using andnext. For example,

caused across(X) after cross(X), -across(X).

leads to ruleacross(X,T;) :- cross(X,To), -across(X, To), person(X), next(To, Ty).

in Ip(P) whereT,, T, are new variables. Here, type informatiparson(X) for across(X), and
-across(X), taken from the type declaration, is added, which helps tidaamsafe logic program-
ming rules.

Step 4 (Executability Conditions): Similarly, each executability condition is translated tdis
junctive rule “guessing” whether an action occurs at a @ettene step. In our running example,

executable cross(X) if hasLamp(X).
becomescross(X,To) V -cross(X,To) : - hasLamp(X, To), person(X), next(To, Ty).

which encodes a guess whether at time pojnactioncross(X) should happen; again, type infor-
mationperson(X) is added as well asext(To, T;) to ensure thal, is not the last time point.

Step 5 (Initial State Constraints): Initial state constraints are transformed like static atios
rules in Step 3, but using the constant 0 instead of the Mariaband thus need no auxiliary predi-
cate for the time stamp. For instance,

initially: caused -across(X).
becomes, by again adding the type informatiefcross(X,0) : - person(X).

Step 6 (Goal Query): Finally, the query:
goal : g1 (E)a s agm(%)v not gm+1(tm+1)7 ...,not gn(a) ? (l)
is translated as follows, whepwal reached is a new 0-ary predicate symbol:

goal reached :- g1(t1,0), .., gm(Em, 1), 00t Gmi1(Emr1,1), ..., 00t gn(tn,l).
.- not goal_reached.

48

ANSWERSET PLANNING UNDER ACTION COSTS

6.2.2 EXTENDING THE TRANSLATION TO ACTION COSTS

The extended translatidp® (P) for a ¢ problem? first includes all rules ofp(P,,.), whereP,,.
results fromP by stripping off all cost parts. Furthermore, the followisigp is added:

Step 7 (Action Costs): For any action declaratiosof form (1) with a nonemptygosts-part, add:

costp(Xy,...,Xn, T,CO) :- p(X1,..., %5, T), t1,..., tn,

(i) A new ruler, of the form 10, . 0 U=T+1.

4)
wherecost, is a new symbolT andU are new variables artl= {time — U}. As an optimization,
U =T+ 1is only present iy occurs elsewhere in;.

(i) A weak constraintwc, of the form i~ costp(Xy,...,Xn, T,C). [C] (5)

For example, theross action from the Quick Bridge Crossing Problem is translated
coSteross(X, T,WX): - cross(X,T), person(X), walk(X, WX).
i~ COSteross(X, T, WX). [WX :]

As we showed in previous work (Eiter et al., 2003a), the anseés oflp(P) correspond to
trajectories of optimistic plans fgP. The following theorem states a similar correspondencaltres
for [p* (P) and optimal plans foP. We define, for any consistent set of ground literg/she sets
AY ={a() | a(f,j—1) € S,a € o™} andsy = {f(T) | f(I,j) € S, f(}) € Ly}, forall j > 0.

Theorem 6.1 (Answer Set Correspondencelet P = (PD, q) be a (well-defined}C® planning
problem, and letp® (P) be the above program. Then,

(i) for each optimistic planP = (A4, ..., A;) of P and supporting trajectoryl’ = ((sg, 41, $1),
(s1,A9,89), ..., (s;—1, Ay, s;)) of P, there exists some answer setof [p*(P) such that
Aj = A;-q forall j=1,...,1,s; = sf, forall j =0,...,l andcostp(P) = costy,up)(S);

(i) for each answer se$ of [p”(P), the sequenc® = (A, ..., A;) is a solution ofP, i.e., an
optimistic plan, witnessed by the trajectdfy= ((sg, A1, s1), (s1, A2, 82), ..., {s1-1, A1, 81))
with costp(P) = costy,u(py(S), whered; = A7 ands;, = s forall j = 1,...,7 and
k=0,...,1

The proof is based on the resp. correspondence resul (&iter et al., 2003a). For the details,
we refer to the Appendix.

From this result and the definitions of optimal cost plans @piimal answer sets, we conclude
the following result:

Corollary 6.2 (Optimal answer set correspondence)For any well-definedC¢ planning problem
P =(PD,Q7?(l)), the trajectoriesI’ = ((so, A1, $1), - -, {(s1—1, A, s1)) of optimal plansP for P
correspond to the optimal answer setof Ip* (P), such thatd; = AJS forall j =1,...,l and
sj=s3,forall j=0,...,1.

Proof. For eacha € A;, the weak constraint (5) causes a violation value®tf ;(a). Further-
more, these are the only cost violations. Thus, a candideeer setS is optimal if and only if
costyuw(p) (S) = 23:1 ZaeAj costj(a) = costp(P) is minimal, i.e.,S corresponds to an optimal
plan. O

A similar correspondence result also holds for admissildes

49

EITER, FABER, LEONE, PFEIFER& POLLERES

Corollary 6.3 (Answer set correspondence for admissible phs) For any well-definedCe plan-
ning problemP = (PD, Q7 (1)), the trajectoriesI’ = ((so, A1, $1), ..., (s1-1, A1, 51)) of admissi-
ble plansP for PP wrt. costc correspond to the answer sefsof p*'(P) havingcost,.p) (S) < c,
such thatd; = Af forall j = 1,...,lands; = s, forall j = 0,...,1.

As for secure planning, we have introduced a technique tokcbecurity of an optimistic plan
for certain planning problem instances by means of a logigmam (Eiter et al., 2003a). This
method carries over to planning with action costs in a ditéegward way, and optimal resp. ad-
missible secure plans can be similarly computed by ansvwg@ragramming.

6.3 Alternative Translation for Smodels

Apart from the presented translation using weak constamre could also choose an alternative

approach for the translation to answer set programming. défeqSimons et al., 2002) supports

another extension to pure answer set programming alloveimginimize over sets of predicates.
This approach could be used in an alternative formulatiggtep 7:

Step 7a: For action declarations with nonemptysts-parts, we add a new rule of form
cost(p,X1,...,%Xn,0,...,0,T,CO) 1~ tq,...,tp, C16,...,cxf,U=T+ 1. (6)

similar to Step 7 above, with two differences: (1) action Banis now a parameter, and (2) we add
[— n parameters with constant “0” betwegpandT wherel is the maximum arity of all actions in
PD. This is necessary in order to get unique atity 2 for predicatecost. Furthermore, we add

occurs(p, Xy, ..., %5,0,...,0,T):- p(Xy,..., %, T), t1,...,tn, @)

This second rule adds the same “0” parameters as for to &chielque arityl + 1 of the new
predicateoccurs. Using Smodels syntax, we can now compute optimal plans dingd
minimize[occurs(A, Xy, ...,X;, T) : cost(A,Xy,...,X;, T,C) =CJ.

Note that Smodels does not support disjunction in rule hesalsve also need to modify Step 4,
expressing the action guess via unstratified negation od8lsiachoice rules.

7. Implementation

We have implemented an experimental prototype sys@v®, for solving K planning prob-
lems (Eiter et al., 2003a). An improved version of this ptgbe it is now capable of optimal
and admissible planning with respect to the extended syoftdx®, available for experiments at
http://ww. dl vsystem com K/ .

DLVX has been realized as a frontend to Bhe/ system (Faber & Pfeifer, 1996; Eiter et al.,
2000a). First, the planning problem at hand is transformedesscribed in the previous section.
Then, theDLV kernel is invoked to produce answer sets. Bptimistic planningthe (optimal, if
action costs are defined) answer sets are then simply ttaddlack into suitable output for the user
and printed.

In case the user specified tisgicure/conformant plannirghould be performed, our system has
to check security of the plans computed. In normal (nonregli planning, this is simply done by
checking each answer set returned right before transfgrihipack to user output. In the case of

50

ANSWERSET PLANNING UNDER ACTION COSTS

optimal secure planning, on the other hand, the candidawerrset generation of thaLV kernel
has to be “intercepted”: The kernel proceeds computingidatelanswer sets, returning an answer
set with minimal violation cost value, by running throughaandidates. Here, in order to generate
optimal secure planghe planning frontend interrupts computation, allowimgyanswer sets which
represent secure plans to be considered as candidates.

Checking plan security is done by rewriting the translateshmm wrt. the candidate answer
set/plan in order to verify whether the plan is secure. Thaiteen “check program” is tested by a
separate invocation of tha V kernel. As for further details on the system architectureefer to
(Eiter et al., 2003a)

7.1 Usage

Suppose the background knowledge and the program depictédure 1 with the cost extensions
from Section 3.3 are stored in files ossi ng. bk andcr ossi ng. pl an;then, by invoking the
program with the command line

dlv — FPcrossing.plancrossing.bk — planlength =7

we compute all optimal plans solving this problem in sevepst In the output we find, after a
supporting trajectory, the following optimal plan:

PLAN : crossTogether(joe, jack): 2; cross(joe):1; takeLamp(william);
crossTogether(william, averell): 10; takeLamp(jack);
cross(jack): 2; crossTogether(joe,jack):2 COST: 17

For each action, its cost is shown after a colon, if it is nemsz The switch pl anl engt h=i can

be used to set the plan length; it overrides any plan lengtngin thequery-part of the planing
problem. Using pl anl engt h=5, we get plans with cost 19, as there are no cheaper planstof tha
length.

The user is then asked whether to perform the optional sgaheck and whether to look for
further (optimal) plans, respectively. The swittRPsec can be used instead ef-P to obtain
secure plans only.

The command line optioncost bound=N effects the computation of all admissible plans
with respect to coslV. For example, the resource problem described in Sectionéhde solved
by the following call to our prototype:

dlv — FPbuying.bkbuying.plan — N = 10 — planlength = 1 — costbound = 6

Correctly, no admissible plan is found. When calling thetaysagain without cost bound, the
prototype calculates the following optimal cost plan:

PLAN : buy(newspaper, 1) : 1, buy(magazine,2):6 COST: 7

The current prototype supports simple bounded integelragtics. The option N=10 used
above sets an upper bound 8f= 10 for the integers which may be used in a program; the built-
in predicate#int is true for all integers 0 ..N. Setting N high enough, taking into account
the outcome of built-in arithmetic predicates = B + C and A = B x C, is important to get
correct results. Further details on the prototype are givetheDLV* web site aht t p: / / www.

dl vsystem com K/ .

51

EITER, FABER, LEONE, PFEIFER& POLLERES

7.2 Experiments

Performance and experimental results bo/* (without action costs and optimal planning) were
reported in previous work (Eiter et al., 2003a). In this Eggtwe present some encouraging exper-
imental results for planning with action costs, in partésuior parallel Blocks World and TSP. All
experiments were performed on a Pentium Il 733MHz machiitie 26MB of main memory run-
ning SUSE Linux 7.2. We set a time limit of 4000 seconds fohdasted instance where exceeding
this limit is indicated by “-” in the result tables.

Where possible, we also report results for CCALC and CMBB, ttther logic-based planning
systems whose input languag€sHresp..AR) have capabilities similar t& resp.xCc.

CCALC. TheCausal Calculato(CCALQ is a model checker for the languages of causal theories
(McCain & Turner, 1997). It translates programs in the aclenguageC+ into the language of
causal theories which are in turn transformed into SAT motd; these are then solved using a SAT
solver (McCain & Turner, 1998). The current version of CCAu§es mChaff (Moskewicz et al.,
2001) as its default SAT solver. Minimal length plans areggated iteratively increasing the plan
length up to an upper bound. CCALC is written in Prolog. Fartasts, we used version 2.04b of
CCALC which we obtained fror& URL: htt p: / / www. cs. ut exas. edu/ users/tag/cc/

> and a trial version of SICStus Prolog 3.9.1. We used encsdiaken from (Lee & Lifschitz,
2001) for parallel Blocks World adapted for CCALC 2.0. Theswodings are included in the
current download version of the system. For sequential l&latorld we adapted the encodings
by adding theC+ command foConcurrency.” which resembles the respecti¥@command. All
results for CCALC include 2.30sec startup time.

CMBP. TheConformant Model Based PlannEEMBP) (Cimatti & Roveri, 2000) is based on the
model checking paradigm and exploits symbolic Booleantionaepresentation techniques such
as Binary Decision Diagrams (Bryant, 1986). CMBP allows domputing sequential minimal
length plans, where the user has to declare an upper bounldefg@dan length. Its input language
is an extension ofAR (Giunchiglia, Kartha, & Lifschitz, 1997). UnlikéC or action languages
such as’+ (Lee & Lifschitz, 2001), this language only supports praposal actions. CMBP is
tailored for conformant planning. The results reported pl@ment a previous comparison which
also shows the encoding for sequential Blocks World in CMBRef et al., 2003a). For our tests,
we used CMBP 1.0, available atJRL: http://sra.itc.it/people/roveri/cnbp/>.

7.2.1 B.ocks WORLD

Tables 1-4 show the results for our different Blocks Worldaghings in Section 5.1 on several
configurations: PO denotes our simple instance from Figusehle P1-P5 are instances used in
previous work (Eiter et al., 2003a; Erdem, 1999).

Table 1 shows the results for finding a shortest sequential. prhe second and third column
show the number of blocks and the length of a shortest plan {fie least number of moves) solving
the respective blocks world instance. The execution timedtving the problem using the shortest-
plan encodingPs in Section 5.1 is shown in column five, using the upper bourmdvstin the fourth
column on the plan length. Column six shows the executiom fion finding the shortest plan in
an incremental plan length search starting from 0, simiathe method used for CCALC. The
remaining two columns show the results for CCALC and CMBP.

52

ANSWERSET PLANNING UNDER ACTION COSTS

Problem | #blocks | min. #moves (=#steps) upper bound #steps DLV* | DLVZL,. || CCALC || CMBP
PO 6 5 6 0.48s 0.29s 4.65s 21.45s
P1 4 4 4 0.05s 0.08s 3.02s 0.13s
P2 5 6 7 0.24s 0.27s 4.02s 8.44s
P3 8 8 10 25.32s| 2.33s 10.07s -
P4 11 9 16 - 8.28s 27.19s -
P5 11 11 16 - 12.63s 32.27s -

Table 1: Sequential Blocks World - shortest plans

Problem | #blocks | #steps(fixed)| min. #moves| DLV*

PO 6 2 6 0.05s
PO 6 3 5 0.09s
P1 4 3 4 0.04s
P2 5 5 6 0.10s
P3 8 4 9 0.21s
P4 11 5 13 0.81s
P5 11 7 15 327s

Table 2: Parallel Blocks World - cheapest plans: Minimal bemof moves at fixed plan length)

Table 2 shows the execution times for parallel blocks worith iixed plan length where the
number of moves is minimized, i.e. problem)(n Section 5.1. We used the encoding in Figure 2,
which generates parallel serializable plans. As CCALC aMBe€ do not allow for optimizing
other criteria than plan length, we only have resultstiov* here.

Next, Table 3 shows some results for finding a shortest ghnaltn, i.e. problemg) in Sec-
tion 5.1. First, the minimal possible number of steps is givw&/e processed each instance (i) using
the encodingPs from Section 5.1, (ii) without costs by iteratively incr@ss the plan length and
(i) using CCALC, by iteratively increasing the plan lehgintil a plan is found. For every result,
the number of moves of the first plan computed is reportedratgig As CMBP only supports
sequential planning, it is not included in this comparison.

Finally, Table 4 shows the results for the combined optitiize () and ¢) for parallel Blocks
World as outlined in Section 5.1. The second column agaitatos the upper bound for the plan

upper bound| min. #steps DLV* DLVE, CCALC
#moves| time || #moves| time || #moves| time
PO 6 2 6 0.52s 6 0.09s 6 4.05s
P1 4 3 5 0.07s 5 0.08s 4 2.95s
P2 7 5 9 0.39s 9 0.21s 6 3.70s
P3 10 4 - - 12 0.43s 9 7.69s
P4 16 5 - - 18 1.54s 13 20.45s
P5 16 7 - - 26 3.45s 15 23.22s

Table 3: Parallel Blocks World - shortest pla#) (

53

EITER, FABER, LEONE, PFEIFER& POLLERES

() (%)

upper bound|| steps/moved DLV* | DLVY, | CCALC || steps/moved DLV* | DLVE,
PO 6 3/5 38.5s 0.18s 5.89s 2/6 0.26s 0.09s
P1 4 3/4 0.07s 0.11s 3.47s 3/4 0.08s 0.08s
P2 7 5/6 2.08s 0.21s 5.65s 5/6 0.78s 0.28s
P3 10 5/8 - 1.57s 15.73s 4/9 177s 0.45s
P4 16 9/9 - - 73.64s 5/13 - 1.86s
P5 16 11/11 - - 167s 7/15 - 323s

Table 4: Parallel Blocks World «),(d)

length of the respective instance. The following three wwia present the results on finding a
shortest among the cheapest plans, i.e. probt@rn(Section 5.1:

DLVE refers to the results for our combined minimal encodimgand as described in Section 5.1;

DLVwa refers to the results for incrementally searching for thertglst among the cheapest plans:
This is done by means of thecost bound=: command line option taking the minimal
sequential costs (i.e., the shortest sequential planHeaytomputed in Table 1) as an upper
cost limit. As our encodings compute serializable plans ntiinimal sequential length can be

used as cost limit in this special case.

CCALC A similar technique can be used with CCALC when encoding dazosts through “ad-
ditive fluents” (Lee & Lifschitz, 2001).

Note that the incremental strategy (useddbyvs = and CCALC) takes advantage of our spe-
cific formulation of the parallel Blocks World problem: Inmgral, when allowing parallel actions
which are not necessarily serializable and have arbitrasysg the optimal parallel cost might differ
from the optimal sequential solution. In particular, plavsich are longer than the cheapest se-
quential plans (which, in this example, coincide with thersst sequential plans) may need to be
considered. This makes incremental search for a solutignatfiem) infeasible in general.

The last test is finding a cheapest among the shortest platsst problemd) in Section 5.1.
Again we have tested the integrated encoding with an uppaid@;) resp. incrementally finding
the shortest plan. Unlike for probleny)(we cannot derive a fixed cost limit from the sequential

solution here; we really need to optimize costs, which makesncoding in CCALC infeasible.

Blocks World — Results The Blocks World experiments show thaitV* can solve various opti-
mization tasks in a more effective and flexible way than thetesps compared. On the other hand,
as already stated above, for the minimal plan length engsdim Section 5.1, we can only solve
the problems where a tight upper bound for the plan lengthdsv. Iteratively increasing the plan
length is more effective, especially if the upper bound imhigher than the actual optimal solu-
tion. This becomes drastically apparent when executiorgigeem to explode from one instance
to the next, in a highly non-linear manner as in Table 1 wheselation for P3 can be found in
reasonable time whereas P4 and P5 could not be solved whithiimte limit of 4000 seconds. This
observation is also confirmed in the other tables (instada Pable 2, etc.) and is partly explained
by the behavior of the underlyingLV system, which is not geared towards plan search, and as a
general purpose problem solver uses heuristics which nmightvork out well in some cases. In
particular, during the answer set generation proce&t) no distinction is made between actions

54

ANSWERSET PLANNING UNDER ACTION COSTS

and fluents, which might be useful for planning tasks to adritre generation of answer sets resp.
plans; this may be part of further investigations.

Interestingly, CCALC finds “better quality” parallel soloms for problem) (cf. Table 3), i.e.
solutions with fewer moves, although it is significantlyveér than our system on these instances.
For the incremental encoding of problem),(CCALC seems even more effective than our system.
However, CCALC offers no means of optimization; it allows dmissible but not for optimal
planning. This makes our approach more flexible and genasadtated above, we could fortunately
exploit the fixed cost bound in this particular example forALC, which is not possible in general
instances of problenmyj.

Problem §) is also intuitively harder than simply finding a shortesirpbr a cheapest among
all shortest plans in general: While these problems canyala solved incrementally, foty) we
must consider all plans of all lengths. A longer plan may beagler, so we cannot freeze the plan
length once a (shortest) plan has been incrementally found.

7.2.2 TSP

Some experimental results on TSP with variable costs amrtexpin Tables 5 and 6. Unlike for
blocks world, no comparable systems were available; notigeafystems from above supports cost
optimal planning as needed for solving this problem. Hdre,glan length is always given by the
number of cities.

Table 5 shows the results for our TSP instance on the Augtrievince capitals as in Figure 5
(nine cities, 18 connections), with and without the exaepi costs as in Section 5.2 (with and with-
out subscriptxc in the table). Further instances reported in this table difflerent cost exceptions
(we, lwe, rnd) are described below.

Results for some bigger TSP instances, given by the capitthe 15 members of the European
Union (EU) with varying connection graphs and exceptiortats are shown in Table 6. We have
used the flight distances (km) between the cities as commectists. Instances TSP1—TSPzys
have been generated by randomly choosing a given numbemagctions from all possible con-
nections between the 15 cities. Note that EgPhas no solution; the time reported here is until
DLV terminated, and for all other instances until the first optiplan was found.

We have also tested some instances of more practical relevhan simply randomly choosing
connections: TSEy7 is an instance where we have taken the flight connectionsreé tbarriers
(namely, Star Alliance, Alitalia, and Luxair), and in Tg#% we have included only direct connec-
tions of at most 1500km. Such a “capital hopping” is of ingtrer a small airplane with limited
range, for instance.

For each instance in Tables 5-6 we have measured the exetnotiz

e without exceptional costs,

¢ with 50% costs for all connections on Saturdays and Sundegskendsive)

e with 50% costs for all connections on Fridays, Saturdays@umtlays (long weekendsye),

¢ for some random cost exceptions:f): We have added a number of randomly generated ex-

ceptions with costs between 0 and 10 for TSR, and between 0 and 3000 for the instances
EUlto EUS.

55

EITER, FABER, LEONE, PFEIFER& POLLERES

Instance #cost exceptiony cost/time
TSPAust'ria 0 15/0.31s
TSPAust'r‘ia,ewc 2 15/0325
TSPAustria,we 36 12/0.34s
TSPAust'r‘ia,lwe 54 11/0.35s
TSPAust'ria,'rnd 10 14/0305
TSPA’ust'r‘ia,'r‘nd 50 15/0.31s
TSPA’ust'r‘ia,'r‘nd 100 23/0.35s
TSPAust'ria,'rnd 200 36/0.37s

Table 5: TSP — Results for TSR, With varying exceptions

Instance #conn. | #except. cost/time Instance #conn. | #except. cost/time
TSPey1 30 0 -[9.11s TSPrus 40 0 17483/142.75
TSPeU1,we 30 60 -/11.93s TSPeus,we 40 80 14336/150.3s
TSPeuU1,1we 30 90 -/13.82s TSPrvs,1we 40 120 13244/154.7s
TSPev1,rnd 30 100 -/11.52s TSPevs,rnd 40 100 15630/142.5s
TSPev1,rnd 30 200 -/12.79s TSPsv6,rnd 40 200 14258/137.2s
TSPeu1,rnd 30 300 -/14.64s TSPev6,rnd 40 300 11754/120.5s
TSPev1,rnd 30 400 -/16.26s TSPevs,rnd 40 400 11695/111.4s
TSPru2 30 0 16213/13.27s TSPsus,rnd 40 500 12976/120.8s
TSPev2,we 30 60 13195/16.41s TSPeu~ 55 0 15022/102.6s
TSPeU2,1we 30 90 11738/18.53s TSPeu7,we 55 110 12917/112.25
TSPey2,rna 30 100 15190/15.54s TSPeu7,iwe 55 165 11498/116.2s
TSPevu2,rnd 30 200 13433/16.31s TSPeu7,rnd 55 100 13990/104.2s
TSPey2,rna 30 300 13829/18.34s TSPsy7,rnd 55 200 12461/100.8s
TSPey2,rna 30 400 13895/20.59s TSPey7,rnd 55 300 13838/106.9s
TSPeus3 35 0 18576/24.11s TSPeu7,rnd 55 400 12251/96.58s
TSPrU3,we 35 70 15689/28.02s TSPey7,rnd 55 500 16103/109.2s
TSPey3,iwe 35 105 14589/30.39s TSPey7,rnd 55 600 14890/110.3s
TSPeu3,rnd 35 100 19410/26.75s TSPeu7,rnd 55 700 17070/110.7s
TSPey3,rna 35 200 22055/29.64s TSPrus 64 0 10858/3872s
TSPey3,rna 35 300 18354/31.54s TSPeus,we 64 128 9035/3685s
TSPeu3,rnd 35 400 17285/32.66s TSPeUSs, iwe 64 192 8340/3324s
TSPru4 35 0 16533/36.63s TSPsus,rnd 64 100 10283/2603s
TSPrv4,we 35 70 12747/41.72s TSPsus,rnd 64 200 9926/1372s
TSPrvU4,1we 35 105 11812/43.12s TSPeuUs,rnd 64 300 10028/1621s
TSPev4,rna 35 100 15553/39.17s TSPsus,rnd 64 400 8133/597.7s
TSPev4,rna 35 200 13216/41.19s TSPsus,rnd 64 500 8770/573.3s
TSPev4,rnd 35 300 16413/43.51s TSPeuUs,rnd 64 600 8220/360.7s
TSPey4,rna 35 400 13782/45.69s TSPsus,rnd 64 700 6787/324.6s
TSPeus 40 0 15716/91.83s TSPeus,rnd 64 800 11597/509.5s
TSPeUs,we 40 80 12875/97.73s

TSPrus,iwe 40 120 12009/100.14s

TSPEUS,rnd 40 100 13146/85.69s

TSPeus,rnd 40 200 12162/83.44s

TSPrus,rnd 40 300 12074/76.81s

TSPrus,rnd 40 400 12226/82.97s

TSPeus,rnd 40 500 13212/82.53s

Table 6: TSP — Various instances for the capitals of the 15 Elthbers

56

ANSWERSET PLANNING UNDER ACTION COSTS

TSP — Results Instance TSRy s shows the limits of our system: the given data allows for many
possible tours, so finding an optimal one gets very trickytt@other hand, a realistic instance like
TSPgy7 with real airline connections is solved rather quickly, @his not very surprising: Most
airlines have a central airport (for instance Vienna fortiaa Airlines) and few direct connections
between the destinations served. This allows for much f@aadidate answer sets, when (as in
reality) the number of airlines we consider is limited. ETBSPzy7 has no solution at all if only
two out of Star Alliance, Alitalia, and Luxair are allowed.f @ourse, we cannot compete with
dedicated TSP solvers/algorithms, which are able to solwehrbigger TSP instances and have not
been considered here. However, to our knowledge, none &4 twlvers can deal with features such
as incomplete knowledge, defaults, time dependent exaegitcosts, etc. directly. Our results even
show that execution times are stable yet in case of many #@&osp In contrast, instance TgPs
shows that exceptions can also cause a significant speeligisTue to the heuristics used by the
underlyingDLV system, which can single out better solutions faster ifsas¢ not spread evenly
like in TSPgg without exceptional costs.

Note that, we have also experimented with the alternativedgts translation sketched in Sec-
tion 6.3. We refrain from detailed discussion here, sineg(ihtranslation is optimized fdbLV and
Smodels performance was worse (around fat@ofor the tested TSP instances) thalv and (ii)
there is no integrated planning frontend available for Sat@groviding a high-level planning lan-
guage. Nevertheless, we have shown that our approach dénmivior modifications, be adopted
in a planning system based on Smodels.

8. Related Work

In the last years, it has been widely recognized that plagttealone is only one criterion to be
optimized in planning. Several attempts have been madetém@xlanners to also consider action
costs.

The PYRRHUS system (Williams & Hanks, 1994) is an extensibbd@POP planning which
allows for optimal planning with resources and durationsormain-dependent knowledge can be
added to direct the heuristic search. A “utility model” hasbe defined for a planning problem
which can be used to express an optimization function. Tystesn supports a language extension
of ADL (Pednault, 1989), which is a predecessor of PDDL (@Giteét al., 1998). The algorithm is
a synthesis of branch-and-bound optimization with a leastmitment, plan-space planner.

Other approaches based on heuristic search include thef use &* strategy together with
action costs in the heuristics (Ephrati, Pollack, & Mihiste1996) and work by Refanidis and
Vlahavas who use multi-criteria heuristics to obtain ngatimal plans, considering multiple criteria
apart from plan length alone (Refanidis & Vlahavas, 20019wkelver, the described heuristics is not
fully admissible, and only guarantees optimal plans unéeiam restrictions (Haslum & Geffner,
2000). In fact, most heuristic state-space planners arabietto guarantee optimality.

A powerful approach has been suggested by Nareyek, whoilblesglanning with resources
as a structural constraint satisfaction problem (SCSH)tlzen solves that problem by local search
combined with global control. However, this work promothe inclusion of domain-dependent
knowledge; the general problem has an unlimited searchespac no declarative high-level lan-
guage is provided (Nareyek, 2001).

Among other related approaches, Kautz and Walser geneithiéiz“Planning as Satisfiability”
approach to use integer optimization techniques for emgpdptimal planning under resource pro-

57

EITER, FABER, LEONE, PFEIFER& POLLERES

duction/consumption (Kautz & Walser, 1999). First, thegalethat integer logic programming
generalizes SAT, as a SAT formula can be translated to amsysténequalities. Second, they ex-
tend effects and preconditions of actions similar to a STHRéRtension proposed by Koehler for
modeling resource consumption/production (Koehler, 198&utz and Walser allow for arbitrary
optimization functions but they use a non-declarative,-level representation based on the alge-
braic modeling language AMPL (Fourer, Gay, & Kernighan, 399They mention that Koehler's
STRIPS-like formalization can be mapped to their approadbwever, they can not express non-
determinism or incomplete knowledge. There is an impleatent of this approach called ILP-
PLAN, which uses the AMPL packagét(t p: / / ww. anpl . com’). Unfortunately, AMPL is
not freely available, so we could not compare the system euitrapproach experimentally.

Lee and Lifschitz describe the extensiéa of the action languagé which allows for an in-
tuitive encoding of resources and costs by means of so calldditive fluents” (Lee & Lifschitz,
2001). This way admissible planning can be realized, butropation has not been considered in
that framework so far. An implementation of a planner bagethis language is CCALC (McCain,
1999) which has already been described in the previousosedinother implementation of a plan-
ning system based on the action languége Cplan (Giunchiglia, 2000; Ferraris & Giunchiglia,
2000). The Cplan system mainly focuses on conformant phegaind does not support the advanced
features o’ +. Furthermore, the code is no longer maintained.

Son and Pontelli propose to translate action languageprioritized default theory and answer
set programming. They allow to express preferences betaetons and rules at the object level
in an interpreter but not as a part of the input language (SdPo&telli, 2002). However, these
preferences are orthogonal to our approach as they modigiadjua preferences as opposed to our
overall value function of plans/trajectories.

9. Conclusion and Outlook

This work continues a research stream which pursues thee usfagnswer set programming for
building planning systems which offer declarative plagnianguages based on action languages,
where planning tasks are specified at a high level of abgiraLifschitz, 1999a, 1999b). For
representation of practical planning problems, such laggs must have high expressiveness and
provide convenient constructs and language elements.

Towards this goal, we have presented the planning langkidgeshich extends the declarative
planning languagéC (Eiter et al., 2000b, 2003a) by action costs which are takémaccount for
generating optimal plans, i.e., plans that have least t&atatution cost, and for admissible plans
wrt. a given cost bound, i.e., plans whose total executiah stays within a given limit. As a basis
for implementation issues, we have investigated the coatipuial complexity of the major plan-
ning tasks in this language, where we have derived complea#iults sharply characterizing their
computational cost. Furthermore, we have presented afdramstion of optimal and admissible
planning problems irC¢ to logic programming under the optimal answer set sema(Biascafurri
et al., 1997, 2000), and we have describedhe* prototype implemented on top of the KR tool
DLV, which computes this semantics.

As we have showrk ¢ allows for the representation of intricate planning protde In particular,
we have demonstrated this for a variant of the Travelingspaieson Problem (TSP), which could
be conveniently specified ik¢. A strength offC¢ is that, via the underlying languagdg, states of
knowledge, i.e., incomplete states, can be suitably résgec secure plans, i.e., conformant plans

58

ANSWERSET PLANNING UNDER ACTION COSTS

which work under all circumstances, including nondeteristin action effects. K¢ is a flexible
language which, by exploiting time-dependent action ¢adlsws for the representation of planning
under various optimality criteria such as cheapest pldrsiest plans, and combinations thereof.

Our experiments have shown that various instances of tHdgms we considered, including
realistic instances of the TSP variant, could be decentlyeso On the other hand, the current
version ofDLVX does not scale to large problem instances in general, asdypnisingly, can not
compete with high-end planning tools or specialized atgors for a particular problem such as
TSP. We do not see this as a shortcoming, though, since ourgnal at this point was to demon-
strate the usefulness of the expressive capabilities ofasaralism to easily represent non-trivial
planning and optimization tasks, which are especially lvew from the viewpoint of knowledge
representation. In this way, non-trivial instances of spidblems of medium size (which one may
often encounter) can be solved with little effort.

Several issues remain for further work. As for the impleratah, performance improvements
may be gained via improvements of the underlyidigy engine, which are subject of current work.
Furthermore, alternative, more efficient transformatioh&’¢ to logic programming might be re-
searched, e.g. ones that involve preprocessing of theip@pnoblem performing means-end anal-
ysis to simplify the logic program constructed.

Another issue is further language extensions. For exanapteucial difference between our
approach and resource-based approaches is that the fomgeston action costs, while the latter
build on fluent values, which is a somewhat different viewhef quality of a plan. A possible way to
encompass this in our language is to allow that dynamic flugoies contribute to action costs; this
needs to be carefully elaborated, though: While for deteistic planning under complete knowl-
edge this extension is straightforward, in non-deterrtimdgomains with incomplete knowledge it
would possibly result in ambiguities. Different trajeéesy of the same plan possibly yield different
costs when fluent values contribute to action costs. In faf@n intuitive definition of plan costs
and optimality we refrained from this extension at the cotrsgate.

A further possible extension are negative action costschviire useful for modeling pro-
ducer/consumer relations among actions and resourceswiAly for different priorities among
actions, i.e., different cost levels, would increase theibiibty and allow for optimizing different
criteria at once. Finally, the duration of actions is an imgot issue. In the current language, the
effects of actions are assumed to materialize in the nete.st&/hile by coding techniques, we
may express delayed effects over several states in timerantérleaving actions, constructs in the
language would be desirable. Investigating these issymri®f our ongoing and future work.

Acknowledgments

We are are grateful to Joohyung Lee for his help on using CCAb€to Paul Walser for his useful
informations on ILPPLAN. Furthermore, we thank Michael f8ad for interesting discussions and
suggestions, and the anonymous reviewers for their détaild helpful comments.

This work was supported by FWF (Austrian Science Funds) wttde projects P14781 and
Z29-N04 and the European Commission under project FET-30004 WASP and IST-2001-
33570 INFOMIX.

A preliminary, shorter version of this paper was presentatea8th European Conference on
Logics in Artificial Intelligence (JELIA02), Cosenza, lya September 2002.

59

EITER, FABER, LEONE, PFEIFER& POLLERES

Appendix A. The Language/C

This appendix contains, in shortened form, the definitiotheflanguagéC and a translation of
to answer set programs; see (Eiter et al., 2003b, 2003a)doz details and examples.

A.1 Basic Syntax

We assumer®t, o7t and¢'P disjoint sets of action, fluent and type names, respectivedy,
predicate symbols of arityy 0, and disjoint setg“°™ ando"*" of constant and variable symbols.
Here,o/!, 02t describedynamic knowledgands*¥? describesstatic background knowledge\n
action (resp. fluent, type) atoim of formp(t, ..., t,), wherep € 0% (resp.c’!, o¥P) has arityn
andty, ..., t, € 0™ Ud""". An action (resp. fluent, type) literalis an action (resp. fluent, type)
atoma or its negation—a, where =" (alternatively, “-") is the true negation symbol. We define
—.l = aif | = maand—-.l = —a if | = a, wherea is an atom. A sef. of literals isconsistentif
LN —.L = . Furthermore L™ (resp.L™) is the set of positive (resp. negative) literalslin The
set of all action (resp. fluent, type) literals is denoted’as (resp.L;, Lyyp). Furthermoref ¢ 4,
= Efl U ﬁtyp, Edyn: ﬁfl U E:ct’ andl = Eflﬂfyp U ﬁ:ct'

All actions and fluents must be declared using statementllaws$.

Definition A.1 (action, fluent declaration) Anaction(resp.fluenf) declarationis of the form:
p(X1,...,X,) requires ty, ..., tm (8)

wherep € L (resp.p € E}Fl), Xi,..., X, € 0 wheren > 0 is the arity ofp, t,...,t, €

act

Liyp, m > 0, and everyX; occurs inty, ..., t,.

If m = 0, the keywordrequires may be omitted. Causation rules specify dependencies of
fluents on other fluents and actions.

Definition A.2 (causation rule) A causation ruldrule, for short) is an expression of the form

caused f if by,...,bg,n0t bgy1,...,n0t by afteras,...,am,not am41,-..,00t a, (9)
wheref € LyU{false}, bi,..., b€ Lf11yp, a1,-..,0,L,1>k>0,andn>m> 0.

Rules where: = 0 arestatic rules all othersdynamic rulesWhenl = 0 (resp.n = 0), “if” (resp.
“after”) is omitted; if both] = n = 0, “caused” is optional.

We access parts of a causation rulby h(r) = {f}, post™(r) = {b1,...,bx}, post™(r) =
{bks1,--- b1}, pre™(r) = {a1,...,am}, pre” (r) = {ams1,---,an}, andlit(r) = {f, b1, ..., b,
ai,...,an}. Intuitively, pre(r) = pre*(r) U pre™(r) (resp.post(r) = post™(r) U post™(r))
accesses the state before (resp. after) some action(rhapp

Special static rules may be specified for the initial states.

Definition A.3 (initial state constraint) Aninitial state constraints a static rule of the form (9)
preceded by initially”

The languagéC allows conditional execution of actions, where severaraltive executability
conditions may be specified.

60

ANSWERSET PLANNING UNDER ACTION COSTS

Definition A.4 (executability condition) Anexecutability conditiore is an expression of the form

executable a if by,...,bg,not bgy1,...,n0t by (20)

wherea € £, andby,... b € £,andl > k > 0.

If I = 0 (i.e., executability is unconditional)it” is skipped. The parts aof are accessed biye) =
{a}, preT(e) = {b1,..., b}, pre (e) = {bg+1, ..., b}, andlit(e) = {a,b1,...,b}. Intuitively,
pre(e) = pret (e) U pre~ (e) refers to the state at which some action’s suitability ideat@d. The
state after action execution is not involved; for conveoé&rmwe defingost™ (e) = post™(e) = 0.

All causal rules and executability conditions must satifg following condition, which is
similar to safety in logic programs: Each variable in a d#faggated type literal must also occur in
some literal which is not a default-negated type literal.ddfety is requested for variables appearing
in other literals. The reason is that variables appearirfilgi@nt and action literals are implicitly safe
by the respective type declarations.

Notation For any causal rule, initial state constraint, and exdglitiacondition andv € {post, pre, b},
we definev(r) = v+ (r) Uv~(r), whereb®(r) = post®(r) U pre®(r).

A.1.1 PLANNING DOMAINS AND PLANNING PROBLEMS

Definition A.5 (action description, planning domain) Anaction descriptio D, R) consists of a
finite setD of action and fluent declarations and a finite gebf safe causation rules, safe initial
state constraints, and safe executability conditions tvkiic not contain positive cyclic dependen-
cies among actions. A planning domains a pair PD = (II, AD), wherell is a disjunction-free
normal Datalog program (théackground knowledgewhich is safe and has a total well-founded
model (cf. (van Gelder, Ross, & Schlipf, 19913nd AD is an action description. We calPD
positive if no default negation occurs iAD.

Definition A.6 (planning problem) A planning problent? = (PD, q) is a pair of a planning do-
main PD and aqueryg, i.e.,

915+ s Gm, 00t Gmi1, ..., 00t g 7 (i) (12)

wheregi, ..., g, € Ly are variable-freep > m > 0, andi > 0 denotes the plan length.

A.2 Semantics

We start with the preliminary definition of the typed insfatibn of a planning domain. This is
similar to the grounding of a logic program, with the diffece being that only correctly typed
fluent and action literals are generated.

Let PD = (II, (D, R)) be a planning domain, and 1&f be the (unique) answer setdf(Gel-
fond & Lifschitz, 1991). Thend(p(X1,...,X,)) is alegal action(resp.fluen) instanceof an ac-
tion (resp. fluent) declaratioh € D of the form (8), iff is a substitution defined ové{y,..., X,
such that{6(t1),...,0(tm)} € M. By Lpp we denote the set of all legal action and fluent in-
stances. The instantiation of a planning domain respetipg information is as follows.

8. A total well-founded model, if existing, corresponds he uinique answer set of a datalog program. Allowing for
multiple answer sets dfl would eventually lead to ambiguities in our language.

61

EITER, FABER, LEONE, PFEIFER& POLLERES

Definition A.7 (typed instantiation) For any planning domain’D = (II, (D, R)), its typed in-
stantiationis given byPD| = (II|, (D, R])), whereIl| is the grounding oflI (over c“°") and
Rl ={0(r) | r € R, 0 € O,}, whereB, is the set of all substitution® of the variables in- using
o™, such thaﬂit(@(T)) N Edyn CLppU(=LppN E;l)

In other words, inPD| we replacdl and R by their ground versions, but keep of the latter only
rules where the atoms of all fluent and action literals agritle their declarations. We say that a
PD = (11, (D, R)) is ground if IT and R are ground, and moreover that iviell-typed if PD and
PD| coincide.

A.2.1 STATES AND TRANSITIONS

Definition A.8 (state, state transition) A statew.r.t a planning domainPD is any consistent set
s C Ly N (lit(PD) U lit(PD)~) of legal fluent instances and their negations.state transition
is any tuplet = (s, A, s’) wheres, s’ are states andd C L, N lit(PD) is a set of legal action
instances inPD.

Observe that a state does not necessarily contain eftber-f for each legal instancé of a
fluent, and may even be empty £ (). State transitions are not constrained; this will be dortbé
definition oflegal state transitiondelow. We proceed in analogy to the definition of answer sets
(Gelfond & Lifschitz, 1991), considering first positivedi, involving a positive planning domain)
and then general planning problems.

In what follows, we assume th&D = (II, (D, R)) is a well-typed ground planning domain
and that)/ is the unique answer set &F. For any otherPD, the respective concepts are defined
through its typed groundingD | .

Definition A.9 (legal initial state) A states is alegal initial statefor a positive PD, if s is the
least set (w.r.tC) such thatpost(c) C so U M impliesh(c) C sq, for all initial state constraints
and static rules: € R.

For a positivePD and a state, a setd C £j[ct is calledexecutable action set.r.t. s, if for each
a € Athere exists an executability conditiere R such that(e) = {a}, pre™ (e)NL 1 1yp C UM,
pret(e)NLY, C A, andpre™(e)N (L], UsUM) = (. Note that this definition allows for modeling

act act

dependent actions, i.e. actions which depend on the erecotiother actions.

Definition A.10 (legal state transition) Given a positivePD, a state transitiont = (s, A, s') is
calledlegal if A is an executable action set w.stand s’ is the minimal consistent set that satisfies
all causation rules w.r.ts U AU M. That is, for every causation rutee R, if (i) post(r) C s'"UM,

(ii) pre(r) N Lytyp € s U M, and (iii) pre(r) N Ly € A all hold, thenh(r) # {false} and
h(r) C s

This is now extended to general a well-typed grourid containing default negation using a
Gelfond-Lifschitz type reduction to a positive planningmin (Gelfond & Lifschitz, 1991).

Definition A.11 (reduction) Let PD be a ground and well-typed planning domain, andilet
(s, A, s') be a state transition. Then, tmeductionPD! = (I1, (D, R')) of PD by is the planning
domain whereR! is obtained fromR by deleting

62

ANSWERSET PLANNING UNDER ACTION COSTS

1. eachr € R, where eithempost™(r)N(s' U M) # () or pre™ (r)N(sUAUM) # (), and

2. all default literalsnot L (L € £) from the remaining: € R.
Note thatPD! is positive and ground. We extend further definitions asfod.

Definition A.12 (legal initial state, executable action setegal state transition) For any planning
domainPD, a states, is alegal initial stateif s, is a legal initial state forPD(?-?:50); a setA4 is an
executable action setr.t. a states, if A is executable w.r.ts in PD(49: and, a state transition
t = (s, A,s")islegal if it is legal in PD?.

A.2.2 RLANS

Definition A.13 (trajectory) A sequence of state transitiofis = ((sg, A1, s1), (s1, A2, s2), ...,
(Sn—1,An, sn)),n > 0, is atrajectoryfor PD, if sy is alegal initial state of’D and all (s;_1, 4;, s;),
1 <i < n, are legal state transitions a?D.

If n =0, thenT = () is empty and has, associated explicitly.

Definition A.14 (optimistic plan) A sequence of action setd, ..., A;), ¢ > 0, is anoptimistic
plan for a planning problemP = (PD,q), if a trajectory T" = ((so, A1, s1), (s1,A42,52), ...,
(si—1, Aj, si)) exists inPD which accomplishes the goal, i.€g1, . .. gm} € s; and{gm+1,--.,gn}N
S; = @

Optimistic plans amount to “plans”, “valid plans” etc as defil in the literature. The term
“optimistic” should stress the credulous view in this ddfom, with respect to incomplete fluent
information and nondeterministic action effects. In suabes, the execution of an optimistic plan
P might fail to reach the goal. We thus resort to secure plans.

Definition A.15 (secure plans (alias conformant plans))An optimistic plan(A, ..., A,) is ase-
cure planif for every legal initial states, and trajectoryl” = ((sg, A1, s1), ...,(sj—1, 4;, s;)) such
that0 < j < n, it holds that (i) ifj = n thenT accomplishes the goal, and (i) if< n, thenA;
is executable is; w.r.t. PD, i.e., some legal transitiofis;, A; 1, 5;41) exists.

Note that plans admit in general the concurrent executiactidns. We call aplatAy, ..., A,)
sequentialor non-concurren, if [A;] <1, forall1 < j <n.

A.3 Macros

K includes several macros as shorthands for frequently usecepts. Letn € £, denote an

act

action atom,f € Ly a fluent literal,B a (possibly empty) sequendg, ..., by, not byi1,...,
not b; where eachh; € Ly 4,7 = 1,...,1, andA a (possibly empty) sequenea, ..., an,,
not am41,...,n0t a, Wwhereeach; € £,j =1,...,n.

Inertia To allow for an easy representation of fluent inerkigprovides

inertial f if B after A. & caused f if not —.f, B after f, A.

Defaults A default value of a fluent can be expressed by the shortcut
default f. & caused f if not —.f.

Itis in effect unless some other causation rule providegesge to the opposite value.

63

EITER, FABER, LEONE, PFEIFER& POLLERES

Totality For reasoning under incomplete, but total knowlefigprovides § positive):
caused f if not —f, B after A.
caused —f if not f, B after A.

This is is for instance useful to model non-deterministitaaceffects. For a discussion of the
full impact of this statement in modeling planning undeiomplete knowledge and non-determinism,
we refer to our previous paper on the langu&gétiter et al., 2003b).

total f if B after A.

State Integrity For integrity constraints that refer to the preceding statprovides
forbidden B after A. & caused false if B after A.

Non-executability For specifying that some actionni®t executable/C provides
nonexecutable a if B. & caused false after a, B.
By this definition,nonexecutable overridesexecutable in case of conflicts.
Sequential Plans To exclude simultaneous execution of actiokigprovides
noConcurrency. & caused false after aj, as.
wherea; anda, range over all possible actions such thata, € Lpp N L, anda; # a,.

In all macros, 4f B” (resp. “after A”) can be omitted, iB (resp.A) is empty.

Appendix B. Proofs

Proof of Theorem 4.4: Membership (i):The problems are itNP resp.NPMV, since ifl is poly-
nomial in the size ofP, any optimistic planP = (A, ..., A;) for P with a supporting trajectory
T = (t1,...,t;) for P can be guessed and, by Proposition 4.1, verified in polyricim&. Fur-
thermore,costp(P) < b can be efficiently checked, sineestp(P) is easily computed (all costs
are constants).
Hardness (i): K is a fragment ofC¢, and eachC planning problem can be viewed as the problem
of deciding the existence of resp. finding an admissible plencost 0. As was previously shown
(Eiter et al., 2003b), deciding existence of an optimistanpfor a given/C planning problem is
NP-hard for fixed plan lengt; hence, it is alsiNP-hard forCe.

We show that finding an optimistic plan is hard MPMYV by a reduction from the well-known
SAT problem, cf. (Papadimitriou, 1994), whose instancesCiMFsp = c; A- - - Acy, Of clauses:; =

Li1V---V L., whereeaclL; ; is a classical literal over propositional atotkis= {x1,...,z,}.

Consider the following planning domaiD,, for ¢:

fluents: xri. ... T,. state0. statel.

actions: c1 costs 1. ... cp costs 1.
ari. ... QTp.

initially: total z;. ... total xz,.
caused stateO.

always : caused statel after stateO.
executable c¢; after —.Li1, ..., —.Lim,.
forbidden after —.Lii, ..., —.Lim,, not ci.
executable ¢, after —.Ly1, ..., —.Lim,.
forbidden after —.Lyi, ..., —.Lgm,, not cs.

executable ax; after z;. forbidden after z;, not ax;.

executable ax, after z,. forbidden after =z,, not az,.

64

ANSWERSET PLANNING UNDER ACTION COSTS

The fluentsr; andstate0 and thetotal statements in thénitially-section encode the can-
didate truth assignments. The subsequent statementsdotode executed iff the corresponding
clause is violated by the truth assignment encoded in thialistate. The final pairs efxecutable
andforbidden statements force actions:; to be executed iff the corresponding fluemtshold.
This is because it is necessary to directly extract the comoptruth assignments from the plan,
since we are dealing with a function class. The fluerite1 identifies the state at time 1.

Consider now the planning proble®, = (PD,,state1?(1)). Clearly, each optimistic plan
P for P corresponds to a truth assignment of X and vice versa, ancbstp, (P) is the number
of clauses violated by p. Thus, the admissible optimistic plans By wrt. cost O correspond 1-1
to the satisfying assignments ¢f Clearly, constructing®, from ¢ is efficiently possible, as is
constructing a satisfying truth assignmenfrom a corresponding pla® (because of the actions
ax;). This concludes the hardness proof.

Membership (ii): Since the security of each optimistic plan admissible wotté can be checked,
by Proposition 4.1, with a call to &} -oracle, membership ixi resp. inX{MV follows by
analogous considerations as in (i) (where no oracle wased@ed

Hardness (ii): For the decision variant;-hardness is again immediately inherited from ég-
completeness of deciding the existence of a secure plan obldem in the languagél, with
hardness even for fixed plan length (Eiter et al., 2003b).tR@plan computation variant, we give
a reduction from the followin@{'MV-complete problem: An instandeis an open QBF

Q[Z] = VXY B[X,Y, 7]

whereX = x1,...,2;,, Y = y1,...,Ym, andZ = z1,...,z,, respectively, and[X,Y, 7] is
(w.l.o.g.) a 3CNF formula ovekX, Y, andZ. The solutionsS(/) are all truth assignments over
for which Q[Z] is satisfied.

Suppose thad [X, Y, Z] = c1 A...Ac, Wheree; = ¢; 1V ¢ 2V ¢; 3. Now consider the following
planning domain”Dg,; for Q[Z], which is a variant of the planning domain given in the probf o
Theorem 5.5 in (Eiter et al., 2003b):

fluents: T1. ... X1. Y1. ... Ym. 21. ... Zn. State0. statel.
actions: az; costs 0. ... az, costs O.
initially: total z;. ... total z;.
caused stateO.
always : caused statel after stateO.
executable az;. executable aze.... executable az,.
caused x; after x;. caused —zr; after — xj.

caused x; after z;. caused —x; after — ;.

total y; after state0. ... total y,, after stateO.
caused z; after az;. caused — z; after not azj.
caused z, after az,. caused -— z, after not az,.

forbidden —.Ci,,—.Ch2,7.C1 3 after stateO.

forbidden —.Cj,1,.Cj2,.Ck 3 after stateO.

There are2lX! many legal initial states?, 2 for PDg(z), which correspond 1-1 to the
possible truth assignments 0 and all these initial states contaimate0. Starting from any initial
states’, executing a set of actions represents a truth assignmeheteariables inZ. Since alll

65

EITER, FABER, LEONE, PFEIFER& POLLERES

actions are always executable, there 2fé executable action sets;, . .. , Ay 1z, Which represent
all truth assignments t4&.

For each paig’ and 4; there exis2!¥| many successor state candidates52 which
contain fluents according to the truth assignmenktoepresented by’, fluents according to the
truth assignment t& represented byl;, and fluents according to a truth assignment'tand the
fluentstatel. Of these candidate states, only those satisfying all emirs®[X,Y, 7] are legal,
by virtue of theforbidden statements.

It is not hard to see that an optimistic plan of foftn= (A1) (whereA; C {az; | 2; € Z}) for
the goalstatel exists wrt. PD |z iff there is an assignment to all variablesihuU Y U Z such
that the formula®[X, Y, Z] is satisfied. Furthermord? is secure iffA; represents an assignment
to the variables inZ such that, regardless of which assignment to the variables is chosen
(corresponding to a legal initial stat®), there is some assignment to the variable¥ isuch that all
clauses ofb[X, Y, Z] are satisfied (i.e., there is at least one statereachable from’ by executing
Ay); any suchs®* containsstatel. In other words,P is secure iff®[X,Y, Z] is true. Thus, the
admissible secure plans 8D wrt. cost 0, correspond 1-1 with the assignmentg tor which
Q[Z] is true.

SincePDg|z) is constructible fromp[X, Y, Z] in polynomial time, it follows that computing a
secure plan foP = (PDg/z), q), Whereg = state1? (1), is £ MV-hard. O

Proof of Theorem 4.5: Membership (i):Concerning membership, by performing a binary search
on the range0, max] (Wheremaz is an upper bound on the plan costs for a plan of polynomial
length! given by! times the sum of all action costs) we can find out the leasgénte such that
any optimistic planP for P which is admissible wrt. cost exists (if any optimistic plan exists);
clearly, we haverostp(P) = v andcost}, = v, and thus any such plaR is optimal. Sincenax

is single exponential in the representation siz€pthe binary search, and thus computingt?,,

is, by Theorem 4.4, feasible in polynomial time withIslR oracle. Subsequently, we can construct
an optimistic planP such thatkcostp(P) = cost}, by extending a partial plak; = (Ay, ..., A;),

i =0,...,1 — 1 step by step as follows. Led = {aq,...,a,} be the set of all legal action
instances. We initializé3; .1 := A and ask the oracle wheth& can be completed to an optimistic
plan P = (Ay,..., A;) admissible wrtcost}, such thatd; | C (B4 \ {a1}). If the answer is
yes, then we updatB; ;1 := B;11 \ {a1}, else we leave3;; unchanged. We then repeat this test
fora;, j = 2,3,...,m; the resultingB; is an action set such th&; = (A1,..., A;, Ait1)
whereA; 1 = B;;1 can be completed to an optimistic plan admissible wrtt7,. Thus,A;, is
polynomial-time constructible with aNP oracle.

In summary, we can construct an optimal optimistic plan itypomial time with anNP oracle.
Thus, the problem is ilrAZ.

Hardness (i):We show hardness for plan lendtk- 1 by a reduction from problem MAX WEIGHT
SAT (Papadimitriou, 1994), where an instance is a SAT irt&an= c; A --- A ¢ as in the proof

of Theorem 4.4.(i), plus positive integer weights wherei = 1, ..., k. Then,S(I) contains those
truth assignments of X for whichwsai () = >, . . 5 —true Wi IS Maximal.

To that end, we take the planning domd, as in the proof of Theorem 4.4 and modify the
cost ofc; tow;, fori =1, ..., k, thus constructing a new planning doméiv;. Consider now the
planning problenP; = (PDy,state1?(1)). Since the actions; are the only actions with nonzero
cost, any plan (corresponding to a truth assignnagntill be associated with the sum of weights

of violated clausesy,;,(c) = (Zle w;) — Wsqt(0). Sincer:1 w; is constant fod, minimizing

66

ANSWERSET PLANNING UNDER ACTION COSTS

Wyio(0) is equivalent to maximizingsq: (o). Hence, there is a one-to-one correspondence between
optimal optimistic plans oP; (for which w,;, (o) is minimal) and maximal truth assignments for
Furthermore, computing; from I and extracting a MAX-WEIGHT SAT solution from an optimal
plan P is efficiently possible. This prové8AL’-hardness.

Membership (ii):The proof is similar to the membership proof of (i), but use®eacle which asks
for completion of a partial secure pld® = (44,..., A;) to a secure pla®® = (A4,..., A;) such
thatA; 11 C (Bit+1 \ {a;}) and P is admissible wrtcost},, rather than of a partial optimistic plan.
This oracle is, as easily seen, . Thus, computing an optimal secure plan i§ia?.

Hardness (ii): We show hardness by a reduction from the following problerhictv is FAL-
complete (cf. (Krentel, 1992)): Given an open QBfZ] = VX3IY®[X,Y, Z] like in the proof
of Theorem 4.4.(ii), compute the lexicographically firsitlr assignment of/ for which Q[Z] is
satisfied.

This can be accomplished by changing the cost of each aetiom PDg from 0 to 2n=t,
i=1,...,n. Let PD'[Q|[Z]] be the resulting planning domain. Since the cost%f(i.e., assigning
z; the value true) is greater than the sum of the costs oiglifor i + 1 < j < n, an optimal
secure plan for the planning problef®D’[Q[Z]], statel ? (1)) amounts to the lexicographically
first truth assignment faf such that)[Z] is satisfied. Thusf Al-hardness of the problem follows.
O

Proof of Theorem 6.1: We prove the result by applying the well-known Splitting $atorem for
logic programs (Lifschitz & Turner, 1994). This theorem bgp to logic programsr that can be
split into two parts such that one of them, the “bottom” pedes not refer to predicates defined in
the “top” part at all. The answer sets of the “bottom” part taen be extended to the answer sets
of the whole program by looking at the remaining (“top”) relldnformally, a splitting set of: is

a setU of ground literals defining the “bottom” pabt; () of a program. Each answer s&jf of

by () can then be used to reduce the remaining rul­ () to a programey (7 \ by (), Sp)
involving only classical literals which do not occurip (), by evaluating the literals frorby; ()
wrt. Sp. For each answer sét of ey (7 \ by (7), Sy), the setS = S, U S, then is an answer set of
the original program.

Disregarding weak constraints, we can split the progtaft{?) into a bottom part consisting
of Ip(Pnc), WhereP,. is P with the cost information stripped off, and a top part camitag the
remaining rules; we then derive the correspondence betagtimistic plans forP and answer sets
of [p*(P) from a similar correspondence result tpfP,,.) (Eiter et al., 2003a).

In detail, Theorem 3.1 in (Eiter et al., 2003a) states for Anglanning probleniP a corre-
spondence between the answer setsf [p(P) and supporting trajectori€s of optimistic plans
P =(Ay,...,4;) asinitems (i) and (ii), with costs discarded. Thus, any arsetS’ of Ip(P,.)
corresponds to some trajectdry of an optimistic plan”’ for P,,. and vice versa.

In what follows, when talking aboup(P,.) andip*(P), we mean the respective grounded
logic programs./p™(P) augmentdp(P,.) by rules (4) and weak constraints (5). Let néw=
lit(Ip(Pne)) be the set of all literals occurring iw(P,,.). Clearly, U splits{p™(P) as defined in
(Lifschitz & Turner, 1994), where we disregard weak constsin ip® (P), since the rules of form
(4) introduce only new head literals. Consequently, webgétp” (P)) = Ip(P,.). Then, for any
answer seb’ of Ip(P,.), each rule irei; (Ip* (P) \ by (Ip*(P)), S’) is of the form

costo(x1,...,xn,t,c) - Body.

67

EITER, FABER, LEONE, PFEIFER& POLLERES

From the fact that all these rules are positive, we can cdecthat with respect to the split Ly,
any answer se$’ of [p(P,.) induces a unique answer sgt> S’ of ip*’(P). Therefore, modulo
costs, a correspondence between supporting trajectbréesl candidate answer setsas claimed
follows directly from Theorem 3.1 in (Eiter et al., 2003a).

It remains to prove thatostp(P) = costy,w(p) (S) holds for all candidate answer seftcorre-

sponding to an optimistic pla® = (4,,...,4;) for P. By the correspondence shown above,
any actionp(z1,...,z,) € A; corresponds to exactly one atopxi,...,z,,j — 1) € Af,
j € {1,...,l}. Therefore, ifp(xy,...,x,) is declared with a non-emptyost part, by (4) and
well-definedness, module,, ..., z,, there is exactly one faeiost,(x1,...,z,,5 — 1,¢) in the
model ofey; (Iip™ (P) \ bu (Ip* (P)), S).

Furthermore, by definition of (4), we have that cost;(p(z1,...,zy)), i.€., the cost of action
instancep(zy, ..., x,) at timej. Consequently, the violation value of the weak constraiatof

form (5) for p in 1p*(P) is costuc(S) = 3251 Xy, . omjea, 0sti(p(x1,. ., 2,)). Since all
violation values stem from weak constraints (5), in totalh@gecost;,up) (S) = costp(P). This
proves the result. O

References

Blum, A. L., & Furst, M. L. (1997). Fast Planning Through Phémg Graph Analysis.Avrtificial
Intelligence 90, 281-300.

Bonet, B., & Geffner, H. (2000). Planning with Incompletddmation as Heuristic Search in
Belief Space. In Chien, S., Kambhampati, S., & Knoblock, C(Eds.),Proceedings of the
Fifth International Conference on Atrtificial Intelligenédanning and Scheduling (AIPS’Q0)
pp. 52—-61, Breckenridge, Colorado, USA.

Bryant, R. E. (1986). Graph-based algorithms for booleanttion manipulation.|EEE Transac-
tions on ComputersC-358), 677—691.

Buccafurri, F., Leone, N., & Rullo, P. (1997). Strong and W€&anstraints in Disjunctive Datalog.
In Dix, J., Furbach, U., & Nerode, A. (EdsBroceedings of the 4th International Conference
on Logic Programming and Non-Monotonic Reasoning (LPNMIR'8lo. 1265 in Lecture
Notes in Al (LNAI), pp. 2-17, Dagstuhl, Germany. Springerrlsg.

Buccafurri, F., Leone, N., & Rullo, P. (2000). Enhancing jDistive Datalog by Constraint$EEE
Transactions on Knowledge and Data Engineeyihg5), 845-860.

Cimatti, A., & Roveri, M. (2000). Conformant Planning viar8holic Model CheckingJournal of
Artificial Intelligence Researgih 3, 305-338.

Dantsin, E., Eiter, T., Gottlob, G., & Voronkov, A. (2001).o@plexity and Expressive Power of
Logic Programming ACM Computing Survey83(3), 374-425.

Dimopoulos, Y., Nebel, B., & Koehler, J. (1997). Encodingfting Problems in Nonmonotonic
Logic Programs. IrProceedings of the European Conference on Planning 199P¢gD)
pp. 169-181. Springer Verlag.

Eiter, T., Faber, W., Leone, N., & Pfeifer, G. (2000a). Dealae Problem-Solving Using the
DLV System. In Minker, J. (Ed.)l.ogic-Based Atrtificial Intelligengepp. 79-103. Kluwer
Academic Publishers.

68

ANSWERSET PLANNING UNDER ACTION COSTS

Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, 20Q0b). Planning under Incomplete
Knowledge. In Lloyd, J., Dahl, V., Furbach, U., Kerber, Maud, K.-K., Palamidessi, C.,
Pereira, L. M., Sagiv, Y., & Stuckey, P. J. (Ed€Qemputational Logic - CL 2000, First In-
ternational Conference, Proceedindso. 1861 in Lecture Notes in Al (LNAI), pp. 807-821,
London, UK. Springer Verlag.

Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, 2002a). Answer Set Planning under
Action Costs. In Flesca, S., Greco, S., lanni, G., & Leone(lBdls.), Proceedings of the
8th European Conference on Artificial Intelligence (JELINp. 2424 in Lecture Notes in
Computer Science, pp. 186-197.

Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, 2002b). Answer Set Planning under Ac-
tion Costs. Tech. rep. INFSYS RR-1843-02-13, Institutlfiiormationssysteme, Technische

Universitat Wien.

Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, 2003a). A Logic Programming Approach
to Knowledge-State Planning, II: tiaLvX System. Artificial Intelligence 144(1-2), 157—
211.

Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, 2003b). A Logic Programming Approach
to Knowledge-State Planning: Semantics and Complexityagmear in ACM Transactions
on Computational Logic.

Ephrati, E., Pollack, M. E., & Mihlstein, M. (1996). A Cosirdcted Planner: Preliminary Report.
In Proceedings of the Thirteenth National Conference on Aidifilntelligence (AAAI-96)
pp. 1223 — 1228. AAAI Press.

Erdem, E. (1999). Applications of Logic Programming to Pliaig: Computational Experiments.
Unpublished draftht t p: / / www. cs. ut exas. edu/ user s/ esral/ papers. htm .

Faber, W., & Pfeifer, G. (since 1996[pLVV homepage.ht t p: / / www. dl vsystem coni .

Ferraris, P., & Giunchiglia, E. (2000). Planning as Satisfiix in Nondeterministic Domains. In
Proceedings of the Seventeenth National Conference dircigttintelligence (AAAI'00), July
30 — August 3, 2000, Austin, Texas UPA. 748—-753. AAAI Press / The MIT Press.

Fourer, R., Gay, D. M., & Kernighan, B. W. (1993AMPL: A Modeling Language for Mathematical
Programming Duxbury Press.

Gelfond, M., & Lifschitz, V. (1991). Classical Negation inogic Programs and Disjunctive
DatabasesNew Generation Computing, 365—-385.

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, AVeloso, M., Weld,
D., & Wilkins, D. (1998). PDDL — The Planning Domain Definitio lan-
guage. Tech. rep., Yale Center for Computational Vision @uwhtrol. Available at
http://www.cs.yale.edu/pub/mcdermott/software/padigz.

Giunchiglia, E. (2000). Planning as Satisfiability with Eepsive Action Languages: Concurrency,
Constraints and Nondeterminism. In Cohn, A. G., Giunchidh., & Selman, B. (Eds.ro-
ceedings of the Seventh International Conference on Riiegiof Knowledge Representation
and Reasoning (KR 2000), April 12-15, Breckenridge, CalordJSA pp. 657—666. Morgan
Kaufmann.

69

EITER, FABER, LEONE, PFEIFER& POLLERES

Giunchiglia, E., Kartha, G. N., & Lifschitz, V. (1997). Reysenting Action: Indeterminacy and
Ramifications Artificial Intelligence 95, 409—443.

Giunchiglia, E., & Lifschitz, V. (1998). An Action Languadgased on Causal Explanation: Prelim-
inary Report. InProceedings of the Fifteenth National Conference on Aidifimtelligence
(AAAI ’98), pp. 623-630.

Haslum, P., & Geffner, H. (2000). Admissible Heuristics @ptimal Planning. In Chien, S., Kamb-
hampati, S., & Knoblock, C. A. (Eds.Proceedings of the Fifth International Conference on
Artificial Intelligence Planning and Scheduling (AIPS'0pp. 140-149, Breckenridge, Col-
orado, USA. AAAI Press.

Kautz, H., & Walser, J. P. (1999). State-space planning tBger optimization. IProceedings of
the 16th National Conference on Atrtificial Intelligence @N/99), pp. 526-533.

Koehler, J. (1998). Planning Under Resource ConstraimsPrdceedings of the 13th European
Conference on Atrtificial Intelligence (ECAI'98)p. 489—-493.

Krentel, M. (1992). Generalizations of Opt P to the Polyralirilierarchy. Theoretical Computer
Science97(2), 183-198.

Lee, J., & Lifschitz, V. (2001). Additive Fluents. In ProtiefA., & Cao, S. T. (Eds.)Proceedings
AAAI 2001 Spring Symposium on Answer Set Programming: TsnEfficient and Scalable
Knowledge Representation and Reasonpm 116-123, Stanford, CA. AAAI Press.

Lifschitz, V., & Turner, H. (1994). Splitting a Logic Progra In Van Hentenryck, P. (Ed.Rro-
ceedings of the 11th International Conference on Logic Rmogning (ICLP’94) pp. 23-37,
Santa Margherita Ligure, Italy. MIT Press.

Lifschitz, V., & Turner, H. (1999). Representing TransitiBystems by Logic Programs. In Gelfond,
M., Leone, N., & Pfeifer, G. (Eds.Rroceedings of the 5th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR'8&). 1730 in Lecture Notes in Al
(LNAI), pp. 92-106, El Paso, Texas, USA. Springer Verlag.

Lifschitz, V. (1996). Foundations of Logic Programming.Brewka, G. (Ed.)Principles of Knowl-
edge Representatippp. 69-127. CSLI Publications, Stanford.

Lifschitz, V. (1999a). Action Languages, Answer Sets amahRing. In Apt, K., Marek, V. W.,
Truszczyhski, M., & Warren, D. S. (EdsJhe Logic Programming Paradigm — A 25-Year
Perspectivepp. 357-373. Springer Verlag.

Lifschitz, V. (1999b). Answer Set Planning. In Schreye, D.(Bd.), Proceedings of the 16th
International Conference on Logic Programming (ICLP’99p. 23-37, Las Cruces, New
Mexico, USA. The MIT Press.

McCain, N. (1999). The Causal Calculator Homepagétt p: / / ww. cs. ut exas. edu/
users/tag/cc/.

McCain, N., & Turner, H. (1997). Causal Theories of Actiomsl&hange. IrProceedings of the
15th National Conference on Artificial Intelligence (AASM), pp. 460—-465.

McCain, N., & Turner, H. (1998). Satisfiability Planning wiCausal Theories. In Cohn, A. G.,
Schubert, L., & Shapiro, S. C. (EdsBroceedings Sixth International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR{§8)212—-223. Morgan Kaufmann
Publishers.

70

ANSWERSET PLANNING UNDER ACTION COSTS

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Mal&. (2001). Chaff: Engineering an
Efficient SAT Solver. InProceedings of the 38th Design Automation Conference, D 2
Las Vegas, NV, USA, June 18-22, 20pf.. 530-535. ACM.

Nareyek, A. (2001). Beyond the Plan-Length CriterionLatal Search for Planning and Schedul-
ing, ECAI 2000 Workshgpvol. 2148 of Lecture Notes in Computer Sciengm. 55-78.
Springer.

Niemela, I. (1998). Logic Programs with Stable Model Setitcaras a Constraint Programming
Paradigm. In Niemela, I., & Schaub, T. (Edyoceedings of the Workshop on Computa-
tional Aspects of Nonmonotonic Reasonipg. 72—79, Trento, Italy.

Papadimitriou, C. H. (1994 Computational ComplexityAddison-Wesley.

Pednault, E. P. D. (1989). Exploring the Middle Ground betw&8TRIPS and the Situation Calcu-
lus. InProceedings of the 1st International Conference on Prilesijpf Knowledge Represen-
tation and Reasoning (KR'8®p. 324-332, Toronto, Canada. Morgan Kaufmann Publishers
Inc.

Refanidis, I., & Vlahavas, |. (2001). A Framework for Mul@iriteria Plan Evaluation in Heuristic
State-Space Planning. I3CAI-01 Workshop on Planning with Resources

Selman, A. L. (1994). A Taxonomy of Complexity Classes of &igns. Journal of Computer and
System Science$8(2), 357-381.

Simons, P., Niemela, I., & Soininen, T. (2002). Extendingl dmplementing the Stable Model
SemanticsArtificial Intelligence 138 181-234.

Smith, D. E., & Weld, D. S. (1998). Conformant Graphplan. Rroceedings of the Fifteenth
National Conference on Atrtificial Intelligence, (AAAI'9§)p. 889-896. AAAI Press / The
MIT Press.

Son, T. C., & Pontelli, E. (2002). Reasoning About Action®nioritized Default Theory. In Flesca,
S., Greco, S., lanni, G., & Leone, N. (Ed€)pceedings of the 8th European Conference on
Artificial Intelligence (JELIA)No. 2424 in Lecture Notes in Computer Science, pp. 369-381.

Subrahmanian, V., & Zaniolo, C. (1995). Relating Stable Blecand Al Planning Domains. In
Sterling, L. (Ed.),Proceedings of the 12 International Conference on Logic Programmjng
pp. 233-247, Tokyo, Japan. MIT Press.

van Gelder, A., Ross, K., & Schlipf, J. (1991). The Well-Fdad Semantics for General Logic
Programs.Journal of the ACM38(3), 620-650.

Weld, D. S., Anderson, C. R., & Smith, D. E. (1998). Extend®@phplan to Handle Uncertainty
& Sensing Actions. IrProceedings of the Fifteenth National Conference on Aidifintelli-
gence, (AAAI'98)pp. 897-904. AAAI Press / The MIT Press.

Williams, M., & Hanks, S. (1994). Optimal Planning with a G@irected Utility Model. In
Hammond, K. J. (Ed.)Proceedings of the Second International Conference otfidati In-
telligence Planning Systems (AIPS-9dp. 176-181. AAAI Press.

71

