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ABSTRACT

Current approaches for answering queries with imprecise constraints require

users to provide distance metrics and importance measures for attributes of interest

- metrics that are hard to elicit from lay users. Moreover they assume the ability

to modify the architecture of the underlying database. Given that most Web data-

bases are autonomous and may have users with limited expertise over the associated

domains, current approaches for answering imprecise queries are not applicable to

autonomous databases such as those accessible on the Web.

This dissertation presents AIMQ - a domain independent framework for sup-

porting imprecise queries over autonomous databases with minimal input from users

and no modifications to the underlying database. AIMQ provides answers satisfy-

ing an imprecise query by identifying and executing a set of precise queries similar

to the imprecise query. AIMQ begins by mapping the given imprecise query to a

precise query with non-null resultset. Then using a approximate functional depen-

dency (AFD) based query relaxation heuristic AIMQ identifies a set of precise queries

similar to the initially mapped precise query.

AIMQ measures the similarity between a tuple and the imprecise query as

the weighted summation of similarity over attributes. However, measuring similarity

requires distance metrics to be provided by the users or an expert; often quite difficult

even for experts. Hence, a context-sensitive domain-independent semantic similarity

estimation technique has also been developed as part of AIMQ.

Results of empirical evaluation conducted using multiple real-life databases

demonstrate both the domain independence and the efficiency of AIMQ’s learning
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algorithms. User study results presented in this thesis demonstrate the high relevance

of answers given by AIMQ. AIMQ is the only domain independent system currently

available for answering imprecise queries over autonomous databases. It can be (and

has been) implemented without affecting the internals of a database or requiring

extensive domain specific inputs from the user, thereby demonstrating that AIMQ

can be implemented over any autonomous database.
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CHAPTER 1

INTRODUCTION

Everything is vague to a degree (that) you do not

realize till you have tried to make it precise.

- Bertrand Russell

The Philosophy of Logical Atomism

The rapid expansion of the World Wide Web1 has made a variety of au-

tonomous databases like bibliographies, scientific databases, travel reservation sys-

tems, vendor databases etc. accessible to a large number of lay external users. The

increased visibility of these Web databases2 (450, 000 and growing [CHL+04]) has

brought about a drastic change in their average user profile from tech-savvy, highly

trained professionals to lay users demanding “instant gratification”. Moreover, most

users on the Web now prefer the easy-to-use keyword based query interface and the

ranked retrieval model used by search engines. However, unlike Web search engines

that take a few keywords, look up the index and provide a listing of best-matching

1The World Wide Web (the “Web” or “WWW” for short) is a hypertext system that operates over
the Internet - a publicly available internationally interconnected system of computers and services
provided by them.

2We use the term “Web database” to refer to a non-local autonomous database that is accessible
only via a Web (form) based interface.
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web pages (usually based on relevance to keyword query combined with popularity of

the web page), the Web database systems expect users to know the name of relation

to query, the field to look in, and at times even the field type. Moreover, database

query processing models have always assumed that the user knows what she wants and

is able to formulate a query that accurately expresses her needs. Therefore, database

systems have always used a boolean model of query processing where there is a set of

answer tuples that exactly satisfy all the constraints of the query and thus are equally

relevant to the query. Hence, to obtain a satisfactory answer from a Web database,

the user must formulate a query that accurately captures her information need; often

a difficult endeavor. Often users must reformulate their queries a number of times

before they can obtain a satisfactory answer. Thus, a lack of knowledge about the

schema and contents of the database combined with the boolean query model can

often result in the user not obtaining satisfactory answers from a database.

Although users may not know how to phrase their queries, they can often tell

which tuples are of interest to them when presented with a mixed set of results having

varying degrees of relevance to the query. Thus database query processing models

must embrace the IR systems’ notion that user only has vague ideas of what she

wants, is unable to formulate queries capturing her needs and would prefer getting a

ranked set of answers. This shift in paradigm would necessitate supporting imprecise

queries3- queries that only require the answer tuples to match the constraints closely

and not exactly. This sentiment is also reflected by several database researchers in a

recent database research assessment [Low03].

3A formal definition is given in Chapter 3
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1.1. Imprecision in Database Systems

A query against incomplete or imprecise data in a database, or a query whose

search conditions are imprecise can both result in answers that do not satisfy the query

completely. Such queries can be broadly termed as imprecise queries. Eventhough

there has recently been much interest in looking at problems arising in storing and

retrieving data that is incompletely specified (hence imprecise), such systems have not

gained widespread acceptance yet. The popular querying and data storage models

(both in database and IR systems) still work with data that is precise. Hence, in this

thesis, we only focus on the problem of supporting queries with imprecise constraints

over databases containing precise data and supporting the boolean query answering

model.

1.1.1. Why Support Imprecision in Queries? Todays database systems

are designed largely for precise queries against a database of precise and complete

data. Range queries (e.g., Age BETWEEN 20 AND 30) and disjunctive queries (e.g.,

Name=“G. W. Bush” OR Name=“George Bush”) do allow for some imprecision in

queries. However, these extensions to precise queries are unable to completely capture

the expressiveness of an imprecise query. We use the following two examples to

motivate the need for supporting imprecise queries over databases.

Example 1.1: Suppose, we wish to express the query -Find a person whose last name

is like Napalu, is perhaps middle aged, and who drives an old white-ish

car with license plate that contains TR, over a demographics database. We



4

can represent the query formally as

Q:- Demographics(LastName like Napalu, Age like 50, VehicleColor

like White, LicensePlate like ‘‘*TR*’’)

Note that for simplicity, we have used the relation like to represent all sim-

ilarity relationships such as white-ish, contains etc. Also we have used

some domain-knowledge in converting perhaps middle-aged to Age like 50.

While we can assume lay users to be able to do such trivial transformations,

we cannot expect them to come up with alternate formulations of the above

query that can be expressed using precise queries, such as range and disjunctive

queries, and thus extract relevant answers from existing databases. In fact, we

believe the task would be quite difficult even for experts.

Example 1.2: Suppose a user wishes to search for sedans priced around $10000 in

a used car database, CarDB(Make, Model, Year, Price, Location). Based

on the database schema the user may issue the following query:

Q : −CarDB(Model = Camry, Price < 10000)

On receiving the query, CarDB will provide a list of Camrys that are priced below

$10000. However, given that Accord is a similar car, the user may also be

interested in viewing all Accords priced around $10000. The user may also be

interested in a Camry priced $10500. ✷

In the above example, Example 1.2, the query processing model used by CarDB

would not suggest the Accords or the slightly higher priced Camry as possible answers
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of interest as the user did not specifically ask for them in her query. This will force the

user to enter the tedious cycle of iteratively issuing queries for all “similar” models

before she can obtain a satisfactory answer. This is further complicated by the fact

that in many cases the user may not know what the similar models are to begin with.

One way to automate this is to provide the query processor information about

similar models (e.g. to tell it that Accords are 0.9 similar to Camrys). While such

approaches have been tried, their achilles heel has been the acquisition of such domain

specific similarity metrics–a problem that will only be exacerbated as the publicly

accessible databases increase in number.

1.1.2. Difficulty in Adapting Current Database Systems. Supporting

imprecise queries over databases necessitates a system that integrates similarity search

paradigm over structured and semi-structured data. Todays relational database sys-

tems, as they are designed to support precise queries against precise data, use such

precise access support mechanisms as indexing, hashing, and sorting. Such mecha-

nisms are used for fast selective searches of records within a table and for joining two

tables based on precise matching of values in join fields in the tables. The imprecise

nature of the search conditions in queries will make such access mechanisms largely

useless. Thus, supporting imprecise queries over existing databases would require

adding support for imprecision within the query engine and meta-data management

schemes like indexes. Moreover, we will require access to domain specific metadata,

e.g. an object thesaurus that provides all possible synonyms for various objects in

the domain, descriptions about characteristics of the objects along with rules for
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matching similar names and descriptions. Recent surveys [NH97, KS05] of existing

attempts at ontology design show that there is great diversity in the way ontologies

are designed and in the way they represent the real-world facts. Thus, much work

needs to be done before mature, usable and universally acceptable ontologies are made

available. Therefore, at this time a solution based on adding domain ontologies to

existing databases cannot be considered feasible.

Another challenge we must overcome is that the database is remotely located

and will be autonomous in its behaviour i.e. the database may undergo frequent

updates and may not be willing to support imprecise queries. Supporting imprecise

queries would involve changing the query processing and data storage models being

used by the database. Such a transformation would be a time consuming and costly

procedure and may affect a number of other systems that use the database. For

example, changing an airline reservation database will necessitate changes to other

connected systems including travel agency databases, partner airline databases etc.

Hence, assuming that Web databases will themselves be inclined to support imprecise

queries would be a fallacy. Therefore, we must contend with being able to access the

underlying data by using the existing query interfaces i.e. by issuing precise queries.

In fact, the problem of answering imprecise queries is equally difficult even if

we assume that the query processing framework of the underlying database can be

modified to support imprecise queries. Even if the database is modifiable, we would

still require a domain expert and/or end user to provide the necessary distance met-

rics and a domain ontology. Domain ontologies do not exist for all possible domains
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and the ones that are available are far from being complete. Even if we were to as-

sume availability of distance metrics and domain ontologies (given by some expert)

that is true over a given database, most real-life databases undergo frequent updates

and therefore the provided metrics and relationships will also have to be updated

frequently - a non-trivial endeavour by itself. Thus, the problem of answering impre-

cise queries over local databases also brings forth most of the challenges that we have

when looking at autonomous sources.

Based on the above discussions, we can conclude that a feasible solution for

answering imprecise queries should neither assume the ability to modify the proper-

ties of the database nor require users (both lay and expert) to provide much domain

specific information. Therefore, in this thesis, our focus is enabling support for impre-

cise queries without changing the behaviour of the existing database and with minimal

input (the imprecise query and similarity threshold) from the users. We assume the

databases are autonomous in nature and support the boolean query model where both

queries and data are precise. The solution we propose in this thesis is a middle-ware

that sits between the user issuing the imprecise query and the database that only

supports precise queries.

1.2. Outline of the Thesis

Below we formally define the problem at hand, list the key challenges faced in

answering imprecise queries and then motivate and describe the solution we present

in this dissertation.
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1.2.1. The Problem. Given a conjunctive query Q over an autonomous Web

database projecting the relation R, find all tuples of R that show similarity to Q above

a threshold Tsim ∈ (0, 1). Specifically,

Answers(Q) = {x|x ∈ R,Similarity(Q, x) > Tsim}

Constraints: (1) R supports the boolean query processing model (i.e. a tuple either

satisfies or does not satisfy a query). (2) The answers to Q must be determined

without altering the data model or requiring additional guidance from users. ✷

1.2.2. Challenges. Supporting imprecise queries over autonomous Web data-

bases brings forth the following challenges:

Supporting Imprecision: Supporting imprecise queries necessitates the extension

of the query processing model from binary (where tuples either satisfy the query or

not) to a matter of the degree (to which a given tuple is a satisfactory answer). Thus,

to support an imprecise query Q over a database R (that supports the boolean query

answering model), we require the ability to identify all tuples of R that are similar

to Q. A naive solution would be to compare each tuple in the relation R against

the query. But accessing all tuples of R to answer each imprecise query is neither

feasible nor practical. Since, only a query based access to the tuples of the database

is available and the underlying query answering model is binary, extracting tuples

from R necessitates probing the database using precise queries whose answers fall in

the neighbourhood of interest i.e. are highly relevant to Q.

Techniques like query relaxation and generalization [CCL91, CCL92, Mot90]

have been attempted by researchers to generate new queries related to the user’s
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original query. The new queries can then be used to find answers which may be of

interest to the user but not in the scope of the original query. However the abstraction

and refinement rely on the database having explicit hierarchies of the values in the

domain. A generalized query is created by replacing values in the given query with

corresponding values higher up in the hierarchy while replacing with values lower in

the hierarchy gives a refined query. Since, as shown earlier in the section, domain spe-

cific object hierarchies generally known as ontologies are often not available and when

available are far from being complete, we consider the query generalization approach

as not a promising approach to solving the imprecise query answering problem.

On the other hand, query relaxation is very much a feasible solution but re-

quires a initial query with a number of attributes bound. Assuming we are able to

derive such a query from the imprecise query, further relaxation would still bring up

the problem of what to relax first. Depending on the attributes relaxed we may re-

trieve few or many results with varying relevance. Randomly creating precise queries

may result in queries that have too few answers or have answers that are not relevant

to the imprecise query Q. In either case we may end up creating and executing a large

number of precise queries thereby increasing cost of answering the query. Therefore to

efficiently answer an imprecise query, we must create and execute only those precise

queries that are likely to return answers relevant to Q i.e. only those Q′ who answers

have high precision. Precision of Q′ is the fraction of answers that are relevant to Q.

Precision(Q′) =
|Answers(Q)

⋂
Answers(Q′)|

|Answers(Q′)|

Estimating Query-Tuple Similarity: A database system supporting imprecise
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queries must provide information about how close an answer tuple is to the given

imprecise query. Two tuples (a selection query can be seen as a tuple with few

missing values) are considered similar if they have syntactical similarity (e.g. same

subset of attributes are bound in both queries, stems of a common word bind an

attribute, etc) or if the binding values are semantically similar.

Semantic similarity between two values is the similarity perceived by the user.

Since our motivation is to provide answers that are acceptable to the users, we

must use semantic similarity between values binding the query and the tuples to

decide the relevance of the answers. Semantic similarity, also called semantic close-

ness/proximity/nearness, is a concept whereby a set of words (attribute values) are

assigned a metric based on the closeness of their meaning. An intuitive way of dis-

playing terms according to their semantic similarity is by grouping together closer

related terms and spacing more distantly related ones wider apart. This is commonly

achieved by using ontologies. However, as mentioned earlier, ontologies describing

relationships between all possible concepts for every domain is not available. Thus,

developing a domain independent solution for measuring the semantic similarity be-

tween the query and the answer tuples becomes vital to answering imprecise queries

over autonomous databases.

Measuring Importance of an Attribute: Often users would like to see only the

top-k answers to a query. To provide ranked answers to a query, we must combine

similarities shown over distinct attributes of the relation into a overall similarity score

for each tuple. However, not all attributes may be equally important in determining
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the similarity of the answer to the query. Specifically, a measure of importance

for the similarity shown over any attribute in the context of a given query may be

necessary to determine the best k matches. While this measure may vary from user to

user, most users usually are unable to correctly quantify the importance they ascribe

to an attribute. Hence another challenging issue we face is that of computing the

importance to be ascribed to an attribute.

1.2.3. Motivation behind our approach. The problem of supporting im-

precise queries has already attracted considerable interest from researchers including

those in fuzzy information systems [Mor90], cooperative query answering [JWS81,

Jos82, Mot86] and query generalization [CCL92, Mot90]. More recent efforts have

focussed at supporting imprecise queries over relational databases by introducing

abstract data types and extending the query processor with similarity functions

[OB03, GSVGM98, ABC+02] (Chapter 9 has more details). However, all the pro-

posed approaches for answering imprecise queries require large amounts of domain

specific information either pre-estimated or given by the user of the query. Unfortu-

nately, such information is hard to elicit from the users. Further some approaches

require changing the data models and operators of the underlying database. Recently

much work has been done on providing ranked answers to queries over a relational

database [BGM02, FLN01, IAE03]. However, they assume complete access to the

indexes of the databases. To summarize, the solutions attempted so far require both

extensive input from the users and the capability to change the underlying database -

requirements that are difficult to satisfy given the autonomous nature of the databases
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on the Web and the limited expertise of their users.

This is the motivation for the AIMQ system [NK05, NK04b, NK04a, NK03] - a

domain independent solution for supporting imprecise queries over autonomous Web

databases that we present in this thesis. Rather than shifting the burden of providing

the value similarity functions and attribute orders to the users, we propose a domain

independent approach that requires no additional input from the users and does not

necessitate any changes to be made to the underlying database. Our motivation is to

mimic the interfaces provided by search engines, in that the users need only provide

the queries and should get ranked answers that satisfy their needs. Our solution is

a paradigm shift that unites the database and information retrieval technologies: it

brings the similarity searching/ranked retrieval paradigm from IR systems into the

structured, type-rich access paradigm of databases, thereby enabling the database

systems to support flexible query interfaces. Thus unlike the relational database sys-

tems we retrieve answers that are ranked according to the degree of relevance to the

user query. The degree of relevance of an answer to a query is automatically esti-

mated using domain-independent similarity functions that can closely approximate

the subjective interpretation of the user.

Specifically, our intent is to mine the semantics inherently present in the tuples

(as they represent real-world objects) and the structure of the relations projected by

the databases. Our intent is not to take the human being out of the loop, but to

considerably reduce the amount of input she has to provide to get a satisfactory

answer. In short, we wish to test how far we can go (in terms of satisfying users) by
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using only the information contained in the database? How closely can we model the

user’s notion of relevance by using only the information available in the database? In

fact, our effort should be seen as being similar in spirit to that of Web search engines

which try to model the user’s notion of relevance of a document to the given keyword

query based on information such as link structure, authorities, hubs etc. that is mined

from the corpus itself.

1.2.4. Contributions. In response to the above challenges, we propose the

query processing approach, AIMQ, that integrates techniques from IR and database

research to efficiently determine answers for imprecise queries over autonomous data-

bases supporting a boolean query processing model.

AIMQ: Given an imprecise query, AIMQ begins by deriving a precise query (called

base query) that is a specialization of the imprecise query. Then to extract other

relevant tuples from the database it derives a set of precise queries by considering each

answer tuple of the base query as a relaxable selection query.4 Relaxation involves

extracting tuples by identifying and executing new queries obtained by reducing the

constraints on an existing query. However, randomly picking attributes to relax could

generate a large number of tuples with low relevance. In theory, the tuples closest to a

tuple in the base set will have differences in the attribute that least affect the binding

values of other attributes. Such relationships are captured by approximate functional

dependencies (AFDs). Therefore, AIMQ makes use of AFDs between attributes to

4The technique we use is similar to the pseudo-relevance feedback technique used in IR systems.
Pseudo-relevance feedback (also known as local feedback or blind feedback) involves using top k

retrieved documents to form a new query to extract more relevant results.
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determine the degree to which a change in the value of an attribute affects other

attributes. Using the mined attribute dependency information AIMQ determines the

importance of each attribute and derives a heuristic to guide the query relaxation

process. To the best of our knowledge, there is no prior work that automatically

learns attribute importance measures (required both for efficient query relaxation and

measuring similarity of answers). Hence, the first contribution of this dissertation is

a domain independent approach for learning attribute importance.

The tuples obtained after relaxation must be ranked in terms of their semantic

similarity to the query. While we can by default use a Lp distance metric5 such as

Euclidean distance to capture similarity between numerical values, no such widely ac-

cepted measure exists for categorical attributes. Therefore, the second contribution of

this dissertation is an association based domain independent approach for estimating

semantic similarity between values binding categorical attributes.

Advantages of the developed framework are presented by applying it in the

context of two real-life datasets: (1) Yahoo Autos and the (2) US Census Dataset

from UCI Machine Learning Repository.

AIMQ-Log: The AIMQ system’s primary intent was minimizing the inputs a user has

to provide before she can get answers for her imprecise query. However, in doing so,

AIMQ fails to include users’ interest while deciding the answers. A naive solution

would be to ask user to provide feedback about the answers she receives. But doing so

would negate the benefits of AIMQ. The ideal solution would be to obtain and use user

5AIMQ uses a L1 distance metric or Manhattan distance to capture similarity between numeric
values.
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feedback implicitly. Database workloads - log of past user queries, have been shown as

being a good source for implicitly estimating the user interest [ACDG03]. In a way,

this may be viewed as a poor mans choice of relevance feedback and collaborative

filtering where a users final choice of relevant tuples is not recorded. Despite its

primitive nature, such workload information can help determine the frequency with

which database attributes and values were often requested by users and thus may be

interesting to new users.

Therefore, as the third contribution of this thesis, we developed AIMQ-log -

a system that extends AIMQ by adding implicit user feedback to query answering

process of AIMQ. AIMQ-Log differs from AIMQ in the way it identifies the set of

precise queries that are used to extract answers from the database. AIMQ-Log iden-

tifies the set of relevant precise queries from the set of frequent queries appearing in

the database workload. The idea is to use the collective knowledge of the previous

users to help the new user. For example, an user looking for vacation rentals around

LA would not know that a majority of such rentals are near Manhattan Beach, a

popular tourist destination. However, since it is a popular destination, other expe-

rienced tourists may submit queries asking for vacation rentals around Manhattan

Beach, LA. Thus, by identifying the relevant set of queries from the popular queries

in the workload we are implicitly using user feedback. To determine the relevant

queries, we compute the similarity between the base query and the popular queries

in the workload. The similarity is determined as the similarity among the answersets

generated by the queries. AIMQ-Log uses the same tuple ranking model as that of
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AIMQ.

Advantages of AIMQ-Log are presented by applying it in the context of the

online bibliographic data source, BibFinder.

1.3. Expected Impact

This dissertation enables autonomous databases to efficiently answer imprecise

queries with minimal user guidance and without modifying the existing database.

The solutions developed build on popular techniques developed in IR and database

communities to estimate the distance between values of categorical attributes, to

automatically determine the order in which to relax the attributes and to support a

ranked retrieval model over databases.

As described earlier, often the lay users of autonomous database systems are

unable to precisely express their query. We found this to be especially true in our

experience with archaeological (KADIS, [Kin04]) and biological sources (BioHavasu,

[HK04]), where we need to deal with a broad range of scientific users, many of whom

lack a specific knowledge to frame precise queries. Supporting imprecise queries over

such sources would greatly enhance the ability of end users to efficiently extract

critical information necessary for their research. Existing approaches for supporting

similarity search over databases are not applicable here as we do not have access to

internals of the data sources, and the users may not be able to articulate domain

specific similarity metrics. A recent report on improving Homeland Security [Kim02]

also points out the need for supporting imprecise queries over databases for efficient
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extraction of critical information.

The AIMQ system presented in this thesis, being domain independent and

easily implementable over existing databases, would be quite useful in supporting

imprecise queries in many scenarios such as those mentioned above.

1.4. Thesis Organization

Chapter 2 starts by briefly reviewing the theory of query processing in relational

databases and information retrieval systems. We also look at several recent attempts

to combine techniques from databases and information retrieval systems.

Chapter 3 explains the data and query models used in this dissertation and

gives an overview of the AIMQ approach for answering imprecise queries. Formal de-

finitions of precise and imprecise queries are provided. Also the query-tuple similarity

estimation model used by AIMQ is described.

Chapter 4 presents the semantic similarity estimation approach developed as

part of the AIMQ system. The chapter begins by pointing out that semantic similarity

is context sensitive. Then the IR style model of identifying the context of a value

based on the associated values (features) is presented. A weighted attribute model

for estimating similarity is described.

Chapter 5 describes how AIMQ uses approximate functional dependencies be-

tween attributes to guide the query relaxation process. We describe the process of

extracting a representative sample of the database for mining the dependencies using

probing queries and also highlight possible affects of sampling on our solution.
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Chapter 6 presents results showing the efficiency and effectiveness of the AIMQ

system in answering imprecise queries. Specifically, we investigate the robustness

of the estimated attribute importance and value similarities, evaluate the efficiency

of our query relaxation process and verify the relevance of answers we suggest by

conducting a user study.

Chapter 7 compares the efficiency and accuracy of AIMQ with a system provid-

ing similar answers by using the ROCK categorical value clustering algorithm. User

study results comparing the relevance of the answers provided by both the systems

are presented.

Chapter 8 describes how AIMQ-Log, a system that extends AIMQ by implicitly

adding user relevance to the imprecise query answering model of AIMQ. We describe

how AIMQ-Log identifies the set of precise queries relevant to the given imprecise

query from a workload of the database. Results of a user study showing the relevance

of the identified queries and the extracted answer tuples are presented.

Chapter 9 briefly describes several recent research efforts that have attempted

to integrate IR and database techniques and/or tried to ease the difficulties faced by

lay users when trying to extract information from a database.

Finally, in Chapter 10, we summarize our contributions and discusses potential

extensions for the techniques developed in this dissertation.



CHAPTER 2

BACKGROUND

This section discusses work that is relevant and/or has influenced the ideas put

forth by this thesis. By nature this thesis is interdisciplinary as it adapts techniques

from information retrieval research into database query processing. Hence we begin

by doing a high level overview of the underlying theory in (1) Relational database

systems, (2) Web data integration and (3) Information Retrieval. Then we briefly look

at some existing systems that (4) merge database and information retrieval systems.

2.1. Relational Database Systems

A database is an information set with a regular structure. Databases resembling

modern versions were first developed in the 1960s. We can easily classify databases by

the programming model associated with the database. Historically, the hierarchical

model was implemented first, then came the network model and finally ever-popular,

relational model1. Databases based on the relational model became known as rela-

tional databases. The relational data model permits the designer to create a consis-

1The object-oriented data model is a more expressive extension of the relational model but has
not been widely accepted [CD96].



20

tent logical model of the information to be stored. This logical model can be refined

through a process of database normalization. The basic relational building block is

the domain or data type. A tuple is a set of attributes, which are ordered pairs of

domain and value. A relation is an unordered set of tuples. Although these relational

concepts are mathematically defined, they correspond loosely to traditional database

concepts. A relation is similar to the traditional concept of table. A tuple is similar

to the concept of row. To perform queries under this model, two mathematically

equivalent paradigms exist:

Relational Calculus is a purely declarative means of specifying the desired result.

Relational Algebra is a procedural language consisting of a set of (unary and

binary) operators that are applied to tables.

The Structural Query Language (SQL) to support relational systems is largely based

on relational calculus, although it incorporates several aspects of relational algebra

operators.

2.2. Multi Database Systems

All computer systems have limits. These limitations can be seen in the amount

of memory the system can address, the number of hard disk drives which can be

connected to it or the number of processors it can run in parallel. In practice this

means that, as the quantity of information in a database becomes larger, a single

system can no longer cope with all the information that needs to be stored, sorted

and queried. Although it is possible to build bigger and faster computer systems, a
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more affordable solution is to have several database servers that appear to the users

to be a single system, and which split the tasks between themselves. These are called

distributed databases, and have the common characteristics that they are stored on

two or more computers, called nodes, and that these nodes are connected over a

network.

2.2.1. Distributed Databases. Depending on the level of autonomy given

to each of the component databases, we can further classify distributed databases

into two subsets.

• Homogeneous databases: Homogeneous databases all use the same DBMS soft-

ware and have the same applications on each node. They have a common

schema (a file specifying the structure of the database), and can have varying

degrees of local autonomy. Local autonomy specifies how the system appears to

work from the user’s and the programmer’s perspective. For example, we can

have a system with little or no local autonomy, where all requests are sent to

a central node, called the gateway. From here they are assigned to whichever

node holds the information or application required. It has the disadvantage

that the gateway into the system has to have a very large network connection

and a lot of processing power to keep up with requests and routing the data

back from the nodes to the users.

• Heterogeneous databases: At the other end of the scale we have heterogeneous

databases, which have a very high degree of local autonomy. Each node in the
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system has its own local users, applications and data and dealing with them

itself, and only connects to other nodes for information it does not have. This

type of distributed database is often just called a database federation system

[SL90]. Such systems are also known as database mediation systems due to

their use of a mediation component that connects the various heterogeneous

databases.

Database mediation systems are popular due to their scalability, reduced cost in

adding extra nodes, and the ability to include different database management systems

in the system. This makes them appealing to organizations since they can incorporate

legacy systems and data into new systems. The rapid spread of the Internet and

the WWW has opened up new opportunities to make databases accessible via the

web (Web-enabled databases). Further, federated systems can now be derived by

connecting autonomous databases over the Web. In particular, this thesis focuses

on supporting queries over web-enabled databases and mediation systems integrating

them. Therefore, in the following we will look at mediation systems over web-enabled

databases popularly known as data integration systems [CGMH+94, ACPS96, TRV98,

HKWY97, LRO96, KLN+04, KNNV02].

2.2.2. Data Integration. A data integration system is an automated method

for querying across multiple heterogeneous databases in a uniform way. In essence, a

mediated schema is a uniform set of relations serving as the domain of the application

and is used to provide the user with a uniform interface to a multitude of heteroge-

neous data sources that store the actual data. Figure 1 shows the architecture of a
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Figure 1. Data Integration System (taken from [Nie04])

data integration system. In a data integration system, the user asks a query over the

mediated schema and the data integration system reformulates this into a query over

the data sources. The query optimizer will find a high-quality query plan using the

necessary statistics obtained from the statistics engine. The query executor will then

execute the plan by calling the wrappers for the integrated data sources.

Data integration systems can be further classified depending on whether the

sources are cooperating in the integration process. Systems such as Garlic [HKWY97],

TSIMMIS [CGMH+94] and HERMES [ACPS96] assume that databases are “aware
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of” and participate in building the integration system. At the opposite end are sys-

tems like Information Manifold [LRO96], DISCO [TRV98], Emerac [KLN+04, LKG99]

and Havasu [KNNV02, NKH03] which integrate databases that are autonomous and

do not provide any support in forming the integrated system.

2.3. Information Retrieval

Information retrieval (IR) is the art and science of searching for information

from free-form natural language text. An alternate definition of IR as a process of

identifying unstructured records satisfying a user query, is more suitable to the work

done in this thesis. Traditionally IR systems refer to a record as a document and an

organized repository of documents as a collection. This section gives a background on

modern IR [BYRN99] briefly exploring models in IR and the criteria used to compute

similarity between documents.

2.3.1. Goal of Information Retrieval. IR focuses on retrieving documents

based on the content of their unstructured components. Documents are represented

as a collection of features (also called “terms”). An IR request (typically called a

“query”) may specify desired characteristics of both the structured and unstructured

components of the documents to be retrieved (e.g. The documents should be about

“Information retrieval” and their author must be “Smith”). In this example, the query

asks for documents whose body (the unstructured part) is about a certain topic and

whose author (a structured part) has a specified value. IR typically seeks to find

documents in a given collection that belong to a user given topic or that satisfy an
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information need as expressed by the query. Documents that satisfy the given query

in the judgment of the user are said to be relevant. An IR engine may use the query

to classify the documents in a collection (or in an incoming stream), returning to the

user a subset of documents that satisfy some classification criterion. Naturally, the

higher the proportion of documents returned to the user that she judges as relevant,

the better the classification criterion. Alternatively, an IR engine may “rank” the

documents in a given collection. To say that document D1 has higher ranking than

document D2 with respect to a given query Q may be interpreted as D1 is more likely

to satisfy Q than D2.

Traditionally, success of an IR system has been evaluated using two popular

measures, both based on the concept of relevance of answers to a given query. They

are:

• Precision: Precision is defined as the ratio of relevant items retrieved to all items

retrieved, or the probability given that an item is retrieved, it will be relevant

[BYRN99]. Measuring precision is easy; if a set of competent users or judges

agree on the relevance or non-relevance of each of the retrieved documents, then

calculating the precision is straightforward. Of course, this assumes that the

set of retrieved documents is of manageable size, as it must be if it is to be of

value to the user. If the retrieved documents are ranked, one can always reduce

the size of the retrieved set by setting the threshold higher (e.g., only look at

the top 100, or the top 20).

• Recall: Recall is defined as the ratio of relevant items retrieved to all relevant
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items, or the probability given that an item is relevant, it will be retrieved.

Measuring recall is much more difficult than measuring precision because it

depends on knowing the number of relevant documents in the entire collection,

which necessitates assessment of all documents in the collection.

However an obvious trade-off exists here. If one retrieves all of the documents in

a collection, then one is sure of retrieving all the relevant documents in the collection

in which case the recall will be “perfect”, i.e., one. On the other hand, in the common

situation where only a small proportion of the documents in a collection are relevant

to the given query, retrieving everything will give a very low precision (close to zero).

The usual plausible assumption is that the user wants the best achievable combina-

tion of good precision and good recall, i.e., ideally she would like to retrieve all the

relevant documents and no non-relevant documents. However, in practice, some users

attach greater importance to precision, i.e., they want to see some relevant documents

without wading through a lot of junk. Others attach greater importance to recall,

i.e., they want to see the highest possible proportion of relevant documents. Hence,

Van Rijsbergen [Rij79] offers the E (for Effectiveness) measure, a weighted harmonic

mean of precision and recall that takes a high value only when both precision and

recall are high. The E measure is computed as

E ≈ 1 −
1

α 1
P

+ (1 − α) 1
R

where P = precision,R = recall & 0 < α < 1
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2.3.2. Models of IR. Broadly, there are two major categories of IR tech-

nology and research: semantic and statistical. Semantic approaches attempt to im-

plement some degree of semantic analysis; in other words, they try to reproduce to

some degree the understanding of the natural language text that a human user would

provide. In statistical approaches, the documents that are retrieved or that are highly

ranked are those that match the query most closely in terms of some statistical mea-

sure. By far the greatest amount of work to date has been devoted to statistical

approaches. In this thesis, I extend popular statistical models and apply them for

determining similarity over structured records given by databases. Hence in the fol-

lowing we will briefly look at the various statistical approaches used in IR. Statistical

approaches fall into a number of categories: boolean, vector space, and probabilistic.

Statistical approaches break documents and queries into terms. These terms are the

population that is counted and measured statistically. Most commonly, the terms are

words that occur in a given query or collection of documents. Many techniques for

extracting relevant terms have been developed over time, and they include:

• Stop-word elimination: Make a list of stop-words i.e. words that are too com-

mon to be meaningful e.g. prepositions and connectors. Pick only terms that

do no appear in the list for representing the document.

• Stemming: Reduce words to their morphological root using a stemmer. The

stemming algorithm written by Martin Porter [Por80, JKW97] is popularly

used for stemming. This reduces the number of terms that are indexed and

also allows for easier term to term comparisons (e.g. “child” and “childish” are
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considered as the same term).

• Thesauri lookup: Use synonyms of terms to reduce the total number of terms

and can be used to give some degree of flexibility to users in posing queries.

Other sophisticated techniques include using noun-phrases instead of single terms in

the hope that phrases will contain more semantic meaning.

A user specifies her information need to the system in the form of a query.

Given a representation of the user’s information need and a document collection, an

IR system estimates the likelihood of a document in the collection matching the user’s

information need. The representation of documents and queries, and the metrics use

to compute the similarity among them constitute the retrieval model of the system.

Existing retrieval models can be broadly classified as:

• Boolean Model: Systems based on boolean retrieval partition the set of doc-

uments into either being relevant or irrelevant but do not provide degrees of

relevance of the document. In this model, each document is represented as a

binary-valued vector of length k, where k is the number of terms in the collec-

tion. The ith element of the vector is assigned “true” if the document contains

the corresponding term. For all terms not present in the document the cor-

responding element in the vector is set to “false”. A query is represented as

a Boolean expression in which operands are terms. A document whose set of

terms satisfies the Boolean expression is relevant to the user.

• Vector Space model: Vector space model considers a document as a collection

of words (terms). A term may appear multiple times in a document. Hence the
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notion of frequency of a term, called term frequency (tf) is used to determine the

importance of a word in a document. Further, a term may appear in a number

of documents of the collection. Document frequency (df) of a term measures

the number of documents in which the term appears at least once. A high term

frequency value shows that the term is important in a given document whereas

a high document frequency indicates that the term is not useful to discriminate

among documents and may not be useful for retrieval. Hence a more useful

metric called inverse document frequency (idf) is popularly used to determine

the discrimination capability of a term and is computed as idf = log size(collection)
df

.

All terms in a document are assigned weights based on a combination of the

term and document frequency of the term. The product of tf and idf has

proved to be a good estimation of the weights. Thus the weight for term i in

a document is denoted as wi = tfi × idfi. Specifically, if there are N distinct

terms in the collection of documents, then each document is viewed as a point

in the N dimensional space. A query is also represented as a document with

weights for terms appearing in the query. To determine which documents are

close to the query a similarity function is defined. A number of measures have

been identified [Rij79, BYRN99] to measure the similarity among documents.

The most common similarity measure is the cosine similarity measure [Rij79,

BYRN99] where the cosine of the angle between the document and query vectors

in the N dimensional space and the origin is measured. The cosine of the angle
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between query and document vector is computed as

D.Q = |D||Q|cosθ

Rearranging the above formula gives us:

Similarity(D,Q) =
D.Q

|D||Q|
where D.Q =

i=N∑

i=1

Di × Qi

An alternate but equally popular similarity metric is the Jaccard Coefficient

[Rij79, BYRN99], and is measured as:

Similarity(D,Q) =
|D ∩ Q|

|D ∪ Q|

Vector models are suited for situations where all terms used to describe the

document content are of the same type, i.e. homogeneous.

• Probabilistic Retrieval Models: In these models the system estimates the prob-

ability of relevance of a document to the user’s information need specified as a

query. Documents are ranked in decreasing order of probability relevance esti-

mate. Given a document and a query, the system computes P (R/d, q) which

represents the probability that the document d will be relevant to the user’s

query q. These probabilities are computed and used to rank the documents

using the Bayes’ theorem and a set of independence assumptions about the dis-

tribution of terms in the documents. INQUERY [CCH92] is an example of this

model.

Comparison of different models of IR is done by assessing their performance on

standard benchmarks like the TREC collections [NIS05]. Performance is qualitative
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unlike in databases (execution speed) and is measured using precision and recall. IR

techniques are the driving force behind most the Internet search engines like Altavista

[Eng05a], Google [Eng05b], Yahoo [Eng05c], etc. Even though most of these systems

have simple features, their success is suggested by the high popularity they enjoy

among Internet users.



CHAPTER 3

ANSWERING IMPRECISE QUERIES

In this chapter we present details about our domain independent approach,

AIMQ, developed for efficiently extracting and automatically ranking tuples satisfy-

ing an imprecise query. Our proposed approach for generating relevant results to an

imprecise query requires neither domain specific information nor changes to the archi-

tecture of the underlying database. Our solution involves mapping the given imprecise

query to a precise query (called base query) that is a specialization of the imprecise

query. Next AIMQ derives a set of precise queries by considering each answer tuple

of the base query as a relaxable selection query. The heuristic for guiding the relax-

ation process is based on the approximate dependencies mined from the underlying

database. Chapter 5 has more details about our heuristic relaxation approach.

The tuples obtained after the relaxation are not all equally relevant to their

respective queries and hence must be ranked in terms of their similarity to the query.

For numerical attributes we can use Lp distance metrics to capture similarity. However

no such widely accepted measure exists for categorical attributes. Therefore, as part of

AIMQ, we developed a context-sensitive domain independent approach for estimating
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the semantic similarity between values binding categorical attributes. More details

about the similarity estimation approach are in Chapter 4.

A key factor motivating our approach is our desire to minimize the input a

user must provide to get an answer to her imprecise query. Specifically, we wish

to provide an interface similar to that given by the increasingly popular Web search

engines, where the user only provides a set of keywords that vaguely specify her query

and the search engine returns a ranked list of documents that satisfy the user query

to some degree. On similar lines, our quest is to determine whether we can provide

relevant answers to a imprecise query by using only the information contained in the

database. Given that the database contains tuples generated by humans, they must

capture some amount of real-world semantics e.g. relationships between attributes

(features of the domain), similarity between values etc. Hence in developing AIMQ,

the question we wish to answer the question How closely can we model users’ notion

of relevance by mining meta-data from the database?

Below we begin by giving the architecture of the AIMQ system, explain the

data and query model we use and finally describe AIMQ’s approach for answering

imprecise queries.

3.1. AIMQ Architecture

The AIMQ system as illustrated in Figure 2 consists of four subsystems: Data

Collector, Dependency Miner, Similarity Miner and the Query Engine. The data col-

lector probes the autonomous databases to extract sample subsets of the databases.
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Figure 2. AIMQ system architecture

The extracted sample is processed for efficient extraction of attribute dependencies

and value similarities. Dependency Miner mines approximate dependencies and ap-

proximate keys from the probed data and uses them to determine a dependence based

importance ordering among the attributes. This ordering is used by the query en-

gine in query relaxation as well as to ascribe weights to similarities shown by each

attribute. The Similarity Miner uses an association based similarity mining approach

to estimate similarities between categorical values. AIMQ also contains wrappers to

access the Web databases. However, in this thesis we do not focus on challenges
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involved in generating and maintaining the wrappers1. Figure 3 is the interface for

asking imprecise queries provided by AIMQ.

Figure 3. AIMQ Query Interface

3.2. Data and Query Model

Attribute: An attribute is a template for possible values and set of functions, opera-

tors that operate on these values and define the behavior. All operators and functions

except the similarity function are assumed to be built-in functions for any attribute.

The domain of an attribute is the set of all values following this template.

Attribute-value: An attribute-value (also called an instance of the attribute) is one

of all possible values in the domain of the attribute.

Tuple: Given a set of n pairs (Ai, Di), 0 ≤ i ≤ n, where Ai is an attribute and Di is

its domain. A tuple t is an element of the cartesian product of D1, D2, ...., Dn.

1Recent research done as part of the MetaQuerier[ZZC04] system has shown promising results in
automatic interface extraction (wrapper generation).
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An attribute supports a number of related operators that are applicable to

instances of the attribute. If the domain of the attribute has a total order (e.g. is

numeric in nature) then the set of operators is {<,≤, =,≥, >}. The built-in predicates

in boolean model are based on crisp (boolean) retrieval semantics. These predicates

are used to represent the conditions in traditional database queries. A similarity

version of each predicate is represented by suffixing like to the predicate. In this

thesis we focus on the similarity predicate like, as we are also interested in determining

similarity over attributes who domains are not ordered (e.g. categorical attributes).

However, for the ordered domain, like can be trivially extended to obtain like(=

), like(<), like(>), like(≤) and like(≥).

Query conditions can be of two types, crisp conditions which are exact matches

and similarity expressions which serve to rank the results. The crisp conditions follow

the traditional boolean model of true and false.

Precise Query: A user query that requires data exactly matching the query con-

straint is a precise query. A precise query contains only crisp conditions over the

attributes. For example, the query

Q:- CarDB(Make = Ford)

is a precise query, all of whose answer tuples must have attribute Make bound by the

value Ford.

Imprecise Query: A user query that does not insist on exact match (and only

requires data closely matching the query constraint) is an imprecise query. Thus

an imprecise query contains similarity expressions that rank the results. Answers



37

to such a query must be ranked according to their closeness/similarity to the query

constraints. For example, the query

Q:- CarDB(Make like Ford)

is an imprecise query, the answers to which must have the attribute Make bound by

a value similar to Ford.

3.3. The AIMQ Approach

Imprecise

Query

Q

Query Engine

Map: Convert
“like” to “=”

 Q
pr

 = Map(Q)

Dependency Miner

Use Base Set as set of

relaxable selection
queries

Using AFDs find

relaxation order

Derive Extended Setby

executing relaxed queries

Similarity Miner

Use Value similarities
and attribute

importance to measure
tuple similarities

Prune tuples below
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Return  Ranked Set

Query Engine

Derive Base
Set A

bs

A
bs

 = Q
pr
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Figure 4. FlowGraph of the AIMQ approach

Below we give an overview of AIMQ’s imprecise query answering approach.

Continuing with the scenario in Example 1.2, let the user’s intended query be:

Q:- CarDB(Model like Camry, Price like 10000)

We begin by assuming that the tuples satisfying some specialization of Q – called the

base query Qpr, are indicative of the answers of interest to the user. For example, it
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is logical to assume that a user looking for cars like Camry would be happy if shown

a Camry that satisfies most of her constraints. Hence, we derive Qpr
2 by tightening

the constraints from “likeliness” to “equality”:

Qpr:- CarDB(Model = Camry, Price = 10000)

Our task then is to start with the answer tuples for Qpr – called the base set, (1)

find other tuples similar to tuples in the base set and (2) rank them in terms of

similarity to Q. Our idea is to consider each tuple in the base set as a (fully bound)

selection query, and issue relaxations of these selection queries to the database to

find additional similar tuples. The tuples of CarDB satisfying Qpr also satisfy the

imprecise query Q. Suppose Answers(Qpr) contains the tuples

t1 = [Make=Toyota, Model=Camry, Price=10000, Year=2000]

t2= [Make=Toyota, Model=Camry, Price=10000, Year=2001]

The tuples t1 and t2 completely satisfy the constraints of the base query Qpr. But the

user is also interested in tuples that have binding values similar to the constraints in

Q. Assuming we knew that Honda Accord and Toyota Camry are similar cars, then

we could also show tuples containing Accord to the user if these tuples had values of

Price or Year similar to tuples of Qpr. Thus,

t3= [Make=Honda, Model =Accord, Price=9800, Year=2000]

could be seen as being similar to the tuple t1 and therefore a possible answer to Q.

We could also show other Camrys whose Price and Year values are slightly different

to those of tuples in t1 and t2. Specifically, all tuples of CarDB that have one or

2We assume a non-null resultset for Qpr or one of its generalizations. The attribute ordering
heuristic we describe later in this thesis is also useful in relaxing Qpr.
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more binding values close to some answer tuple of Qpr can be considered as potential

answers to query Q. Thus by considering each tuple in the base set as a relaxable

selection query we can extract additional tuples from the database that are similar

to tuples in the base set. These new tuples form the extended set of answers that are

relevant to the imprecise query.

However randomly picking attributes of tuples to relax could generate a large

number of tuples of possibly low relevance. In theory, the tuples closest to a tuple in

the base set will have differences in the attribute that least affects the binding values of

other attributes. Approximate functional dependencies (AFDs) capture relationships

between attributes of a relation and can be used to determine the degree to which

a change in binding value of an attribute affects other attributes. Therefore, we

mine approximate dependencies between attributes of the relation and use them to

determine a heuristic to guide the relaxation process. After the relaxation process, a

large number of tuples may be found as being possibly relevant to the tuples of the

base query. But not all tuples will be equally relevant. Therefore we use Equation 3.1,

described below, to measure the semantic similarity of each tuple in extended set to

the corresponding tuple in base set and provide a ranked list of answers that closely

match the given imprecise query.

3.3.1. Extracting Relevant Answers. A formal description of the AIMQ

approach for answering an imprecise selection query over a database is given in Al-

gorithm 1. Given an imprecise query Q to be executed over relation R, the threshold

of similarity Tsim and the attribute relaxation order Ârelax, we begin by mapping the
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Algorithm 1 Extracting Relevant Tuples

Require: Q, R, Ârelax, Tsim

1: Let Qpr = {Map(Q)|Abs = Qpr(R), |Abs| > 0}
2: ∀ t ∈ Abs

3: Qrel = CreateQueries(t, Ârelax)

4: ∀ q ∈ Qrel

5: Arel = q(R)
6: ∀ t′ ∈ Arel

7: if Similarity(t, t′) > Tsim

8: Aes = Aes

⋃
t′

9: Return Top-k(Aes).

imprecise query Q to a precise query Qpr having a non-null answerset (Step 1). The

set of answers for the mapped precise query forms the base set Abs. By extracting

tuples having similarity above a predefined threshold, Tsim, to the tuples in Abs we

can get a larger subset of potential answers called extended set (Aes). Every tuple

t ∈ Abs can be seen as a precise selection query with values binding all the attributes.

Therefore by relaxing the constraints of tuple t we can generate new queries whose

answers will be similar to t and consequently relevant to the imprecise query Q. Ran-

domly relaxing constraints can lead to queries having no answers or that have many

irrelevant tuples. To ensure more relevant tuples are retrieved after relaxation, we

use the Algorithm 2 to determine an attribute relaxation order Ârelax. Using Ârelax,

we generate a set of precise queries Qrel from each tuple in Abs (Step 3). Executing

a query q ∈ Qrel over R will give us a set of tuples, Arel, that are relevant to the cor-

responding tuple t ∈ Abs (Step 5). Identifying possibly relevant answers only solves

part of the problem since we must now rank the tuples in terms of the similarity they
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show to the tuple t. Therefore we measure the similarity of each tuple t′ ∈ Arel to

the tuple t ∈ Abs (Step 7). Only if t′ shows similarity above the threshold Tsim do we

add it to the set of relevant answers Aes for Q (Step 8). The algorithm returns only

the top-k3 tuples (in terms of similarity to Q) to the user.

3.3.2. Estimating Query-Tuple Similarity. AIMQ measures the similar-

ity between an imprecise query Q and an answer tuple t as a weighted summation of

the similarity scores of corresponding attributes in Q and t. Thus the similarity is

estimated as

Sim(Q, t) =
n∑

i=1

Wimp(Ai) ×






V Sim(Q.Ai, t.Ai)

if Domain(Ai) = Categorical

1 − absolute(Q.Ai−t.Ai)
Q.Ai

if Domain(Ai) = Numerical

(3.1)

where n = Count(boundattributes(Q)), Wimp (
∑n

i=1 Wimp = 1) is a factor correspond-

ing to the importance of an attribute and the function VSim measures the similarity

between the categorical values. If the distances computed using absolute(Q.Ai−t.Ai)
Q.Ai

is

greater than 1, we assume the distance to be 1 to maintain a lowerbound of 0 for

numeric similarity. AIMQ assumes the attributes to have either discrete numerical

or categorical values. As mentioned earlier in Chapter 1, our motivation is to provide

answers that are acceptable to the users with minimal input from the users them-

selves and hence we do no wish to burden the users by having to provide the necessary

3Algorithm 3 assumes that similarity threshold Tsim and the number of tuples (k) to be returned
to the user are tuned by the system designers.
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distance metrics. Moreover, lay users will often find it difficult to come up with dis-

tance metrics that capture their notions about similarity. Hence we must compute the

similarity between values binding the query and the tuples using automated solutions.

There are many ways in which we can determine the similarity between two

objects. For example, for numeric data, the data values can be viewed as direct

arguments to a calculation function. For non-numeric data, some form of similarity

procedure can be developed that correlates non-numeric instances with numeric values

(e.g. represent non-numeric data using Unicode or ASCII representation). Such

methods commonly produce a numeric value indicating the closeness of the values

according to some accepted convention and scale. However, in this respect, it can be

argued that the reduction of non-numeric data to numeric proximity values can, for

some applications, be improved, particularly when the value itself has no meaning

except as a comparison. Even for numeric data, in many cases the useful distance

between two values may not simply be the numeric difference between them. A useful

measure of similarity for some spatial applications, for example, may be a measure

of the time taken to get from point A to point B rather than any of the numerous

methods of measuring physical proximity. The similarity between two objects may also

be a function of their behavior with respect to other attributes in the relation. Often,

users perception of similarity called semantic similarity is not based on the (syntax

of the) values themselves but on their behaviour as described by their interactions

with other values. For example, finding cars similar to Toyota Camry will require

comparing every feature of Camry to those of other cars. Note that semantic similarity
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always subsumes the syntactical similarity. Since our motivation is to provide answers

acceptable to users, we must measure the semantic similarity between the query and

the answer tuples.

The user perception of similarity between numeric values is based mostly on the

(physical or syntactic) distances between the values themselves. A Lp distance metrics

such as Manhattan distance and Euclidean distance are widely accepted measures for

computing distances between numeric values irrespective of the domain in which

these values appear. Hence in this dissertation we assume that Lp distance captures

the semantic (user perceived) similarity between numeric values. But no such domain

and user-independent measure is available for measuring the similarity between values

binding a categorical attribute.

In the context of AIMQ, the crucial first step is in deciding the set of precise

queries using which relevant tuples can be extracted from the database. While the

task is important, the challenge there is not in extracting the tuples but doing so

efficiently. Irrespective of the efficiency of the tuple extraction phase, we do require

a distance metric for measuring the semantic similarity between the tuples and the

given imprecise query. Therefore, deciding the similarity between categorical values

becomes very vital to the task of answering an imprecise query.

Hence in the following, we first present a domain independent solution for

estimating semantic similarity between categorical values in Chapter 4. Then in

Chapter 5 we present a heuristic for deciding which attributes to relax first such that

the tuples that are likely to be more relevant are extracted earlier from the database.



CHAPTER 4

ESTIMATING SEMANTIC SIMILARITY

AMONG CATEGORICAL VALUES

The need to determine semantic similarity between two lexically expressed

concepts is a problem that pervades much of natural language processing. Measures

of relatedness are used in such applications as word sense disambiguation, determining

the structure of texts, text summarization and annotation, information extraction and

retrieval, automatic indexing, lexical selection, and the automatic correction of word

errors in text. We must note that semantic relatedness is a more general concept than

semantic similarity. In natural language processing systems synonymy was considered

as the basic semantic relation. Similar words were considered semantically related

by virtue of their synonymy (e.g. bank – trust company), but dissimilar entities

may also be semantically related by lexical relationships such as meronymy1 (e.g.

car - wheel) and antonymy2 (e.g. hot - cold), or just by any kind of functional

relationship or frequent association (e.g. pencil - paper, penguin - Antarctica, rain

- flood). Computational applications typically require relatedness rather than just

1A meronym denotes a constituent part of, or a member of something.
2Antonymy holds between two words that can (in a given context) express opposite meanings.
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similarity. However, in this thesis, we measure only the semantic similarity between

words (attribute values) such that a ranked set of answers can be presented to a given

imprecise query. Therefore, our focus is only on learning the synonymy between words.

According to (a statement usually attributed to) Gottfried Liebniz, “two words

are synonyms if one can be used in place of the other without changing the meaning

of the statement”. However, linguists consider that for all synonyms there is at least

one statement whose meaning is changed by the substitution of one word for another.

Hence, a weaker definition of synonym by Liebniz - “synonyms are words that are

interchangeable in some contexts” is considered more realistic. This definition makes

synonymy (and thus similarity) relative to context.

The semantic similarity estimation approach we developed is as under. Given

a database of tuples, we assume that binding values that are semantically similar

have similar distributional behaviour. With this assumption, we can treat the values

that co-occur near a value as constituting features that describe the context in which

the given value appears in the database. The semantic similarity between two values

is then computed in terms of how similar is their contexts i.e. by measuring the

commonality of their features. An alternate interpretation is to consider the sets of

features co-occurring (associated) with a given value as representing the context in

which the value appears. Then measuring the similarity between the features sets

of two values will tell us the degree of similarity of the context in which the value

appears in the database or corpus. The closer this similarity, the more semantically

related would be the values. Simply put, two values are (semantically) similar if
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they share a number of common features. This model forms the basis of our domain

independent approach for measuring the semantic similarity between values binding

categorical attributes.

Below we present a association based context sensitive semantic similarity esti-

mation technique. In keeping with the discussion above, we determine the similarity

between two values as their behavioral similarity or the commonality in their contexts.

4.1. AV-Pair

We call the combination of an attribute and a distinct value binding it as an

AV-pair. E.g. Make=Ford is an AV-pair.

We consider two values as being associated if they occur in the same tuple.

Two AV-pairs are associated if their values are associated. The similarity between two

AV-pairs can be measured as the percentage of associated AV-pairs common to them.

More specifically, given a categorical value, all the AV-pairs associated to the value

can be seen as the features describing the value. The set (bag in our case) of features

together can be considered as capturing a specific context in which the given AV-pair

appears. Consequently, the similarity between two values can be estimated by the

commonality in the features (AV-pairs) describing them and hence the closeness of the

context in which they appear. For example, given tuple t ={Ford, Focus, 15k, 2002},

the AV-pair Make=Ford is associated to the AV-pairs Model=Focus, Price=15k and

Year=2002. The AV-pairs formed by combining distinct values binding the attributes

Model, Price and Year can be seen as the features describing the AV-pairs over Make.
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Similarly AV-pairs of Make, Price and Year for those of Model and so on.

4.2. Supertuple

Databases on the web are autonomous and cannot be assumed to provide meta-

data such as possible distinct values binding an attribute. Hence we must extract this

information by probing the database using sample queries. From the data extracted

by probing we can identify a subset of all AV-pairs in the database 3 over the relation.

Model Focus:5, ZX2:7, F150:8 ...

Mileage 10k-15k:3, 20k-25k:5, ..

Price 1k-5k:5, 15k-20k:3, ..

Color White:5, Black:5, ...

Year 2000:6, 1999:5, ....

Table 1. Supertuple for Make=Ford

An AV-pair can be visualized as a selection query that binds only a single

attribute. By issuing such a query over the extracted database we can identify a set

of tuples all containing the AV-pair. We represent the answerset containing each AV-

pair as a structure called the supertuple. The supertuple contains a bag of keywords

for each attribute in the relation not bound by the AV-pair. Table 1 shows the

supertuple for Make=Ford over the relation CarDB as a 2-column tabular structure.

To represent a bag of keywords we extend the semantics of a set of keywords by

associating an occurrence count for each member of the set. Thus for attribute Color

3The number of AV-pairs identified is proportional to the size of the database extracted by
sampling. However we can incrementally add new AV-pairs as and when they are encountered and
learn similarities for them. But in this paper we do not focus on the issue of incrementally updating
the AV-pairs.
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in Table 1, we see White with an occurrence count of five, suggesting that there are

five White colored Ford cars in the database that satisfy the AV-pair query.

4.3. Measuring Categorical Value Similarity

We measure the similarity between two AV-pairs as the similarity shown by

their supertuples. We use the Jaccard Similarity metric [BYRN99] to estimate sim-

ilarity between the supertuples. The supertuples contain bags of keywords for each

attribute in the relation. Hence we use Jaccard Similarity [HGKI02] with bag seman-

tics to determine the similarity between two supertuples. The Jaccard Coefficient

(SimJ) is calculated as

SimJ(A,B) =
|A ∩ B|

|A ∪ B|
(4.1)

Unlike pure text documents, supertuples would rarely share keywords across

attributes. Moreover all attributes (features) may not be equally important for decid-

ing the similarity between two categorical values. For example, given two cars, their

prices may have more importance than their color in deciding the similarity between

them. Hence, given the answersets for an AV-pair, we generate bags for each attribute

in the corresponding supertuple. The value similarity is then computed as a weighted

sum of the attribute bag similarities. Calculating the similarity in this manner allows

us to vary the importance ascribed to different attributes. Thus, similarity between

two values is calculated as

V Sim(V1, V2) =
m∑

i=1

Wimp(Ai) × SimJ(St1.Ai, St2.Ai) (4.2)
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where V1 and V2 are values binding a categorical attribute and St1, St2 are the

corresponding supertuples with m attributes, Ai is the bag corresponding to the

ith attribute in the supertuple, Wimp(Ai) is the importance weight of Ai. However,

determining a good weighing scheme to accurately reflect the concerns of the user is a

difficult task. While users may have an idea of what features (attributes) are more or

less important given a AV-pair, it is not certain that they can accurately model their

preferences in terms of importance weights. This further motivates the need to learn

the importance of the attributes automatically. In the next chapter, Chapter 5, we

present a domain independent approach for estimating the importance to be ascribed

to an attribute.

4.4. Summary and Discussion

In this chapter we presented the context sensitive similarity estimation tech-

nique we use to compute the similarity between categorical values. As already defined,

we measure the similarity between two categorical values as the similarity of their con-

texts or supertuples. However, by computing the similarity between the supertuples

as the Jaccard Similarity between attribute bags, we are only measuring whether the

same exact AV-pair is co-occurring with both the values. Thus, we are approximating

the similarity between values by the degree of equality between their contexts. Mea-

suring only equality among categorical AV-pairs is acceptable since we do not have

prior access to a distance metric for measuring similarity among categorical values.

However, for numeric values this assumption contradicts with our earlier claim of Lp
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distance metrics like Euclidean or Manhattan being able to measure similarity. Below

we highlight the challenges involved in computing the similarity between numerical

AV-pairs in the context of measuring bag similarity.

We can measure the similarity between numeric elements (AV-Pairs) of bags

as described in Equation 3.1, i.e.

Sim(P1.i, P2.j) = min(WtP1.i,WtP2.j) × 1 −
absolute(P1.i − P2.j)

P1.i
(4.3)

Moreover, as in Equation 3.1, if the distance computed using absolute(P1.i−P2.j)
P1.i

is greater than 1, we can assume the distance to be 1 to maintain a lowerbound of

0 for numeric similarity. However, using Equation 3.1 we cannot capture similarity

between all pairs of numeric values. Specifically, given some P1.i, Equation 3.1 will

only measure the true similarity of P2.j with values in the range [0, 2 × P1.i]. The

similarity of all P2.j’s with values greater than 2 × P2.i will be considered as equal

to that of 2 × P2.i irrespective of how large the actual value is from 2 × P2.i. Thus,

while using Equation 4.3 is better than assuming equality, it does not always capture

true similarity between any two numeric values. While the similarity measured by

Equation 4.3 for values not lying in the range [0, 2 × P1.i] is an approximation, this

approximation is acceptable when testing whether a given tuple is having values close

to the user given value in the query. Specifically, by using the Equation 3.1 we are

putting a bound,[0, 2 × Q.value] on the neighbourhood of interest within which we

will correctly rank the tuples.

A more critical issue that arises when using Equation 4.3 is that of deciding

the possible values for P2.j for a given P1.i. If we assign all values in P2 to P2.i we will



51

get a similarity vector with size equal to P2 for every P1.i. While a single number can

be obtained by summing up each such vector, it is not clear what such number will

represent and at times can lead to false conclusions. We will illustrate the problem

using an example. Suppose we are interested in measuring the similarity between

three bags of car Prices, P1, P2 and P3. Specifically, we want to decide whether P1 or

P3 is more similar to P2. Let P1 = {10 :, 20 : 1, 100 : 1}, P2 = {10 : 1, 25 : 2, 95 : 5}

and P3 = {1 : 5, 90 : 4}. Here the representation semantics is same as that of Figure 1.

If we use Equation 4.2 to measure similarity we will get Sim(P2, P1) = 0.09 as only

one element 10 is common while Sim(P2, P3) = 0 as no elements are common between

them. Thus, P1 will be considered as more similar to P2 than P3 - a result that is

intuitive given the closeness in distribution of elements in P1 and P2. Now let us use

Equation 4.3 to compute the similarity of each element of P2 to all elements in P1

and P3 and sum up the values to obtain a single number of similarity. We will get

Sim(P2, P1) = {1 + 0.75 + 0.95} = 2.7 and Sim(P2, P3) = {4× 0.95} = 3.8. Thus, by

using Equation 4.3 we would conclude that both P3 is more similar to P2. However,

such a conclusion does not seem intuitive given that P1 has more distinct elements

similar with P2 than P3. Thus, measuring similarity between bags as the similarity

of their elements instead of equality of elements does not guarantee measurement of

a more intuitive and user-acceptable similarity measure.

The above problem may have been introduced by computing similarity between

all pairs of values in the bags. Instead, we can restrict computing the similarity of P1.i

to only the closest value possible as P2.j. However, finding the closest value entails
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additional computational cost ( O(n2) additional comparisons for each pair of bags)

and cannot provide any more guarantees about the computed similarity measure. In

comparison, computing bag similarity by only considering equality among AV-pairs

has clean semantics - that of measuring commonality among the features. Therefore,

when computing the categorical value similarities we do not differentiate between

numerical and categorical valued features and only look for equality of AV-pairs.



CHAPTER 5

LEARNING ATTRIBUTE IMPORTANCE

MEASURES FOR EFFICIENT QUERY

RELAXATION

The approach used by AIMQ for answering imprecise queries requires genera-

tion of new selection queries by relaxing the constraints of the tuples in the base set

Abs. The underlying motivation there is to identify tuples that are closest to some

tuple t ∈ Abs. In theory the tuples most similar to t will have differences only in

the least important attribute. Therefore the first attribute to be relaxed must be the

least important attribute. We define the least important attribute as the attribute

whose binding value, when changed, has minimal effect on values binding other at-

tributes. Approximate Functional Dependencies (AFDs)[HKPT98] efficiently capture

such relations between attributes. The underlying assumption in using AFDs is the

belief that the database instances reflect the real world and hence the significance

models held by users. In the following we will explain how we use AFDs to identify

the importance of an attribute and thereby guide the query relaxation process.
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5.1. Mining AFDs for Query Relaxation

The attribute relaxation heuristic we developed for supporting efficient query

relaxation is described below. We begin by giving necessary definitions and then

explain our approach for estimating attribute importance.

5.1.1. Definitions. Functional Dependency: For a relational schema R,

an expression of the from X → A where X ⊆ R and A ∈ R is a functional dependency

over R. The dependency is said to hold in a given relation r over R if for all pairs of

tuples t, u ∈ r and ∀B ∈ X we have t.B = u.B ⇒ t.A = u.A.

Approximate Functional Dependency (AFD): The functional dependency X →

A over relation r is an approximate functional dependency if it does not hold over

a small fraction of the tuples. Specifically, X → A is an approximate functional

dependency if and only if error(X → A) ≤ Terr, where the error threshold Terr ∈

(0, 1) and the error is measured as a ratio of the tuples that violate the dependency

to the total number of tuples in r.

Approximate Key (AKey): An attribute set X ⊂ R is a key over relation r if

no two distinct tuples in r agree on X. However, if the uniqueness of X does not

hold over a small fraction of tuples in r, then X is considered an approximate key.

Specifically, X is an approximate key if error(X) ≤ Terr, where Terr ∈ (0, 1) and

error(X) is measured as the minimum fraction of tuples that need to be removed

from relation r for X to be a key.

Several authors [Lee87, KM95, DR00] have proposed various measures to ap-
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proximate the functional dependencies and keys that hold in a database. Among

them, the g3 measure proposed by Kivinen and Mannila [KM95], is widely accepted.

The g3 measure is defined as the ratio of minimum number of tuples that need be

removed from relation R to make X → Y a functional dependency to the total num-

ber of tuples in R. This definition is consistent with our definition of approximate

dependencies and keys given above. Hence we use TANE [HKPT98], the algorithm

developed by Huhtala et al for efficiently discovering AFDs and approximate keys

whose g3 approximation measure is below a given error threshold. A brief overview

of the TANE algorithm is given in Appendix A.

We mine the AFDs and keys using a subset of the database extracted by

probing. Some of the AFDs and approximate keys mined from a probed sample

of a user car database (used for evaluating our approach) are shown in Table 2.

Specifically, the tuple showing Make, Price → Model with support 0.65 implies that

if you know the Make and Price of a car in the database then with 0.65 probability

you can guess the Model of the car. Similarly, the 0.78 support for approximate

key Model, Mileage gives the probability of uniquely identifying a tuple given that

approximate key.

AFD Support
Model → Make 0.96

Make, Price → Model 0.65

Approximate Key Support
Model, Mileage 0.78

Make, Price 0.54

Table 2. Sample AFDs and Approximate Keys mined from CarDB
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5.1.2. Generating the Relaxation Order. Identifying the least important

attribute necessitates an ordering of the attributes in terms of their dependence on

each other. A simple solution is to make a dependence graph between attributes and

perform a topological sort over the graph. Functional dependencies can be used to

derive the attribute dependence graph that we need. But, full functional dependen-

cies (i.e. with 100% support) between all pairs of attributes (or sets encompassing all

attributes) are often not available. Therefore we use approximate functional depen-

dencies (AFDs) between attributes to develop the attribute dependence graph with

attributes as nodes and the relations between them as weighted directed edges. How-

ever, the graph so developed often is strongly connected and hence contains cycles

thereby making it impossible to do a topological sort over it. Constructing a DAG

by removing all edges forming a cycle will result in much loss of information.

Algorithm 2 Attribute Relaxation Order

Require: Relation R, Dataset r, Error threshold Terr

1: SAFD={x|x ∈ GetAFDs(R,r), g3(x) < Terr}
2: SAK={x|x ∈ GetAKeys(R,r), g3(x) < Terr}
3: AK={k|k ∈ SAK, ∀k′ ∈ SAK support(k) ≥ support(k’)}
4: AK = {k|k ∈ R − AK}
5: ∀ k ∈ AK
6: Wtdecides(k)=

∑ support(Â→k′)

size(Â)

where k ∈ Â ⊂ R, k′ ∈ R − Â
7: WtAK = WtAK

⋃
[k,Wtdecides(k)]

8: ∀ j ∈ AK

9: Wtdepends(j) =
∑ support(Â→j)

size(Â)
where Â ⊂ R

10: WtAK = WtAK

⋃
[j,Wtdepends(j)]

11: Return [Sort(WtAK), Sort(WtAK)].

We therefore propose an alternate approach to break the cycle. We partition

the attribute set into dependent and deciding sets, with the criteria being each mem-
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ber of a given group either depends or decides at least one member of the other group.

A topological sort of members in each subset can be done by estimating how depen-

dent/deciding they are with respect to other attributes. Then by relaxing all members

in the dependent group ahead of those in the deciding group we can ensure that the

least important attribute is relaxed first. We use the approximate key with highest

support to partition the attribute set. All attributes forming the approximate key be-

come members of the deciding set while the remaining attributes form the dependent

set. Details of our attribute ordering approach is described in Algorithm 2.

Given a database relation R and error threshold Terr, Algorithm 2 begins by

extracting all possible AFDs and approximate keys (AKeys). As mentioned earlier,

we use the TANE algorithm to extract AFDs and AKeys whose g3 measures are below

Terr (Step 1,2). Next we identify the approximate key with the highest support (or

least error), AK, to partition the attribute set into the deciding group (attributes

belonging to AK) and those that are dependent on AK (belong to AK)(Step 3,4).

Then for each attribute k in deciding group we sum all support values for each AFD

where k belongs to the antecedent of the AFD (Step 5-7). Similarly we measure

the dependence weight for each attribute j belonging to the dependent group by

summing up the support of each AFD where j is in the consequent (Step 8-10). The

two sets are then sorted in ascending order and a totally ordered set of attributes in

terms of their importance (i.e. how deciding an attribute is) is returned (Step 11).

Given the attribute order, we compute the weight to be assigned to each attribute
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k ∈ WtAK

⋃
WtAK as

Wt(k) =
RelaxOrder(k)

|Attributes(R)|
×






WTdecides(k)P
Wtdecides(j)

if k ∈ WtAK

WTdepends(k)P
Wtdepends(j)

if k ∈ WtAK

(5.1)

where RelaxOrder returns the position at which k will be relaxed. The position ranges

from 1 for least important attribute to count(Attributes(R)) for the most important

attribute. The dependance and decidability measures, WTdepends and WTdecides are

computed as

Wtdepends(j) =
∑ support(Â→j)

size(Â)

Wtdecides(k) =
∑ support(Â→j)

size(Â)

where Â ⊂ R, k ∈ Â, j ∈ R − Â

(5.2)

The relaxation order we produce using Algorithm 2 only provides the order for

relaxing a single attribute of the query at a time. Given the single attribute ordering,

we greedily generate multi-attribute relaxation assuming the multi-attribute ordering

strictly follows the single attribute ordering. For example, suppose the 1-attribute

relaxation order is

a1 → a3 → a4 → a2

then the 2-attribute order will be

a1, a3 → a1, a4 → a1, a2 → a3, a4 → a3, a2 → a4, a2
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The 3-attribute order will be a cartesian product of 1 and 2-attribute orders and so

on. Figure 5 shows the 1 and 2-attribute relaxation order we derived for the prototype

database CarDB we designed to evaluate AIMQ(see Chapter 6 for details).

Make → Price → Year → Model

Make, Price → Make, Year → Make, Model → Price, Year →
Price, Model → Year, Model

Figure 5. Attribute Relaxation Order in CarDB

5.2. Sampling the Databases

In order to learn the attribute importance and value similarities , we need

to first collect a representative sample of the data stored in the sources. Since the

sources are autonomous, this will involve “probing” the sources with a representative

set of “probing queries”. Below we describe the process of selecting probe queries and

also highlight possible affects of sampling on our solution.

5.2.1. Generating Probe Queries. There are two possible ways of gener-

ating “representative” probing queries. We could either (1) pick our sample of queries

from a set of spanning queries - i.e., queries which together cover all the tuples stored

in the data sources or (2) pick the sample from the set of actual queries that are

directed at the system over a period of time. Although the second approach is more

sensitive to the actual queries that are encountered, it has a chicken-and-egg problem

as no statistics can be learned until the system has processed a sufficient number of
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user queries. In this thesis, we assume that the probing queries are selected from a

set of spanning queries (the second approach can be used for refining statistics once

sufficient queries are issued over the system). In Chapter 8, we present an exten-

sion of AIMQ that suggests similar queries by assuming availability of a query log.

Spanning queries can be generated by considering a cartesian product of the values

binding all attributes, and generating selection queries that bind attributes using the

corresponding values of the members of the cartesian product. Assuming the avail-

ability of binding values for all attributes projected by an autonomous Web database

is not practical. A more feasible solution is to assume the availability of few binding

values for some attributes of the projected relation. Given a small seed set of values,

we can generate a subset of the spanning queries by considering a cartesian product

of the values. New values can be identified from the results of these spanning queries.

The process stops when no new binding values are identified or if we have extracted

obtained the sample size of our choice.

In this thesis we assume that the system designer/ domain expert is able to

provide a set of seed binding values for some attributes found in the relation. For

example, in the used car database, it is fairly easy to come up with seed values for

almost all attributes. Although a query binding single attribute will generate larger

resultsets, most often such queries will not satisfy the binding restrictions of Web

sources as they are too general and may extract a large part of the sources data. The

less general the query (more attributes bound), more likely it will be accepted by

autonomous Web sources. But reducing the generality of the query does entail an
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increase in the number of spanning queries leading to larger probing costs if sampling

is not done. Once we decide the issue of the space from which the probing queries

are selected (in our case, a set of spanning queries), the next question is how to

pick a representative sample of these queries. Clearly, sending all potential queries

to the sources is too costly. We use sampling techniques for keeping the number of

probing queries under control. Two well-known sampling techniques are applicable

to our scenario: (a) Simple Random Sampling and (b) Stratified Random Sampling

[Coc77]. Simple random sampling gives equal probability of being selected to each

query in the collection of sample queries. Stratified random sampling requires that the

sample population be divisible into several subgroups. However, grouping categorical

attributes would require access to domain specific information (e.g. ontologies) -

information, as we showed earlier, that is often not available. Hence, we only use the

simple random sampling technique to obtain probe queries.

5.2.2. Issues Raised by Sampling. We note at the outset, that the details

of the dependency mining and value similarity estimation tasks do not depend on

how the probing queries are selected. However, we are approximating the model of

attribute dependencies and value similarities found in the database by using a small

sample of the database. Therefore, we may end up learning dependencies and value

similarities that do not reflect the actual distribution of the database. Intuitively, the

larger the sample obtained, the better our approximation of the database. However,

as our experimental evaluations will show, assuming a uniform distribution of values
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in the database our approach will be able to model1 the relative ordering among

attributes and values from a sample of the database. The loss of accuracy due to

sampling is not a critical issue for us as it is the relative rather than the absolute

values of the dependencies and value similarities that are more important in query

relaxation and result ranking.

5.3. Summary and Discussion

In this chapter, we presented an AFD based query relaxation approach de-

veloped as part of AIMQ. Effective query relaxation is very essential for AIMQ to

efficiently identify potential answers to an imprecise query. Several approaches for

efficient query relaxation/refinement have been investigated under the aegis of coop-

erative query answering [Gas97, CCL91, CCL92, Mot86]. The solutions developed

assumed presence of user provided meta information about relationships between at-

tributes that could be exploited to extend the scope of a given query. Some solutions

assume availability of concept hierarchies that could be used to suggest alternate

binding values for the query. A detailed discussion about these solutions is in Sec-

tion 9.2. Given our intent of minimizing user input, we could not adapt any of the

suggested user dependent solutions. Moreover, as pointed out earlier in this disserta-

tion, concept hierarchies and ontologies are not readily available and hence could not

be used as a basis for driving query relaxation under AIMQ.

1In [AC99], authors use uniformity of data assumption to build and maintain histograms using
answers of queries issued over the database. They show that such histograms are able to learn the
underlying data distributions with little loss of accuracy even for distributions with moderate skew.
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The solution therefore was to try and learn a query relaxation heuristic by

mining the database. The underlying motivation was to automatically learn an ap-

proximation of the users’ notion of relevance of an attribute. Once an approximate

model is identified, we could refine it by accepting implicit feedback from users. At

the outset, the idea of mining patterns from data that reflect real world models might

seem to be wishful thinking. On the contrary, functional dependencies as a form of

real-world relevance among attributes is widely accepted and used in databases. In

[RN03], Russell and Norvig point out that functional dependencies express a strict

form of relevance that can be learned from observations of the real world - as in tuples

in a real-world database. They argue that dependencies provide sufficient informa-

tion to allow construction of hypotheses concerning the target attribute. Therefore, in

AIMQ we use functional dependencies between attributes to determine a relevance

(importance) based relaxation heuristic. However, full functional dependencies, de-

pendencies that are true for every tuple in the database, do not cover all attributes of

the relation. Hence, we use approximate functional dependencies - dependencies that

are true over a majority of the tuples, to identify the query relaxation heuristic. A

recent work in query optimization [IMH+04] also learns approximate functional de-

pendencies from the data but uses it to identify attribute sets for which to remember

statistics. In contrast, we use it for capturing semantic patterns from the data.

In AIMQ, we used AFDs to identify the attribute that is least likely to cause

other attributes in a relation. However, AFDs are not the only tool that can represent

causal relationships. Causal Bayesian Networks [Coo97, CH] and Causal Association



64

Rules [SsBMU98] are alternative techniques that are useful in learning causal rela-

tionships among attributes. Indeed, before deciding to use AFDs, we looked at the

feasibility of using the above mentioned techniques in AIMQ.

A Bayesian network is a valuable tool for reasoning about probabilistic (ca-

sual) relationships. A Bayesian network for a set of attributes X = X1, , Xn is a

directed acyclic graph with a network structure S that encodes a set of conditional

independence assertions about attributes in X, and a set P of local probability dis-

tributions associated with each attribute. A causal Bayesian network is a Bayesian

network in which the predecessors of a node are interpreted as directly causing the

variable associated with that node. However, the possible causal networks are ex-

ponential in the number of variables and so practical algorithms must use heuristics

to limit the space of networks. The process of identifying a good causal model can

be helped by providing prior distribution . In general it is considered that good

heuristics combined with prior information could lead to practical causal Bayesian

systems. But developing good heuristics and providing prior information are tasks

that can be performed by a domain expert. Since our motivation was to avoid the use

of domain specific information in developing AIMQ, using causal Bayesian networks

for determining attribute causality was not a feasible solution.

In [SsBMU98], authors look at the applicability of constraint-based causal

discovery in identifying causal relationships in market basket data. They build on

ideas presented in [Coo97] to determine a subset of causal relationships. They argue

that causal Bayesian networks is impossible to to infer in large scale data mining
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applications but the constraint-based techniques are feasible. Specifically, they use

information about dependence and independence among set of variables to constrain

the number of causal relationships among a subset of the variables. Simply put, if

it is know that attributes A and B are independent, then one can easily infer that

no causal relationships exist between them. In general, the constraint-based causal

network learners also attempt to form a complete causal model and have exponential-

time complexity. However, by only looking at relationships occurring between sets of

three variables that are pairwise correlated, authors are able to provide a polynomial

time algorithm in [SsBMU98]. In doing so, the algorithm is only able to find a very

small subset of the relations between the attributes. Moreover, authors assume several

other constraints on the underlying data the most important being the applicability

of Markov Condition - If A and B are nodes in a Bayesian Network and B is not a

descendent of A in the network, then the Markov condition is said to hold if A and B

are independent conditioned on the parents of A. Since the algorithm does not find

all relationships between attributes, any attribute relevance estimate obtained using

such an algorithm would be highly erroneous to begin with and therefore we do not

use it in AIMQ.



CHAPTER 6

EVALUATING ROBUSTNESS, EFFICIENCY

AND ACCURACY OF AIMQ

In this chapter we present evaluation results showing the efficiency and ef-

fectiveness of AIMQ in answering imprecise queries. Specifically, we investigate the

robustness of the estimated attribute importance and value similarities, evaluate the

efficiency of the query relaxation process and verify the relevance of answers we sug-

gest by conducting a user study. We used the online used car database Yahoo Autos1

to evaluate our system.

6.1. Experimental Setup

We set up a MySQL based used car search system that projects the relation

CarDB(Make, Model, Year, Price, Mileage, Location, Color) and populated it us-

ing 100, 000 tuples extracted from Yahoo Autos. To populate CarDB we probed the

Yahoo Autos database by generating probe queries as described in Section 5.2. The

1Available at http://autos.yahoo.com.
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probe queries over Yahoo Autos bound the attributes Make and Location. We con-

sidered the attributes Make, Model, Year, Location and Color in the relation CarDB

as being categorical in nature. Additional details about the testbed are given in the

Appendix C. Figure 6 presents a ranked set of answers returned by AIMQ. The

AIMQ system is written in Java. The evaluations were conducted on a Windows

based system with 1.5GHz CPU and 768MB RAM.

Implemented Algorithms: We designed two query relaxation algorithms Guide-

dRelax and RandomRelax for creating selection queries by relaxing the tuples in the

base set. GuidedRelax makes use of the AFDs and approximate keys and decides a

relaxation scheme as described in Section 5.1.2. The RandomRelax algorithm was

designed to mimic the random process by which users would relax queries. The

algorithm randomly identifies a set of attributes to relax and creates queries.

Figure 6. Ranked Answers



68

6.2. Robustness of AIMQ

As pointed out in Section 5.2, both the similarity estimation and attribute

importance estimation processes depend on the sample dataset extracted by probing.

Hence, one could argue that our approach is susceptible to variations in the distribu-

tion of the probing queries and consequently on the amount of data extracted. Below

we empirically show that while the absolute support for the AFDs and approximate

keys does vary over different data samples, their relative ordering is not considerably

affected.

6.2.1. Robust Attribute Importance Estimation. Using simple random

sampling without replacement we constructed three subsets of CarDB containing 15k,

25k and 50k tuples. Then we mined AFDs and approximate keys from each subset

and also from the 100k tuples of CarDB. Using only the AFDs we computed the

dependence of each attribute on all other attributes in the relation (see Wtdepends in

Equation 5.2).

The attributes Price, Mileage and Location did not appear in any consequent.

Figure 7 shows the dependence of remaining attributes in CarDB. We can see that

Model is the least dependent among the dependent attributes while Make is the most

dependent. The dependence values are highest when estimated over the 100k sample

and lowest when estimated over 15k sample. This variation (due to sampling) is

expected, however the change in the dataset size does not affect the relative ordering

of the attributes and therefore will not impact our attribute ordering approach.
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Figure 8 compares the quality of approximate keys mined from the sample

datasets to that mined over the entire CarDB database (100k). Quality of an approx-

imate key is defined as the ratio of support over size (in terms of attributes) of the key.

The quality metric is designed to give preference to shorter keys. Specifically, given

two keys with same support we would pick the key with less number of attributes.

In Figure 8, the approximate keys are arranged in increasing order of their quality in

the database. Only 4 of the 26 approximate keys in the database are not present in

the sampled datasets. These 4 keys have low quality and would not have been useful

in query relaxation. The approximate key with the highest quality in the database

also has the highest quality in all the sampled datasets. Thus, even with the smallest

sample (15k) of the database we would have picked the right approximate key during

the query relaxation process.

Value Similar Values 25k 100k
Make=Kia Hyundai 0.17 0.17

Isuzu 0.15 0.15

Subaru 0.13 0.13

Model=Bronco Aerostrar 0.19 0.21

F-350 0 0.12

Econoline Van 0.11 0.11

Year=1985 1986 0.16 0.18

1984 0.13 0.14

1987 0.12 0.12

Table 3. Comparison of Value Similarities computed using 25k and 100k samples of
CarDB

6.2.2. Robust Similarity Estimation. We estimated value similarities for

the attributes Make, Model, Year, Location and Color using both the 100k and 25k
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Figure 7. Robustness of Attribute Ordering

Algorithm Step Time-25k Time-100k
SuperTuple Generation 3 min 4 min
Similarity Estimation 15 min 26 min

Table 4. Computation Time for Value Similarity Estimation over CarDB

datasets. Time required for similarity estimation directly depends on the number of

AV-pairs extracted from the database and not on the size of the dataset. This is

reflected in Table 6 where the time required to estimate similarity over 100k dataset

is only twice that of the 25k dataset even though the dataset size increased four times.

Figure 9 provides a graphical representation of the estimated similarity between some

of the values binding attribute Make. The values Ford and Chevrolet show high

similarity while BMW is not connected to Ford as the similarity is below threshold.
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Figure 8. Robustness in mining Keys

We found these results to be intuitively reasonable and feel our approach is able to

efficiently determine the distances between categorical values. Later in the section

we will provide results of a user study that show our similarity measures as being

acceptable to the users.

As shown above, the number of AV-pairs may vary depending on the size of

the dataset used to learn the value similarities. Even though the missing values in

smaller samples does affect the answers we suggest, we are able to correctly rank

the values occurring in the sample dataset. Table 3 shows the top-3 values similar

to Make=Kia, Model=Bronco and Year=1985 that we obtained from the 100k and

25k datasets. Even though the actual similarity values are lower for the 25k dataset,
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Figure 9. Similarity Graph for Make=Ford

the relative ordering among values is maintained. Similar results were also seen for

other AV-pairs. Once again, we reiterate the fact that it is the relative and not the

absolute value of similarity (and attribute importance) that is crucial in providing

ranked answers.

6.3. Efficiency of query relaxation

To verify the efficiency of the query relaxation technique we presented in Chap-

ter 5, we setup a test scenario using the CarDB database and a set of 10 randomly

picked tuples. For each of these tuples our aim was to extract 20 tuples from CarDB

that had similarity above threshold Tsim (0.5 ≤ Tsim < 1). To measure the efficiency
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Figure 10. Efficiency of GuidedRelax

of our relaxation algorithms we used the metric

Work/RelevantTuple =
|TExtracted|

|TRelevant|
(6.1)

where TExtracted gives the total tuples extracted while TRelevant is the number of ex-

tracted tuples showed similarity above the threshold Tsim. Specifically Work/RelevantTuple

is a measure of the average number of tuples that an user would have to look at before

finding a relevant tuple.

The graphs in Figure 10 and Figure 11 show the average number of tuples

that had to be extracted by GuidedRelax and RandomRelax respectively to identify

a relevant tuple for the query. Intuitively the larger the expected similarity, the

more the work required to identify a relevant tuple. While both algorithms do follow
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Figure 11. Efficiency of RandomRelax

this intuition, we note that for higher thresholds RandomRelax (Figure 11) ends up

extracting hundreds of tuples before finding a relevant tuple. GuidedRelax (Figure 10)

is much more resilient to the variations in threshold and generally needs to extract

about 4 tuples identify a relevant tuple. Thus by using GuidedRelax, a user would have

to look at considerably less number of tuples before obtaining satisfactory answers.

The evaluations presented above aimed to study the accuracy and efficiency

of our query relaxation approach. However these experiments did not verify whether

the tuples returned were acceptable to the user. In the next section we present results

from a user study showing the high relevance of the answers we suggest.
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6.4. Relevance of answers given by AIMQ

The results presented so far only verify the robustness and efficiency of the

imprecise query answering model we propose. However these results do not show

that the attribute importance and similarity relations we capture are acceptable to the

user. Hence, in order to verify the correctness of the attribute and value relationships

we learn and use, we setup a small user study over the used car database CarDB.

We randomly picked 14 tuples from the 100k tuples in CarDB to form the query set.

Next, using both the RandomRelax and GuidedRelax methods, we identified 10 most

similar tuples for each of these 14 queries. For tuples extracted by RandomRelax

we gave equal importance all attribute similarities. We used the 25k dataset to

learn the attribute importance weights used by GuidedRelax. The categorical value

similarities were also estimated using the 25k sample dataset. Even though in the

previous section we presented RandomRelax as almost a “strawman algorithm”, it

is not true here. Since RandomRelax looks at a larger percentage of tuples in the

database before returning the similar answers it is likely that it can obtain a larger

number of relevant answers (i.e. with higher similarity). The 14 queries and the

two sets of ranked answers were given to 8 graduate student2 volunteers. To keep

the feedback unbiased, information about the approach generating the answers was

withheld from the users. Users were asked to re-order the answers according to their

notion of relevance (similarity). Tuples that seemed completely irrelevant were to be

given a rank of zero.

2Graduate students by virtue of their low salaries are all considered experts in used cars.
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Results of user study: We used MRR (mean reciprocal rank) [Voo99], the metric

for relevance estimation used in TREC QA evaluations, to compare the relevance of

the answers provided by RandomRelax and GuidedRelax. In TREC QA evaluations,

the reciprocal rank (RR) of a query, Q, is decided as the reciprocal of the position

at which the single correct answer was found. Thus, if correct answer is at position

1: RR(Q)=1, if at position 2: RR(Q)=1
2

and so on. If no answer is correct then

RR(Q)=0. The MRR over a set of questions is the average of the reciprocal rank of

each question. While TREC QA evaluations assume unique answer for each query, we

assume a unique answer for each of the top-10 answers of a query. Thus we re-define

MRR for a query Q as

MRR(Q) = Avg

(
1

|UserRank(ti) − SystemRank(ti)| + 1

)
(6.2)

where ti is ith answer to Q. Figure 13 shows the average MRR ascribed to both the

query relaxation approaches.

The higher average MRR value given to GuidedRelax for most queries points

to the fact that the ranked answers provided by GuidedRelax were considered more

relevant by the users. Thus, even though it only looks at fewer tuples of the database,

GuidedRelax is able to extract more relevant answers. Thus, the attribute ordering

heuristic is able to closely approximate the importance users ascribe to the various

attributes of the relation. The overall high relevance (average MRR=0.4) given to

the answers shows that the value similarities learned have high accuracy and are

found relevant by the users. Evaluating the user study results in conjunction with

those checking efficiency ( Section 6.3), we can claim that AIMQ is efficiently able to
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provide ranked answers to imprecise queries with high levels of user satisfaction.

Figure 12. Average MRR for GuidedRelax and RandomRelax over CarDB

6.5. Summary and Discussion

We evaluated the efficiency and effectiveness of AIMQ in answering imprecise

queries over CarDB, a database constructed from the online used car database Yahoo

Autos. Both, the categorical value similarities estimation presented in Chapter 4

and the attribute importance learning and query relaxation algorithms presented in

Chapter 5, require a sample of the database to learn the necessary statistics. As

pointed out in Section 5.2.2, the probing phase required to extract samples may lead

to inaccuracies in the estimated statistics.
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To mitigate the concerns arising due to probing, we performed robustness

analysis of the learning algorithms by using samples of CarDB. The closeness in

statistics mined from the samples to those mined from the entire database proves

that the AIMQ algorithms are resilient to the size of sample extracted during the

probing phase. We acknowledge that such a conclusion is only possible if we assume

normal or only a slightly skewed distribution of data in the database. But, if the

database consists of a number of disjoint sets, then the statistics learnt from the

samples may or may not accurately reflect the behavior over the entire database.

However, we must point out that this drawback is expected for any learning algorithm

that has to rely on a probed sample of the database. The solution in such a situation

would be to use probing queries that span most subsets. However, that may lead to

extracting the entire database. On the other hand, we could try to look at past usage

of the database and learn the statistics for regions most often queried by users. Thus,

database workloads when available can be effectively used to minimize the effects of

sampling. Databases being autonomous may not provide their workloads, but AIMQ

can maintain a log of queries issued by the users (both imprecise and precise) and

use them to improve efficiency of the probing phase.

Results of the user study demonstrated high levels of user satisfaction for the

imprecise query answers provided by our system. These results can also be seen as

validating the value similarities estimated by the context sensitive semantic similarity

estimation model developed in Chapter 4.

Why compare only with RandomRelax? In this chapter, we presented com-
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parison results between our relaxation algorithm GuidedRelax and RandomRelax - an

algorithm designed to mimic the random process by which users would relax queries.

Specifically, given a tuple in the base set RandomRelax identifies a random relaxation

order and uses it to relax queries. One critique that might arise regarding our eval-

uation is that RandomRelax is a strawman algorithm and so the comparison is not

conclusive. We believe such an argument has no merit given the following two facts -

(1) prior to GuidedRelax, there are is no domain-independent query relaxation algo-

rithm and (2) in the absence of any domain knowledge, a user attempting to extract

information from a database would be only a random search. Therefore, Random-

Relax should be considered as the benchmark whose performance must be matched

by any domain independent query relaxation algorithm. We look at several domain

and/or user dependent relaxation algorithms in Section 9.2.

The most important component of any query relaxation algorithm is the heuris-

tic used to determine the relaxation order of attributes. In AIMQ (for GuidedRelax)

we use AFDs to derive such a heuristic. While domain-independent heuristics for

estimating attribute importance and query relaxation are not available, several re-

searchers have developed domain-independent heuristics for determining the impor-

tance of attribute values by looking at the underlying link structures [ABC+02, HP02]

or based on the frequency with which they occur in the database and queries [ACDG03].

Since, AIMQ assumes a single database relation, the link structure based approaches

are not feasible. We discuss such approaches and highlight their limitations in Sec-

tion 9.1.



80

The QFIDF measure introduced in [ACDG03] for measuring the importance

of an attribute value is based on the much popular TF-IDF measure used in IR sys-

tems. In fact, IDF measure is in QFIDF mimicks IDF measure in IR by measuring

how frequently the attribute value appears in all the tuples in the database. The QF

measure computes the frequency of an attribute value in the entire workload - a log

of past queries issued by users. Both QF and IDF are measuring popularity of the

value in the workload and the database. However, popularity of a value as measured

by both QF and IDF does not provide any information about how it interacts with

values binding other attributes i.e. no dependence information between values can

be obtained by looking their individual QFIDF values. Given the lack of dependence

information, identifying relaxed queries by removing the least or most popular at-

tribute value will not guarantee a non-empty resultset. The reason being that the

bound attributes may often influence the choice of the binding value(s) for the free

attribute(s). Thus, the relaxation heuristic based on QFIDF can give no more guar-

antees than RandomRelax. In fact, one can argue that the QFIDF based relaxation

algorithm would be a type of random relaxation where the random number is replaced

by the QFIDF value. Therefore, we used RandomRelax which is both domain and

user independent to compare the performance of GuidedRelax.



CHAPTER 7

COMPARISON STUDY TO SHOWCASE

DOMAIN-INDEPENDENCE AND

CONSISTENCY

The robustness and efficiency of AIMQ system in answering imprecise queries

has been clearly demonstrated by the evaluation results presented in the previous

chapter, Chapter 6. Eventhough AIMQ did not make use of any domain specific

information about used cars in answering imprecise queries over CarDB, to make

a conclusive argument about the domain independence of AIMQ we must evaluate

over additional domains. Therefore, in this chapter, we evaluate AIMQ using the

Census dataset available from the UCI Machine Learning Repository. Furthermore,

to further highlight the efficiency and robustness of AIMQ’s algorithms, we compare

the performance of AIMQ in terms of the relevance of answers suggested with that of

an alternate imprecise query answering system that implements the ROCK categorical

value clustering algorithm [GRS99].



82

7.1. Comparison Study: AIMQ versus ROCK

7.1.1. ROCK based Imprecise Query Answering System. We set up

another query answering system that uses the ROCK clustering algorithm to cluster

all the tuples in the dataset and then uses these clusters to determine similar tuples.

We chose ROCK to compare as it is also a domain independent solution like AIMQ

and does not require users to provide distance metrics. ROCK1 differs from AIMQ in

the way it identifies tuples similar to a tuple in the base set. Specifically, given a tuple

t belonging to the base set, ROCK first determines the cluster to which the tuple t

belongs and then returns the most similar tuples from that cluster. Clustering using

ROCK consists of extracting a small random sample from the database, applying the

link based clustering algorithm on the sampled points and then assigning the remain-

ing points from the dataset to the clusters. A detailed overview of the approach used

by ROCK for clustering tuples containing categorical values is given in Appendix B.

7.1.2. Experimental Setup. We used two real-life databases:- (1) the online

used car database Yahoo Autos2 and (2) the Census Dataset from UCI Machine

Learning Repository3, to compare the performance of AIMQ and ROCK.

Implemented Algorithms: We compare the performance of both the query relax-

ation algorithms, GuidedRelax and RandomRelax, described in the previous chapter

with that of ROCK. The RandomRelax algorithm was designed to mimic the ran-

dom process by which users would relax queries. The algorithm randomly identifies

1Henceforth, we use ROCK to refer to the query answering system using ROCK.
2Available at http://autos.yahoo.com.
3Available at http://www.ics.uci.edu/ mlearn/MLRepository.html.
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Attribute Type Distinct Values
Age Numerical NA

Workclass Categorical 8

Demographic-weight Numerical NA

Education Categorical 16

Marital-Status Categorical 7

Occupation Categorical 14

Relationship Categorical 6

Race Categorical 5

Sex Categorical 2

Capital-gain Numerical NA

Capital-loss Numerical NA

Hours-per-week Numerical NA

Native-country Categorical 41

Table 5. Schema Description of CensusDB

a set of attributes to relax and creates queries. GuidedRelax makes use of the AFDs

and approximate keys and decides a relaxation scheme as described in Algorithm 2.

ROCK’s computational complexity is O(n3), where n is the number of tuples in the

dataset. In contrast, AIMQ’s complexity is O(m × k2) where m is the number of

categorical attributes, k is the average number of distinct values binding each cate-

gorical attribute and m < k < n. AIMQ and ROCK were both developed using Java.

The evaluations were conducted on a Windows based system with 1.5GHz CPU and

768MB RAM.

The time required by AIMQ and ROCK to compute the necessary statistics

is given in Table 6. The overall processing time required by AIMQ is significantly

lesser than that for ROCK. We can clearly see that AIMQ is much more efficient than
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CarDB (25k) CensusDB (45k)
AIMQ
SuperTuple Generation 3 min 4 min

Similarity Estimation 15 min 20 min

ROCK
Link Computation (2k) 20 min 35 min

Initial Clustering (2k) 45 min 86 min

Data Labeling 30 min 50 min

Table 6. Computation Time for AIMQ and ROCK over CarDB and CensusDB

ROCK. Note that the Link Computation and Initial Cluster identification phase of

ROCK only uses very small sample (2000 tuples in our case) of the given datasets.

Even though ROCK uses the same sized (2000 tuples) initial sample for both CarDB

and CensusDB, the time required to compute links and derive clusters in CensusDB

is almost twice that required in CarDB. The variation is due to the larger attribute

space that ROCK has to search through in the CensusDB. Eventhough AIMQ also

requires more computation time over CensusDB, the increase in time is negligible

thereby demonstrating that AIMQ’s learning algorithms are much less influenced by

the number of attributes in the database.

7.2. Comparison Study using CarDB

To compare the performance of AIMQ with that of ROCK we began by setting

up a small user study over the used car database CarDB. We used the database CarDB

described in Section 6 as the first database over which to compare the performance of

AIMQ and ROCK. As described earlier CarDB projects the relation CarDB(Make,
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Figure 13. Average MRR of AIMQ and ROCK over CarDB

Model, Year, Price, Mileage, Location, Color) and is populated using 100, 000 tuples

extracted from Yahoo Autos.

We randomly picked 14 tuples from the 100k tuples in CarDB to form the query

set. Next, using both the RandomRelax and GuidedRelax methods, we identified 10

most similar tuples for each of these 14 queries. We also chose 10 answers using

ROCK. We used the 25k sample of CarDB to learn the attribute importance weights

used by GuidedRelax. The categorical value similarities were also estimated using the

25k sample dataset. Both RandomRelax and ROCK give equal importance to all the

attributes and only differ in the similarity estimation model they use. The 14 queries

and the three sets of ranked answers were given to 8 graduate student volunteers. To

keep the feedback unbiased, information about the approach generating the answers
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was withheld from the users. Users were asked to re-order the answers according to

their notion of relevance (similarity). Tuples that seemed completely irrelevant were

to be given a rank of zero.

We again used MRR (mean reciprocal rank) [Voo99], the metric for relevance

estimation used in TREC QA evaluations, to compare the relevance of the answers

provided by AIMQ and ROCK. Figure 13 shows the average MRR ascribed to both

the query relaxation approaches of ROCK. GuidedRelax has higher MRR than Ran-

domRelax and ROCK. ROCK only ensures that the set of all “clusters” together

optimize a criterion function but cannot guarantee that all tuples belonging to a

cluster are equally similar. Moreover, ROCK uses equality as the measure to test

similarity for categorical attributes. These limitations together lead to the poor over-

all performance of ROCK. Even though GuidedRelax looks at fewer tuples of the

database, it is able to extract more relevant answers than RandomRelax and ROCK.

Thus, the attribute ordering heuristic is able to closely approximate the importance

users ascribe to the various attributes of the relation. Furthermore, the much higher

relevance attributed to answers of RandomRelax than those of ROCK show that our

similarity estimation model is superior to that employed by ROCK and is able to

learn value similarities that are more acceptable to users.

7.3. Comparison Study using CesusDB

The results presented above do show that AIMQ is considerably better than

ROCK - a contemporary domain independent categorical value similarity estimation
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Figure 14. Classification Accuracy of AIMQ & ROCK over CensusDB

approach. However, one could argue that CarDB may be biased towards the heuristics

used by AIMQ and hence ROCK performs badly over CarDB. Therefore, we also

evaluated the performance of both the systems over the Census database, CensusDB.

The Census database we used projected the relation CensusDB(Age, Work-

class, Demographic-weight, Education, Marital-Status, Occupation, Relationship, Race,

Value Similar Values Similarity
Education=Bachelors Some-college 0.6

HS-Grad 0.42

Masters 0.27

Workclass=Federal-Gov State-Gov 0.59

Local-Gov 0.38

Private 0.14

Table 7. CensusDB Value Similarities
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Sex, Capital-gain, Capital-loss, Hours-per-week, Native-Country) and was populated

with 45, 000 tuples provided by the Census dataset. Schema description of CensusDB

with the count of number of distinct values binding the categorical values is given in

Table 5. Each tuple was pre-classified into one of the two classes: (1) Income > 50K

and (2) Income <= 50K. Even though the tuples in the dataset were pre-classified,

during the attribute importance estimation and value similarity learning phases we

ignored the class labels. We used the classification to test the relevance of the similar

answers returned by AIMQ and ROCK. Each tuple in the database contains infor-

mation that can be used to decide whether the surveyed individual’s yearly income

is ‘> 50k’ or ‘<= 50k’. An example user query over CensusDB could be

Q:-CensusDB(Education like Bachelors, Hours-per-week like 40)

The user issuing Q is interested in finding all individuals (tuples in CensusDB) who

have Education similar to a Bachelors degree and work for around 40 hours a week.

Since Hours-per-week is continuous valued we can use an Lp metric such as Euclid-

ean distance to decide values close to 40. But, Education is a categorical attribute

and hence determining values similar to Bachelors becomes a non-trivial task in the

absence of a user-given distance metric. Moreover, other attributes like Age, Occupa-

tion, WorkClass etc also are important in determining similarity among individuals

(tuples of CensusDB). Thus answering query Q would require learning both the im-

portance to be ascribed to each attribute and the similarities between values binding

the categorical attributes - two tasks that are efficiently and accurately accomplished

by AIMQ.
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To answer imprecise queries such as Q over CensusDB, we began by using a

sample of 15k tuples of CensusDB to learn the attribute dependencies and categori-

cal value similarities. AIMQ picked the approximate key Age, Demographic-Weight,

Hours-per-week as the best key and used it to derive relaxation order shown in Fig-

ure 15.

Occupation → Capital-loss → Education → Relationship → Race →
Marital-Status → Sex → Capital-gain → Native-country →
Demographic-Weight → Hours-per-week → Workclass → Age

Figure 15. Attribute Relaxation Order in CensusDB

The ordering is intuitive since it is a known fact that on an average a more

experienced person (higher age) would earn more. On the other hand, no particular

occupation (e.g. Sales, management) will exclusively divide an income range and

hence occupation alone cannot conclusively decide your yearly income. Therefore

occupation must be have low importance as is reflected in the ordering. Table 7

shows a few similarities estimated by AIMQ between the values binding the categorical

attributes.

We randomly selected 2000 tuples from CensusDB as the initial sample to give

as input to ROCK. From the 2000 tuples, we were able to obtain 300 initial clusters.

ROCK then assigned the remaining tuples to these 300 clusters.

We used the class information to check the relevance of the answers we pro-

vide. Specifically, tuples belonging to the same class are more similar than those in

opposite classes. Therefore, we estimated the relevance of AIMQ’s answers based on
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the number of answers having identical class as the query. We used 1000 tuples not

appearing in the 15k sample as queries to test the system. The queries were equally

distributed over the two classes. For each query, using GuidedRelax we identified the

first 10 tuples that had similarity above 0.4. We also used ROCK to learn 10 answers

to each of the test queries. Figure 14 compares the average classification accuracy of

the top-k (where k={10,5,3,1}) answers given by both AIMQ and ROCK to each of

the 1000 queries. We can see that the accuracy increases as we reduce the number of

similar answers given to each query. Once again, AIMQ comprehensively outperforms

ROCK in all the cases thereby proving that AIMQ is domain independent and that

its learning algorithms are efficient and able to better model the value similarities.

7.4. Summary and Discussion

In this chapter, we compared the performance of AIMQ against a system that

used the ROCK categorical value clustering algorithm to decide similarity between

tuples. We used two databases CarDB and CensusDB to compare the performance of

the two systems. The almost constant and considerably lesser time required by AIMQ

in computing the necessary statistics over both domains demonstrates the efficiency,

scalability and domain independence of AIMQ’s algorithms.

The much higher relevance of answers given by AIMQ over CarDB and the

higher classification accuracy of AIMQ’s results over CensuDB show that AIMQ is

able to return answers that are considerably more relevant to the users. This validates

our claim that AIMQ is a domain independent solution and is applicable over a
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multitude of domains. The evaluation results presented in Chapter 6 and Chapter 7

provide substantial evidence that we have successfully achieved our goal of providing

answers to imprecise queries without affecting any changes to the query answering

model of the original database and more importantly, without requiring the users to

provide any additional input other than the imprecise query itself. Eventhough, the

high relevance of our suggested answers is heartening, it was never our intent to take

the user out of the loop. We believe that adding some sort of user relevance feedback

to the AIMQ approach can considerably improve the solution we present. However,

asking users to grade the relevance of the answers they obtained would amount to

burdening the users post the query execution phase. This would negate all the benefits

of our approach. Hence, any feedback to be added must be obtained implicitly. A

popular technique is use the database workloads to obtain feedback about the types

of queries users issue over the database. With the assumption that the future queries

will closely follow current trends, we can identify the popular queries and thereby the

answers that users are interested in and provide these first when faced with a new

query. Therefore, in the next chapter, Chapter 8, we present, AIMQ-Log, a system

that extends AIMQ by adding implicit feedback to the imprecise query answering

approach of AIMQ.



CHAPTER 8

AIMQ-Log: USING WORKLOAD TO CAPTURE

USER INTEREST

The imprecise query answering approach, AIMQ, presented so far, was moti-

vated by our desire to support imprecise queries over autonomous databases without

changing the database or burdening the user with the need to provide much domain

specific information apart from the query.

In this chapter we present a domain-independent approach, AIMQ-Log, that

extends the AIMQ system to account for user interest. However, we are still interested

in generating relevant results to an imprecise query without requiring the user to

provide any domain specific information or any changes to the architecture of the

underlying database.

Answering imprecise queries using AIMQ-Log involves mapping the given im-

precise query to a set of precise queries obtained from a workload - log of past queries

issued over the database. The set of precise queries relevant to the user given im-

precise query are decided based on the similarity they show to the user query. The

similarity between queries is estimated as the similarity among their answer tuples.
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Under the relational data model, two queries are similar only if they contain same

values for all their attributes or if their answer sets had common answer tuples. But

two queries can be considered similar even if their tuples only match partially. We

can consider the answers of a query as describing the context of the query and use

the context-sensitive similarity estimation technique (Chapter 4) of AIMQ to measure

the similarity of queries in the query log.

We implemented AIMQ-Log over BibFinder [NKH03], a publicly- available

Web data mediator. Below, we describe the AIMQ-Log approach and provide results

of a user study showing the high relevance of the precise queries we identify and

thereby that of the answers suggested by AIMQ-Log.

8.1. Overview of AIMQ-Log
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Figure 16. FlowGraph of the AIMQ-Log approach
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The AIMQ system’s primary intent was minimizing the inputs a user has to

provide before she can get answers for her imprecise query. However, in doing so,

AIMQ fails to include users’ interest while deciding the answers. A naive solution

would be to ask user to provide feedback about the answers she receives. But doing so

would negate the benefits of AIMQ. The ideal solution would be to obtain and use user

feedback implicitly. Database workloads - log of past user queries, have been shown as

being a good source for implicitly estimating the user interest [ACDG03]. Hence, we

developed AIMQ-Log a system that differs from AIMQ in the way it determines the

set of precise queries used to extract relevant answers from the database. Instead of

the query relaxation approach followed by AIMQ, in AIMQ-Log we use the database

workload to identify precise queries of interest. We only consider queries that occur

frequently (i.e. more than a given threshold) in the workload for determining the

relevant set. The more frequent a query, more likely it will be seen as relevant by

a new user. The flowgraph of AIMQ-Log’s query answering approach is given in

Figure 16.

Given an imprecise query Q and the database workload Qlog containing past

precise queries issued over R, AIMQ-Log begins by by identifying a precise query

∈ Qlog that can be mapped onto Q. Query Qpr is said to map into Q if the set

of constrained attributes of Qpr is a subset of the constrained attributes of the Q.

Moreover both the precise and imprecise query constraints should have the same

binding values. After determining Qpr, we can then extract other queries from Qlog

that are similar to the query Qpr, thereby forming a set of precise queries whose
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Author=Ullman
Co-author C. Li:5, R. Motwani:7, ....
Title data-mining:3, optimizing:5, ....
Subject integration:5, learning:2, ....
Conference SIGMOD:5, VLDB:5, ....
Year 2000:6, 1999:5, ....

Table 8. SuperTuple for query Author=Ullman

answers will be relevant to the imprecise query Q. That is,

Ans(Q) ≈ Tuples(Q′)

where Q′ ∈ Qlog, Sim(Q′, Qpr) > Tsim

As is the case with by AIMQ, the answer to Q will be an ordered union of the answers

of the precise queries where the similarity of a tuple to the query Q is computed as

explained in Chapter 4. We can obtain a sample of the database by by unifying

the answersets of the queries we select from the query log. Then, as explained in

Chapter 4 and Chapter 5 we can determine the attribute importance measures and

value similarities required to measure the similarity of answer tuples to the imprecise

query.

8.2. Generating Similarity Matrix

In this section, we explain how we compute the similarity between the queries.

Suppose, Author=Ullman and Author=Widomare two queries on the relation Publi-
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cations. The author names show no similarity, yet the authors may have publications

that fall under the same Subject or appear in the same Conference or Year or a combi-

nation of all these. Thus, even though the queries (terms) are not the same, the fact

that their contexts as defined by their resultsets are similar would make the queries

similar. Hence, we can provide answers to the query Author=Widom to an user who

issued a query Author like Ullman. If we maintained the strict tuple structure for

queries, queries would be similar only if they contained the same tuples. Hence, only

if Ullman and Widom were co-authors would they be seen as related. But Ullman and

Widom are related because they write papers on related topics. Thus, the answers

to the query (and therefore the supertuple) can be seen as describing the context

of the query. Hence, the similarity between two queries can be estimated using the

context-sensitive similarity estimation approach described in Chapter 4.

Specifically, the similarity between two queries is measured as the similarity

shown by their supertuples. As described in Chapter 4, we use the Jaccard Similarity

metric [BYRN99] to estimate similarity between the supertuples. We computed the

similarity between the queries using two similarity estimation metrics derived from

Equation 4.2 based on how the importance weights were assigned. The derived metrics

are

• Doc-Doc similarity: In this method, we gave equal importance to all attributes

belonging to a supertuple. Thus, the supertuple then can be considered a

document - a single bag representing all the values occurring in the supertuple.
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The similarity between two queries Q1 and Q2 is then computed as

Simdd(Q1, Q2) = SimJ(StQ1, StQ2)

• Weighted-Attribute similarity: Here we use AIMQ’s query-tuple similarity esti-

mation function. The importance measures for each attribute were mined from

a sample dataset obtained by unifying the answers for all popular queries in the

query log. The similarity between two queries Q1 and Q2 is then determined as

Simwa(Q1, Q2) = V Sim(StQ1, StQ2)

Using Algorithm 3 we compute a similarity matrix for the queries in query

log. The similarity between every pair of queries in the query log is calculated using

both the Doc-Doc and Weighted-Attribute similarity metrics. A minimal similarity

threshold Tsim is used to prune the number of queries found similar to a given query.

8.3. Evaluation

8.3.1. Experimental Setup. To evaluate the effectiveness of our approach

in answering imprecise queries, we implemented AIMQ-Log over BibFinder [NKH03,

Bib05]. BibFinder is a publicly-available Web data integration system that projects

a unified schema over multiple bibliography databases. BibFinder provides a form-

based interface and accepts queries over the relation

Publications(Author, T itle, Conference, Journal, Y ear)
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Algorithm 3 Creating Query Similarity Matrix

Require: Query log size - n, No of Attributes - m, Attribute Bags, Attribute Weights
Wimp, Similarity Threshold Tsim

1: SimMatrix = null.
2: for i = 1 to n-1
3: iBags = Get Attribute Bags(i).
4: for j = i + 1 to n
5: jBags = Get Attribute Bags(j).
6: for k = 1 to m
7: iDoc = Append(iDoc,iBags[k]).
8: jDoc = Append(jDoc,jBags[k]).

9: AtSim[k] = |iBags[k]∩jBags[k]|
|iBags[k]∪jBags[k]|

10: Simdd = |iDoc∩jDoc|
|iDoc∪jDoc|

11: if (Simdd < Tsim)Simdd = 0
12: Simwa =

∑m

k=1 AtSim[k] × Wimp[k]
13: if (Simwa < Tsim)Simwa = 0
14: SimMatrix[i][j] = [Simdd, Simwa]
15: SimMatrix[j][i] = SimMatrix[i][j].
16: Return SimMatrix.

Several features of BibFinder validate the assumptions we made in this thesis.

Queries over BibFinder are conjuncts of attribute-value pairs. Even though BibFinder

integrates multiple Web data sources with varying query capabilities, it displays the

behaviour similar to that of a Web database supporting boolean query answering

model i.e. BibFinder only returns tuples that exactly match the user query. Results

generated by BibFinder contain values for all attributes in the relation. BibFinder

can only access the underlying data using queries, hence any approach at answering

imprecise queries that requires BibFinder to access all the tuples would not be feasible.

8.3.2. AIMQ-Log Architecture. The schematic diagram of AIMQ-Log as

implemented over BibFinder is given in Figure 17. We add the following components
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Figure 17. AIMQ-Log Implementation Over BibFinder

as a middle-ware between the user and BibFinder:

• A SimQuery Engine, that converts the given imprecise query into a set of

precise queries. Given, an imprecise query Q, the SimQuery Engine begins by

converting Q into a precise query Qpr. Next it checks if Qpr is present in the

query log. If present, a list of queries that show similarity to Qpr above the

threshold Tsim is returned. If Qpr is not present in the query log, then it will

check if any subset (specialization) of Qpr is present in the query log. The

subset of Qpr that is present in the query log is picked as the precise query that

represents Q. SimQuery Engine then returns a ranked list of queries that show

similarity above Tsim to the chosen subset of Qpr. Results for the set of precise

queries are then extracted from BibFinder and presented as a ranked list of
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tuples for the imprecise query Q.

• A Similarity Estimator, to calculate the similarity between each pair of

queries in the query log. As shown in Figure 17, the Similarity Estimator

begins by probing the database using the queries in the query log. The answers

to each query are temporarily materialized for use in generating the query simi-

larity matrix. Finally we estimate query similarities by computing the similarity

between their supertuples.

We use the query log (workload) of BibFinder to identify the queries from

which to learn the similarity matrix. We used 10000 queries from BibFinder’s query

log in our prototype system. We only picked queries that appeared more than 3

times in the query log. Table 9 lists the time taken and size of results produced at

various stages of our similarity estimation algorithm. A Linux server running on Intel

Celeron- 2.2 Ghz with 512Mb RAM was used to process the queries and to calculate

the query similarities.

Algorithm Step Time Size
Probing 29 hours 35 Mb

Supertuple Generation 126 sec 21 Mb

Similarity Estimation 10 hours 6.0 Mb

Table 9. Computation Time and Space Usage over BibFinder

We maintained a 10 second interval between each query issued over BibFinder.

Hence the time required to probe BibFinder using queries from the query log is quite

high in Table 9. Time to create the similarity matrix is high, as we must compare each
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query with every other query in the query log (see Algorithm 3). The complexity of

the similarity estimation algorithm is O(n2), where n is the number of queries in the

query log. We calculated both the doc-doc and weighted-attribute similarity between

each pair of queries in the query log. The similarity threshold Tsim was set to 0.2

in our case since the resultsets were often very small and did not have very many

features in common.

8.3.3. Evaluating the Relevance of Suggested Answers. To determine

the correctness of the queries we suggest as being similar, we setup a user study.

We asked our graduate student volunteers (8 of them) to evaluate the relevance of

the queries we suggest. Each student was provided with a GUI that allowed them

to ask any query from among the 10000 queries in our prototype system. The GUI

can execute both precise and imprecise queries. When a precise query is issued, only

those tuples that exactly match the query are returned. For an imprecise query, a list

of queries in descending order of similarity to the imprecise query is returned. The

user can view the results of the related query by selecting the query. The user’s were

given 30 sample queries. For each imprecise query issued by the user, he/she had to

determine how many among the top-10 similar queries they considered relevant. Also

users were asked to report whether they found a query Q′ relevant to Q based on:

• Q′ having relevant terms: The values binding attributes of Q′ are related to the

those in Q. For example, the term e-learning is relevant to Web-based learning

and hence queries containing these terms would be considered relevant to each

other.
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• Q′ having relevant results: The results of Q′ are relevant to Q, although no terms

binding Q′ are found relevant to Q. For example, the query Author=Jaiwei Han

has results relevant to query Title=Data Mining but the terms in the query itself

are not related.

For the queries they found not relevant, the users were to describe the reason

why they thought it was not relevant. The same set of queries were used to de-

cide accuracy of queries identified using both the doc-doc and the weighted-attribute

similarity.

Figure 18. Error in Estimating Top-10 Similar Queries in BibFinder Querylog

Table 10 contains a sample set of queries recommended as being similar to three

imprecise queries. Figure 18 illustrates the error in estimating the top-10 relevant

precise queries to a given imprecise query. The error is calculated as the number of
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Figure 19. Relevance classification

queries among the top-10 that were classified as not relevant by the user. The error

is calculated as,

Error(Related(Q)) = 1 − Precison(Related(Q))

=
10 − Relevant(Related(Q))

10

Both doc-doc and weighted-average show less than 25% average loss of precision

with weighted-average showing better performance in general than doc-doc where all

attributes were given equal importance. The high relevance of suggested answers

(75% acceptable to users) demonstrates that the implicit user feedback mined from

the workload is able to improve the ability of AIMQ framework to better model user’s

notion of relevance of answers.
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Imprecise Query Title like web-based learning
Related Queries Title=E Learning

Title=Web Technology
Conference=WISE

Imprecise Query Title like Information Extraction
Related Queries Title=information filtering

Title=Text Mining
Title=Relevance Feedback

Imprecise Query Author like Abiteboul
Related Queries Author=vianu

Author =Dan Suciu
Author=Rakesh Agarwal

Table 10. Similar Queries from BibFinder’s Querylog

Figure 19 shows that on an average users found 65% of the queries that users

found as relevant had related terms to the imprecise query they asked. For the

remaining 35%, users had to execute the query and look at the results. Most similar

queries that were classified as not relevant by users contained a widely used term

present in the imprecise query, but the query was not relevant. E.g. the query

Title=data warehouse is suggested as relevant to the query Title=data integration,

but users found it to be non relevant. This problem can be mitigated by giving

weights to terms appearing in the query, with the common and widely used terms

e.g. XML, data, mining etc getting lower weightage.
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8.4. Summary and Discussion

We introduced a domain-independent approach, AIMQ-Log, that extends the

AIMQ system presented earlier in the thesis for answering imprecise queries by adding

implicit user feedback to the query answering process. The user feedback is added by

picking the set of precise queries relevant to the given imprecise query from a set of

frequent queries appearing in the database workload.

To evaluate the effectiveness of our approach, we performed experiments over a

fielded autonomous Web database system, BibFinder. Results of a user study of our

system show high levels of user satisfaction for the imprecise query answers provided

by our system. The system was implemented without affecting the existing database

thereby showing that it could be easily implemented over any existing databases.

A Hybrid Imprecise Query Answering System: The only constraint facing

AIMQ-Log is the need to access the workload of a database. Since in this thesis we

assume databases to be autonomous in nature, we cannot assume their workloads

to be accessible to us. Therefore, AIMQ-Log cannot be seen as a solution that

can be implemented directly over any existing system. Moreover, AIMQ-Log based

system has the drawback that an imprecise query that cannot be mapped to the

workload becomes unanswerable. On the other hand, AIMQ does not exploit the

implicit feedback available from the workload. Therefore, we believe that any system

for answering imprecise queries will be a hybrid of both AIMQ and AIMQ-Log, say

AIMQH . Below we will briefly describe how an imprecise query will be answered by

such a hybrid system.
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On receiving an imprecise query Q, AIMQH will first map Q to a precise

query Qp. If Qp is one of the queries in the workload then based on the AIMQ-Log

approach, we can identify a set of precise queries similar to Qp and obtain relevant

answers for query Q. If Qp is not present in the workload, then using the AFD based

query relaxation technique AIMQH can derive a set of relaxed precise queries and for

all the queries in the workload derive similar queries using the AIMQ-Log approach

and extract relevant answers for Qp. Note that this procedure allows us to avoid the

need to execute the query Qp over the database and performing multiple relaxations,

one over each answer tuple of Qp. Moreover, by picking similar queries from the

workload ensures that every query will produce answers that are guaranteed to be

similar to the query Q. In the unlikely event that none of the relaxations of Qp are

present in the workload, we can use the AIMQ approach to obtain relevant answers.

Having the hybrid approach mitigates the problem of not being able to queries not

present in the workload.

Eventhough the AIMQ-Log system and consequently AIMQH only assumes

the presence of a workload of precise queries, we can easily extend the system to

make use of a log of imprecise queries once they become available. However, unlike

the precise query log, the imprecise query log will need to maintain a list of precise

queries issued to answer each imprecise query. Once such a log of imprecise queries

becomes available, instead of looking for a precise query that maps to the given

imprecise query and also appears in the precise query log, we can start by checking

if the given query appears in the imprecise query log and quickly find the answers.



CHAPTER 9

RELATED WORK

The fundamental assumption of the relational models is that all data is repre-

sented as mathematical relations, i.e., a subset of the cartesian product of n sets. In

this model, reasoning about the data is done in two-valued predicate logic, meaning

there are two possible evaluations for each proposition: either true or false. Thus

users of these systems are expected to formulate precise queries (queries evaluated

using two-valued logic) that accurately captures their information need. But, often

users may find it difficult to convert their information need (usually not clearly de-

fined) into a precise query. Such users could be better served by providing a ranked

set of answers from which they may be able to identify relevant answers. In con-

trast, IR systems tend to provide ranked sets of answers based on various notions

of relevance. In this dissertation we looked at adapting techniques used in IR for

supporting ranked retrieval of items that are relevant to the user query issued over an

autonomous database using the relational model. We are not the first to attempt the

task of combining IR and DB systems. A rich body of work relating to the integration

of IR and DBMS systems exists although their solutions do not solve the problem of
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supporting imprecise queries over autonomous databases. Below we briefly describe

several recent research efforts that have attempted to integrate IR and database tech-

niques and/or tried to ease the difficulties faced by lay users when trying to extract

information from a database.

Early approaches for retrieving answers to imprecise queries were based on the-

ory of fuzzy sets. Fuzzy information systems [Mor90] store attributes with imprecise

values, like height= “tall” and color=“blue or red”, allowing their retrieval with fuzzy

query languages. The WHIRL [Coh98] system provides ranked answers by converting

the attribute values in the database to vectors of text and ranking them using the

vector space model. In [Mot98], Motro extends a conventional database system by

adding a similar-to operator that uses distance metrics given by an expert to answer

vague queries. Binderberger [OB03] investigates methods to extend database systems

to support similarity search and query refinement over arbitrary abstract data types.

In [GSVGM98], Goldman et al propose to provide ranked answers to queries over Web

databases but require users to provide additional guidance in deciding the similarity.

However, [OB03] requires changing the data models and operators of the underlying

database while [GSVGM98] requires the database to be represented as a graph. In

contrast, our solution provides ranked results without re-organizing the underlying

database and thus is easier to implement over any database.

The problem of answering imprecise queries is related to three other prob-

lems. They are (1) Empty answerset problem- where the given query has no answers

and needs to the relaxed. In [Mus04], Muslea focuses on solving the empty answerset
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problem by learning binding values and patterns likely to generate non-null resultsets.

The relaxation is done by identifying a rule that best matches the given query but is a

generalization of the query. However, the author considers all tuples to be equally rel-

evant and therefore does not provide any criteria for ranking the results. Cooperative

query answering approaches have also looked at solving this problem by identifying

generalizations that will return a non-null result [Gas97]. More details about co-

operative query answering techniques is given in Section 9.2. (2) Structured query

relaxation - where a query is relaxed using only the syntactical information about the

query. Such an approach is often used in XML query relaxation e.g. [SAYS02]. (3)

Keyword queries in databases - Recent research efforts [ABC+02, HP02] have looked

at supporting keyword search style querying over databases. These approaches only

return tuples containing at least one keyword appearing in the query. The results are

then ranked using a notion of popularity captured by the links. A detailed discussion

about these approaches is given below in Section 9.1.

The imprecise query answering problem differs from the first problem in that

we are not interested in just returning some answers but those that are likely to be

relevant to the user. It differs from the second and third problems as we consider the

semantic relaxations rather than the purely syntactic ones.

9.1. Keyword Search in Databases

At first look, the keyword-based search popularized by Web search engines

[Eng05b, Eng05c, Eng05a], where a user can specify a string of keywords and expect
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to retrieve relevant documents, possibly ranked by their relevance to the query may

seem quite connected to our work. However, search engines only use the syntactic

similarity between the query and the document to determine the relevance of the

document. Hence only documents that exactly match the query is provided as an

answer. Thus the queries accepted by search engines are precise queries. Therefore

a search-engine user is still faced with the problem of having to formulate a query

that precisely specifies her needs. To get a satisfactory answer, the user may have to

iteratively refine her query. Clearly keyword-based search does not solve the problem

we solve. In fact, our solution can be extended to enable search engines to accept

imprecise queries.

Several recent research efforts [ABC+02, HP02, GSVGM98, ACDG03] have

looked at supporting keyword search style querying and/or providing ranked an-

swers over databases. Both Banks [ABC+02] and Discover [HP02] focus on using

primary/foreign key relationships to determine proximity of the tuples across rela-

tions. In [ABC+02], a database is viewed as a graph with objects/tuples as nodes

and relationships as edges. Relationships are defined based on the properties of each

application. For example an edge may denote a primary to foreign key relationship.

The answers to keyword queries are provided by searching for Steiner trees 1 that

contain all keywords. Heuristics are used to approximate the Steiner tree problem.

A drawback of this approach is that a graph of the tuples must be created and main-

1The Steiner tree problem is a NP-complete combinatorial optimization problem in mathematics.
It involves a graph G with weighted edges and some vertices designated as terminals. A Steiner tree
is a subtree of G that connects the terminals with the minimum total weight (sum of weights of all
edges in the tree). This problem is similar to minimum spanning tree where but there we are looking
for a tree that connects all vertices of G. The Steiner tree problem has applications in circuit layout
or network design. Although NP-complete, some restricted cases can be solved in polynomial time.



111

tained for the database. Furthermore, the important structural information provided

by the database schema is ignored and the algorithms work on huge data graphs. In

contrast, [HP02] uses the properties of the schema of the database. Its algorithms

work on the schema graph, which is much smaller than the data graph, and does not

need to keep any extra data representations. It exploits the properties of the data-

base schema to produce the minimum number of SQL queries needed to answer to the

keyword query. However this approach requires the underlying database to export

schema information. Thus it is not applicable over autonomous databases that only

provide a query interface (e.g. Web-enabled databases). In [GSVGM98], the user

query specifies two sets of objects, the Find set and the Near set. These objects may

be generated from two corresponding sets of keywords. The system ranks the objects

in Find set according to their distance from the objects in the Near. An algorithm

is presented that efficiently calculates these distances by building hub indices. While

their approach is useful when the structure is unknown, they still rely on access to

database internals which may not be possible over autonomous databases. Further

they pre-compute the distances between nodes to determine the proximity and do

not consider the possibility of updates to the underlying data changing the distances.

Moreover given that most users will lack knowledge about the schema and organiza-

tion of data it is highly impossible for a user to specify which objects are close to the

objects of interest. In [ACDG03], the authors give an approach to provide top − k

answers to a relational query by determining the similarity between the query and

each tuple. Authors develop two ranking functions: IDF similarity - based on cosine
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similarity with tf-idf weighting used in IR and QF similarity - based on occurrence

frequencies of values in workload queries. Providing a ranked set of results would

entail a system to look at each tuple in the database to determine its similarity to the

query. In [ACDG03], authors avoid this problem by assuming availability of indexes

on attributes that allow sorted access to the values. The authors then use a modi-

fied version of Fagin’s Threshold Algorithm and its derivatives [FLN01, BGM02] to

retrieve the top-k tuples without accessing all the tuples in the database.

9.2. Query Refinement

Research done in the context of cooperative query answering can be seen as

being close to our work. Grice [Gri75] defines a cooperative answer as being correct,

non-misleading and useful. Most research in cooperative answering tries to follow

this definition. Initial work in cooperative answering focussed on natural language

dialogue systems and employed natural language interfaces [Jos82, JWS81, PHW82].

Our work on the other hand can be seen as adding a similarity predicate to a re-

lational query language without explicitly modifying the language. Cooperative an-

swering techniques for databases have been considered in [CCL91, CCL92, Mot86].

Motro [Mot86] considers modifications to the relational model which would allow for

cooperative behaviors in a relational database. In [Mot90], Motro describes a user

interface for relational database systems that would allow users to interact with the

system in more cooperative ways. The databases can then correct queries that have

apparent mistakes or that return no answers.
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Query generalization is also a form of cooperative answering, where the scope

of the query is extended so that more information can be provided in the answers.

Chu, Chen and Lee [CCL91, CCL92] explore methods to generate new queries related

to the user’s original query by generalizing and refining the user queries. The new

queries can then be used to find answers which may be of interest to the user but

not in the scope of the original query. The abstraction and refinement rely on the

database having explicit hierarchies of the relations and terms in the domain. A

generalized query is created by replacing relations/terms with corresponding values

higher up in the hierarchy while replacing with terms lower in the hierarchy gives a

refined query. In [Mot90], Motro proposes allowing the user to select directions of

relaxation, thereby indicating which answers may be of interest to the user.

While the above approaches for cooperative answering focus on improving the

interaction mechanisms between user and the system, we focus on allowing the user

to obtain satisfactory answers without any repetitive refinement of the query. Further

we do not require any domain-dependent information like term hierarchies to provide

related answers.

9.3. Measuring Semantic Similarity

A contextual hypothesis of semantic similarity was first investigated in a do-

main of 65 synonymous nouns by Rubenstein and Goodenough [RG65], using rating

and co-occurrence methods of semantic and contextual similarity. In a co-occurrence

test of contextual similarity, one lists all words present in the context set of item
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A and all words present in the context set of item B; then one computes the nor-

malized coefficient representing the proportion of words common to both lists. The

more words the lists have in common, the higher the correlation coefficient is and the

more similar the two context sets are. Thus the authors concluded that “similarity

of context is reliable as a criterion for detecting pairs of words that are very similar”.

Miller and Charles [MC91] selected 30 of those pairs, and studied semantic similarity

as a function of the contexts in which words are used. Their results further strengthen

the context-sensitive view of semantic similarity.

In fact, Chales [Cha00] states that “the results presented in [MC91] suggest that

to know the meaning of a word is to know how to use it, and that encounters with the

natural linguistic contexts of a word yield a contextual representation that summarizes

information about the contexts in which the word may be used. The notion of a

contextual representation of a word borrows from a common argument in linguistics

and in psychology that most word meanings are derived from (linguistic) contexts.” On

similar lines, Morris and Hirst [MH04] show that while most research on estimating

semantic relations have been context-free i.e. the relations are considered out of

any textual context and are then assumed to be relevant within textual contexts,

empirical evaluations show that semantic similarity (and even meronymy, antonymy

etc.) is often constructed in context, and cannot be determined purely from an apriori

lexical resource such as WordNet or any other taxonomy.

Resnik [Res95] provides an alternate interpretation of context sensitive nature

of word similarity. Specifically, he suggests that the behavior of one word can be
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approximated by smoothing its observed behavior together with the behavior of words

to which it is similar. For example, a speech recognizer that has never seen the

phrase ate a peach can still conclude that John ate a peach is a reasonable sequence

of words in English if it has seen other sentences like Mary ate a pear and knows that

peach and pear have similar behavior. Resnik [Res95] claims that as in information

retrieval, the corpus based similarity estimation techniques can also use the ”feature”

representation of a word and compute the similarity between words by computing

distance in a highly multi-dimensional space. However, he cautions that the difficulty

with most distributional methods is that of interpreting the measured similarity. He

argues that although word classes resulting from distributional clustering are often

described as “semantic”, they may often capture syntactic, pragmatic or stylistic

factors as well.

Support for the contextual approach to measuring semantic similarity also

comes from the computational model of meaning known as latent semantic analysis

(LSA) [Lau98]. LSA is a theory for extracting and representing the contextualized

meanings of words by statistical computations over a large corpora of text. The main

idea is that the aggregate of all the word contexts in which a word can and cannot

occur provides a set of constraints that determines the similarity of meaning of words.

Cell entries in a matrix of rows and columns symbolize the frequencies with which a

word appears in texts or contexts denoted by a column. LSA then uses singular value

decomposition to infer semantic representations from the text.
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9.4. Categorical Value Similarity Estimation

Clustering consists of partitioning a data set into subsets (clusters), so that the

data in each subset (ideally) share some common trait - often similarity or proximity

for some defined distance measure. However, as we show below, compared to the

similarity mining approach of AIMQ, these solutions are inefficient and/or require

much input from the user. Recently the problem of clustering categorical data has

received much attention [DMR98, GRS99, GGR99, GKR98]. In [GRS99], a hier-

archical clustering algorithm, ROCK, that optimizes a criterion function defined in

terms of number of “links” (neighbours) between tuples is given. In Chapter ?? we

compared AIMQ with ROCK and presented results that show AIMQ is more effi-

cient and provides answers with higher relevance. In [GKR98], STIRR, an iterative

algorithm based on non-linear dynamical systems is used to isolate two groups of

attribute values with large positive and small negative values that correspond intu-

itively to projections of clusters on the attribute. However, the authors of [GGR99]

show that STIRR is unable to capture certain classes of clusters and therefore the

corresponding value similarities. In [GGR99] authors assume attribute independence

and monotonicity property to compute clusters using a Apriori style association min-

ing algorithm. Unfortunately real-life data rarely satisfies the attribute independence

assumption and hence this assumption affects the quality of the clusters given by

[GGR99]. Das et al [DMR98], compute the similarity between two attribute values

by generating probe queries binding features (other attributes) defining the values.

However, [DMR98] requires users to choose the features of importance - a task that
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we believe is often difficult and/or undesirable for a lay user. In contrast to above

approaches, AIMQ, without assuming independence between attributes or requiring

users to provide the importance of an attribute, provides an efficient, domain and

user independent solution for answering imprecise queries.



CHAPTER 10

CONCLUSION & FUTURE WORK

10.1. Conclusion

This dissertation has motivated the need for supporting imprecise queries over

databases. The dissertation presents AIMQ, a domain independent approach for

answering imprecise queries over autonomous databases.

Supporting imprecise queries over autonomous databases entails overcoming

critical challenges like developing techniques for efficiently extracting relevant tuples

and measuring the similarity of the answers to the query. Overcoming these challenges

necessitated developing techniques for estimating the importance to be ascribed to each

attribute and for measuring the semantic similarity between values binding categorical

values. As part of AIMQ, we have developed techniques for:

• Learning Attribute Importance: We mine and use approximate functional de-

pendencies between attributes from a small sample of the database to identify

the importance to be ascribed to the attribute. This measure is then used

to derive a heuristic to identify queries whose answers are likely to have high

relevance to the given imprecise query.
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• Measuring Semantic Similarity: We use an IR-style feature representation to

develop a context sensitive semantic similarity estimation technique for values

binding categorical attributes. We present a structure called Supertuple that

represents the context in which a value appears in the database. The attribute

importance estimated by AIMQ is used in weighing the similarity shown by

different features describing a value.

As part of this dissertation, we have implemented the AIMQ system and eval-

uated its efficiency and effectiveness using three real-life databases,BibFinder, Yahoo

Autos and Census database. The evaluation results demonstrate that:

• AIMQ is able to overcome inaccuracies that arise due to sampling and is able

to efficiently learn the attribute importance and value similarity measures.

• AIMQ is able to provide answers to imprecise queries with high levels of user

satisfaction as seen from the results of the user studies.

• The solution provided by AIMQ is truly domain-independent and can be applied

to any autonomous database irrespective of the domain being represented.

To the best of our knowledge, AIMQ is the only domain independent system

currently available for answering imprecise queries. It can be (and has been) imple-

mented without affecting the internals of a database thereby showing that it could

be easily implemented over any autonomous Web database.
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10.2. Future Work

In this dissertation we have focussed only on answering imprecise queries over

a single autonomous Web database. But more than one Web database may project a

given relation. Even if all these systems were extended to support imprecise queries,

it is not feasible for the user to query all of them to obtain most of the relevant

answers. Hence a single point of contact where the user can issue the imprecise query

and retrieve a single ranked set of answers from all the databases becomes essential.

Mediators in data integration systems do provide a single point of contact but

for efficiently answering precise queries. The imprecise query answering approach we

proposed aims to identify similar answers by issuing a set of precise queries that are

similar to the query. Hence on first look, a mediator based system over the databases

of interest may seem to solve our problem. In fact, in Chapter 8, we have imple-

mented an extended version of AIMQ over the bibliography mediator BibFinder. For

each precise query given to such a mediator, it would generate an execution plan that

will have the highest net utility (e.g. high coverage and low cost). However, the best

plan for answering the precise query developed may not be the best plan to execute

to obtain answers relevant to the imprecise query. Therefore, a future extension of

our work is to support imprecise queries over a mediation system. Supporting impre-

cise queries over multiple sources (mediator) will involve determining the number of

relevant tuples each database is likely to contain for every possible imprecise query.

Since learning and storing the statistics for all possible imprecise queries is infeasible,

we will have to learn the same for classes of imprecise queries. The second step is



121

to provide an efficient plan for searching the databases to efficiently identify the best

answers for a given imprecise query. The solutions we develop will have to satisfy the

following constraints:

• The databases will show varying degrees of overlap among each other. Duplicate

elimination is considered a costly operation.

• We will return only the best k (top-k) relevant answers for any imprecise query.

The relevance measures we use are system designed and not that given by a

user.

• Only tuples having similarity scores above some pre-decided threshold δ is con-

sidered as relevant. Determining whether a tuple is relevant or not is a costly

operation (in terms of time).

The cost of determining the k best answers for an imprecise query Q over R

will be

Cost(Q(R)) =
n∑

i=1

Cost(IsRelevant(ti, δ)+Duplicate(ti))+
l∑

k=1

ExecutionCost(qk(R))

where n is the number of distinct tuples extracted from which k best answers are

obtained while l is the number of precise queries issued to obtain the k answers.

Thus, we can reduce the cost of obtaining the top-k answers by reducing the number

of irrelevant tuples and duplicates. Further reduction in cost can be obtained by

reducing the number of precise queries issued to obtain the top-k answers. Intuitively,

we must first call sources that return a large percentage of relevant answers. However,
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we should not invoke databases whose answers would overlap with the answers already

extracted.

In [KNNV02, NKNV01, NNVK02] we mine and use coverage and overlap sta-

tistics of each source with respect to a precise query for deciding the best plan for

extracting the answers. On similar lines, for every imprecise query and database pair

we must store both the percentage of top-k answers returned as well as the total

number of answers extracted. We must also estimate possible overlaps with other

sources. Hence for every pair of query and database we will have to compute:

1. B(Q,D): The best ranked tuple among the top-k returned by database D.

2. W(Q,D): The worst ranked tuple among the top-k returned by database D.

3. Percentage(k): The percentage of tuples returned by D that were in top-k.

4. |Q(D)|: Total number of answers for Q extracted from database D.

In [YPM03], two algorithms for merging results from ranked databases are

provided. However, no overlap among databases is considered. Therefore extensions

of the given algorithms to account for overlap among databases needs to be developed.

The attribute importance estimation and semantic similarity estimation algorithms

presented in this dissertation will be required even for answering imprecise queries

over multiple sources.
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TANE: An Efficient Algorithm for Discovering Functional and

Approximate Dependencies

The solution for supporting imprecise queries proposed in this dissertation

requires computing the approximate functional dependencies between attributes of

the database. These dependencies are used by AIMQ to learn the importance to be

ascribed to each attribute, which in turn is used for effective query relaxation and

query-tuple similarity estimation. While several researchers have proposed algorithms

to mine the approximate functional depedencies, we found TANE, the algorithm

proposed by Huhtala et al [HKPT98] as the most intuitive and efficient. Below we

give a brief overview of the algorithm. For details about the various procedures of the

algorithm, correctness of the proofs and performance results, please read [HKPT98].

A.1. Measuring Approximate Dependency

TANE defines the approximateness of a dependency X → A as the minimum

number of tuples that need to be removed form the relation r for X → A to hold in

r. The error e(X → A) is defined as

e(X → A) =
min{|s| | s ⊆ r,X → A holds in r\s}

|r|

The measure e can be interpreted as the fraction of tuples with exceptions or

errors affecting the dependency. Given an error threshold ε, 0 ≤ ε ≤ 1, X → A is an

approximate (functional) dependency if and only if e(X → A) is at most ε.

TANE’s approach for discovering dependencies is based on considering sets of

tuples that agree on some sets of attributes. Determining whether a dependency
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holds or not is done by checking whether the tuples agree on the right-hand side of

the dependency whenever they agree on the left-hand side. Formally, it can described

using equivalence classes and partitions.

Partitions: Two tuples t and u are equaivalent with respect to a given set X of

attributes if t[A] = u[A] for all A ∈ X. Any such attribute set X can then partition

the tuples into equivalence classes. If the equivalence class of t ∈ r with respect to

X ⊂ R is [t]X then, the set of equivalence classes πX = {[t]X |t ∈ r} is a partition

of r under X. Thus, πX is a collection of disjoint sets (equivalence classes) of tuples

each of which has a unique value for the attribute set X and their union equals the

relation r.

A simple test to determine if X → A holds is to check if |πX | = |πX∪{A}|. Then

we can compute the error e(X → A) as follows. Since any equivalence class of c ⊂ πX

will be a union of one or more equivalence classes, c′1, c
′
2... of πX∪{A}, tuples in all but

one of the c′is must be removed for X → A to hold. The minimum number of tuples

to remove to make X → A hold in c is given by subtracting the size of the largest c′is

from size of c. Summing over all equivalence classes c ∈ πX gives the total number of

tuples to remove. Thus

e(X → A) = 1 −
∑

c∈πX

max{|c′||c′ ∈ πX∪{A} and c′ ⊆ c}

|r|

A.2. Searching non-trivial dependencies:

To test the minimality of a potential dependency X\{A} → A, TANE must

ensure that Y \{A} → A holds for some proper subset Y of X. This information is
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stored by TANE in the set of right-hand candidates of Y , C(Y ). To find minimal

dependencies, it suffices to test dependencies X {A} → A, where A ∈ X and A ∈

C(X\{B}) for all B ∈ X. Here C(X) is the collection of initial rhs candidates of the

set X ⊆ R and is defined as C(X) = R\C(X) where C(X) = {A ∈ X|X\{A} →

A holds}.

Eventhough the initial rhs candidates are sufficient to guarantee the minimality

of discovered dependencies, TANE uses improved rhs+ candidates C+(X) to prune

the search more effectively:

C+(X) = {A ∈ R|∀B ∈ X,X\{A,B} → {B} does not hold}

TANE does not compute the partitions from scratch for each attribute set.

Instead it computes a partition as a product of two previously computed partitions.

The partitions π{A}, for each A ∈ R is computed directly from the database. However

partitions πX for |X| ≥ 2 are computed as product of any two subsets of size |X|− 1.

Once TANE has the partition πX , it computes the error e(X) as described above.

The worst case time complexity of TANE with respect to the number of at-

tributes is exponential, but that is expected since the number of minimal dependencies

can be exponential in the number of attributes. However, with respect to the number

of tuples, the time complexity of TANE is linear (provided the set of dependencies do

not change as the number of tuples increase). This linearity makes TANE especially

suitable for relations with a large number of tuples but with small attributes sizes,

e.g. most databases on the Web.
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ROCK: A Robust Clustering Algorithm for Categorical Attribtues

In this dissertation we have compared the performance of AIMQ against that

of ROCK, a domain-independent algorithm developed by S. Guha, R. Rastogi and K.

Shim to cluster categorical attributes. Below we briefly describe the inner workings

of the algorithm. For a more detailed description of the algorithm, please refer to

[GRS99].

B.1. Links and Neighbours

The ROCK algorithm is based on the concept of clustering based on links

between data points, instead of distances based on the Lp metric or the Jaccard

coefficient. In contrast to clustering approaches that only use the similarity between

the points while clustering, ROCK’s link-based approach is claimed as being global

in nature as it captures the global knowledge of neighbouring data points.

ROCK starts out by assuming that a pair of points are neighbours if their

similarity exceeds a certain pre-defined threshold. The similarity between points can

be based on Lp distances or Jaccard coefficient or any other non-metric function

given by a domain expert. ROCK defines link(pi, pj) to be the number of common

neighbours between pi and pj.

Authors argue that points belonging to a single cluster will in general have a

large number of common neighbours and consequently more links. Thus during clus-

tering, ROCK merges the clusters/points with the most number of links first. Specif-

ically, ROCK aims to maximize the sum of link(pq, pr) for all pairs of points pq, pr
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belonging to a single cluster and at the same time, minimize the sum of link(pq, ps)

for pq, ps in different clusters. This results in a criterion function El:

El =
k∑

i=1

ni ×
∑

pq ,pr∈Ci

link(pq, pr)

n
1+2f(θ)
i

where Ci denotes cluster i of size ni. To prevent a clustering wherein all points are

assigned to a single cluster, the criterion function El is defined as the weighted fraction

of total number of links involving pairs of points in cluster Ci to the expected number

of links in Ci. The weight is ni, the number of points in Ci. Assuming n
f(θ)
i points in

Ci, the expected number of links between points of Ci will be n
1+2f(θ)
i . Dividing by

the expected number of links in El prevents points with very few links between them

from being put in the same cluster.

Handling of Categorical Data: ROCK considers data sets with categorical at-

tributes by modeling each record as a transaction containing items. For every value v

in the domain of a categorical attribute A, ROCK introduces an item A.v. A trans-

action Ti corresponding to a record in the database will contain A.v if and only if the

values of attribute A in the record is v. If A has missing values then the correspond-

ing transaction will not contain any items for the attribute. Then similarity between

records (points) is measured as the Jaccard similarity between the corresponding

transactions.

B.2. The ROCK clustering Algorithm

The process of clustering data using ROCK involves three crucial steps: (1)

ROCK begins by drawing a random sample from the database, (2) applies a hier-



141

archical clustering algorithm that employs links on the sampled points and finally,

(3) uses the clusters involving only the sampled points to assign the remaining data

points to the appropriate clusters.

As described above, ROCK uses the criterion function to estimate the ”good-

ness” of clusters and considers the best clustering between the points to be ones that

result in highest values for the criteria function. On similar lines, authors define the

goodness measure between pair of clusters Ci, Cj to be

g(Ci, Cj) =
link[Ci, Cj]

(ni + nj)1+2f(θ) − n
1+2f(θ)
i − n

1+2f(θ)
j

where link(Ci, Cj) =
∑

pq∈Ci,pr∈Cj
link(pq, pr). The pair of clusters for which the

above goodness measure is maximum is the best pair of clusters to be merged at any

given step.

Given a set S of n sampled points that are randomly drawn from the original

data set to be clustered and the number of desired clusters k, ROCK begins by

computing the number of links between pairs of points. Initially each point is a

separate cluster. For each cluster i, ROCK builds a local heap q[i] that contains

every cluster j for which link[i, j] is non-zero. The clusters j in q[i] are ordered in

decreasing order of the goodness measure g(i, j). In addition to the local heap, the

algorithms also computes a global heap Q that contains all the clusters. Similar to

the clusters in the local heaps, the clusters in Q are also ordered in decreasing order

of their best goodness measure, g(j,max(q[j])), where max(q[j]) denotes the best

cluster in q[j] to merge with cluster j.

ROCK iteratively clusters the data points by picking at each step,the cluster j
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with maximum goodness in Q and the cluster in q[j] that shows maximum goodness

to j, as the best pairs of clusters to merge. The process continues till either k clusters

only remain or when no two clusters have links between them.

In the final labeling phase, ROCK assigns the remaining data points to the

clusters generated from the sample points as follows. First, a fraction of points from

each cluster i, Li is obtained. Then each point p in the original dataset is assigned to

the cluster i in which p has the maximum number of neighbours. ( Li| + 1)f(θ) is the

expected number of neighbours for p in set Li. Thus labeling each point p requires

at most
∑k

i=1 |Li| operations.

Time complexity: ROCK’s clustering algorithm, along with the computation of

neighbour lists and links has a worst-case time complexity of O(n2+nmmma+n2logn)

where mm is the maximum number of neighbours, ma is the average number of neigh-

bours and n is the number of input data points. Note that ROCK only computes

the clusters using a very small sample of the data set. In the worst case the link

computation algorithm will have O(n3) complexity. However, the authors argue that

on average the number of neighbours will be small causing the link matrix to be

sparse. For such matrices they provide an algorithm whose complexity is O(nmmma)

in general but becomes O(n2ma) in the worst case.

The labeling phase of ROCK has the complexity O(ndknl) where nd is the

total number of points in the original dataset, k is the number of clusters derived

from sample data points and nl is the average number of neighbours in each cluster.
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We designed our first testbed, CarDB, to mimic the online used car database

Yahoo Autos1 CarDB was designed using a MySQL database and projects the relation

CarDB(Make,Model, Y ear, Price,Mileage, Location, Color)

To populate CarDB, we probed the Yahoo Autos database by generating probe queries

that bound the attributes Make and Location and extracted 100, 000 distinct tuples.

A 10 second delay between each probe query was maintained. The values for Make

were provided by Yahoo Autos. The potential binding values for Location consisted

of all cities of US.

Attribute Type Distinct Values (100k) Distinct Values (25k)
Make Categorical 90 63

Model Categorical 1152 747

Year Categorical 55 45

Price Numerical NA NA

Mileage Numerical NA NA

Location Categorical 1319 1082

Color Categorical 2427 1085

Table 11. Schema Description of CarDB

Below is a listing of the approximate functional dependencies and approximate

keys with their percentage support that we mined from the 25k sample of CarDB.

Approximate Functional Dependencies mined from CarDB:

Color − > Model : 0.12

Location − > Model : 0.13

Location − > Color : 0.20

1Available at http://autos.yahoo.com.
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Price − > Model: 0.21

Model − > Color : 0.22

Price − > Location : 0.23

Price − > Color : 0.24

Color − > Year : 0.31 Location − > Year : 0.33

Price − > Make : 0.34

Color − > Make : 0.35

Location − > Make : 0.36

Model − > Year : 0.39

Price − > Year : 0.4

Model − > Make : 0.92

Make, Color − > Year : 0.41

Make, Location − > Model : 0.42

Year, Location − > Make : 0.43

Make, Location − > Year : 0.49

Location, Color − > Year : 0.54

Model, Color − > Year : 0.55

Location, Color − > Make : 0.6

Make, Price − > Model : 0.62

Make, Price − > Year : 0.65

Model, Location − > Year : 0.71

Model, Price − > Year : 0.82
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Year, Price, Color − > Make : 0.81

Make, Price, Location − > Year : 0.91

Approximate Keys mined from CarDB:

Price : 0.2

Mileage : 0.8

Model, Color : 0.33

Location, Color : 0.43

Make, Price : 0.52

Price, Color : 0.61

Model, Location : 0.65

Model, Price : 0.73

Price, Location : 0.75

Year, Mileage : 0.91

Make, Mileage : 0.97

Mileage, Location : 0.97

Mileage, Color : 0.98

Price, Mileage : 0.98

Model, Mileage : 0.99

Make, Year, Location : 0.57

Make, Year, Price : 0.7

Year, Location, Color : 0.72

Make, Location, Color : 0.72
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Year, Price, Color : 0.79

Model, Year, Location : 0.83

Make, Price, Color : 0.83

Year, Price, Location : 0.89

Make, Price, Location : 0.9

Model, Location, Color : 0.91

Model, Price, Color : 0.93

Model, Price, Location : 0.95

Price, Location, Color : 0.96

Make, Year, Location, Color : 0.88

Make Model Year Price Mileage Location Color

Ford Contour 1996 3252 86120 Tucson Red

Jeep Cherokee 1999 10232 94264 Tucson Gray

Cadillac DeVille 1999 20646 47095 Port Richey Silver

Mercury Mountaineer 1999 8986 80801 Glendale Heights White

BMW 7 SERIES 1995 13995 48543 Devon Black

GMC Jimmy 1989 1995 191687 Langhorne Black

Nissan Altima 1993 5248 126152 Warminster Burgundy

Ford Thunderbird 1995 4290 72790 Orland Park Pewter

Mitsubishi Galant 1993 2481 137958 Miami Beige

Toyota Tercel 1987 3491 130265 Miami Blue

Nissan 300ZX 1986 7900 65611 Coconut Creek Red

Ford Bronco II 1986 4490 140479 Longwood Red

Chevrolet El Camino 1966 7500 100000 Sutter Creek Red

Mercedes-Benz SL Class 1988 17950 73906 Anaheim Red

Volkswagen Quantum 1984 1995 118579 San Leandro Brown

Mercedes c280 1994 6999 108455 Fremont Pewter

Table 12. Queries over CarDB used to conduct user study
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