
Answer Set Programming based on Propositional Satisfiability

Enrico Giunchiglia1, Yuliya Lierler2 and Marco Maratea1,3

1 STAR-Lab, DIST, University of Genova
viale Francesco Causa, 13 — 16145 Genova, Italy
{ enrico,marco}@ dist. unige. it

2 Institut für Informatik, Erlangen-Nürnberg-Universität
Haberstr. 2, Erlangen, Germany
yuliya@ informatik. uni-erlangen. de

3 Department of Mathematics, University of Calabria
via P. Bucci, Cubo 30b — 87036 Rende (CS), Italy

Abstract. Answer Set Programming (ASP) emerged in the late 1990s as a new
logic programming paradigm which has been successfully applied in various appli-
cation domains. Also motivated by the availability of efficient solvers for propo-
sitional satisfiability (SAT), various reductions from logic programs to SAT were
introduced in the past. All these reductions either are limited to a subclass of
logic programs, or introduce new variables, or may produce exponentially bigger
propositional formulas.

In this paper, we present a SAT-based procedure, called ASP-SAT, that (i) deals
with any (non disjunctive) logic program, (ii) works on a propositional formula
without additional variables (except for those possibly introduced by the clause
form transformation), and (iii) is guaranteed to work in polynomial space. From a
theoretical perspective, we prove soundness and completeness of ASP-SAT. From
a practical perspective, we have (i) implemented ASP-SAT in Cmodels, (ii) ex-
tended the basic procedures in order to incorporate the most popular SAT reasoning
strategies, and (iii) conducted an extensive comparative analysis involving also other
state-of-the-art answer set solvers. The experimental analysis shows that our solver is
competitive with the other solvers we considered, and that the reasoning strategies
that work best on “small but hard” problems are ineffective on “big but easy”
problems and vice versa.

Keywords: Answer Set Programming, Propositional Satisfiability

1. Introduction

Answer Set Programming (ASP) emerged in the late 1990s as a new
logic programming paradigm (Marek and Truszczynski, 1999; Niemelä,
1999), and has been successfully applied in various domains including
space shuttle control (Nogueira et al., 2001), planning (Lifschitz et al.,
1999), and the design and implementation of query answering systems
(Baral and Scherl, 2004). Syntactically, ASP programs look like Pro-
log programs, but they are treated by rather different computational

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

final.tex; 18/05/2006; 9:11; p.1



2

mechanisms. Indeed, ASP systems like Cmodels (Lierler and Lifschitz,
2003), smodels (Simons et al., 2002), smodelscc (Ward and Schlipf,
2004), dlv (Leone et al., 2005), and assat (Lin and Zhao, 2002; Lin
and Zhao, 2004) interpret logic programs via the answer set semantics
(Gelfond and Lifschitz, 1988; Gelfond and Lifschitz, 1991). The goal is
to find the “models” (called answer sets) of the program, and not to
evaluate whether a query is true or not, as in standard Prolog systems.
The ASP approach is thus similar to propositional satisfiability check-
ing, where propositional formulas encode the problem and models of
the formula correspond to the solutions of the problem.

Propositional satisfiability (SAT) is one of the most intensely studied
fields in Artificial Intelligence and Computer Science. Various proce-
dures that can deal with thousands of variables are now available (see,
e.g., (Le Berre and Simon, 2003)). Also motivated by the availability
of efficient SAT solvers (such as satz (Li and Anbulagan, 1997) and
mchaff (Moskewicz et al., 2001)), various reductions from logic pro-
grams to SAT were introduced in the past. The most popular of such
reductions is Clark’s completion (Clark, 1978). Fages (1994) showed
that if a logic program is “tight” then its answer sets are in one-to-
one correspondence with the models of its Clark’s completion. From a
theoretical point of view, Fages’ result was then generalized to include
programs with infinitely many rules (Lifschitz, 1996), programs tight
“on their completion models” (Babovich et al., 2000), programs with
nested expressions in the bodies of the rules (Erdem and Lifschitz,
2001), and disjunctive programs (Lee and Lifschitz, 2003). From a
practical point of view, computation of answer sets for tight programs
via Clark’s completion and SAT solving has been first implemented in
Cmodels, and has been also shown to be effective on many classes of
problems. Still, these results do not apply to the whole class of logic pro-
grams. In general, it is well known that each answer set corresponds to a
model of its completion, but the converse is in general not true (Marek
and Subrahmanian, 1989).

Ben-Eliyahu and Dechter (1996) gave a translation from a class of
disjunctive logic programs to SAT: Their translation may need O(n2)
new variables and O(n3) new clauses, where n is the number of atoms
in the logic program. Lin and Zhao (2003a) introduced a translation
which needs the introduction of O(n2 +m) new variables and O(n×m)
new clauses, where m is the number of rules in the logic program. Jan-
hunen (2004) presented an optimized encoding which is sub-quadratic
in both size and number of atoms. Lin and Zhao (2004) report that the
grounding of a program corresponding to the computation of a Hamil-
tonian path in a complete graph with 50 nodes, produces a program
with 5000 atoms and 240000 rules, and in a complete graph of 60 nodes

final.tex; 18/05/2006; 9:11; p.2



3

produces a program with 7000 atoms and 420000 rules. For problems
like these, the number of variables or clauses in the resulting formula
may become prohibitive.

The only reduction to SAT which does not need extra variables has
been proposed by Lin and Zhao (2002, 2004). The drawback of this
reduction is that it may blow up in space, i.e., the resulting number of
clauses can be exponential. This is not by chance. A recent result by
Lifschitz and Razborov (Lifschitz and Razborov, 2004) shows that —
assuming P 6⊆ NC1/poly, a conjecture from computational complexity
theory widely believed to be true— whenever we try to translate a logic
program to a set of clauses

− either we have to introduce new variables,

− or an exponential blow up may occur.

Despite the potential exponential blow up, system assat based on such
a reduction outperforms state-of-the-art ASP systems like smodels
and dlv on many interesting problems.

In this paper we present a procedure, called ASP-SAT, that

1. deals with any (not necessarily tight) logic program,

2. works on a propositional formula without additional variables (ex-
cept for those possibly introduced by the clause form transforma-
tion), and

3. is guaranteed to work in polynomial space.

From a theoretical perspective, we prove the soundness and complete-
ness of ASP-SAT. We also show how to extend this basic procedure
in order to compute all answer sets still working in polynomial space.

From a practical perspective, we have implemented ASP-SAT in
Cmodels. We call the resulting system Cmodels2. Given the SAT-
based nature of our procedure, we have been able to implement —with
a relatively small effort— several search strategies and heuristics which
have been shown effective in the SAT literature. Then, we experimen-
tally analyze which combinations of reasoning strategies work best on
which problems. In particular,

− We implemented various “look-ahead” strategies (used while de-
scending the search tree); “look-back” strategies (used for recov-
ering from a failure in the search tree); and “heuristics” (used for
selecting the next literal to branch on).

− We considered Cmodels2 with various combinations of strate-
gies, and other state-of-the-art systems like smodels, smodelscc,
assat, and dlv.

final.tex; 18/05/2006; 9:11; p.3



4

− We conducted an extensive experimental analysis, involving all
the above mentioned versions of Cmodels2 and systems, and a
wide variety of tight and non tight programs, ranging from “small”
randomly generated programs with a few hundred atoms, up to
“large” programs with tens of thousands variables.

Our experimental results show that the look-back (resp. look-ahead)
version of Cmodels2 has a clear edge over the other state-of-the-art
systems that we considered on large (resp. small randomly generated)
problems. The look-back version of Cmodels2 is very competitive also
on the other non random, non large programs that we considered.

If we focus on the performances of the various versions of Cmod-
els2, the experimental results also point out that:

1. On the small randomly generated problems, “look-ahead solvers”
(featuring a rather sophisticated look-ahead based on “failed lit-
eral”, a simple look-back strategy –essentially backtracking– and a
heuristic based on the information gleaned during the look-ahead
phase) are best.

2. On the large problems,“look-back solvers” (featuring a simple but
efficient look-ahead strategy –essentially unit-propagation with 2
literal watching–, a rather sophisticated look-back based on “learn-
ing” and a constant time heuristic based on the information gleaned
during the look-back phase) are best.

3. Adding a powerful look-back (resp. look-ahead) to a look-ahead
(resp. look-back) solver does not lead to better performances if the
resulting solver is run on the small (resp. large) problems that we
considered.

Using the terminology in (Giunchiglia et al., 2001), our comparison is
“fair” because all the reasoning strategies are realized on a common
platform and thus the experimental evaluation is not biased by the
differences due to the quality of the implementation, and is “signif-
icant” because Cmodels2 implements current state-of-the-art look-
ahead/look-back strategies and heuristics. We believe that these results
have important consequences both for developers and also for people
interested in benchmarking ASP systems. For instance, our results
say that we can hardly expect to develop one solver with the best
performances on all the categories of problems. As a consequence,

− developers should focus on specific classes of benchmarks (e.g., on
randomly generated programs), and

final.tex; 18/05/2006; 9:11; p.4



5

− benchmarking should take into account whether solvers have been
designed for specific classes of programs: Indeed, it hardly makes
sense to run a solver designed for random (resp. large) programs
on large (resp. random) programs.

The paper is structured as follows. In Section 2 we introduce the
definitions, terminology and results at the basis of our work. Then, in
Section 3 we present ASP-SAT in its basic backtracking version, and
we prove its soundness and completeness. We also discuss in details
what needs to be done in order to implement ASP-SAT on top of a SAT
solver with learning. In Section 4 we show how we implemented ASP-
SAT in Cmodels. Section 5 contains the experimental, comparative
evaluation. We end the paper with the conclusions and future work in
Section 6.

A preliminary version of this paper is (Giunchiglia et al., 2004).
This paper contains also results presented in (Giunchiglia and Maratea,
2005b; Giunchiglia and Maratea, 2005a).

2. Formal Background

2.1. Syntax of Logic Programs

A rule is an expression of the form

p0 ← p1, . . . , pk, not pk+1, . . . , not pm, not not pm+1, . . . , not not pn

(1)
(0 ≤ k ≤ m ≤ n) where p0 is an atom or the symbol ⊥ (⊥ is the logical
symbol standing for the empty disjunction, i.e., False), p1, p2, . . . , pn

are atoms, and the symbol not is the “negation” as failure operator.
p0 is the head of the rule, and the expression at the right of the arrow
is the body. The intuitive meaning of a rule (1) is that p0 is in the
solution whenever the body is satisfied.

A (non disjunctive logic) program is a finite set of rules.
If the head of a rule is ⊥, we call the rule a constraint. If a rule (1)

contains an expression of the form not not pi, then the rule is called
nested, otherwise the rule is non nested or basic. If a logic program Π
contains at least one nested rule, Π is a nested program, otherwise is
non nested or basic. For instance, the program

p← not not p
q ← not p.

(2)

is nested, while
p← p
q ← not p.

(3)

final.tex; 18/05/2006; 9:11; p.5



6

is non nested or basic.

2.2. Answer Sets for Logic Programs

In order to give the definition of an answer set we consider first the spe-
cial case in which the program Π does not contain the negation as failure
operator not (i.e. for each rule (1) in Π, n = m = k). Let Π be such a
program and let X be a set of atoms. We say that X is closed under Π
if for every rule (1) in Π, p0 ∈ X whenever {p1, p2, . . . , pk} ⊆ X. In the
n = m = k hypothesis, Π has only one answer set, and it is the smallest
set of atoms closed under Π. Computing such an answer set can be done
in linear time, via the Dowling-Gallier procedure (Dowling and Gallier,
1984), or via unit-propagation (assuming the symbol “←” is understood
as the standard material implication, and “,” as conjunction).

Now consider an arbitrary program Π. Let X be a set of atoms. A
rule

p0 ← p1, . . . , pk

belongs to the reduct ΠX of Π with respect to X if and only if there is
a rule (1) in Π with X ∩ {pk+1, . . . , pm} = ∅ and {pm+1, . . . , pn} ⊆ X.
ΠX is a program without negation as failure. We say that a subset
X of the atoms in Π is an answer set for Π if X is an answer set for
ΠX (Gelfond and Lifschitz, 1988; Lee and Lifschitz, 2003).

As an example, let Π be the program (2) and consider the set of
atoms {p}. The reduct Π{p} is

p← . (4)

The set {p} is the smallest set closed under (4) and hence it is also an
answer set of the program Π. If we consider the set of atoms {p, q}, the
reduct Π{p,q} is again (4). The set {p, q} is not the smallest set closed
under (4), and hence it is not an answer set of the program Π.

Determining the existence of an answer set for a program Π is an
NP-complete problem. Indeed, checking if a set of atoms X is an answer
set of Π can be done in linear time by first computing the reduct
ΠX and then computing the answer set of ΠX . NP-hardness can be
easily proven using standard reductions of the SAT problem into logic
programs under answer set semantics, see, e.g., (Janhunen, 2003).

2.3. Completion

Consider a program Π. For an atom p0 the completion Comp(Π, p0) of
Π relative to p0 is the formula

p0 ≡
∨

(p1 ∧ . . . ∧ pk ∧ ¬pk+1 ∧ . . . ∧ ¬pm ∧ pm+1 ∧ . . . ∧ pn)

final.tex; 18/05/2006; 9:11; p.6



7

where the disjunction extends over all rules (1) in Π with head p0. The
completion Comp(Π) of Π consists of the formulas

k∨
i=1

¬pi ∨
m∨

i=k+1

pi ∨
n∨

i=m+1

¬pi

one for each rule (1) whose head is ⊥; and of the formulas Comp(Π, p0)
for each atom p0 in Π (Clark, 1978; Lloyd and Topor, 1984). For
instance, the completion of the program (2) consists of the formulas

p ≡ p
q ≡ ¬p,

(5)

and (5) is also the completion of the program (3).
The following theorem, due to Marek and Subrahmanian (1989)

for basic programs and generalized in (Erdem and Lifschitz, 2001) for
nested programs, relates the answer sets of a program to the models of
its completion. In the following, we say that a set of atoms X satisfies
(or is a model of) a set of formulas Γ if Γ is satisfied by the interpretation
which assigns True to an atom p if and only if p ∈ X.

THEOREM 1. Let Π be a program. If X is an answer set of Π, then
X satisfies the completion of Π.

The set of atoms {p, q} does not satisfy the completion (5) of (2)
(resp. (3)) and thus it is not an answer set of (2) (resp. (3)).

2.4. Tight Programs

Theorem 1 can be strengthened in the case of tight programs. A pro-
gram Π is tight if its dependency graph is acyclic. The dependency
graph of a program Π is the directed graph G such that

- the nodes of G are the atoms in Π, and

- for every rule (1) in Π, G has an edge from p0 to each atom in
{p1, . . . , pk} .

The following Theorem has been proved by Fages (1994) for basic
programs, and it has been generalized by Erdem and Lifschitz (2001)
to nested programs.

THEOREM 2. Let Π be a tight program and X a set of atoms. X is
an answer set for Π iff X satisfies the completion of Π.

final.tex; 18/05/2006; 9:11; p.7



8

Program (2) is tight, while program (3) is non tight. Hence, ac-
cording to the above theorem, the answer sets of (2) coincide with the
models of (5) (and thus can be computed with SAT solvers).

2.5. Loop Formulas

Theorem 1 states that if X is an answer set of program Π then X
satisfies Comp(Π). Theorem 2 says that the converse is also true if the
program is tight. If the program is non tight, Lin and Zhao (2002, 2004)
proved that to have the identity mapping between the answer sets of a
basic program Π and the models of its completion, we have to consider
the loop formulas of Π. Lee and Lifschitz (2003) extended the concept
of loop formulas to nested programs and proved that the same result
holds with the extended definition. To formally state this last result,
we need the following definitions.

A loop of Π is a nonempty set L of atoms such that for each pair
p, p′ of atoms in L there exists a path of nonzero length from p to p′ in
the dependency graph of Π whose intermediate nodes belong to L.

Given a loop L, we define R(L) to be the set of formulas

(p1 ∧ . . . ∧ pk ∧ ¬pk+1 ∧ . . . ∧ ¬pm ∧ pm+1 ∧ . . . ∧ pn)

for all rules (1) in Π, with p0 ∈ L and {p1, . . . , pk} ∩ L = ∅. The loop
formula associated with L is∨

L ⊃
∨

R(L) (6)

where
∨

L denotes the disjunction of the atoms in L, and similarly for∨
R(L).

THEOREM 3. Let Π be a program. Let Comp(Π) be the completion
of Π. Let LF (Π) be the set of all the loop formulas associated with the
loops of Π. For each set of atoms X, X is an answer set of Π iff X is
a model of Comp(Π) ∪ LF (Π).

Consider the non tight program (3). Its completion is (5). The only
loop of the program is {p} and the loop formula associated with {p} is

p ⊃ ⊥,

which is equivalent to ¬p. Thus, the answer sets of (3) are the set of
atoms that satisfy (5) and also ¬p.

final.tex; 18/05/2006; 9:11; p.8



9

3. SAT-based Answer Set Solvers

3.1. Previous approaches

Cmodels (Lierler and Lifschitz, 2003) is an answer set solver based
on SAT which has evolved along the years and which, in its current
version, incorporates also the procedure described in this paper and
in its predecessor (Giunchiglia et al., 2004). The version of Cmodels
prior to (Giunchiglia et al., 2004) is restricted to tight programs, and,
given a tight program Π, Cmodels

1. computes the completion Comp(Π) of the program, and

2. calls a SAT solver to find the models of Comp(Π) (corresponding
to the answer sets of the input program). Before invoking the SAT
solver, it may be necessary to convert the formulas in Comp(Π)
to a set of clauses, as required by most SAT solvers. A clause is a
disjunction of literals, and a literal is an atom or the negation of
an atom.

The advantage of this method is that it uses SAT solvers as black boxes.
On the other hand, it is restricted to tight programs.

Theorem 3 lays the foundation for extending this method to non
tight programs.

Consider a program Π. To determine whether Π has an answer set,
one possibility is to

1. compute the completion and the loop formulas of Π, i.e., the set
Γ = Comp(Π) ∪ LF (Π) of formulas, and then

2. invoke a SAT solver to determine the models of (the clause conver-
sion of the formulas in) Γ.

This is an “eager”1 approach which may work well in practice in some
domains, but the resulting propositional formula may be exponentially
bigger than the input program.

assat (Lin and Zhao, 2002; Lin and Zhao, 2004) is a SAT-based
system for basic programs which takes an alternative approach. Indeed,
assat adds loop formulas on demand, i.e., assat

1. Computes Γ = Comp(Π).

1 The terminology is borrowed from the one used in decision procedures for
separation logic, where “eager” approaches compile the input formula into an
equisatisfiable propositional one, see, e.g., (Lahiri et al., 2002).

final.tex; 18/05/2006; 9:11; p.9



10

2. Finds a model X of Γ by using a SAT solver (before this, it may
be necessary to convert Γ to a set of clauses). If no such model
exists then the input program does not have answer sets and the
procedure terminates returning False.

3. Checks if X is an answer set: As we have already said in section 2.2,
this can be done in linear time in the size of Π. If X is an answer
set, then the procedure terminates with returning True. Otherwise,
assat

a) finds at least one loop formula which is not satisfied by X, and
adds it to Γ: As described in section 4, also this step can be
done in linear time in the size of Π; and

b) goes back to step 2.

Lin and Zhao (2002, 2004) showed that assat can often outperform
rival systems. However, assat has the following two drawbacks:

1. assat is not guaranteed to work in polynomial space. Lifschitz
and Razborov (2004) showed that there are programs Π for which
LF (Π) contains exponentially many formulas (unless P 6⊆ NC1/poly),
each of which cannot be derived from the others and Comp(Π). For
these programs Π:

− If Π has an answer set, then assat performance on Π depends
on how lucky the system is in generating the right model first.
In the best case it generates an answer set first. In the worst
case it blows up in space.

− If Π has no answer set, then assat blows up in space. In fact,
adding and keeping already added loop formulas is essential
to guarantee that the SAT solver does not return an already
computed model, and thus to guarantee assat termination.

2. Considering two successive calls to the SAT solver, the computation
done for finding the first model is completely discarded, i.e., not re-
used by the SAT solver in the second call. Thus some branches of
the search tree may get computed many times.

Further considering the task of computing all answer sets of a program
Π, there are two ways for doing it in assat:

1. Compute Comp(Π)∪LF (Π) and then call a SAT enumerator, i.e., a
SAT solver able to return all the models of a propositional formula,
e.g., mchaff (Moskewicz et al., 2001); or

final.tex; 18/05/2006; 9:11; p.10



11

2. In order to avoid the generation of the same model X, once an
answer set X is found, modify assat procedure in step 3 by

a) adding to Γ one or more clauses ensuring that the same answer
set X is not re-computed, and

b) going back to step 2.

For nested programs, the obvious clause to add to Γ is∨
A∈X

¬A ∨
∨

A6∈X

A. (7)

For basic programs, (i.e., of the kind that assat considers) we can
take advantage of the fact that the following anti-chain property
holds: if X is an answer set, no strict subset or superset of X is an
answer set. For these programs it is thus sufficient to add to Γ one
or both of the clauses ∨

A∈X

¬A,
∨

A6∈X

A (8)

in order to ensure that the same answer set is not re-computed.
The advantage of adding (8) instead of (7) is that each clause in
(8) entails (7) and thus it prunes more search space.

The first approach is unfeasible if there are (exponentially) many loop
formulas. The second approach is unfeasible also when there are many
answer sets.

3.2. ASP-SAT with backtracking

The above drawbacks can be eliminated if we do not use a SAT solver as
a black-box. Instead, we can take advantage of that all the state-of-the-
art complete SAT solvers are based on the Davis-Logemann-Loveland
procedure (Davis et al., 1962). The basic observation is that the Davis-
Logemann-Loveland procedure can easily work as a SAT enumerator.

Thus, given a program Π, we may first compute the completion of
Π, and then

− generate the models of Comp(Π), and

− test whether the generated models are answer sets of Π.

We call ASP-SAT the resulting procedure, and it is represented —in
its simple backtracking version— in Figure 1. In the figure,

final.tex; 18/05/2006; 9:11; p.11



12

function ASP-SAT(Π)
return dll(cnf(Comp(Π)), ∅,Π);

function dll(Γ, S,Π)
if (Γ = ∅) then return test(S, Π);
if (∅ ∈ Γ) then return False;
if ({l} ∈ Γ) then return dll(assign(l,Γ), S ∪ {l},Π);
p := an atom occurring in Γ;
return dll(assign(p, Γ), S ∪ {p},Π) or

dll(assign(¬p, Γ), S ∪ {¬p},Π).

Figure 1. The SAT-based ASP-SAT procedure for Answer Set Programming

1. Given a set of formulas Γ, cnf(Γ) returns a set of clauses —
possibly with newly introduced propositional variables— such that,
for any interpretation µ in the extended language, the following two
properties hold:

a) if µ satisfies cnf(Γ) then the restriction of µ to the language of
Γ satisfies Γ, and

b) if µ satisfies Γ then there exists an interpretation in the lan-
guage of cnf(Γ) which (i) extends µ, and (ii) satisfies cnf(Γ).

An example of such a conversion is the “classical conversion” (which
given a formula in negative normal form recursively distributes
conjunctions over disjunctions), and the conversions based on “re-
naming”, such as those described in (Tseitin, 1970; Plaisted and
Greenbaum, 1986; Sheridan, 2004).

2. l denotes a literal, and Γ a set of clauses;

3. S is an assignment, i.e., a consistent set of literals;

4. given an atom p, assign(p, Γ) is the set of clauses obtained from Γ
by removing the clauses to which p belongs, and by removing ¬p
from the other clauses in Γ. assign(¬p, Γ) is defined similarly.

A key feature of ASP-SAT is that it is based on dll, which, consid-
ering its pseudo-code in the figure, is almost identical to the Davis-
Logemann-Loveland procedure: The only difference is that, when the
empty set of clauses is generated, dll invokes the function test(S, Π) in-
stead of just returning True. ASP-SAT thus follows a “lazy” approach
to the computation of answer sets based on SAT,2 where, intuitively

2 The terminology is again borrowed from the one used in decision procedures
for separation logic, where “lazy” approaches abstract the input formula into a

final.tex; 18/05/2006; 9:11; p.12



13

speaking, the goal of the function test(S, Π) is to return True if the
assignment S corresponds to at least one answer set of Π, and False
otherwise. However, the function test(S, Π) deserves some further com-
ments. Assume P is the set of atoms in the program Π. When the
function test(S, Π) is invoked, its argument S is such that S∩P satisfies
the completion of Π and is thus a candidate for being an answer set.
However, it may be the case that S is not a total assignment, i.e., it
is possible that for some atom p ∈ P , neither p nor ¬p are in S. If
p is one such atom, also (S ∩ P ) ∪ {p} satisfies the completion of Π
and is thus another candidate for being an answer set. In general, an
assignment S can potentially correspond to exponentially many set of
atoms satisfying the completion of Π, and each of them is a superset
of the atoms in S ∩ P . However, if Π is a basic program, none of these
strict supersets is an answer set of Π, as established by the following
proposition.

PROPOSITION 4. Let Π be a basic program. Let X be a set of atoms
satisfying Comp(Π). If X ⊂ X ′ then X ′ is not an answer set of Π.

Proof. We are given that X satisfies Comp(Π). From completion
construction, it follows that X is closed under ΠX . Since X ⊂ X ′ and
Π is basic, ΠX′ ⊆ ΠX . Hence X is closed under ΠX′

, and thus X ′ is
not the smallest set closed under ΠX′

. ♦

Thus, according to the above proposition, if Π is tight, test(S, Π) has
just to check if S∩P is an answer set of Π: Any set of atoms extending
S ∩ P is not an answer set.

We are now ready to state our main Theorem in the case of basic
programs.

THEOREM 5 (Soundness and completeness for basic programs). Let Π
be a basic program in the set P of atoms. Let test(S, Π) be a func-
tion returning True if S ∩ P is an answer set of Π, and False other-
wise. ASP-SAT(Π) returns True if Π has an answer set, and False
otherwise.
propositional one and refine the propositional model if it does not correspond to
a model of the original formula, see, e.g., (Armando et al., 1999; de Moura et al.,
2002; Barrett et al., 2002; Armando et al., 2005). More recently (Nieuwenhuis and
Oliveras, 2005) showed that better performances can be obtained by using a lazy
approach in which the assignment is extended on the basis of the semantics of the
original formula in separatin logic. In our setting, this would correspond to assign
some atoms —not entailed by the current assignment and the completion of the
input program— but entailed by the current assignment, the completion of the input
program and the set of loop formulas: Whether this can lead to better performances
is still an open research issue.

final.tex; 18/05/2006; 9:11; p.13



14

Proof. Soundness is trivial. For completeness, assume that ASP-
SAT(Π) returns False. Let P be the set of atoms in Π. Let Γ be the
set of assignments S that have been checked, i.e., such that test(S, Π)
has been invoked. The fact that Π has no answer sets follows from the
following properties

1. The formula ∨
S∈Γ

(
∧

p:p∈S,p∈P

p ∧
∧

p:¬p∈S,p∈P

¬p)

is logically equivalent to the completion Comp(Π) of Π (Proposi-
tion 5 in (Giunchiglia et al., 2002), restated as Lemma 4 in (Ar-
mando et al., 2005)).

2. The set of answer sets of Π is a subset of {S ∩ P : S ∈ Γ} (easy
consequence of Theorem 1 and Proposition 4). ♦

Proposition 4 does not hold for arbitrary programs. In general, given
a nested program Π, it is possible that two sets X and X ′ of atoms are
such that

− X satisfies the completion of Π but is not an answer set of Π, and

− X ′ is a superset of X and is an answer set of Π.

This is illustrated by the following program:

p1 ← not not p1

p2 ← p1

p2 ← p2.
(9)

The completion of the program is {p1 ≡ p1, p2 ≡ (p1 ∨ p2}. The set of
atoms {p2} satisfies the completion but is not answer set. The set of
atoms {p1, p2} is a superset of {p2} and is also an answer set of (9).

Thus, in the general case, whenever test(S, Π) is invoked, every set
X of atoms which is

1. a superset of S ∩ P , and

2. a subset of {p : ¬p 6∈ S, p ∈ P}

has to be checked to see if it is an answer set of Π.

THEOREM 6 (Soundness and completeness for arbitrary programs). Let
Π be a program in the atoms P . Let test(S, Π) be a function returning
True if there exists a set X with S∩P ⊆ X ⊆ {p : ¬p 6∈ S, p ∈ P} which
is an answer set of Π, and False otherwise. ASP-SAT(Π) returns True
if Π has an answer set, and False otherwise.

final.tex; 18/05/2006; 9:11; p.14



15

Proof. The proof is analogous to the one of Theorem 5, the only
difference is that, assuming

− P is the set of atoms in Π,

− Γ is the set of assignments S that have been checked, i.e., such
that test(S, Π) has been invoked,

the set of answer sets of Π is a subset of

{X : ∃S ∈ Γ.S ∩ P ⊆ X ⊆ {p : ¬p 6∈ S, p ∈ P}},

as established by Theorem 1. ♦

3.3. ASP-SAT with learning

The ASP-SAT procedure in the previous subsection is based on the
standard Davis-Logemann-Loveland procedure with simple chronolog-
ical backtracking. It is thus not infrequent for ASP-SAT to explore a
possibly large subtree whose leaves are all dead-ends because of some
bad choices performed way up in the search tree. In SAT, the standard
solution to this problem is to backjump over the choices that do not
belong to the “reason” for the failure. Intuitively, if S is an assignment
which falsifies the input set Γ of clauses, then a reason R for S is a subset
of the literals in S such that any assignment extending R falsifies Γ.
(We say that a set S of literals falsifies a set of formulas Γ if S ∪ Γ is
inconsistent). Reasons are initialized as soon as a failure is generated,
and updated while backtracking. Many of the current state-of-the-art
SAT procedures feature such backjumping mechanism and extend it
with learning: under certain conditions, a reason R is converted into
the clause (

∨
p∈R ¬p ∨

∨
¬p∈R p) which is then learned, i.e., added to

the input set of clauses as additional constraint. Since exponentially
many distinct reasons can be computed, suitable criteria are also used
in order to forget (i.e., remove) clauses corresponding to reasons, thus
maintaining the SAT solver in polynomial space.

It is out of the goals of this paper to describe how learning is incor-
porated in the Davis-Logemann-Loveland procedure: See, e.g., (Dixon
et al., 2004) for a high-level description of learning including soundness
and completeness statements of the resulting procedure, (Silva and
Sakallah, 1996; Bayardo, Jr. and Schrag, 1997; Zhang et al., 2001) for
more detailed descriptions of different learning mechanisms. For our
purposes, it suffices to say that a SAT solver with learning can still be
used as underlying procedure for ASP-SAT. The only difference with
respect to the procedure in Figure 1 is in the test procedure. In fact,

final.tex; 18/05/2006; 9:11; p.15



16

as we outlined above, whenever we have a failure we have to have also
a corresponding reason. In our case, if test(S, Π) returns False, it has
also to return a subset R of the atoms in S such that for any total
assignment S′ extending R and not falsifying the completion of Π, the
set of atoms in S′ is guaranteed to be not an answer set of Π. One such
set R is S. However, in order to maximize the effects of the backjumping
and learning mechanisms in the SAT solver, it is important that R be
as small as possible. In the case of a basic program, one smaller such
set is the set of atoms in S (see Proposition 4). However, it is possible
to take advantage of loop formulas, and —in practice— return reasons
which are often less than 1% of the size of S.

To illustrate how loop formulas can help for computing small rea-
sons, consider a call to test(S, Π), and let P be the set of atoms in Π. We
assume that S does not correspond to any answer set of Π, otherwise
test(S, Π) has just to return True and the computation of a reason does
not make sense.

For simplicity, assume that S is a total assignment. The idea is to
find a loop formula F which is falsified by S, and return a subset S′

of S necessary to falsify F : Since every answer set of Π has to satisfy
all the loop formulas of Π, the set of atoms in any superset of S′ is
guaranteed to be not an answer set of Π. Important is the fact that
determining such a set S′ can be done efficiently, i.e., in linear time in
the size of Π, as detailed in the next section.

If S is not total but Π is basic, then —thanks to Proposition 4— we
can just consider the total assignment S ∪ {¬p : p ∈ P, p 6∈ S}.

Now assume that Π is nested and that S is not total. Assume for
simplicity that there is only one atom p ∈ P such that neither p nor
¬p is in S. Let S1 = S ∪ {p} and S2 = S ∪ {¬p}. Both S1 and S2 are
total. Furthermore, S1 ∩P and S2 ∩P are not answer sets, and we can
compute S′

1 ⊆ S1 and S′
2 ⊆ S2, each falsifying a loop formula of Π as

in the previous case. If p 6∈ S′
1 (resp. ¬p 6∈ S′

2) then S′
1 (resp. S′

2) is
also a subset of S and can be returned. If p ∈ S′

1 and ¬p ∈ S′
2 we can

safely return S′′ = S′
1 ∪ S′

2 \ {p,¬p}: S′′ ⊆ S and no set extending S′′

can correspond to an answer set. The above procedure can be easily
extended to the case in which there are more than one atoms p ∈ P
with {p,¬p} ∩ S = ∅.

Notice that S may be a non total assignment because in ASP-SAT
test(S, Π) is invoked whenever the input set of clauses is empty. Indeed,
many SAT solvers —including mchaff— have a different termination
condition for True: True is returned whenever either p or ¬p is in S,
for each atom p in the input set of clauses Γ. Assuming that all the
atoms in Π occur also in Γ, the above termination condition for True
ensures that S is total.

final.tex; 18/05/2006; 9:11; p.16



17

We want to remark that in order to guarantee the termination of
our procedure ASP-SAT(Π), it is not necessary to store the reasons re-
turned by test(S, Π): On the other hand, learning (a polynomial amount
of) reasons can improve performances of the procedure. Consider in fact
the program Πk consisting of the rules

pi ← pi+1 pi+1 ← pi

where i ∈ {0, 2, . . . , 2k − 2}, and of the constraint

⊥ ← not p0, not p1, . . . , not p2k−1.

Πk has no answer set, while Comp(Πk) has 2k − 1 models. Assuming
cnf(Comp(Πk)) consists of the clauses

¬pi ∨ pi+1 ¬pi+1 ∨ pi (10)

(i ∈ {0, 2, . . . , 2k − 2}), and

p0 ∨ p1 ∨ . . . ∨ p2k−1,

the following facts hold (in this paragraph, for simplicity, we assume
that the clauses corresponding to the reasons returned by test(S, Πk)
are learned and never forgotten):

− A naive implementation of test(S, Πk) which returns S as reason
for its failure, will cause the generation and rejection of exponen-
tially many sets of atoms, one for each set of atoms satisfying the
completion of Πk;

− Since Πk is basic, test(S, Πk) may return the set of atoms in S
as reason for its failure. Depending on the order in which the
assignments are generated and then tested, different things can
happen, ranging in between the following two extreme cases:

1. In the best case, the assignments containing exactly one pair
{pi, pi+i} (i even) are generated (and then rejected) first: In
this case, the clause (¬pi ∨ ¬pi+1) is learned, and, together
with (10), this implies that any other assignment generated
afterwards will contain both ¬pi and ¬pi+1. After the k sets
with two positive atoms are generated, the resulting set of
clauses is inconsistent and no more assignments are generated.

2. In the worst case, the assignments containing a maximum
number of positive atoms in P are generated (and then re-
jected) first: The first assignment that will be generated is
{p0, p1, . . . , p2k−1}, and the corresponding learned clause is ¬p0∨

final.tex; 18/05/2006; 9:11; p.17



18

¬p1 ∨ . . . ∨ ¬p2k−1, and it is easy to see that exponentially
many assignments will be generated before determining the
non existence of answer sets.

− An implementation of test(S, Π) that returns a subset of S falsify-
ing one of the loop formulas is guaranteed to test k assignments.
This is due to the fact that Πk has k loops, {pi, pi+1}, with i
even. Given a loop {pi, pi+1}, its loop formula is (pi ∨ pi+1) ⊃ ⊥,
corresponding to

(¬pi ∧ ¬pi+1). (11)

Given a call to test(S, Π), (i) a loop formula of the form (11)
falsified by S is computed; (ii) the two possible subsets of S falsi-
fying (11) are computed, i.e., {pi} and {pi+1}; (iii) one of them is
returned as reason; (iv) assuming {pi} is the returned reason, the
clause {¬pi} is learned; and (v) after backtracking/backjumping,
unit-propagation immediately assigns both pi and pi+1 to False.

After k calls to the test(S, Π) procedure, the resulting set of clauses
is unsatisfiable.

3.4. Computational properties of ASP-SAT

From a computational perspective, the ASP-SAT procedure in Fig-
ure 1 has the following features:

1. It performs the search on Comp(Π) and thus does not introduce
any extra variables except for those possibly needed by the clause
form transformation.

2. It is guaranteed to work in polynomial space.

3. It can deal with both tight and non tight programs: In the case
of tight problems, for each call to test(S, Π), the set of atoms of
Π which are also in S, is guaranteed to be an answer set of Π,
and thus ASP-SAT behaves as a standard SAT solver running on
cnf(Comp(Π)).

If the underlying SAT solver uses learning, then all the above features
still hold (assuming that the SAT solver itself works in polynomial
space).

Compared to the version of Cmodels prior to (Giunchiglia et al.,
2004), ASP-SAT is not restricted to work on tight programs.

Compared to assat, ASP-SAT is guaranteed to work in polynomial
space and has also the following advantages:

final.tex; 18/05/2006; 9:11; p.18



19

− It is easily modifiable to return all the answer sets: Assuming the
solver is based on backtracking, the only thing that is needed is to
modify test(S, Π) in order to

1. print the set of atoms determined to be an answer set, and

2. return False.

Assuming the solver is based on learning, test(S, Π) has to

1. print the set of atoms determined to be answer sets, and

2. return False and a reason R ⊆ S such that each assignment
extending R corresponds to already computed answer sets. If
Π is a basic program then the anti-chain property holds for
Π: As a consequence, the set of atoms in S ∩ P is one such a
reason, and the subset of S consisting of the negation of the
atoms in P is another possibility. If Π is a nested program, the
set S itself has to be returned.

− No computation is ever repeated. When test(S, Π) fails, instead of
restarting the search from scratch as done in assat, the compu-
tation is restarted from the same point in the search tree where
test(S, Π) was called: the search then continues from this point
following the depth-first search schema of the algorithm.

On the other hand, assat advantage over ASP-SAT is that the SAT
solver is used as a black-box without any need of even minor modifica-
tions.

Compared to other state-of-the-art answer set solvers like smodels,
smodelscc and dlv, ASP-SAT has the advantage of being SAT-based,
and thus it can leverage on the great amount of knowledge available in
SAT. For instance, we are not aware of any non SAT-based answer set
solver using the analogous of two-literal watching data structures for
efficiently pruning the search tree while descending it.

4. Implementation in Cmodels

4.1. Integration in Cmodels

We have integrated our implementation of ASP-SAT in Cmodels.
Cmodels2 is the name that we use for the resulting system.

The input language of Cmodels2 is a grounded logic program that
can be generated by the front-end lparse (Syrjanen, 2003), and is the
same as the input language of smodels, smodelscc and assat. The

final.tex; 18/05/2006; 9:11; p.19



20

input may thus contain basic rules as well as choice, cardinality and
weight constraint rules (Syrjanen, 2003, Sections 5.3, 5.4). A choice rule
has the form

{p01, . . . , p0j} ← p1, . . . , pk, not pk+1, . . . , not pm

where each p with a subscript is an atom. The intuitive meaning of a
choice rule is that any atom contained in {p01, . . . , p0j} may or may
not belong to the solution whenever the body is satisfied. A weight
constraint rule is an expression of the form

p0 ← L{p1 = w1, . . . , pk = wk, not pk+1 = wk+1, . . . , not pm = wm}W

where L,U,w1, . . . wm are integers, and each pi (i = 0, . . . ,m) is an
atom. The intuitive meaning of such rule is that p0 is in the solution if
the sum of the weights of the satisfied literals in the body of the rule is
between L and U . A cardinality constraint rule is a weight constraint
rule in which all the integers in {w1, . . . , wm} are equal to 1.

It is out of the scope of this paper to describe the semantics of
programs with these rules in details, see, e.g., (Simons et al., 2002). For
our goals, it is sufficient to say that in Cmodels2 weight constraint and
choice rules are eliminated by introducing auxiliary atoms and nested
rules as described in (Lifschitz et al., 1999; Ferraris and Lifschitz, 2005).

Traditionally, Cmodels was restricted to find answer sets for tight
programs, via the following steps (see (Lierler and Lifschitz, 2003) for
more details):

1. Simplification of the input lparse program, performing operations
similar to those involved in smodels.

2. Elimination of choice and weight constraints rules in favor of nested
rules.

3. Verification that the resulting program (possibly with nested rules)
is tight.

4. Construction of the program’s completion, conversion to a set of
clauses, and call to a SAT solver. The clause conversion takes linear
time and introduces up to m new atoms, where m is the number
of rules in the program.

In Cmodels2, step 3 is not needed anymore (and is no longer per-
formed) since a tight program can be considered as a particular case of
a non tight one in which each call to test(S, Π) succeeds.

final.tex; 18/05/2006; 9:11; p.20



21

4.2. ASP-SAT implementation

ASP-SAT is implemented on top of the simo system (Giunchiglia
et al., 2003). simo is a mchaff-like SAT solver and thus features
unit-propagation based on a two-literal watching data structure, 1-
UIP learning and VSIDS heuristics (see (Moskewicz et al., 2001) for a
description of these techniques). However, it does not feature the low
level optimizations of mchaff, and thus it is on average within a factor
of 3 slower than mchaff. We have used simo because is the system
we know better, and this allowed us to a relatively easy integration
of the other search strategies and heuristics used for the experimental
analysis.

With reference to Figure 1, in order to use simo as a search engine
in an ASP solver, we had to modify it in order to

1. call test(S, Π) whenever True was returned, and

2. guarantee that each set S of literals in test(S, Π) is total.

Considering the second task, simo —like all the mchaff-based SAT
solvers— returns True when all the atoms in the input set of clauses
are assigned and no empty clause has been generated. However, simo
input set of clauses may not contain all the atoms in the input program.
Indeed, as a preliminary step and before the search starts, simo (and
many other SAT solvers as well) pre-processes the input set of clauses
and

1. eliminates tautological clauses (i.e., clauses with both an atom and
its negation as disjuncts),

2. assigns pure literals, i.e., each atom p is assigned to True if ¬p does
not belong to any clause in the input formula, and similarly for ¬p.

These operations are not harmful in SAT solving. However, if the SAT
solver is used —as in our case— as basis for an answer set solver, both
operations may lead to incorrect results. Consider in fact the program

p1 ← not not p1

p2 ← p1

p2 ← p2

⊥ ← not p1, not p2

which has {p1, p2} as answer set. The completion of the program is
{p1 ≡ p1, p2 ≡ (p1∨p2), p1∨p2}. Considering the straightforward trans-
lation to a set of clauses, and after the elimination of the tautological
clauses,

final.tex; 18/05/2006; 9:11; p.21



22

1. only two clauses are left, i.e., (¬p1 ∨ p2), (p1 ∨ p2), and

2. after p2 is assigned during the pre-processing, the empty set of
clauses is generated.

The empty assignment is returned and is checked to see if it is an
answer set. Since it is not, False would be incorrectly returned. In
order to avoid such undesired behavior, simo pre-processing has been
modified in order to keep tautological clauses, and to not assign pure
literals.

In order to evaluate the impact of different search strategies and
heuristics in solving answer set programs, we have enhanced simo
with search strategies and heuristics other than those implemented by
mchaff. In particular, we implemented:

− Failed-literal detection: before branching, for each unassigned atom
p, p is assigned to True and then unit-propagation is called again:
If a contradiction is found, p is said to be a failed literal, ¬p can
be safely assigned, and unit-propagation is again performed. Oth-
erwise, ¬p is checked following the same procedure implemented
for p.

− Standard backtracking: learning is disabled, and recovery from
failure is performed by chronologically backtracking to the latest
assigned branching literal.

− The unit heuristic, based on the failed-literal detection technique.
Given an unassigned atom p, while doing failed-literal on p we
count the number u(p) of unit-propagation caused, and then we
select the atom with maximum 1024×u(p)×u(¬p)+u(p)+u(¬p).
The atom is assigned to True first.

The above search strategies and heuristics are not novel: they are
standard techniques in the SAT field, and are implemented by many
state-of-the-art SAT solvers. Indeed, current state-of-the-art SAT solvers
can be divided in two main categories:

− “look-ahead” solvers, featuring a rather sophisticated look-ahead
based on “failed literal”, a simple look-back (essentially backtrack-
ing) and a heuristic based on the information gleaned during the
look-ahead phase. These solvers are best for dealing with “small
but relatively difficult” randomly generated k-cnf formulas. A solver
in this category is satz (Li and Anbulagan, 1997).

− “look-back” solvers, featuring a simple but efficient look-ahead (es-
sentially unit-propagation with 2 literal watching), a rather sophis-
ticated look-back based on “1-UIP learning” and a constant time

final.tex; 18/05/2006; 9:11; p.22



23

heuristic based on the information gleaned during the look-back
phase. These solvers are best for dealing with “large but relatively
easy” instances, typically encoding non random problems. A solver
in this category is mchaff (Moskewicz et al., 2001).

3 By combining simo original reasoning strategies with those newly
implemented, we can obtain both a mchaff-like and a satz-like SAT
solver, and consequently, a “look-back” answer set solver, and a “look-
ahead” answer set solver. Our goal is to confirm the expectations that

− on randomly generated problems, look-ahead solvers are best, while

− on large problems, look-back solvers are best

also in answer set programming. Given that all the different search
strategies are implemented, combined and analyzed in a common plat-
form, our results are not biased by differences in the quality of the
underlying implementations.

4.3. Implementation of test(S, Π)

Consider a call to test(S, Π), i.e., such that S is a total assignment not
falsifying the completion of Π. Let X be the set of atoms in S and in
Π.

The primary goal of test(S, Π) is

1. to verify if X is an answer set of Π, and

2. to compute a subset R of S to be used as reason if the SAT solver
uses learning.

In our implementation, the computation of the reason involves looking
for a loop formula of Π which is falsified by S. To describe the proce-
dure, the following terminology will be used: In a graph, a loop L is
maximal if it is a strongly connected component, and is also terminating
(using stardard definition) if there is no other maximal loop L′ with a
path from L to L′.

Assuming learning is enabled, test(S, Π) consists of the following
steps:

1. Compute the reduct ΠX of Π with respect to X;
3 The terminology “small but relatively difficult” and “large but relatively easy”

refer to the number of atoms and are used to convey the basic intuitions about
the instances. To get a more precise idea in SAT, consider that in the SAT2003
competition, instances in the random and industrial categories had, on average, 442
and 42703 atoms respectively (Le Berre and Simon, 2003).

final.tex; 18/05/2006; 9:11; p.23



24

2. Compute the answer set X ′ of ΠX in linear time via the Dowling-
Gallier procedure (Dowling and Gallier, 1984);

3. If S′ = X \X ′ is empty then return True: X is an answer set of Π
(X ′ is by construction guaranteed to be a subset of X). Otherwise,

4. Considering the dependency graph of Π restricted to the nodes in
S′, a terminating maximal loop L is computed, and the correspond-
ing loop formula F is determined. X does not satisfy F : This result
has been established in (Lin and Zhao, 2002) for basic programs,
and it has been generalized to include nested programs in (Lierler,
2005).

5. F has the form (6) and since X is a superset of L, X does not
satisfy each of the formulas in R(L). Since each formula G in R(L)
is a conjunction of literals, G is traversed looking for a literal whose
complementary belongs to S. This literal is added to the returned
reason and the whole procedure is iterated till all the formulas in
R(L) are analyzed.

Each of the above steps takes at most linear time in the size of the
program. The above described procedure for computing a maximal
terminating loop falsified by S is the same as the one described in (Lin
and Zhao, 2004), generalized to handle also nested programs. The key
difference between our approach and Lin and Zhao’s is that they add
the loop formula to the input set of clauses and then call again the SAT
solver from scratch. Here, the loop formula is only used to find a (small)
subset of S to be used as reason: As we already said, our procedure
is guaranteed to be sound, complete and working in polynomial space
even assuming the entire set S is returned (thus, without making any
use of loop formulas).

If learning is disabled (as in Cmodels2 version with backtracking),
step 3 in the above description of test(S, Π) is modified in order to
return True if X \X ′ is empty, and False otherwise.

5. Experimental Results

5.1. Solvers, benchmarks and setting

In order to evaluate the effectiveness of our approach, we comparatively
tested Cmodels2 against other state-of-the-art systems on a variety
of benchmarks. The systems we considered are smodels version 2.27,

final.tex; 18/05/2006; 9:11; p.24



25

smodelscc version 1.08, assat version 2.00, dlv release of 2005-02-
23.4 It worths remarking that while smodels, smodelscc, assat and
Cmodels2 use lparse as preprocessor, and thus can be run on the
same input files, dlv does not. This explains why dlv has been run
only on a few benchmarks. Analogously, assat can only deal with basic
programs and thus it has not been run on some instances. Finally, for
dlv we mention that it is a system specifically designed for disjunc-
tive logic programs, and that very different results can be obtained
depending on the specific encoding being used.

Considering Cmodels2, we have the possibility to combine different
look-ahead/look-back search strategies and heuristics. In order to keep
track of which combination we are using, we will refer to a combina-
tion of search strategies and heuristics using an acronym where the
first, second and third letter denote the look-ahead, look-back and
heuristic used, respectively. We considered 4 combination of reasoning
strategies:

1. ulv: our default answer set solver, incorporating a mchaff-like look-
back SAT solver, with standard Unit propagation, backtracking
enhanced with Learning, and VSIDS heuristic.

2. fbu: a standard satz-like look-ahead solver, with unit propagation
enhanced with Failed literal detection, standard Backtracking, and
the Unit heuristic.

3. flv: an hybrid solver, featuring unit propagation enhanced with
Failed literal detection, backtracking enhanced with Learning, and
the VSIDS heuristic.

4. flu: another hybrid solver, featuring unit propagation enhanced with
Failed literal detection, backtracking enhanced with Learning, and
the Unit heuristic.

We considered only these 4 combinations of reasoning strategies and
heuristics because, besides of being the most significant, the other pos-
sible combinations do not make even sense: VSIDS heuristic requires
“learning” in order to be significant, while unit heuristic requires failed-
literal. fbu and ulv are the two solvers that we expect to perform best
on randomly generated programs and on large programs respectively.
Assuming that the expectations are met, the performances of the two
hybrid solvers are of interest in order to

4 See http://www.tcs.hut.fi/Software/smodels/, http://www.nku.

edu/~wardj1/Research/smodels_cc.html, http://assat.cs.ust.hk/,
http://www.dbai.tuwien.ac.at/proj/dlv/

final.tex; 18/05/2006; 9:11; p.25



26

− determine whether adding a powerful look-back (resp. look-ahead)
to a look-ahead (resp. look-back) solver leads to better perfor-
mances on randomly generated (resp. large) programs.

− get indications about which combination of reasoning strategy is
the most promising on non randomly generated and non large
programs.

All the solvers where run in their plain (optimal) configuration unless
suggested by the authors. For examples, smodelscc has been run with
option “-nolookahead” (look-ahead turned off) as explicitly suggested
by the authors in the smodelscc’s home page. For assat, we had to
increase its internal limit on the number of atoms in the (grounded)
logic program (variable c maxatom).

About the benchmarks, our test-set includes both tight and non
tight, both randomly generated and non randomly generated programs.
Each benchmark belongs to a class of publicly available programs which
have been used before in the literature, or to a class of benchmarks for
which a generator is available. In this last case, we may have gener-
ated bigger instances than those reported in the literature. In order
to validate our expectations, we divide the benchmarks in three cate-
gories, being (i) randomly generated programs, (ii) “large” programs
with more than (approximately) 10000 atoms, and (iii) other problems
not falling in the previous categories. We say that a program is basic
when each rule has the form (1) where n = m, and non basic when a
program contains choice rules or weight constraints. Recall that choice
and weight constraint rules are eliminated with the help of auxilary
atoms and nested rules of the form (1).

The results of the solvers on the most difficult instances of each
class is given by means of tables, as it is customary in the answer set
literature. In the tables,

1. The first column is a progressive number.

2. The second column is the ratio between number of rules and number
of atoms for random problems, and the name of the benchmark in
case it is a non randomly generated program.

3. The third column contains the number of atoms (#VAR) after
grounding. For non random problems, a “+” to the left of the name
indicates that the instance has answer sets.

4. The remaining columns are one per solver, and they indicate its
performances.

final.tex; 18/05/2006; 9:11; p.26



27

For each row, the best result is in bold, and the results within a factor
of 2 from the best are underlined.

Finally, all the tests were run on a Pentium IV PC, with 2.8GHz
processor, 1024MB RAM, running Linux. For smodels, smodelscc,
assat and Cmodels2, the time taken by lparse is not counted.5

Further, each system was stopped after 3600 seconds of CPU time
on non random problems, and 600 seconds on random problems, or
when it exceeded all the available memory. In the tables, these cases
are denoted with “TIME” and “MEM” respectively. Otherwise, the
tables report the CPU times in seconds needed by each solver to solve
the problem. Some of the results here presented have also been pre-
sented in (Giunchiglia et al., 2004; Giunchiglia and Maratea, 2005b;
Giunchiglia and Maratea, 2005a): All the experiments have been re-
launched. This justifies the minor differences in the results, especially
with (Giunchiglia et al., 2004), where the experiments were condu-
tected on a Pentium IV PC, with 1.8GHz processor, 512MB RAM
DDR 266MHz, running Linux.

5.2. Randomly generated programs

Table I shows the results for “small” programs, randomly generated
according to two different methodologies:

1. Problems (1)-(10) are translation of randomly generated k-SAT
instances. A k-SAT instance consists of L distinct clauses, where
each clause is generated by randomly selecting k different atoms
and negating each with probability 0.5. The number of distinct
possible atoms in a k-SAT instance is a priori fixed and denoted
with N . Then, each k-SAT instance F is converted to a program
as follows

− if C = (l1 ∨ . . . ∨ lk), we define sat2tlp(C) to be the rule ⊥ ←
not l1, . . . , not lk where not l is p if l = ¬p and is not p if l is
the atom p;

− Then, if F is a k-SAT instance, the translation of F , is

∪C∈F sat2tlp(C) ∪ ∪p∈P {p← not p′, p′ ← not p}

where, for each atom p ∈ P , p′ is a new atom associated to p.
These benchmarks are tight, and have been used in (Faber et al.,
2001; Simons et al., 2002; Ward and Schlipf, 2004).

5 Adding the times of lparse would not change the picture for dlv when
compared to Cmodels2 and other systems.

final.tex; 18/05/2006; 9:11; p.27



28

Table I. Performances on randomly generated logic programs. Problems
(1)-(10) are tight programs being the translation of 3-SAT benchmarks. Prob-
lems (11)-(20) are randomly generated logic programs using Lin and Zhao’s
methodology.

PB #VAR smodels smodelscc assat dlv ulv flv flu fbu

1 4 300 1.2 7.23 0.85 2.55 0.59 0.8 1.5 1.37

2 4.5 300 39.97 TIME TIME 130.49 TIME TIME 115.29 40.38

3 5 300 7.57 149.37 TIME 26.78 456.22 538.89 17.64 11.32

4 5.5 300 2.26 33.12 94.78 7.37 72.83 53.26 4.42 3.59

5 6 300 1.05 12.72 22.5 3.26 24.73 21.89 1.83 1.63

6 4 350 4.11 12.6 13.4 49.3 2.2 5.74 11.48 8.85

7 4.5 350 318.1 TIME TIME TIME TIME TIME TIME 384.66

8 5 350 44.2 TIME TIME 147.16 TIME TIME 134.34 54.07

9 5.5 350 12.66 252.11 TIME 32.07 TIME 506.08 20.37 13.61

10 6 350 3.37 37.99 174.61 8.76 95.61 104.36 6.05 4.86

11 4 200 3.3 2.02 2.44 32.39 5.34 3.32 1.93 1.75

12 4.5 200 6.84 1.7 3.28 83.63 6.15 5.82 2.09 1.93

13 5 200 22.8 2.5 8.21 82.97 9.82 9.02 3.88 3.33

14 5.5 200 9.42 1.76 4.14 39.47 7.5 6.38 2.97 2.85

15 6 200 8.12 0.85 1.4 23.93 3.24 2.95 1.25 1.53

16 4 300 298.67 73.64 234.09 TIME 265.43 218.48 41.97 31.05

17 4.5 300 TIME TIME TIME TIME TIME TIME 190.73 135.11

18 5 300 TIME 412.69 TIME TIME TIME TIME 136.67 99.75

19 5.5 300 TIME 233.72 TIME TIME TIME TIME 129.29 78.63

20 6 300 TIME 191.62 TIME TIME TIME TIME 107.34 65.83

2. Lines (11)-(20) correspond to programs randomly generated ac-
cording to the methodology proposed in (Lin and Zhao, 2003b).
Given a set P with N atoms and a positive number k, a randomly
generated rule has

a) the head which is randomly selected from P , and

b) the body consisting of k − 1 different atoms, each randomly
selected from P and negated with probability 0.5.

A randomly generated program with L rules consists of L ran-
domly generated distinct rules. In general these randomly generated
programs are non tight.

final.tex; 18/05/2006; 9:11; p.28



29

Both categories of problems have been generated with k = 3 and L
varying from 0.5×N to 12×N with step 0.5. N has been fixed to 300
and 350 for the instances being the translation of k-SAT problems, and
to 200 and 300 for the instances generated according to Lin and Zhao’s
methodology.

For each ratio L/N (indicated in the column “PB”), we generated
10 instances, and the table presents the median results for the most
difficult 5 ratios (the other being quite easily solved by all the systems).

On these benchmarks fbu has the overall best performances: it is
almost always the fastest system or within a factor of 2 from the fastest.
smodels is faster than fbu in the median case when considering the
translation of k-SAT instances. However, on these benchmarks, smod-
els times out on 2 programs when N = 300, while fbu times out only on
1 program.6 smodels’ good performances on these benchmarks are not
surprising given that also smodels implements failed literal detection,
together with a heuristic similar to our unit heuristic. However, consid-
ering the programs generated according to Lin and Zhao’s methodology,
we see that smodels is not competitive with fbu which (together with
flu) scales much better than all the rival systems.

Considering Cmodels2’s combinations, fbu is the fastest (confirm-
ing expectations), but also flu performs quite well. Coupling these facts
with the bad performances of flv, it emerges that the unit heuristic is
very effective on these benchmarks and makes learning useless.

5.3. Large programs

Table II shows the results when considering large (i.e., with approxi-
mately 10.000 or more atoms) programs. As in the previous subsection,
the table is divided in two parts:

1. Programs (21)-(26) are tight: In particular (21)-(23) and (24)-(26)
encode respectively blocks world planning and 4-colorability prob-
lems in a graph with V vertexes. V is the number in the label “4cV ”
in column PB. All the tight programs but bw*e9 have answer sets
and are available at smodels’ web site.

2. Programs (27)-(39) are non tight. In particular, we consider Hamil-
tonian circuit problems on complete graphs, using both the basic
encoding of Niemela (1999) (programs (27)-(31)), and the non ba-
sic encoding (programs (32)-(36)) from http://www.cs.engr.uky.

6 Increasing N to 400 we get the same picture: smodels is faster than fbu in the
median case, but it times out on 11 programs, while fbu times out on 10. We decided
not to show the results for N = 400 because most of the other solvers times out also
in the median case for most of the ratios L/N .

final.tex; 18/05/2006; 9:11; p.29



30

Table II. Performances on large programs. Problems (21)-(26) are tight. Problems
(27)-(39) are non tight.

PB #VAR smodels smodelscc assat dlv ulv flv flu fbu

21 bw*d9 9956+ 6.76 7.63 1.72 1.02 5.84 2.69 2.75

22 bw*e9 12260 4.3 4.51 4.22 0.98 1.91 1.92 1.93

23 bw*e10 13482+ 11.15 12.43 2.66 1.29 7.51 5.03 4.95

24 4c1000 14955+ 22.28 4.95 0.6 0.48 37.86 15.41 15.23

25 4c3000 44961+ 202.84 1143.13 2.19 8.86 369.27 144.12 142.83

26 4c6000 89951+ 856.13 TIME 14.85 99.50 TIME 583.55 578.98

27 np60c 10742+ 242.61 30.81 84.87 361.80 2.83 1611.32 44.12 44.11

28 np70c 14632+ 557.08 55.31 520.80 798.96 4.69 TIME 97.44 97.87

29 np80c 19122+ 1001.88 90.59 53.25 1587.60 7.2 TIME 195.08 190.49

30 np90c 24212+ 2064.61 144.72 1416.24 2807.84 10.42 TIME 364.54 357.92

31 np100c 29902+ 3573.19 215.37 TIME TIME 14.23 TIME 610.2 608.96

32 np60c 10683+ 7.05 3.82 3.55 340.86 8.03 7.82

33 np70c 14563+ 15.67 5.92 10.54 782.69 15.39 14.92

34 np80c 19043+ 32.29 9.01 15.05 1538.86 23.63 25.94

35 np90c 24123+ 53.21 14.13 32.19 2918.82 38.75 50.08

36 np100c 29803+ 83.11 14.95 34.18 TIME 59.15 62.64

37 mutex4 14698+ 14.14 5.35 0.54 367.89 0.46 28.29 28.3 28.26

38 mutex3 278074+ 163.94 110.27 MEM TIME TIME TIME TIME

39 phi3 16930+ 3.23 3.04 53.28 1.43 55.62 12.15 TIME

edu/ai/benchmark-suite/ham-cyc.sm. The remaining 3 programs
in the table are related to the problem of checking requirements in
a deterministic automaton and are described in (Ştefănescu et al.,
2003). The first of these 3 programs is the biggest instance in the
suite of the “IDFD” problems, while the other two programs belong
to the “Morin” suite.

Overall, the picture that emerges is that ulv is the fastest system:
Even though smodels is the only system that never times out, it is
far slower than ulv (and other systems as well) on many problems. The
good performances of ulv are particularly remarkable given that the
test suite contains Hamiltonian circuit problems, and these benchmarks
have exponentially many loops. Thus, one would expect these problems
to be difficult for assat, but also for all Cmodels2 versions in the case

final.tex; 18/05/2006; 9:11; p.30



31

it will generate and then reject (exponentially) many candidate answer
sets. As it can be observed, this is not the case, at least for ulv. Finally,
the table also shows an instance on which assat blows up in memory:
As a matter of facts, assat exceeds all the available memory also on
other instances, here not shown because all the other systems time out
on them.

Considering the different Cmodels2 versions —beside the fact that
ulv is the best version— by comparing ulv and flv we see that adding
failed-literal usually causes a significant degradation in the perfor-
mances. These results match the expectations. Indeed, ulv (and also
assat) uses a mchaff-like solver and performs a few operations at
each (branching) node: For (very) large programs, even a linear-time
(in the number of atoms) operation can be prohibitive if performed
at each branching node. Interestingly, considering flv, flu and fbu we
see that it is almost always the case that the last system performs
better than the second, and that the second is better than the first.
On these benchmarks, adding learning to a look-ahead solver does not
help. However, the gap between fbu and flu is not big. Thus, adding
learning to fbu does not help, but does not hurt too much: we believe
that this is due to the lazy data structures used by all the Cmodels2
versions, which are fundamental to keep low the burden of managing
learned clauses.

5.4. Non random, non large programs

Table III contains the results on non random, non large logic programs.
In more details,7

1. Benchmarks (40)-(48) and (73)-(77) are respectively tight and non
tight bounded model checking (BMC) problems of asynchronous
concurrent systems, as described in (Heljanko and Niemelä, 2003).
These problems are about proving properties in a given number of
steps, represented as the last number in the instance name.

2. Benchmarks (49)-(54) are about the Schur numbers problem, ex-
pressed as basic (49)-(51) and non basic (52)-(54) programs respec-
tively. The label “schurX.K-N” refers to a problem where, given a
positive integer n, the set of integers N defined as N = {1, 2, . . . n}
has to be partitioned into K bins such that each bin is sum-free,

7 Benchmarks (40)-(48), (73)-(77) or the generator are available at http:

//www.tcs.hut.fi/~kepa/experiments/boundsmodels/. Benchmarks (49)-(57) are
available at the asparagus web page http://asparagus.cs.uni-potsdam.de/.
Benchmarks (58)-(60) belong to the smodels test suite and are publicly available at
http://www.tcs.hut.fi/Software/smodels/tests/, encoding by Niemela (1999).

final.tex; 18/05/2006; 9:11; p.31



32

Table III. Performances on non random, non large programs. Benchmarks
(40)-(60) are tight, while the others are non tight.

PB #VAR smodels smodelscc assat dlv ulv flv flu fbu

40 d*12*i*9 1186 368 435.48 223.93 290.15 353.53 TIME

41 k*i*29 3199 990.95 20.88 415.54 204.87 44.14 589.45

42 k*s*29 3169 909.46 16.89 353.69 1028.77 59.99 TIME

43 m*3*i*10 1933+ 10.98 1.65 16.23 32.23 26.71 16.55

44 m*4*i*12 3475+ 1132.16 3.82 1063.15 867.49 TIME 3229.09

45 m*4*s*8 1586+ 89.26 1.3 17.02 27.59 421.30 327.55

46 q*i*17 2201 517.64 53.71 1539.96 505.15 259.05 816.26

47 e*3*i*15 7832+ 35.58 77.02 479.28 TIME 7.15 6.87

48 e*4*i*13 6447 221.18 56.21 87.63 567.27 20.02 19.41

49 schur1.4-43 736+ 0.43 0.95 0.67 590.57 1.4 2.07 0.82 0.88

50 schur1.4-44 753+ 0.44 91.25 1.07 TIME 5.97 5.62 92.63 43.01

51 schur1.4-45 770 571.17 1110.68 434.93 TIME 229.04 417.34 244.35 116.51

52 schur2.4-43 564+ 0.33 0.56 1.27 1.04 0.4 0.38

53 schur2.4-44 577+ 82.72 47.78 6.14 2.8 47.99 18.93

54 schur2.4-45 590 578.73 672.86 226.69 392.78 148.39 63.2

55 15puz.18 5945+ 17.55 6.94 1.06 141.68 0.98 2.9 9.85 9.24

56 15puz.19 6258+ 20.94 7.14 3.61 208.41 1.35 2.93 11.65 10.76

57 15puz.20 6571 70.27 8.22 4.59 TIME 1.28 10.22 64.54 82.68

58 pige.9.10 210 44.77 65.91 1.1 1.26 4.33 1259.84 32.06

59 pige.10.11 253 484.63 1029.38 23.83 12.41 55.46 TIME 339.06

60 pige.51.50 5252+ 106.79 24.29 2.49 1.63 221.33 6.85 7.26

61 8 i-1 2329 7.48 7.17 0.86 0.49 0.85 0.84 0.81

62 11 i-1 4760 36.18 35.53 3.15 1.64 4.92 2.47 2.44

63 8 i 2627+ 17.35 9.30 0.98 0.63 1.27 0.89 0.88

64 11 i 5301+ 37.71 43.90 3.59 2.16 15.55 6.07 5.79

65 8 i+1 2925+ 12.08 15.17 1.09 1.34 4.31 1.34 1.37

66 11 i+1 5842+ 54.30 62.39 3.9 2.49 24.27 22.01 19.71

67 8 i-1 1897 0.53 0.66 0.15 0.29 0.27 0.27

68 11 i-1 3812 1.6 1.96 0.39 1.71 0.75 0.7

69 8 i 2132+ 0.76 0.8 0.22 0.42 0.27 0.3

70 11 i 4233+ 1.85 2.57 0.52 6.76 1.9 1.88

71 8 i+1 2367+ 1.8 1.05 0.68 1.65 0.47 0.49

72 11 i+1 4654+ 2.5 4.12 0.6 10.42 5.26 5.21

73 d*10*i*12 1488+ 132.72 2.25 488.76 1212.89 152.8 TIME

74 d*10*s*9 1140+ 9.75 3.11 6.38 19.31 87.64 TIME

75 d*12*s*10 1511+ 296.45 1.1 53.2 165.9 733.9 TIME

76 d*8*i*10 1003+ 1.76 2.42 12.28 25.03 1.21 11.86

77 d*8*s*8 819+ 0.73 0.14 0.47 3.73 2.38 1221.53

final.tex; 18/05/2006; 9:11; p.32



33

i.e., for each Z∈N and Y∈N (i) Z and Z+Z are in different bins,
and (ii) if Z and Y are in the same bin, then Z+Y is in a different
bin. We denote with X=1 the basic encoding and with X=2 the
non basic encoding

3. Benchmarks (55)-(57) are programs encoding the 15 puzzle prob-
lem. In a label “15puz.M”, M denoted the number of moves in which
the final configuration has to be reached. The initial configuration
is not fixed and varies from program to program.

4. Benchmarks (58)-(60) are tight programs encoding pigeons prob-
lems. In a label “pige.h.p”, h denotes the number of holes and p
the number of pigeons.

5. Benchmarks (61)-(72) are blocks world planning problems encoded
as basic programs in lines (61)-(66), and as non basic programs
in lines (67)-(72)), the formulations due to Erdem (2002). In the
tables, in the column PB the “8” or “11” represents the number of
blocks; while an “i” (standing for “number of steps”) means that
the instance corresponds to the problem of finding a plan in “i”
steps, where “i” is the minimum integer for which a plan exists.
Thus, the instances with “i” and “i+1” in the label admit at least
one answer set, while those with “i − 1” do not have answer sets.
Technically speaking, these programs are non tight. However, these
problems are “tight on their completion models” (Babovich et al.,
2000): If Π is one such program, each model of the completion of
Π is guaranteed to be also an answer set of Π.

For these benchmarks results are mixed: On BMC problems, smodelscc

has the best performances overall, while on the other benchmarks it is
ulv which has the best performances overall. What is most interesting
is that there is no version of Cmodels2 dominating the others on the
BMC problems. Given this fact and smodelscc good performances on
BMC instances, we believe that on non random, non large problems
the “overall best” solver is somewhere in between ulv and fbu, i.e., that
it can can be obtained by adding a little bit of failed-literal detection
to ulv. This can be done is several ways, e.g., by checking if a literal
is failed only if it belongs to a pool of “most promising” literals (as,
e.g., it is done by satz), or by checking all the literals but not at each
branching node. All of this is subject of future research.

It is also worth noting that, overall, flu is better than flv: This can
be explained by the bad interaction between failed-literal and VSIDS.
For non random, large formulas, this phenomena was already showed
to hold in SAT (Giunchiglia et al., 2003).

final.tex; 18/05/2006; 9:11; p.33



34

5.5. Cmodels2 and the other systems

Given the results of the experimental analysis, we now sum up what
we consider to be the advantages and disadvantages of each system we
considered, both from a theoretical and a practical point of view, when
compared to Cmodels2.

smodels (Simons et al., 2002). smodels is a system for non dis-
junctive answer set programming. Its algorithm has been inspired by
Davis-Logemann-Loveland procedure, and incorporates powerful prun-
ing techniques.

smodels is also the basic engine for the solver for disjunctive logic
programming called gnt (Janhunen and Niemelä, 2004; Janhunen et al.,
2005). A key feature of smodels is that it is a native system, i.e.,
it works directly on the input logic program. Because of this, it can
take advantage of the structure of the program, e.g., by keeping more
compact representations of the rules than Cmodels2, which compiles
down everything to a set of clauses. However, it does not incorporate
some of the most recent advances, e.g., learning. The experimental
results for smodels are still positive overall, being among the best
solvers in all the categories of problems we considered.

smodelscc (Ward and Schlipf, 2004). smodelscc is smodels enhanced
with clause-learning (Moskewicz et al., 2001) and a Berkmin-like
heuristic (Goldberg and Novikov, 2003). smodelscc inherits from smod-
els its compact data-structures for rules. However, due to such com-
pactness, the incorporation of learning in smodels required the con-
struction of an implication graph, and this operation turned out to
be relatively complex and costly when compared to the analogous
construction in a SAT solver. Indeed, smodelscc cannot deal with
programs containing weight constraint rules, and this also witnesses
the difficulty of implementing learning on top of smodels compact
data structures for such rules. On the other hand, learning comes for
free with our approach. Further, with relatively little additional pro-
gramming effort, our procedure can be based on the latest SAT tools.
We used our tool simo to validate the viability and effectiveness of the
approach, and obtained a solver with, e.g., learning and unit propaga-
tion based on lazy data structures using a two literal watching schema.
Modifying smodels or smodelscc in order to use lazy data structures
would require a rewriting of significant portions of the solvers. From a
practical point of view, smodelscc is quite effective, especially on some
classes of non tight programs.

final.tex; 18/05/2006; 9:11; p.34



35

dlv (Leone et al., 2005). dlv is the state-of-the-art system in disjunc-
tive logic programming, with techniques especially tailored for this class
of programs. Also dlv is a native system and its algorithm is based on
the Davis-Logemann-Loveland procedure.

However, since it can deal with the more expressive class of disjunc-
tive programs, it needs a co-NP check to test if a candidate model is
indeed an answer set. The check is performed only if needed: In the
case of non disjunctve programs (the ones this paper faces), it is not
applied.

dlv has same peculiarities: During the computation, it uses a four-
valued interpretations for atoms. The truth values considered are True,
False, “undefined” and “must be true”; a “must be true” atom is like an
atom assigned to True but it is missing a “supporting” rule that must
be determined later on. Moreover, dlv heuristic is guided by a pre-
selected list of literals (PT-literals) with the aims of maintaining the
candidate model as minimal as possible. dlv key strength is that it can
deal with disjunctive logic programs. However, on the restricted class
of non disjunctive logic programs, its performances are not impressive,
at least on the benchmarks that we considered.

assat (Lin and Zhao, 2002; Lin and Zhao, 2004). assat has been the
first ASP SAT-based system non restricted to tight programs. The SAT
solver is used as a black box and thus assat inherits all the optimiza-
tions implemented in it. assat uses mchaff (Moskewicz et al., 2001) as
SAT solver. As we have seen, assat is quite effective especially on non
random programs. From a theoretical perspective, the main drawback
of assat is that it is not guaranteed to work in polynomial space. This
fact also emerges in some of the benchmarks that we considered and
for which assat exhausted all the available memory. From a practical
point of view, assat is limited to basic programs and cannot handle
choice, cardinality and weight constraint rules.

Cmodels2. Cmodels2 is a SAT-based system designed after assat in
order to solve its theoretical drawbacks. Cmodels2 incorporates vari-
ous solvers. fbu is our default choice for randomly generated programs,
and ulv is our default for non random programs. The experimental anal-
ysis showed that on random problems fbu has the best performances
overall of all the solvers that we considered, and the same holds for
ulv when considering large problems. On the other benchmarks, ulv is
competitive with the best of the other solvers. These results show the
effectiveness of our SAT-based approach. These results are particularly
remarkable given that our two solvers implement relatively simple SAT

final.tex; 18/05/2006; 9:11; p.35



36

strategies, if compared to the ones that are now available, some of which
already incorporated by various answer set solvers. For instance, ulv
uses mchaff heuristic, while Berkmin heuristic (used by smodelscc)
is considered to be better. In fbu each not yet assigned literal is checked
to see if it is failed, and these checks are performed before each branch-
ing: smodels and smodelscc implement the correspondent strategy
of failed-literal, but they check only a subset of the unassigned literals
(and the unchecked are guaranteed to be not failed). We expect that the
incorporation of Berkmin heuristic and smodels failed literal detection
strategy in ulv and fbu respectively will lead to further improvements
in the performances when run on the respective application domains.

6. Conclusions and future work

We have presented a SAT-based procedure that (i) can deal with any
logic program (ii) works on a propositional formula without additional
variables except for those introduced during the clause form conversion,
(iii) is guaranteed to work in polynomial space. Furthermore, ASP-
SAT can be easily modified in order to compute all answer sets (still
working in polynomial space). We have shown how to implement ASP-
SAT on top of current state-of-the-art solvers with/without learning.
The experimental evaluation shows that:

1. Cmodels2 is competitive with other state-of-the-art systems;

2. depending on the type of program different search strategies are
best.

This suggests that future development of answer set solvers should be
done by focusing on certain classes of problems. In our analysis we iden-
tified two classes of programs that need completely different strategies,
i.e., random and large programs. This also implies that benchmarking
should be done by considering the application domain which they have
been developed for. This reflects what is nowadays a standard in the
SAT competition, where there is a track for solvers designed for random
problems, and a separate track for solvers designed for large industrial
benchmarks. Solvers get designed and specialized for one track, and
indeed the top performers in one track behave very badly in the other.

Considering the future, there are several directions in which this
work can be improved.

First Cmodels2 can be improved as a solver for non disjunctive
programs. This can be done by improving the SAT solving part, i.e.,
dll, or the checking procedure, i.e., test .

final.tex; 18/05/2006; 9:11; p.36



37

As anticipated in the previous section, we believe that dll perfor-
mances can be improved by implementing better failed literal detection
strategies and/or heuristics. About the heuristics —besides those de-
rived from the SAT literature as Berkmin’s— we believe that it is
possible to design heuristics tailored for answer set solving. One such
heuristic assigns atoms to False while branching: Intuitively, we would
like to generate assignments with as many atoms as possible assigned to
False, thus going through minimality. A first, simple implementation
of this heuristic, produces dramatic speed-ups on some domains (for
instance, ulv is able to solve all the non tight problems in Table II in
a few seconds, including the mutex3 instance, i.e., the only instance
on which ulv times out), but it seems to badly interact with learning
in some other domains. Another possibility is to incorporate another
SAT solver with the latest advancements, e.g., MiniSAT (Eén and
Sörensson, 2003) the winner of the last SAT competition.

Considering the checking procedure test , recently Gebser and Schaub (2005)
introduced the notion of “active elementary loop with respect to an
assignment S”, and they showed that the corresponding loop formula
is falsified by S, like the formula associated to a maximal terminat-
ing loop. One crucial difference between an active elementary loop
and a maximal terminating one is that no sub-loop of an active el-
ementary loop is also falsified by S. A maximal terminating loop on
the other hand is not always an active elementary loop of the pro-
gram. It is still an open question whether the use of active elementary
loops in SAT-based procedures like Cmodels2 or assat improves their
performances.

Another direction of work is to extend Cmodels2 ideas in order to
deal with disjunctive logic programming where, as for dlv, the co-NP
check involves the use of a SAT solver. A preliminary implementation
and analysis are encouraging (Lierler, 2005), but more work has to be
done in order to improve the overall efficiency of the solver.

Acknowledgements

We are grateful to Paolo Ferraris, Nicola Leone, Vladimir Lifschitz
and the anonymous reviewers of this paper for their helpful comments
and/or discussions on the subject of the paper; to Esra Erdem and
Keijo Heljanko for providing us with the benchmarks; and to Francesco
Calimeri for his support on dlv. This work is partially supported by
MIUR (Italian Ministry of Education, University and Research) and
Texas Higher Education Coordinating Board under Grant 003658-0322-
2001.

final.tex; 18/05/2006; 9:11; p.37



38

References

Armando, A., C. Castellini, and E. Giunchiglia: 1999, ‘SAT-based procedures for
temporal reasoning’. In: Lecture Notes in Computer Science, Vol. 1809. pp.
97–108.

Armando, A., C. Castellini, E. Giunchiglia, and M. Maratea: 2005, ‘The SAT-based
Approach to Separation Logic’. Journal of Automated Reasoning. To appear.

Babovich, Y., E. Erdem, and V. Lifschitz: 2000, ‘Fages’ Theorem and Answer Set
Programming’. In: Proc. NMR.

Baral, C. Gelfond, M. and R. Scherl: 2004, ‘Using answer set programming to answer
complex queries’. In: Workshop on Pragmatics of Question Answering at HLT-
NAAC2004.

Barrett, C. W., D. L. Dill, and A. Stump: 2002, ‘Checking Satisfiability of First-
Order Formulas by Incremental Translation to SAT’. In: E. Brinksma and K. G.
Larsen (eds.): 14th International Conference on Computer Aided Verification
(CAV), Vol. 2404 of Lecture Notes in Computer Science. pp. 236–249, Springer.
Copenhagen, Denmark.

Bayardo, Jr., R. J. and R. C. Schrag: 1997, ‘Using CSP Look-Back Techniques to
Solve Real-World SAT Instances’. In: Proceedings of the 14th National Con-
ference on Artificial Intelligence and 9th Innovative Applications of Artificial
Intelligence Conference (AAAI-97/IAAI-97). Menlo Park, pp. 203–208, AAAI
Press.

Ben-Eliyahu, R. and R. Dechter: 1996, ‘Propositional Semantics for Disjunctive
Logic Programs’. Annals of Mathematics and Artificial Intelligence 12, 53–87.

Clark, K.: 1978, ‘Negation as failure’. In: H. Gallaire and J. Minker (eds.): Logic
and Data Bases. New York: Plenum Press, pp. 293–322.

Ştefănescu, A., J. Esparza, and A. Muscholl: 2003, ‘Synthesis of Distributed Algo-
rithms Using Asynchronous Automata’. In: Proceedings of CONCUR’03, Vol.
2761. pp. 27–41, Springer.

Davis, M., G. Logemann, and D. W. Loveland: 1962, ‘A machine program for
theorem proving’. Communication of ACM 5(7), 394–397.

de Moura, L., H. Rueß, and S. Sorea: 2002, ‘Lazy Theorem Proving for Bounded
Model Checking over Infinite Domains’. In: A. Voronkov (ed.): Automated Deduc-
tion – CADE-18, Vol. 2392 of Lecture Notes in Computer Science. pp. 438–455,
Springer-Verlag.

Dixon, H. E., M. L. Ginsberg, E. M. Luks, and A. J. Parkes: 2004, ‘Generalizing
Boolean Satisfiability II: Theory.’. J. Artif. Intell. Res. (JAIR) 22, 481–534.

Dowling, W. and J. Gallier: 1984, ‘Linear-time algorithms for testing the satisfiability
of propositional Horn formulae’. Journal of Logic Programming 3, 267–284.

Eén, N. and N. Sörensson: 2003, ‘An Extensible SAT-solver’. In: Theory and Appli-
cations of Satisfiability Testing, 6th International Conference, SAT 2003. Santa
Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers. pp. 502–518.

Erdem, E.: 2002, ‘Theory and applications of answer set programming’. Ph.D. thesis,
University of Texas at Austin.

Erdem, E. and V. Lifschitz: 2001, ‘Fages’ theorem for Programs with Nested
Expressions’. In: Proc. International Conference on Logic Programming. pp.
242–254.

Faber, W., N. Leone, and G. Pfeifer: 2001, ‘Experimenting with Heuristics for
Answer Set Programming.’. In: IJCAI. pp. 635–640.

Fages, F.: 1994, ‘Consistency of Clark’s completion and existence of stable models’.
Journal of Methods of Logic in Computer Science 1, 51–60.

final.tex; 18/05/2006; 9:11; p.38



39

Ferraris, P. and V. Lifschitz: 2005, ‘Weight constraints as nested expressions’. Theory
and Practice of Logic Programming 5, 45–74.

Gebser, M. and T. Schaub: 2005, ‘Loops: Relevant or Redundant?’. In: Proc of 8th
International Conference on Logic Programming and Nonmonotonic Reasoning.
pp. 53–65, Springer-Verlag.

Gelfond, M. and V. Lifschitz: 1988, ‘The stable model semantics for logic program-
ming’. In: R. Kowalski and K. Bowen (eds.): Logic Programming: Proc. Fifth
Int’l Conf. and Symp. pp. 1070–1080.

Gelfond, M. and V. Lifschitz: 1991, ‘Classical negation in logic programs and
disjunctive databases’. New Generation Computing 9, 365–385.

Gent, I., H. V. Maaren, and T. Walsh (eds.): 2000, SAT2000. Highlights of
Satisfiability Research in the Year 2000. IOS Press.

Giunchiglia, E., F. Giunchiglia, and A. Tacchella: 2002, ‘SAT-Based Decision Proce-
dures for Classical Modal Logics’. Journal of Automated Reasoning 28, 143–171.
Reprinted in (Gent et al., 2000).

Giunchiglia, E. and M. Maratea: 2005a, ‘Evaluating Search Strategies and Heuristics
for Efficient Answer Set Programming’. In: Advanced in Artificial Intelligence:
Conference of the Italian Association for Artificial Intelligence, AI*IA ’05,
Milan, Italy, September 20–23, 2005: proceedings. pp. 37–51, Springer.

Giunchiglia, E. and M. Maratea: 2005b, ‘On the relation between SAT and ASP pro-
cedures (or, between smodels and cmodels)’. In: Proc. of the 21th International
Conference on Logic Programming (ICLP). pp. 37–51, Springer.

Giunchiglia, E., M. Maratea, and Y. Lierler: 2004, ‘SAT-Based Answer Set Pro-
gramming’. In: Proceedings of the Nineteenth National Conference on Artificial
Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intel-
ligence, July 25-29, 2004, San Jose, California, USA. AAAI Press / The MIT
Press.

Giunchiglia, E., M. Maratea, and A. Tacchella: 2003, ‘(In)Effectiveness of Look-
Ahead Techniques in a Modern SAT Solver’. In: 9th International Conference
on Principles and Practice of Constraint Programming (CP-03). pp. 842–846.

Giunchiglia, E., M. Maratea, A. Tacchella, and D. Zambonin: 2001, ‘Evaluating
Search Heuristics and Optimization Techniques in Propositional Satisfiability.’.
In: Automated Reasoning, First International Joint Conference (IJCAR), Vol.
2083 of Lecture Notes in Computer Science. pp. 347–363, Springer Verlag.

Goldberg, E. and Y. Novikov: 2003, ‘BerkMin: A fast and robust SAT solver’. In:
Proc. of the Design, Automation and Test in Europe Conference and Exposition
2003. pp. 142–149, IEEE Computer Society.

Heljanko, K. and I. Niemelä: 2003, ‘Bounded LTL Model Checking with Stable
Models’. Theory and Practice of Logic Programming 3(4&5), 519–550. Also
available as (CoRR: arXiv:cs.LO/0305040).

Janhunen, T.: 2003, ‘Translatability and intranslatability results for certain classes of
logic programs’. Series A: Research report 82, Helsinki University of Technology,
Laboratory for Theoretical Computer Science, Espoo, Finland.

Janhunen, T.: 2004, ‘Representing Normal Programs with Clauses’. In: In Proc. of
16th European Conference on Artificial Intelligence, ECAI 2004. pp. 358–362,
IOS Press.

Janhunen, T. and I. Niemelä: 2004, ‘GnT – A solver for disjunctive logic program-
ming’. In: Proc. of the 7th Internation Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR). pp. 331–335, Springer-Verlag.

final.tex; 18/05/2006; 9:11; p.39



40

Janhunen, T., I. Niemelä, D. Seipel, P. Simons, and J.-H. You: 2005, ‘Unfolding
Partiality and Disjuntion in Stable Model Semantics’. Accepted to the ACM
Transaction on Computational Logic.

Lahiri, S. K., S. A. Seshia, and R. E. Bryant: 2002, ‘Modeling and Verification
of Out-of-Order Microprocessors in UCLID’. In: Formal Methods in Computer-
Aided Design, 4th International Conference, FMCAD 2002, Portland, OR, USA,
November 6-8, 2002, Proceedings. pp. 142–159.

Le Berre, D. and L. Simon: 2003, ‘The essentials of the SAT’03 Competition’.
In: Theory and Applications of Satisfiability Testing, 6th International Confer-
ence, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, Vol. 2919 of LNCS.

Lee, J. and V. Lifschitz: 2003, ‘Loop formulas for disjunctive logic programs’. In:
Proc. ICLP-03.

Leone, N., G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello:
2005, ‘The DLV System for Knowledge Representation and Reasoning’. Accepted
to ACM Transaction on Computational Logic (ToCL).

Li, C. M. and Anbulagan: 1997, ‘Heuristics Based on Unit Propagation for Satisfi-
ability Problems’. In: Proceedings of the 15th International Joint Conference
on Artificial Intelligence (IJCAI-97). San Francisco, pp. 366–371, Morgan
Kaufmann Publishers.

Lierler, Y.: 2005, ‘Disjunctive Answer Set Programming via Satisfiability.’. In:
Answer Set Programming, Vol. 142 of CEUR Workshop Proceedings.

Lierler, Y. and V. Lifschitz: 2003, ‘Computing Answer Sets Using Program Comple-
tion’. Available at http://www.cs.utexas.edu/users/tag/cmodels.html.

Lifschitz, V.: 1996, ‘Foundations of logic programming’. In: G. Brewka (ed.):
Principles of Knowledge Representation. CSLI Publications, pp. 69–128.

Lifschitz, V. and A. Razborov: 2004, ‘Why are there so many loop formulas?’. ACM
Transactions on Computational Logic. To appear.

Lifschitz, V., L. R. Tang, and H. Turner: 1999, ‘Nested expressions in logic programs’.
Annals of Mathematics and Artificial Intelligence 25, 369–389.

Lin, F. and J. Zhao: 2003a, ‘On Tight Logic Programs and Yet Another Translation
from Normal Logic Programs to Propositional Logic’. In: Proc. IJCAI.

Lin, F. and Y. Zhao: 2002, ‘ASSAT: Computing Answer Sets of a Logic Program by
SAT Solvers’. In: Proceedings of the Eighteenth National Conference on Artificial
Intelligence and Fourteenth Conference on Innovative Applications of Artificial
Intelligence (AAAI/IAAI-02). Menlo Parc, CA, USA, pp. 112–118, AAAI Press.

Lin, F. and Y. Zhao: 2003b, ‘Answer Set Programming Phase Transition: A study
on Randomly Generated Programs’. In: Proc. ICLP.

Lin, F. and Y. Zhao: 2004, ‘ASSAT: computing answer sets of a logic program by
SAT solvers.’. Artificial Intelligence 157(1-2), 115–137.

Lloyd, J. and R. Topor: 1984, ‘Making Prolog more expressive’. Journal of Logic
Programming 3, 225–240.

Marek, V. and V. Subrahmanian: 1989, ‘The Relationship Between Logic Program
Semantics and Non-Monotonic Reasoning’. In: G. Levi and M. Martelli (eds.):
Logic Programming: Proc. Sixth Int’l Conf. pp. 600–617.

Marek, V. and M. Truszczynski: 1999, ‘Stable models as an alternative programming
paradigm’. In: The Logic Programming Paradigm: a 25.Years perspective, Lecture
Notes in Computer Science. Springer Verlag.

Moskewicz, M. W., C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik: 2001,
‘Chaff: Engineering an Efficient SAT Solver’. In: Proceedings of the 38th Design
Automation Conference (DAC’01). pp. 530–535.

final.tex; 18/05/2006; 9:11; p.40



41

Niemelä, I.: 1999, ‘Logic programs with stable model semantics as a constraint
programming paradigm’. Annals of Mathematics and Artificial Intelligence 25,
241–273.

Nieuwenhuis, R. and A. Oliveras: 2005, ‘DPLL(T) with Exhaustive Theory Propaga-
tion and Its Application to Difference Logic.’. In: Computer Aided Verification,
17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10,
2005, Proceedings. pp. 321–334.

Nogueira, M., M. Balduccini, M. Gelfond, R. Watson, and M. Barry: 2001, ‘An A-
Prolog decision support system for the space shuttle’. In: Working Notes of the
AAAI Spring Symposium on Answer Set Programming.

Plaisted, D. and S. Greenbaum: 1986, ‘A Structure-preserving Clause Form
Translation’. Journal of Symbolic Computation 2, 293–304.

Sheridan, D.: 2004, ‘The Optimality of a Fast CNF Conversion and its Use
with SAT’. In: Proceedings of SAT, International Conference on Theory and
Applications of Satisfiability Testing, Vancouver (Canada).

Siekmann, J. and G. Wrightson (eds.): 1983, Automation of Reasoning: Classical
Papers in Computational Logic 1967–1970, Vol. 1-2. Springer-Verlag.

Silva, J. P. M. and K. A. Sakallah: 1996, ‘GRASP - A new Search Algorithm for
Satisfiability’. Technical report, University of Michigan.

Simons, P., I. Niemelä, and S. Timo: 2002, ‘Extending and Implementing the Stable
Model Semantics’. Artificial Intelligence 138(1–2), 181–234.

Syrjanen, T.: 2003, ‘Lparse Manual8’.
Tseitin, G.: 1970, ‘On the Complexity of Proofs in Propositional Logics’. Seminars

in Mathematics 8. Reprinted in (Siekmann and Wrightson, 1983).
Ward, J. and J. S. Schlipf: 2004, ‘Answer Set Programming with Clause Learning.’.

In: Logic Programming and Nonmonotonic Reasoning, 7th International Confer-
ence, LPNMR 2004, Fort Lauderdale, FL, USA, January 6-8, 2004, Proceedings.
pp. 302–313.

Zhang, L., C. F. Madigan, M. W. Moskewicz, and S. Malik: 2001, ‘Efficient Conflict
Driven Learning in a Boolean Satisfiability Solver’. In: International Conference
on Computer-Aided Design (ICCAD’01). pp. 279–285.

8 http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz .

final.tex; 18/05/2006; 9:11; p.41



final.tex; 18/05/2006; 9:11; p.42


