
Knowl Inf Syst (2006)
DOI 10.1007/s10115-006-0024-8

Knowledge and
Information Systems

REGULAR PAPER

Moonjung Cho · Jian Pei · Ke Wang

Answering ad hoc aggregate queries from
data streams using prefix aggregate trees

Received: 8 September 2004 / Revised: 30 May 2005 / Accepted: 12 June 2005
C© Springer-Verlag London Limited 2006

Abstract In some business applications such as trading management in finan-
cial institutions, it is required to accurately answer ad hoc aggregate queries over
data streams. Materializing and incrementally maintaining a full data cube or even
its compression or approximation over a data stream is often computationally
prohibitive. On the other hand, although previous studies proposed approximate
methods for continuous aggregate queries, they cannot provide accurate answers.
In this paper, we develop a novel prefix aggregate tree (PAT) structure for online
warehousing data streams and answering ad hoc aggregate queries. Often, a data
stream can be partitioned into the historical segment, which is stored in a tradi-
tional data warehouse, and the transient segment, which can be stored in a PAT
to answer ad hoc aggregate queries. The size of a PAT is linear in the size of the
transient segment, and only one scan of the data stream is needed to create and in-
crementally maintain a PAT. Although the query answering using PAT costs more
than the case of a fully materialized data cube, the query answering time is still
kept linear in the size of the transient segment. Our extensive experimental results
on both synthetic and real data sets illustrate the efficiency and the scalability of
our design.

Keywords Data warehousing · Data cube · Data stream · Online analytic
processing (OLAP) · Aggregate query

M. Cho
Department of Computer Science and Engineering, State University of New York at Buffalo,
Buffalo, NY 14260, USA
E-mail: mcho@cse.buffalo.edu

J. Pei (B) · K. Wang
School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby, BC,
Canada V5A 1S6
E-mail: {jpei,wangk}@cs.sfu.ca

M. Cho et al.

1 Introduction

Data warehousing and online analytic processing (OLAP) are essential facilities
for many data analysis tasks and applications. Given a multidimensional base ta-
ble, a data warehouse materializes a large set of aggregates from the table. By
proper indexes in a data warehouse, various aggregate queries (OLAP queries)
can be answered online.

In general, the complete set of aggregate cells on a multidimensional base table
can be huge. For example, if a base table has 20 dimensions and the cardinality of
each dimension is 10, then the total number of aggregate cells is 1120 ≈ 6.7×1020.
Even if only on average one out of 1010 aggregate cells is non-empty (i.e., covering
some tuple(s) in the base table), the total number of non-empty aggregate cells still
can be up to 6.7 × 1010! Thus, computing and/or materializing a complete data
cube is often expensive in both time and space, and hard to be online.

Recently, several important applications see the strong demands of online an-
swering ad hoc aggregate queries over fast data streams. In this paper, we are
particularly interested in the applications where the accurate instead of approxi-
mate answers to the queries are mandatory. For example, trading in futures market
is often a high-risk and high-return business in many financial institutions. Trans-
actional data and market data are collected in a timely fashion. Dealers often raise
various ad hoc aggregate queries about the data in recent periods, such as “list the
total transaction amounts and positions in the last 4 hours, by financial products,
counter parties, time-stamp (rounded to hour), mature date and their combina-
tions.” In those applications, it is required to maintain the recent data in a sliding
window, and provide accurate and online answers to ad hoc aggregate queries
over the current sliding window.

Many previous studies proposed approximate methods to monitor aggregates
over very fast and high cardinality data streams, such as network traffic data
streams where the speed of a data stream can be of gigabytes per second and
the cardinality of the IP addresses is 232. In such situations, it is impossible to
obtain accurate answers. Approximate answers usually provide sufficiently good
insights. However, the target applications investigated in this paper, such as the
transactional data streams in business, are substantially different. First, accurate
answers are mandatory in many business applications. This is particularly impor-
tant for some business applications such as those in the financial industry. Second,
the data streams studied here often are not extremely fast, and the cardinality of
the data is not very huge. Instead, they have a manageable speed. For example,
since the modern computers easily have gigabytes of main memory and typically
the transactions in those applications will be in the scale of millions per day, it
is reasonable to assume that the current sliding window of transactions can be
held into main memory. Thus, it is possible to obtain accurate answers to ad hoc
aggregate queries, though the task is still challenging.

Can traditional data warehousing techniques meet the requirement? A tradi-
tional data warehouse often updates in batch periodically, such as daily mainte-
nance at nights or weekly maintenance during weekends. Such updates are often
conducted offline. Online aggregate queries about the most recent data cannot be
answered by the traditional data warehouses due to the delay of the incremental
updates.

Answering ad hoc aggregate queries from data streams using PAT

Then, can we maintain a materialized data cube over the sliding window? Un-
fortunately, the size of a data cube is likely exponential to the dimensionality and
much larger than the sliding window. Moreover, the cubing runtime is also expo-
nential to the dimensionality and often requires multiple scans of the tuples in the
sliding window or the intermediate results. However, in a typical data stream, each
tuple can be seen only once, and the call-back operations can be very expensive.
Thus, a data cube resulted from a reasonably large sliding window is usually too
large in space and too costly in time to be materialized and incrementally main-
tained online.

Can we materialize and incrementally maintain only a small subset of ag-
gregates online by scanning the data stream only once, and still retain the high
performance of online answering ad hoc aggregate queries? In other words, can
we get a good tradeoff between the query answering efficiency and the efficiency
of indexing and maintenance (i.e., the size of index and the time of building and
maintaining the index)? To answer aggregate queries online, there are three fac-
tors needed to be considered, namely the space to store the aggregates, the time
to create and maintain the aggregates, and the query answering time. While the
existing static data cubing methods focus on reducing the last of them, the goal
of this paper is to trade off the query answering time a little bit against the space
and time of incremental maintenance.

In this paper, we address the following challenges.

Challenge 1 Can we avoid computing the complete cube but still retain the
capability of answering various aggregate queries efficiently?

Our contribution We propose a solution that the transient segment (i.e., a sliding
window) of a data stream is maintained in an online data warehouse, which is
enabled by the idea of materializing only the prefix aggregate cells and the infix
aggregate cells. We show that they form just a small subset of the complete data
cube, and the total number of prefix aggregate cells is linear to the number of
tuples in the sliding window and the dimensionality. With such a small subset of
aggregates cells, many aggregate queries, including both point queries and range
queries, still can be answered efficiently.

Challenge 2 How can we compute, maintain and index the selected aggregates
from a data stream?

Our contribution We devise a novel data structure, prefix aggregate tree (PAT),
to store and index the prefix aggregate cells and the infix aggregate cells. The
size of PAT is bounded. Algorithms are developed to construct and incrementally
maintain PAT. Our experimental results indicate that PAT is efficient and scalable
for fast and large data streams.

Challenge 3 How can we answer various aggregate queries efficiently?

Our contribution We develop efficient algorithms to answer essential aggre-
gate queries, including point queries and range queries. Infix links and the lo-
cality property of side-links of PAT enable various aggregate queries be answered

M. Cho et al.

The data stream

online update/maintain

sliding windowarchive

Central data warehouse

Data in the futureThe historical segment The transient segment

warehouse
Online data

Fig. 1 The framework of warehousing data streams

efficiently. An extensive performance study shows that the query answering is ef-
ficacious over large and fast data streams.

The remainder of the paper is organized as follows. In Sect. 2, we describe the
framework and review related work. The prefix aggregate tree structure as well as
its construction and incremental maintenance are presented in Sect. 3. The query
answering algorithms are developed in Sect. 4. The extensive experimental results
are reported in Sect. 5. Section 6 concludes the paper.

2 Framework and related work

2.1 The framework

In this study, we model a data stream as an (endless) base table
S(T, D1, . . . , Dn, M), where T is an attribute of time-stamps, D1, . . . , Dn are n
dimensions in discrete domains, and M is the measure. For the sake of simplicity,
we use positive integers starting from 1 as time-stamps.

In data stream processing, records are often collected in temporal order. Thus,
it is reasonable to assume that the tuples having time-stamp τ arrive before the
ones having time-stamp (τ + 1). Tuples having the same time-stamp may be in
arbitrary order.

Traditional data warehouses can answer various aggregate queries efficiently.
However, those data warehouses have to be incrementally maintained periodically
and the maintenance is often offline. That is, it is difficult to answer aggregate
queries on the recent data that has not been loaded into the data warehouse in the
last update.

To tackle this problem, it is natural to divide a data stream into two segments:
the historical segment and the transient segment, as illustrated in Fig. 1. Con-
ceptually, the historical segment is the data arrived before the last update of the
central data warehouse and thus has been archived. The transient segment, in turn,
is the data that has not been archived in the central data warehouse, and should be
updated and maintained online in an online data warehouse.

Such a framework of historical and transient segments appears in multiple
applications and some prototype implementations of commercial databases. How-
ever, to the best of our knowledge, there exists no previous study on how to con-
struct and maintain an online data warehouse for the transient segment.

Technically, should the online data warehouse store only the data in the
transient segment? Consider the scenario that the central data warehouse is just

Answering ad hoc aggregate queries from data streams using PAT

updated. Then, the online data warehouse contains very little data and many ag-
gregate queries about the recent data cannot be answered using the online data
warehouse. To avoid this problem, the online data warehouse should maintain the
tuples whose time-stamps are in a sliding window of size ω, where ω is the length
of the periodicity that the central data warehouse conducts a regular update.

In other words, at instant t (t ≥ ω), we assume that all the queries in the
online data warehouse are about multi-dimensional aggregates of tuples falling in
the sliding window of [t − ω + 1, t].

Aggregate functions can be used in the queries, such as SUM, MIN, MAX,
COUNT and AVG in SQL. We consider the following two kinds of queries in this
paper.

Point queries. At instant t , a point query is in the form of a query cell
(τ, d1, . . . , dn), where t −ω+1 ≤ τ ≤ t or τ =∗, and di ∈ Di ∪{∗}. For example,
consider a data stream of transaction records in an endless table transaction (Time-
stamp, Branch-id, Prod-id, Counter-party-id, Amount) where Branch-id, Prod-id
and Counter-party-id are the dimensions, and Amount is the measure. Suppose the
sliding window is of size 24 hours. A point query may ask for “the total amount of
‘gold’ at 10 am”, where the query cell is (10am, *, gold, *). Here, symbols “∗” in
dimensions Branch-id and Counter-party-id mean every transaction in any branch
and with any counter-party counts.

Particularly, when τ = ∗, the aggregate over the whole sliding window is
returned. As another example, query cell (*, Paris, *, *) stands for the total trad-
ing amount in Paris in the current sliding window, including all products and all
customers.

Range queries. A range query specifies ranges instead of a specific value in
some dimensions. Thus, a range query may cover multiple query cells. For exam-
ple, a range query may ask for “the total amount of ‘gold’ and ‘oil’ in Paris and
London in the last 2 hours”, denoted as ([t −2, t], {Paris, London}, {gold, oil}, ∗).

The answer to a range query is one aggregate over all the tuples falling in the
range. For example, the above range query is answered by one total amount that
covers all the transactions in the two cities and about the two products, in the last
2 hours.1

Here, we assume that in a range query, the time range is in the sliding window.
If this is not the case, we can easily divide the range into two sub-ranges, one in
the historical data, and the other in the sliding window. The query can be answered
accordingly.

The above two kinds of OLAP queries are essential, though more complex
queries can be raised. Many complex OLAP queries can be decomposed into a set
of queries in the above two categories.

Now, the problem becomes how to construct and incrementally maintain an
online data warehouse and answer ad hoc aggregate queries.

Problem statement. Given a data stream S and a size of sliding window ω. We
want to construct and maintain an online data structure W (t) so that, at any instant

1 Alternatively, a list of the aggregates of the query cells falling in the range can be returned.
For example, the above range query may be answered by a list of 4 aggregates corresponding to
the combinations of values in the ranges of dimension Branch-id and Product. The two forms of
answers can be derived by similar techniques.

M. Cho et al.

t , any point queries and range queries about the data in time [t − ω + 1, t] can be
answered precisely and efficiently from W (t).

To be feasible for streaming data processing, W (t) should satisfy the following
two conditions.

1. The size of W (t) is linear in the number of tuples in the current sliding window
and the dimensionality; and

2. W (t) can be constructed and maintained by scanning the tuples in the stream
only once.

W is called an online data warehouse of stream S.

2.2 Related work

Chaudhuri and Dayal [8] and Widom [43] present excellent overviews of the major
technical progresses and research problems in data warehousing and OLAP. It has
been well recognized that OLAP is more efficient if a data warehouse is used.

The data cube operator [17] is one of the most influential operators in OLAP.
Many approaches have been proposed to compute data cubes efficiently from
scratch [6, 33, 34, 45]. In general, they speed up the cube computation by sharing
partitions, sorts, or partial sorts for group-bys with common dimensions.

It is well recognized that the space requirements of data cubes in practice are
often huge. Some studies investigate partial materialization of data cubes [6, 20,
22]. Methods to compress data cubes are studied in [25, 26, 37, 38, 42]. Moreover
[4, 5, 41] investigate various approximation methods for data cubes.

How to implement and index data cubes efficiently is a critical problem.
In [35, 38], Cubetree and Dwarf are proposed by exploring the prefix and suf-
fix sharing among dimension values of aggregate cells. Quotient cube [25] is a
non-redundant compression of data cube by exploring the semantics of aggregate
cells, and QC-tree [26] is an effective data structure to store and index quotient
cube. As compressions of a data cube, they can be used to answer queries directly,
and quotient cube can further support some advanced semantic OLAP operations,
such as roll-up/drill-down browsing.

Many studies have been conducted on how to answer various queries ef-
fectively and efficiently using fully or partially materialized data cubes, such
as [10, 23, 27, 29, 39]. To facilitate the query answering, various indexes have been
proposed. In [36], Sarawagi provides an excellent survey on related methods. A
data warehouse may need to be updated in a timely fashion to reflect the changes
of data. Refs. [18, 30–32] study the maintenance of views in data warehouses.

Recently, intensive research efforts have been invested in data stream pro-
cessing, such as monitoring statistics over streams and query answering (e.g., [3,
13–15]) and multi-dimensional analysis (e.g., [9]). Please see Babcock et al. [2]
for a comprehensive overview. While many of them focus on answering contin-
uous queries, few of them consider answering ad hoc queries by warehousing
data streams. Probably, the work most related to this paper is [9], where a linear-
regression based approach is proposed to accumulate the multi-dimensional ag-
gregates from a data stream, and a variation of the H-tree structure [20] is used
to materialize some selected roll-up/drill-down paths for OLAP. However, their

Answering ad hoc aggregate queries from data streams using PAT

method assumes that the streaming data can be summarized effectively by lin-
ear regression and can only provide approximate answers to (preset) aggregate
queries, and no efficient method is presented to answer various ad hoc aggregate
queries in general. Moreover, the selected roll-up/drill-down paths are hard to de-
termine. It is unclear how the H-tree structure can be stored and incrementally
maintained effectively for data streams.

Particularly, this work is related to the research on mining frequent itemsets
from data streams [1, 7, 11, 12, 16, 24, 28, 40, 44]. Basically, for a given stream
of transactions, where a transaction is a set of items, the frequent itemset mining
problem for data streams is to maintain the set of itemsets that appear at least � ·n
times in the transactions seen so far, where � is a minimum support threshold,
and n is the number of transactions seen so far. Some methods put weights to
transactions, and the more recent transactions have heavier weights. Frequency
can be viewed as a type of aggregates. However, all of the previous methods are
approximate approaches. They cannot provide the exact answers, though some
methods can provide different types of quality guarantees.

To the best of our knowledge, this is the first study on warehousing and in-
dexing data in a sliding window over data stream and answering ad hoc aggregate
queries accurately.

On the other hand, tree and prefix-tree structures have been frequently used
in data mining and data warehousing indices, including cube forest [23], FP-
tree [21], H-tree [20], Dwarf structure [38] and QC-tree [26]. PAT is also a prefix
tree data structure. We will further compare our approaches to those important
existing methods in Sect. 3.2, after the major technical ideas of PAT are brought
up.

3 Prefix aggregate tree (PAT)

In this section, we devise the prefix aggregate tree (PAT) data structure. We also
develop algorithms to construct and incrementally maintain prefix aggregate tree.
Hereafter, all aggregate queries are ad hoc ones.

3.1 Data structure

Consider a data stream S(T, D1, . . . , Dn, M). Let the size of the sliding window
be ω. In order to answer any aggregate query about the data in the sliding window,
we have to store the tuples in the sliding window. An intuitive way to store the
tuples compactly is to use a prefix tree, as shown in the following example.

Example 3.1 Let the data stream as our running example be S(T, A, B, C, D, M),
where T and M are the attributes of time-stamps and the measure, respectively.
The tuples at instants 1 and 2 are shown in Table 1. Suppose aggregate function
SUM is used, and the size of the sliding window ω = 2.

If, we ignore the time-stamps and measures, the tuples in the sliding window
can be organized into a prefix tree, as shown in Fig. 2a.

In order to store the information about the time-stamps and measures, we can
register the information at the tree nodes, as shown in Fig. 2b. Each tree node has

M. Cho et al.

Table 1 The tuples at instants 1 and 2 in stream S(T, A, B, C, D, M)

T A B C D M

1 a1 b2 c1 d1 6
1 a1 b1 c1 d1 2
2 a1 b1 c2 d2 3
2 a2 b1 c2 d1 4

d1

c2

b1

d1

c1

a2

b2

d2d1

c2c1

b1

a1

root

2 4d1

c2

b1

a22 3

1 8

2 4

2 7

1 8
root

a1

b1

2 4

2 42 3

2 3d2

c2

1 2

1 2

d1

c1 2 3

1 2
1 6

1 6

1 6d1

c1

b2

Fig. 2 Archiving a data stream in a prefix tree. a Storing tuples into a prefix tree. b Prefix tree
with aggregate table at each node

an aggregate table, such that the time-stamps and the aggregates by instants are
registered.

Clearly, the leaf nodes in the prefix tree record the tuples in the sliding
window. Each internal node in the tree registers the aggregate of the tuples whose
paths go through this node. For example, the node a1 in the tree registers the
aggregates of tuples having a1 and stores them by instants.

In a prefix tree, one node can be represented by the path from the root of the
tree to the node. Hereafter, we will write a node as a string of dimension values,
such as a1, a1b1 and a1b1c2.

In the prefix tree shown in Fig. 2b, an internal node registers the aggregates
of tuples sharing the “prefix” from the root to the node. They are called prefix
aggregate cells.

Definition 3.1 (Prefix aggregate cell) Consider a data stream S(T, D1, . . . ,

Dn, M), where T and M are attributes of time-stamps and measure, respectively.
For any tuple, we always list the dimension values in the order of D1, . . . , Dn .
Let St be the set of tuples in the current sliding window [(t − ω + 1), t] of S. An
aggregate cell c = (τ, d1, . . . , dn) is a prefix aggregate cell if (1) there exists a k
such that 1 ≤ k ≤ n, d1, . . . , dk are not ∗ and dk+1, . . . , dn are all ∗; and (2) there
exists at least one tuple c′ = (d ′

1, . . . , d ′
n) in St such that di = d ′

i for (1 ≤ i ≤ k).

Theorem 1 By storing only the prefix aggregate cells, any ad hoc aggregate
queries about the current sliding window can be answered.

Proof Clearly, the answer to any ad hoc aggregate query about the current sliding
window can be derived from the complete set of tuples in the window. Let us
consider tuples in the current window. If a tuple t is unique in the current sliding

Answering ad hoc aggregate queries from data streams using PAT

window, t is (trivially) a prefix aggregate cell. If t is not unique, then there exists
a prefix aggregate cell which has the same value as t on every dimension. In other
words, the set of prefix aggregate cells covers all tuples in the current sliding
window. �

Theorem 2 (Numbers of aggregate cells/prefix aggregate cells) Given a base
table of n dimensions and k tuples, let naggr and n p be the number of aggregate
cells and that of prefix aggregate cells, respectively. Then, 2n ≤ naggr ≤ (k · (2n −

1) + 1) and (n + 1) ≤ n p ≤ (k · n + 1).

Proof When tuples share some values in some dimensions, they share the corre-
sponding aggregate cells. When all tuples in the base table have the same value on
every dimension, naggr is minimized. When the k tuples do not share any common
value in any dimension, each tuple leads to 2n − 1 unique aggregate cells, and all
tuples share aggregate cell (∗, . . . , ∗). Thus, naggr is maximized to (k·(2n−1)+1).

When tuples share some prefixes, they share the corresponding prefix aggre-
gate cells. When all tuples in the base table have the same value on every dimen-
sion, n p is minimized. When the k tuples do not share any prefix, each tuple leads
to n prefix aggregate cells, and all tuples share aggregate cell (∗, . . . , ∗). Thus,
naggr is maximized to (k · n + 1). �

Theorem 2 indicates that the number of prefix aggregate cells is, in the worst
case, linear in the number of tuples in the sliding window and the dimensionality,
and thus is substantially smaller than that of all aggregate cells. It suggests that the
set of prefix aggregate cells is a promising candidate of an online data warehouse
for a data stream.

Given a prefix tree of the prefix aggregate cells, aggregate queries can be an-
swered by browsing the tree and extracting the related tuples in the current sliding
window. However, if the current sliding window is large and thus the prefix tree
is also large, browsing a large tree may not be efficient. We should build some
light-weight index in the tree to facilitate the search.

Let us consider how to derive the aggregate for (∗, b1, ∗, ∗) from the prefix
tree in Fig. 2b. To answer this query, we need to access all the tuples having value
b1 on dimension B. To facilitate the search, it is natural to introduce the side links
that link all nodes carrying the same label together.

Can we add side links arbitrarily? Let us consider how to compute aggregate
(a1, ∗, c1, ∗) from the tree in Fig. 2b. To answer this query, we want to access the
nodes carrying label c1 in the subtree rooted at node a1. That is, we want a local
linked list of nodes having label c1 in the subtree rooted at node a1.

Clearly, maintaining multiple linked lists is not a good idea. Instead, we should
construct a linked list that has the locality property: in any subtree, the nodes
carrying the same label should be linked consecutively.

Moreover, if we can register the aggregate of all tuples having c1 in the a1-
subtree, the query can be answered even faster. This information can be registered
as the head of the sub-linked list of c1 in the a1-subtree.

To accommodate the above ideas, we can construct a linked list of all nodes
having c1 in the a1-subtree, and set up a pointer to the head of the sub-linked list
at node a1. The corresponding aggregate, (a1, ∗, c1, ∗) should also be stored and
associated with the head of the linked list.

M. Cho et al.

side link

infix link

tree edge root

a2a1

b1 b1b2

d1d1d2

c2c1c2

d1

c1

2 42 3 1 61 2

2 41 62 31 2

2 3

1 2

2 3

1 8

2 7

1 8

2 4

2 41 6

Fig. 3 Prefix aggregate tree (the aggregate tables for infix links are omitted to make the graph
easy to read)

The above ideas can be generalized. For example, side links can be built in the
prefix tree in Fig. 2b, resulting in a prefix aggregate tree structure, as shown in
Fig. 3.

Definition 3.2 (Prefix aggregate tree) In general, given the current sliding win-
dow of a data stream, a prefix aggregate tree (PAT for short) is a prefix tree
of the prefix aggregate cells in the window with the following two kinds of
links.

– Side links All nodes having the same dimension value as the label are linked
together such that the locality property is hold: For any subtree, all the nodes
carrying the same label in the subtree are linked consecutively.

– Infix links At node v = d1 · · · dk (1 ≤ k ≤ (n − 2)), for every dimension
value di, j on dimension Di ((k + 2) ≤ i ≤ n) that appears in the subtree
rooted at v, all the nodes carrying label di, j in the subtree rooted at v are
linked consecutively by side-links. An infix link is built from v to the head
of the sublist, and an aggregate table is stored and associated with the infix
link recording the aggregates of c = (d1, . . . , dk, ∗, . . . , ∗, di, j , ∗, . . . , ∗). c is
called an infix aggregate cell.

Theorem 3 Consider a base table of n dimensions and the cardinality of each
dimension is l. In the worst case, the number of infix aggregate cells (and thus the
infix links in a PAT) is

n−2∑

i=1

l i (n − i − 1).

Proof From the definition of PAT, the number of infix aggregate cells and that of
infix links are identical. The worst case happens when every possible combination
of dimension values appears in the base table, where the base table has ln unique
tuples. Each internal node in the PAT has l children. Thus we have the upper
bound. In such a situation, there are (l + 1)n aggregate cells. �

Answering ad hoc aggregate queries from data streams using PAT

Theorems 2 and 3 show that, in the worst case, the set of prefix aggregate cells
and infix aggregate cells is still a small subset of all the aggregate cells. Practical
data is usually skewed. As verified by our experimental results, the PAT is much
smaller than the size of all aggregate cells.

The size of a node in a PAT is regular. For a prefix aggregate cell
(d1, . . . , dk, ∗, . . . , ∗), the corresponding node in the tree is at the k-th level (the
root node is at level 0), and stores the following information: (1) The aggregate
table, which has 2 columns, the time-stamp and the aggregate, and at most ω

records; (2) Pointers to up to lk+1 children, where lk+1 is the cardinality of di-
mension Dk+1; (3) At most

∑n
i=k+2 li infix aggregate links and the corresponding

aggregate tables, where li is the cardinality of dimension Di ; and (4) A side link
to the next node at the same level carrying the same label.

The total size of such a tree node is O(ω + lk+1 + ω ·
∑n

i=k+2 li + 1) =

O(ω ·
∑n

i=k+1 li). Comparing to the number of tuples in a base table, which can be
easily in millions, the number of dimensions and the cardinality in each dimension
are often pretty small. All nodes at the same level of the tree have the same size.
A PAT can be easily stored and managed in main memory or on disk.

We assume that an order of dimensions is used to construct a PAT. In fact,
the order of dimensions affects the size of the resulting PAT. Heuristically, if we
order the dimensions in cardinality ascending order, then the tuples may have good
chances to share prefixes and thus the resulting PAT may have a small number of
nodes. The tradeoff is that the tree nodes may be large due to the large number of
infix links. On the other hand, if we sort dimensions in the cardinality descending
order, then the number of nodes may be large but the nodes themselves may be
small. Theoretically, finding the best order to achieve a minimal PAT is an NP-hard
problem. This problem is similar to the problem of computing a minimal FP-tree
by ordering the frequent items properly. In Sect. 5, we will study the effect of
ordering on the size of PAT by experiments.

3.2 Comparison: PAT versus previous methods

Prefix tree (trie) structures have been extensively used in the previous studies on
data mining and data warehousing. PAT is another prefix tree structure. At the
first glance, PAT may look similar to some of the previous structures, including
Cube forest [23], FP-tree [21], H-tree [20], Dwarf structure [38] and QC-tree [26].
However, there are some essential differences.

An FP-tree [21], a data structure for frequent itemset mining, records trans-
actions in a prefix tree structure such that transactions sharing common prefixes
also collapse to the same prefix in the tree. There are three critical differences
between an FP-tree and a PAT. First, FP-tree is for transaction data and PAT is
for relation data. While transactions may have different lengths, all tuples stored
in a PAT have the same length. Infix links do not appear in an FP-tree. Second,
FP-tree does not bear the locality property. Instead, the side links in an FP-tree are
built as transactions arrive. As shown later, the locality property in a PAT facili-
tates the aggregate query answering substantially. Last, an FP-tree is for frequent
itemset mining. During the mining, an FP-tree is scanned multiple times, and the
mining results are output. A PAT is for aggregate query answering. It is built and

M. Cho et al.

maintained by one scan of the data stream. A query answering algorithm searches
the PAT to answer aggregate queries.

Cube forest [23], H-tree [20], Dwarf structure [38] and QC-tree [26] are for
data warehousing. PAT distinguishes itself from those designs in the following
two aspects.

First, PAT stores only prefix and infix aggregates, while most of the previous
structures, except for H-tree, potentially store all aggregates, though compression
is explored. As a result, the number of nodes in PAT is linear in the number of
tuples in the sliding window and the dimensionality, while those structures are ex-
ponential to the dimensionality. Moreover, the size of tree nodes in PAT is regular,
as analyzed before. The advantages on size and regularity of tree nodes make PAT
feasible for streaming data.

An H-tree is a prefix tree of the tuples in base table. Thus, it is also linear in
the dimensionality. A PAT can be regarded as an extension of an H-tree to support
aggregate queries for data streams. The critical difference is that an H-tree does
not have infix links and thus the query answering on an H-tree directly can be very
costly.

Second, PAT is indexed by infix links and side-links, and the side-links have
the locality property. As will be shown soon, the locality property and the infix
links facilitate query answering substantially. In most of the previous structures,
the search is based on values and is conducted dimension by dimension.

In terms of size, a PAT is larger than an H-tree: the difference is infix ag-
gregates and infix links. The size of the infix aggregates and the infix links is
quantified in Theorem 3. The infix links have to meet the locality requirement.
Theorem 4 will discuss the procedure. As will be shown, it takes the extra cost in
time linear in the dimensionality to maintain the locality.

3.3 PAT construction

We consider constructing a PAT by reading tuples into main memory one by one
(or batch by batch), and each tuple can be read into main memory only once the
algorithm is presented in Fig. 4 and elaborated in this subsection.

Example 3.2 Let us construct a PAT by reading the tuples in Table 1 one by one.
A PAT is initialized as a tree with only one node, the root. Then, The first

tuple, (1, a1, b2, c1, d1, 6), is read and inserted into the tree. For each node in the
path, a row (1, 6) is registered in the aggregate table. The infix links from root

Fig. 4 The PAT construction algorithm by scanning tuples one by one

Answering ad hoc aggregate queries from data streams using PAT

to a1b2, a1b2c1 and a1b2c1d1, infix links from a1 to a1b2c1 and a1b2c1d1, and
infix links from a1b2 to a1b2c1d1 are created. The corresponding infix aggregate
cells are (∗, b2, ∗, ∗), (∗, ∗, c1, ∗), (∗, ∗, ∗, d1), (a1, ∗, c1, ∗), (a1, ∗, ∗, d1) and
(a1, b2, ∗, d1), respectively. Once the information is recorded in the tree, we do
not need the tuple any more.

Then, we read the second tuple (1, a1, b1, c1, d1, 2) and insert it into the tree.
The aggregate values at nodes root and a1 should be both updated to (1, 8), since
they are on the path of the inserted tuple. The infix links from root to a1b1 and
from a1b1 to a1b1c1d1 are created and associated with the infix aggregate cells
(∗, b1, ∗, ∗) and (a1, b1, ∗, d1), respectively.

The remaining tuples can be inserted similarly. It can be verified that the re-
sulting PAT is exactly the one shown in Fig. 3.

The construction of a PAT by scanning tuples one by one has two ma-
jor components: building the prefix tree, which is straightforward, and creat-
ing/maintaining the correct infix links and side-links, which should follow the
procedure justified in the following theorem so that the locality property is re-
spected.

Theorem 4 Let T be a PAT that satisfies the locality property. When a new node v

of label di is created, the following procedure adjusts the side-links and infix-links
so that the resulting PAT preserves the locality property: If v is a child of the root
node, no infix link and side-link are needed; else, the side-links and infix links with
respect to v should be adjusted as follows:

1. The closest ancestor v′ of v should be allocated such that v′ has an infix link
of di ;

2. If v′ does not exist, then an infix link should be built from every ancestor of v

in the path to v, except for the parent node of v.
3. Otherwise, let u be the node pointed by the di -infix link of v′, and V be the

set of ancestor nodes of v′ whose di -infix links also point to u. v should be
inserted into the front of the sublist pointed by the di -infix link of v′, and the
di -infix links of v′ and nodes in V should point to v.

Proof The correctness of Step 2 is clear since in such a case, v is the first node
carrying label di . The corresponding infix links should be created.

Suppose PAT T already has some nodes carrying label di . To preserves the
locality property, v should be inserted to the head of the non-empty consecutive
sublist of its closest ancestor. Once the locality property holds for the smallest
subtree containing the new node, the locality property holds for any larger subtrees
containing the smallest subtree, since the PAT before the insertion has the locality
property. �

The complexity of the procedure described in Theorem 4 is linear in the di-
mensionality. At each node, a table of aggregates is maintained. Each table has
two columns: time-stamp and aggregate, and at most ω rows. The aggregate at in-
stant t should be stored at the (t mod ω)-th row. Therefore, the cost of maintaining
and searching the table is constant.

M. Cho et al.

Fig. 5 The PAT incremental maintenance algorithm

3.4 Incremental maintenance

Suppose we have a PAT at instant t . At instant (t + 1), the new data tuples should
be read in and inserted into the tree, and the data at instant (t − ω + 1) should be
removed, so that the sliding window is moved forward to [t − ω + 2, t + 1]. The
algorithm is shown in Fig. 5. We explain the critical details as follows.

To be efficient, should insertions go first or deletions first? Consider a tree
node v whose aggregate table contains only an aggregate at instant (t − ω + 1).
Suppose that some tuples from the stream at instant (t + 1) will contribute a new
row in v’s aggregate table. If deletions go first, the node would be removed since
its aggregate table is empty after the deletion. Then, the insertion of the tuples
at instant (t + 1) will have to recreate the node. To avoid such an unnecessary
deletion-and-re-creation, we should let the insertions of tuples at instant (t + 1)

go first before the deletions of tuples at instant (t − ω + 1).
Insertion of tuples at instant (t + 1) can be done in the way similar to

Algorithm 1 (Fig. 4), the tree construction by scanning the tuples one by one.
That is, we take the existing PAT at instant t , and insert the tuples at instant (t +1)

into the tree.
Please note that, during the insertion, we do not need to scan any tuples in the

previous instants. The only tuples scanned are those at instant (t + 1).
Now, let us consider how to delete the tuples whose time-stamps are (t−ω+1).

A naı̈ve method is as follows. We search the PAT. For each node that contains an
aggregate at instant (t − ω + 1) in its aggregate table, the corresponding row in
the aggregate table should be removed. If the aggregate table becomes empty, then
the node should be deleted.

The above naı̈ve method is costly. There can be many nodes in the tree con-
taining aggregates at instant (t − ω + 1). Aggressively updating a large number
of nodes may degrade the online performance. Moreover, how to locate the nodes
containing aggregates at instant (t − ω + 1) is another problem. Browsing the
whole tree can be very expensive.

Here, we propose a lazy approach: the nodes whose aggregate tables have only
rows of instants (t − ω + 1) or earlier have to be removed at instant (t + 1), in
order to release the space. Other than that, the deletions of the old aggregates of
instant (t − ω + 1) from the nodes are deferred and conducted as a byproduct of
future insertions. The idea is elaborated in the following example.

Answering ad hoc aggregate queries from data streams using PAT

Table 2 The tuples at instant 3

T A B C D M

3 a1 b2 c2 d2 5
3 a2 b2 c1 d2 1

Example 3.3 Suppose the tuples at instant 3 are as shown in Table 2. Since the
size of the sliding window ω = 2, the tuples at instant 3 should be inserted and
the tuples of instant 1 should be removed. Let us consider how the PAT in Fig. 3
should be incrementally maintained.

We first insert the tuples at instant 3 into the PAT. Tuple (3, a1, b2, c2, d2, 5) is
inserted from the root node as a path “a1-b2-c2-d2”. A record (3, 5) will be stored
at the first row of the aggregate table, since 3 mod 2 = 1. It overwrites record
(1, 8) automatically. Similarly, we update the aggregate tables at nodes a1 and
a1b2, and the aggregate tables for the related infix links, respectively. Please note
that the removal of data at instant 1 from these nodes are conducted as a byproduct
of the insertions, i.e., we do not actively search for the nodes whose aggregate
tables having rows of instant 1. To complete the insertion, two new nodes, a1b2c2

and a1b2c2d2, are created. Following Theorem 4, the aggregate tables at these
nodes as well as the appropriate side-links and infix links are adjusted. The second
tuple, (3, a2, b2, c1, d2, 1) can be inserted similarly.

Then, we should remove all those nodes whose aggregate tables contain only
rows of instant 1. To find such nodes, we maintain an integer for each leaf node,
called the last update time-stamp (LUT), which is the latest time-stamp that the
node is updated. All leaf nodes having the same LUT are linked together as a
linked list. By browsing the linked list for LUT= 1, we remove the leaf nodes
and their ancestors that have only aggregates at instant 1. The upward search stops
when the first ancestor having aggregates at instant other than 1 is encountered.
In this example, nodes a1b1c1, a1b1c1d1, a1b2c1, and a1b2c1d1 are removed. The
resulting tree is shown in Fig. 6.

3 1

2 4
a2

2 7

3 6

d2

c1

b2

3 5d2

3 5c2

3 5

2 3
3 5

root

a1

b1 b1b2

d1d2

c2c2 3 1

3 1
2 3

1 2 2 4

2 42 3

2 42 3

infix link

side link

tree edge

3 1

Fig. 6 Prefix aggregate tree at instant 3

M. Cho et al.

Please note that the aggregate table at node a1b1 still contains the aggregate
at instant 1. However, this information does not affect our query answering. This
row will be removed in the future. For example, at instant 4, if there is a new tuple
having a1b1 as a prefix, the row will be overwritten and the node will be updated.
Otherwise, the node will be removed when we clean up nodes containing only
aggregates at instant 2 or earlier.

In summary, at instant (t + 1), the incremental maintenance algorithm only
scans the tuples having time-stamp (t + 1) once, and inserts them into the existing
PAT. By following the LUT list of (t −ω+1), the maintenance algorithm removes
those tree nodes and the corresponding infix links whose aggregate tables have
only rows of instant (t − ω + 1) or earlier. It never browses the complete PAT
during the incremental maintenance.

Theorem 5 The time complexity of constructing and incrementally maintaining a
PAT is O(nl), where n is the number of tuples needed to inserted into the PAT, and
l is the cardinality.

Proof The complexity follows the algorithms in Figs. 4 and 5. For each tuple, the
insertion time and the time to maintain the locality of the infix links are linear in
the dimensionality l. �

4 Aggregate query answering

We consider how to answer aggregate queries of two categories: point queries and
range queries.

4.1 Answering point queries

Point queries can be answered efficiently using a PAT. The algorithm is shown in
Fig. 7. We illustrate the major idea in the following example.

Example 4.1 (Point query answering) Let us use the PAT shown in Fig. 3 to an-
swer some illustrative point queries about the sliding window [1, 2] in the data
stream of our running example.

First, consider query cell q1 = (1, a1, b1, ∗, ∗), which itself is a prefix ag-
gregate cell. Its aggregate, 2, is registered in the aggregate table of node a1b1.
Following the path from the root to the node, we retrieve the answer immediately.

Let us consider query cell q2 = (∗, ∗, b1, ∗, ∗). It is not a prefix aggregate
cell. Instead, it is an infix aggregate cell. Thus, by the aggregate table associated
with the infix link of label b1 at node root, we can retrieve the aggregate. Please
note that the aggregates are stored by instants in the aggregate table, i.e., two rows
(1, 2) and (2, 7) are in the aggregate table of the infix link. We need to get the sum
of them since τ = ∗ in this query cell.

As the third example, let q3 = (∗, ∗, b1, ∗, d1). This query cannot be answered
by one node in the tree. Instead, following the infix link of label b1 at node root,
we can reach the linked list of all nodes having b1. Following the side-links, we
can access all the nodes of b1 in the tree.

Answering ad hoc aggregate queries from data streams using PAT

Fig. 7 The algorithm answering point queries

For each node in the linked list, we recursively retrieve the aggregates from
the infix link of label d1 at the node. For example, at node a1b1, by the infix link
of d1, we immediately know the aggregate of (∗, a1, b1, ∗, d1) is 1 even without
visiting any node of d1. Similarly, at node a2b1, we can retrieve the aggregate of
(∗, a2, b1, ∗, d1), 4, from the infix link. The sum of the aggregates from the infix
aggregate cells, 6, answers the query.

As another example, let us consider query cell q4 = (∗, a2, ∗, c2, d2). Follow-
ing the tree edge root-a2 and infix link of c2 at node a2, we reach the local linked
list of c2 in the subtree of a2. The locality property of the side-links and the infix
link avoids the search of the complete linked list of c2. Since a2b1c2 has only one
child, which is a2b1c2d1, the query returns null. Here, null means there is not any
tuple matching the aggregate cell.

The aggregate tables can also be used to prune the search. For example, con-
sider query cell q5 = (2, a1, b2, ∗, d1). It follows the path a1b2 in the PAT. How-
ever, the aggregate table at node a1b2 does not contain any row of instant 2. Thus,
we can return null immediately without searching the subtree any more.

As can be seen, in answering point queries, infix links and side-links are used
to search only the related tuples. Moreover, the locality property of side-links
guarantees that we do not need to search any extra nodes or branches.

4.2 Answering range queries

In principle, a range query can be rewritten as a set of point queries. Then,
Algorithm 4 can be called repeatedly to answer the queries. However, calling
Algorithm 4 and thus searching the PAT repeatedly may not be efficient.

M. Cho et al.

Here, we propose a progressive pruning approach, as exemplified in the fol-
lowing example.

Example 4.2 (Range query answering) Let us consider how to answer range query
(2, ∗, {b0, b1}, ∗, {d1, d2}). The query cell can be rewritten as a set of 4 queries
cells: (2, ∗, b0, ∗, d1), (2, ∗, b0, ∗, d2), (2, ∗, b1, ∗, d1) and (2, ∗, b1, ∗, d2). Algo-
rithm 4 can be called four times to answer the point queries, respectively, and the
sum, 7, should be returned.

Instead of calling Algorithm 4 four times, we can search the PAT as follows.
We start from the root node, since the first non-∗ dimension value in the query cell
should be either b0 or b1 on dimension B, we search the infix links of b0 and b1

from the root node. Since there exists no infix link of b0, we prune the range query
cell to (2, ∗, b1, ∗, {d1, d2}). At the same time, we only need to search subtrees
rooted at the nodes having label b1, which are linked by the side-links. That is, a
part of the search space is also pruned.

There are two nodes carrying label b1 in the PAT, a1b1 and a2b1. We search
them one by one. For node a1b1, since the next non-∗ dimension value in the query
cell should be either d1 or d2, and the time-stamp is 2, only the infix links of d1 and
d2 are searched, and only the infix link of d2 has a row of time-stamp 2. Thus, the
aggregate 3 is extracted. Similarly, aggregate value 4 is extracted from the subtree
of a2b1. Thus, the sum 7 is returned.

As shown in Example 4.2, the major idea of progressive pruning method for
answering range queries is that, instead of searching a PAT many times, we con-
duct the search using the range query from the root of a PAT. At each node under
the search, the query range is narrowed using the information of the available in-
fix links and the corresponding aggregate tables, and the unnecessary nodes are
pruned from the search space using the range specification in the query. By pro-
gressive pruning, we search the PAT only once for any range query.

5 Experimental results

In this section, we report the experimental results from a systematic performance
study. All the algorithms are implemented in C++ on a laptop PC with a 2.8 GHz
Pentium 4 processor, a 60 GB hard drive, and 512 MB main memory, running
Microsoft Windows XP operating system. In all of our experiments, the PATs
reside in main memory.

We generated the synthetic data sets following the Zipf distribution. To gen-
erate the data sets, our data generator takes the parameters of the Zipf factor, the
dimensionality, the number of tuples, and the cardinality in each dimension. To
generate a tuple, we generate the data for each dimension independently following
the Zipf distribution. The dimensions in the synthetic data sets are independent,
and there is no correlation among any dimensions.

Such a data generation method is popularly used in many previous studies on
data cube and data warehouse computation, including [6, 33, 38, 42]. To some
extent, it is a benchmark approach to generating synthetic data sets for data cube
computation.

Answering ad hoc aggregate queries from data streams using PAT

In our test, we also used the weather data set [19] which is a real data set. The
weather data set is well accepted as a benchmark data set for data cube computa-
tion [6, 33, 38, 42].

We tested three methods: the PAT method developed in this paper, the BUC
method as described in [6] and a baseline method. The baseline method just simply
stores and sorts all tuples in the current sliding window. As expected, the baseline
method uses the least main memory to store the data and costs the least runtime to
maintain the current sliding window. The tradeoff is the slowest query answering
performance. To answer any query, the baseline method has to scan the tuples in
the current sliding window. A binary search can be used to locate the tuples match-
ing the time interval of the query. On the other hand, the BUC method computes
the whole data cube. It costs the most in computing the whole cube and storing
the aggregates. We measure both the main memory cost of BUC and the size of
the data cube computed by BUC, which is stored on disk. To answer a query, BUC
only needs to conduct a binary search to allocate the corresponding aggregate tu-
ple. Thus, the query answering time is fast. PAT is in between: to compute and
store the aggregates for the current sliding window, it costs more space and run-
time than the baseline method but less than the BUC method; on the other hand,
in query answering, it searches less than the baseline method accordingly.

5.1 Query answering

We first report the performance of answering point queries. The results on range
queries are similar. In each test, we randomly select 1000 aggregate cells from the
data cube and use them as the point queries. In other words, all queries are on
non-empty aggregates.

Beyer and Ramakrishnan [6] does not give a query answering algorithm for
BUC. In this performance study, we store the whole data cube in main memory
as a table, and all tuples are sorted according to the dictionary order. Therefore,
answering any point query using the whole cube can be done by a binary search.
This is probably the best case of query answering using a data cube. In real ap-
plications, usually a whole data cube cannot be held into main memory. To this
extent, our experiments favor the query answering using the whole cube. In Fig. 8,
we measure the query answering time taken by 1000 queries. All curves are plot-
ted in logarithmic scale.

From the figures, we can clearly see that both PAT and BUC have a much better
query answering performance than the baseline method. The baseline method is
two orders of magnitudes slower. That simply indicates that, in order to answer
aggregate queries online, materializing some aggregate cells is very effective.

PAT and BUC have comparable performance in terms of query answering.
However, as discussed before and will be shown later in this section, PAT com-
putes and materializes much fewer aggregate cells than BUC. Thus, the space
overhead for storing a PAT is much smaller than the space for all the aggregate
cells computed by BUC. Moreover, BUC needs to scan the base table multiple
times to compute a complete data cube. Therefore, PAT is a nice tradeoff between
space and query answering time.

M. Cho et al.

 0.01

 0.1

 1

 10

 100

 1.5 2 2.5 3 3.5

Q
u
e
ry

 A
n
s
w

e
ri
n
g
 T

im
e
 (

s
e
c
o
n
d
s
)

Zipf Factor

BUC
PAT

BaseLine

 0.001

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25

Q
u
e
ry

 A
n
s
w

e
ri
n
g
 T

im
e
 (

s
e
c
o
n
d
s
)

Cardinality

BUC
PAT

BaseLine

 0.01

 0.1

 1

 10

 100

 1000

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Q
u
e
ry

 A
n
s
w

e
ri
n
g
 T

im
e
 (

s
e
c
o
n
d
s
)

Number of Tuples (M)

BUC
PAT

BaseLine

 0.001

 0.01

 0.1

 1

 10

 100

 2 3 4 5 6 7 8 9

Q
u
e
ry

 A
n
s
w

e
ri
n
g
 T

im
e
 (

s
e
c
o
n
d
s
)

Dimensionality

BUC
PAT

Baseline

Fig. 8 Results on query answering (all curves are plotted in logarithmic scale). a Query answer-
ing time vs. Zipf factor (dim = 10, cardinality = 10, no. of tuples = 500 K, no. of queries =
1 K). b Query answering time vs. cardinality (Zipf = 2, dim = 10, no. of tuples = 500 K, no. of
queries = 1 K). c Query answering time vs. no. of tuples (Zipf = 2, dim = 10, cardinality = 10,
no. of queries = 1 K). d Query answering performance on the weather data set

5.2 Building prefix aggregate trees

We tested the size of the data cube computed by BUC, the size of PAT, the number
of aggregates computed, the memory usage (the highest watermark of memory
usage during the running of the programs) and scalability (runtime) of the three
methods. Four factors are considered: the Zipf factor, the dimensionality, the car-
dinality of the dimensions and the number of tuples in the current sliding window.
The results are consistent. Some results are shown in Fig. 9.

As shown Fig. 9a, the baseline method is not sensitive to the Zipf factor at all,
since it simply maintains the tuples in the current sliding window and does not pre-
compute any aggregate. Both BUC and PAT are sensitive the the Zipf factor: the
smaller the Zipf factor, the more distinct aggregates exist in the data set. However,
PAT runs faster than BUC since it computes much less aggregate cells than BUC.

Figure 9b measures the size of the data cube of BUC, the size of the PAT and
the size of the current sliding window in Baseline. The size of PAT counts both
the prefix aggregates, infix aggregates and links. The number of tuples varies from
500 thousand to 2.5 million so that the scalability of the methods are tested. All
three methods are roughly linear on the number of tuples, but PAT and the baseline
method generate much smaller results than BUC. In other words, Baseline does

Answering ad hoc aggregate queries from data streams using PAT

 0

 20

 40

 60

 80

 100

 120

 1.5 2 2.5 3 3.5 4

R
u
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Zipf Factor

BUC
PAT

BaseLine

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.5 1 1.5 2 2.5

S
iz

e
 o

f
C

u
b
e
/T

re
e
 (

M
)

Number of Tuples (M)

BUC
PAT

BaseLine

 0

 10000

 20000

 30000

 40000

 50000

 60000

 5 10 15 20 25

N
u
m

b
e
r

o
f
C

e
lls

/N
o
d
e
s
 (

K
)

Cardinality

BUC
PAT

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 4 5 6 7 8 9 10 11 12

M
e
m

o
ry

 U
s
a
g
e
 (

M
)

Dimensionality

BUC
PAT

BaseLine

Fig. 9 Results on constructing PAT. a Runtime vs. Zipf factor (dim = 10, cardinality = 10, no.
of tuples = 500 K). b Size of cube/tree vs. no. of tuples (Zipf = 2, dim = 10, cardinality = 10).
c no. of aggregates vs. cardinality (Zipf = 2, dim = 10, no. of tuples = 500 K). d Memory usage
vs. dimensionality (Zipf = 2, cardinality = 10, no. of tuples = 500 K)

not generate any aggregates but only the base tuples are maintained. PAT generates
the prefix aggregates and the infix aggregates, which form a substantially small
subset of all the aggregates generated by BUC. Even when the whole data cube is
over 2.5 GB, the PAT including the links occupies less than 500 MB, which is less
than three times of the size of all base tuples and can be easily accommodated in
main memory.

Figure 9c shows that the number of aggregate cells (including prefix aggre-
gates and infix aggregates) in PAT is linear in the cardinality of the dimensions.
The trend is mild. When the cardinality increases, the data set becomes sparse and
thus the total number of aggregates also increases. BUC computes all aggregates.
As shown in the same figure, the increase of all aggregates is sub-linear in our
experiments, but the number of all aggregates is much larger than the number of
prefix aggregates and infix aggregates computed by PAT.

Figure 9d shows the memory usage of the three methods. Please note that BUC
stores the aggregates on disk. It only maintains the base table in main memory.
Thus, it uses the same amount of main memory as the baseline method. Since the
PAT resides in main memory, the memory usage of constructing a PAT increases
as the dimensionality increases. When there are many dimensions, PAT has many
levels.

M. Cho et al.

In summary, a PAT is usually much smaller than the size of a data cube. Con-
structing a PAT is also much faster than computing a data cube using BUC.

5.3 Incremental maintenance

When testing the performance of incremental maintenance, we always set the
number of tuples at each instant to a constant. A sliding window of 10 instants
was used. We set the number of tuples in the original PAT to 500K. We only com-
pare the PAT method and the baseline method. For BUC, there is not incremental
maintenance algorithm. Thus, to incrementally maintain all the aggregates, we
have to compute the data cube on the new data and merge the new aggregates with
the existing ones. It has a similar performance as shown in Sect. 5.2. Some results
are shown in Fig. 10.

Figure 10a shows the maintenance runtime versus the Zipf factor. It is consis-
tent with Fig. 9a. With a lower Zipf factor, the data set is sparser and thus PAT com-
putes more prefix aggregates and infix aggregates. The baseline method is con-
stant since it does not compute any aggregates. However, by comparing Figs. 9a
and 10a, we can see that the incremental maintenance time is much shorter, since
many paths in the existing PAT can be reused in the incremental maintenance.

As shown in Fig. 10b, the incremental maintenance time of PAT increases
as the dimensionality increases, since the tree becomes larger and taller on high
dimensional data sets. The maintenance time of Baseline also increases, but it is
linear.

In Fig. 10c, we tested the scalability of the incremental maintenance of PAT
and Baseline with respect to the number of new tuples at each instant. The result
shows that both PAT and Baseline have an approximately linear scalability. This
is consistent with the analysis of the PAT incremental maintenance algorithm.

Figure 10d examines the size of the PAT with respect to the number of new
tuples at each instant. Interestingly, we observed that, under a given data distribu-
tion, the size of the PAT is stable and insensitive to the number of tuples in the
incremental part. In other words, the size of PAT mainly depends on the number
of tuples in the sliding window, and is stable during the incremental maintenance.
This is a nice property for data stream processing: no matter how large the data
stream is, we will have an index structure of a stable size.

Figure 10e shows the memory usage with respect to the Zipf factor. Again,
when the Zipf factor is small, the data is sparse and thus not many prefixes can
be shared. When the Zipf factor becomes larger, the data becomes more skewed,
and the PAT becomes smaller due to the more sharing of the prefixes. The baseline
uses constant memory in the maintenance, since it only needs to load the current
sliding window into main memory.

In summary, incremental maintenance of a PAT is scalable in both runtime and
space usage with respect to the size of sliding window.

5.4 The effect of the order of dimensions

We also tested the effect of different orders of dimensions on the size of the
PATs and the runtime of PAT construction. We made up a synthetic data set of 10

Answering ad hoc aggregate queries from data streams using PAT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 2 2.5 3 3.5 4

M
a

in
te

n
a

n
c
e

 R
u

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Zipf Factor (50K tuples)

PAT
Baseline

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 3 4 5 6 7 8 9 10

M
a

in
te

n
a

n
c
e

 R
u

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Dimensionality (50K tuples)

PAT
Baseline

 0

 2

 4

 6

 8

 10

 12

 14

 550 600 650 700 750 800 850 900 950 1000

M
a

in
te

n
a

n
c
e

 R
u

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Number of Tuples in Maintenance (K)

PAT
Baseline

 170

 175

 180

 185

 190

 195

 200

 550 600 650 700 750 800 850 900 950 1000

S
iz

e
 o

f
T

re
e

 (
M

)

Number of Tuples in Maintenance (K)

PAT

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1.5 2 2.5 3 3.5 4

M
e

m
o

ry
 U

s
a

g
e

 (
M

)

Zipf Factor (50K tuples)

PAT
Baseline

Fig. 10 Results on incremental maintenance. a Runtime vs. Zipf factor (dim = 10, cardinality =
10, no. of new tuples = 50 K). b Runtime vs. dimensionality (Zipf = 2, cardinality = 10, no. of
new tuples = 50 K). c Runtime vs. no. of new tuples (Zipf = 2, dim = 10, cardinality = 10). d
Size of tree vs. no. of new tuples (Zipf = 2, dim = 10, cardinality = 10). e Memory usage vs.
Zipf factor (dim = 10, cardinality = 10, no. of new tuples = 50 K)

dimensions, Zipf factor 3 and 1 million tuples. The i-th dimension (1 ≤ i ≤ 10)

has a cardinality of i . We tested the effects of the following 4 orders of dimensions:

– R1: cardinality ascending order;
– R2: cardinality descending order;
– R3: D5-D6-D4-D7-D3-D8-D2-D9-D1-D10; and
– R4: D1-D10-D2-D9-D3-D8-D4-D7-D5-D6.

M. Cho et al.

Table 3 The effect of orders of dimensions

Order Runtime No. of nodes Tree size (bytes)

R1 16.37 6, 433 1, 521, 640
R2 16.67 16, 441 2, 548, 404
R3 17.14 8, 694 2, 180, 736
R4 16.74 8, 575 1, 812, 868

The results are shown in Table 3. The PAT construction time is insensitive to
the order of dimensions, since the number of tree node accesses is basically the
same no matter which order is used.

Both the number of nodes in the PAT and the size of the tree are sensitive to
the orders. With order R1, putting dimensions of low cardinality ahead strongly
facilitates the prefix sharing, and leads to the smallest number of nodes. As dis-
cussed at the end of Sect. 3.1, at level i , the size of the tree nodes is proportional
to the sum of cardinalities in dimensions Di+1 to Dn . Therefore, the average size
of tree nodes using order R1 is the largest. However, the advantage of reduction on
number of nodes well overcomes the disadvantage of large tree node size. Thus,
order R1 achieves the smallest tree. Order R2 suffers from deficiency in sharing
the prefixes. Although its average tree node size is the smallest, the tree size turns
out to be the largest. Orders R3 and R4 stay in between.

Based on this experiment, we recommend ordering the dimensions in cardi-
nality ascending order to explore possible sharing of prefixes. However, there is
no theoretical guarantee that the cardinality ascending order always leads to the
smallest tree.

5.5 Results on the weather data set

We also tested the PAT construction using the well-accepted weather data set [19],
which contains 1, 015, 367 tuples and nine dimensions. The dimensions with the
cardinalities of each dimension are as follows: station-id (7037), longitude (352),
solar-altitude (179), latitude (152), present-weather (101), day (30), weather-
change-code (10), hour (8), and brightness (2). Eight data sets with 2–9 dimen-
sions are generated by projecting the weather data set on the first k dimensions
(1 ≤ k ≤ 9). Figure 11 shows the results.

Interestingly, the size of the PAT on the complete data set is only 263 MB, com-
parable to the size of QC-tree (241.2 MB as reported in [26]), a recently developed
data cube compression method. However, to construct a QC-tree, the base table
has to be scanned and sorted multiple times, and the incremental maintenance of
a QC-tree is more costly than PAT. The PAT construction is also much faster than
computing the whole cube using BUC but slower than Baseline (Fig. 11b). As
indicated in [25], construction of a quotient cube is slower than BUC, since extra
work is needed to achieve compression.

In summary, the experimental results on the real data set are consistent with
the observations that we obtained from the experiments on the synthetic data sets.

Answering ad hoc aggregate queries from data streams using PAT

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 2 3 4 5 6 7 8 9

S
iz

e
 o

f
C

u
b

e
/T

re
e

 (
M

)

Dimensionality

BUC
PAT

Baseline

 0

 50

 100

 150

 200

 250

 300

 2 3 4 5 6 7 8 9

R
u

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Dimensionality

BUC
PAT

Baseline

Fig. 11 Results on real data set weather. a Size of the tree. b Construction time

5.6 Summary

Based on the above experimental results, we have the following observations.
First, the size of a PAT is substantially smaller than that of a data cube. That
makes the PAT feasible in space for data streams. Second, our algorithms for con-
structing and incrementally maintaining a PAT are efficient and highly scalable
for data streams. The construction and maintenance cost is dramatically smaller
than the cost of materializing the whole cube. Third, query answering using a PAT
is comparable to the best cases using a full cube. It is much faster than the base-
line method. The PAT approach can be regarded as a good tradeoff between the
construction/maintenance cost and the query answering performance.

6 Conclusions

Online warehousing data streams and answering ad hoc aggregate queries are in-
teresting and challenging research problems with broad applications. In this paper,
we propose a novel PAT data structure to construct an online data warehouse. Ef-
ficient algorithms are developed to construct and incrementally maintain a PAT
over a data stream, and answer various ad hoc aggregate queries. We present a
systematic performance study to examine the effectiveness and the efficiency of
our design.

Acknowledgements We are grateful to the reviewers for their insightful comments, which help
to improve the quality of this paper. Jian Pei’s research is supported in part by NSERC Discovery
Grant 312194-05, NSF Grant IIS-0308001, and a President’s Research Grant of Simon Fraser
University. Ke Wang’s research is supported in part by a grant from NSERC. All opinions,
findings, conclusions and recommendations in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

References

1. Arasu A, Manku GS (2004) Approximate counts and quantiles over sliding windows. In:
Proceedings of the 23rd ACM SIGACT-SIGMOD-SIGART symposium on principles of
database systems (PODS’04), Paris, France

M. Cho et al.

2. Babcock B, Babu S, Datar M, Motwani R, Widom J (2002) Models and issues in data
stream systems. In: Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART symposium
on principles of database systems (PODS’02), Madison, WI

3. Babu S, Widom J (2001) Continuous queries over data streams. SIGMOD Record 30:109–
120

4. Barbara D, Sullivan M (1997) Quasi-cubes: exploiting approximation in multidimensional
databases. SIGMOD Record 26:12–17

5. Barbara D, Wu X (2000) Using loglinear models to compress datacube. In: ‘WAIM’2000’,
pp 311–322

6. Beyer K, Ramakrishnan R (1999) Bottom-up computation of sparse and iceberg cubes. In:
Proceedings of the 1999 ACM-SIGMOD international conference on management of data
(SIGMOD’99), Philadelphia, PA, pp 359–370

7. Chang JH, Lee WS (2003) Finding recent frequent itemsets adaptively over online data
streams. In: KDD ’03: Proceedings of the 9th ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM Press, pp 487–492

8. Chaudhuri S, Dayal U (1997) An overview of data warehousing and OLAP technology.
SIGMOD Record 26:65–74

9. Chen Y, Dong G, Han J, Wah BW, Wang J (2002) Multi-dimensional regression analysis of
time-series data streams. In: Proceedings of the 2002 international conference on very large
data bases (VLDB’02), Hong Kong, China

10. Cohen S, Nutt W, Serebrenik A (1999) Rewriting aggregate queries using views. In:
Proceedings of the 18th ACM SIGACT-SIGMOD-SIGART symposium on principles of
database systems, Philadelphia, Pennsylvania, ACM Press, pp 155–166

11. Cormode G, Korn F, Muthukrishnan S, Srivastava D (2003) Finding hierarchical heavy
hitters in data streams. In: Proceedings of the 19th international conference on very large
data bases (VLDB’03), Berlin, Germany

12. Cormode G, Muthukrishnan S (2003). What’s hot and what’s not: tracking most frequent
items dynamically. In: PODS ’03: Proceedings of the 22nd ACM SIGMOD-SIGACT-
SIGART symposium on principles of database systems, ACM Press, New York, NY, USA,
pp 296–306

13. Datar M, Gionis A, Indyk P, Motwani R (n.d.) Maintaining stream statistics over sliding
windows (extended abstract), citeseer.nj.nec.com/491746.html

14. Dobra A, Garofalakis M, Gehrke J, Rastogi R (2002) Processing complex aggregate queries
over data streams. In: Proceedings of the 2002 ACM-SIGMOD international conference
management of data (SIGMOD’02), Madison, Wisconsin

15. Gehrke J, Korn F, Srivastava D (2001) On computing correlated aggregates over contin-
uous data streams. In: Proceedings of the 2001 ACM-SIGMOD international conference
management of data (SIGMOD’01), Santa Barbara, CA, pp 13–24

16. Giannella C, Han J, Pei J, Yu P (2004) Mining frequent patterns in data streams at multiple
time granularities. In: Kargupta H, Joshi A, Sivakumar K, Yesha Y (eds) Next generation
data mining, AAAI/MIT

17. Gray J, Bosworth A, Layman A, Pirahesh H (1996) Data cube: a relational operator gener-
alizing group-by, cross-tab and sub-totals. In: Proceedings of the 1996 international confer-
ence data engineering (ICDE’96), New Orleans, Louisiana, pp 152–159

18. Gupta A, Mumick IS, Subrahmanian VS (1993) Maintaining views incrementally. In:
Buneman P, Jajodia S (eds) Proceedings of the 1993 ACM SIGMOD international con-
ference on management of data, Washington, D.C., ACM Press, pp 157–166

19. Hahn CJ, Warren SG, London J (1994) Edited synoptic cloud reports from ships and land
stations over the globe, 1982–1991. Available at http://cdiac.esd.ornl.gov/.

20. Han J, Pei J, Dong G, Wang K (2001) Efficient computation of iceberg cubes with com-
plex measures. In: Proceedings of the 2001 ACM-SIGMOD international conference on
management of data (SIGMOD’01), Santa Barbara, CA, pp 1–12

21. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In:
Proceedings of the 2000 ACM-SIGMOD international conference management of data
(SIGMOD’00), Dallas, TX, pp 1–12

22. Harinarayan V, Rajaraman A, Ullman JD (1996) Implementing data cubes efficiently. In:
Proceedings of the 1996 ACM-SIGMOD international conference on management of data
(SIGMOD’96), Montreal, Canada, pp 205–216

Answering ad hoc aggregate queries from data streams using PAT

23. Johnson T, Shasha D (1997) Some approaches to index design for cube forests. Bull Tech
Comm Data Eng 20:27–35

24. Karp RM, Papadimitriou CH, Shenker S (2003) A simple algorithm for finding frequent
elements in streams and bags. ACM Trans Database Syst (TODS) 28(1):51–55

25. Lakshmanan L, Pei J, Han J (2002) Quotient cube: How to summarize the semantics of
a data cube. In: Proceedings of the 2002 international conference very large data bases
(VLDB’02), Hong Kong, China

26. Lashmanan L, Pei J, Zhao Y (2003) QC-Trees: An efficient summary structure for semantic
OLAP. In: Proceedings of the 2003 ACM SIGMOD international conference on manage-
ment of data (SIGMOD’03), San Diego, California

27. Levy AY, Mendelzon AO, Sagiv Y, Srivastava D (1995) Answering queries using views.
In: Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART symposium on principles of
database systems, San Jose, California, ACM Press, New York, pp 95–104

28. Manku GS, Motwani R (2002) Approximate frequency counts over data streams. In: Pro-
ceedings of the 2002 international conference on very large data bases (VLDB’02), Hong
Kong, China

29. Mendelzon AO, Vaisman AA (2000) Temporal queries in OLAP. In: Abbadi AE, Brodie
ML, Chakravarthy S, Dayal U, Kamel N, Schlageter G, Whang K-Y (eds) VLDB 2000,
Proceedings of the 26th international conference on very large data bases, Cairo, Egypt,
Morgan Kaufmann, pp 242–253

30. Mumick IS, Quass D, Mumick BS (1997) Maintenance of data cubes and summary tables in
a warehouse. In: Peckham J (ed) SIGMOD 1997, Proceedings ACM SIGMOD international
conference on management of data, Tucson, Arizona, USA, ACM Press, pp 100–111

31. Quass D, Gupta A, Mumick IS, Widom J (1996) Making views self-maintainable for data
warehousing. In: Proceedings of the 1996 international conference parallel and distributed
information systems, Miami Beach, Florida, pp 158–169

32. Quass D, Widom J (1997) On-line warehouse view maintenance. In: Peckham J (ed)
SIGMOD 1997, Proceedings ACM SIGMOD international conference on management of
data, Tucson, Arizona, USA, ACM Press, pp 393–404

33. Ross K, Srivastava D (1997) Fast computation of sparse datacubes. In: Proceedings of the
1997 international conference very large data bases (VLDB’97), Athens, Greece, pp 116–
125

34. Ross KA, Zaman KA (2000) Optimizing selections over datacubes. In: Statistical and
scientific database management, pp 139–152. citeseer.nj.nec.com/article/ross98optimizing.
html

35. Roussopoulos N, Kotidis Y, Roussopoulos M (1997) Cubetree: Organization of and bulk
updates on the data cube. In: Peckham J (ed) SIGMOD 1997, Proceedings ACM SIG-
MOD international conference on management of data, Tucson, Arizona, USA, ACM Press,
pp 89–99

36. Sarawagi S (1997) Indexing OLAP data. Bull Tech Com Data Eng 20:36–43
37. Shanmugasundaram J, Fayyad U, Bradley PS (1999) Compressed data cubes for OLAP

aggregate query approximation on continuous dimensions. In: Proceedings of the 5th ACM
SIGKDD international conference on knowledge discovery and data mining, ACM Press,
San Diego, California, United States, pp 223–232

38. Sismanis Y, Roussopoulos N, Deligiannakis A, Kotidis Y (2002) Dwarf: Shrinking the
petacube. In: Proceedings of the 2002 ACM-SIGMOD international conference manage-
ment of data (SIGMOD’02), Madison, Wisconsin

39. Sristava D, Dar S, Jagadish HV, Levy AV (1996) Answering queries with aggregation
using views. In: Proceedings of the 1996 international conference very large data bases
(VLDB’96), Bombay, India, pp 318–329

40. Teng W-G, Chen M-S, Yu PS (2003) A regression-based temporal pattern mining scheme
for data streams. In: Proceedings of the 19th international conference on very large data
bases (VLDB’03), Berlin, Germany

41. Vitter JS, Wang M, Iyer BR (1998) Data cube approximation and historgrams via wavelets.
In: Proceedings of the 1998 international conference on information and knowledge man-
agement (CIKM’98), Washington DC, pp 96–104

42. Wang W, Lu H, Feng J, Yu JX (2002) Condensed cube: An effective approach to reducing
data cube size. In: Proceedings of the 2002 international conference on data engineering
(ICDE’02), San Fransisco, CA

M. Cho et al.

43. Widom J (1995) Research problems in data warehousing. In: Proceedings of the 4th in-
ternational conference on information and knowledge management, Baltimore, Maryland,
pp 25–30

44. Yu JX, Chong Z, Lu H, Zhou A (2004) False positive or false negative: Mining frequent
itemsets from high speed transactional data streams. In: Proceedings of the 30th interna-
tional conference on very large data bases (VLDB’04), Toronto, ON, Canada

45. Zhao Y, Deshpande PM, Naughton JF (1997) An array-based algorithm for simultaneous
multidimensional aggregates. In: Proceedings of the 1997 ACM-SIGMOD international
conference management of data (SIGMOD’97), Tucson, Arizona, pp 159–170

Author Biographies

Moonjung Cho is a Ph.D. candidate in the Department of
Computer Science and Engineering at State University of
New York at Buffalo. She obtained her Master from same
university in 2003. She has industry experiences as associate
researcher for 4 years. Her research interests are in the area of
data mining, data warehousing and data cubing. She has re-
ceived a full scholarship from Institute of Information Tech-
nology Assessment in Korea.

Jian Pei received the Ph.D. degree in Computing Science
from Simon Fraser University, Canada, in 2002. He is cur-
rently an Assistant Professor of Computing Science at Simon
Fraser University, Canada. In 2002–2004, he was an Assistant
Professor of Computer Science and Engineering at the State
University of New York at Buffalo, USA. His research inter-
ests can be summarized as developing advanced data anal-
ysis techniques for emerging applications. Particularly, he
is currently interested in various techniques of data mining,
data warehousing, online analytical processing, and database
systems, as well as their applications in bioinformatics. His
current research is supported in part by Natural Sciences
and Engineering Research Council of Canada (NSERC) and
National Science Foundation (NSF). He has published over
70 papers in refereed journals, conferences, and workshops,
has served in the program committees of over 60 international
conferences and workshops, and has been a reviewer for some

leading academic journals. He is a member of the ACM, the ACM SIGMOD, and the ACM
SIGKDD.

Answering ad hoc aggregate queries from data streams using PAT

Ke Wang received Ph.D from Georgia Institute of Tech-
nology. He is currently a professor at School of Comput-
ing Science, Simon Fraser University. Before joining Simon
Fraser, he was an associate professor at National University
of Singapore. He has taught in the areas of database and data
mining. Ke Wang’s research interests include database tech-
nology, data mining and knowledge discovery, machine learn-
ing, and emerging applications, with recent interests focus-
ing on the end use of data mining. This includes explicitly
modeling the business goal (such as profit mining, bio-mining
and web mining) and exploiting user prior knowledge (such
as extracting unexpected patterns and actionable knowledge).
He is interested in combining the strengths of various fields
such as database, statistics, machine learning and optimiza-
tion to provide actionable solutions to real life problems. Ke
Wang has published in database, information retrieval, and
data mining conferences, including SIGMOD, SIGIR, PODS,

VLDB, ICDE, EDBT, SIGKDD, SDM and ICDM. He is an associate editor of the IEEE TKDE
journal and has served program committees for international conferences including DASFAA,
ICDE, ICDM, PAKDD, PKDD, SIGKDD and VLDB.

