
Answering Keyword Queries on XML Using
Materialized Views

Ziyang Liu, Yi Chen

Department of Computer Science and Engineering, Arizona State University
P.O. Box 878809, Tempe, AZ 85287 - 8809, USA

{ziyang.liu, yi }@asu.edu

Abstract— Answering queries using materialized views has
been well studied in the context of structured queries and has
shown significant performance benefits. Despite the popularity of
keyword search over XML data, it is an open problem whether
materialized views can be leveraged for query evaluation. In
this paper, we investigate this problem and present techniques
for answering keyword queries using a minimal number of
materialized views. Experimental evaluation demonstrates the
efficiency of the proposed techniques.

I. I NTRODUCTION

XML has been used as the standard data representation
format for web and scientific applications. Since a typical
web user or a scientific user does not know structured query
languages (such as XPath, XQuery), and the data schema may
be unavailable, complex, or fast-evolving, providing keyword
search on XML becomes critical in those applications. Though
much work has been done on inferring the semantics of XML
keyword search by defining query results appropriately ([6],
[4], [5], [1], [2]), the problem of how to efficiently evaluate
and optimize XML keyword search has not yet been well
addressed.

By avoiding computing query results directly from the
source data, exploiting materialized views has been proven
crucial for performance optimization in evaluating SQL
queries on databases and XPath/XQuery on XML. Caching
query results as materialized views in web applications can
also reduce the workload of servers and network traffic.

Given the benefits of materialized views in structured query
processing, it is a natural idea to leverage them to speed up
XML keyword search. However, to the best of our knowledge,
there is no research conducted on answering XML keyword
search using materialized views.

Many problems need to be addressed in order to answer
XML keyword queries using a set of materialized views of
previous search results. If the query is the same as a view that
has been materialized, we can simply access the materialized
view and return it to the user. If the query is similar but
not identical to existing materialized views, is it still possible
to utilize the views for query evaluation in order to gain
performance improvements? The answer actually depends on
the definition of query results. Then, are there any existing
XML keyword search semantics for which a query can be
answered using views? If so, which views arerelevant to
a given query, i.e. they can be used to answer the query?

team(0)

name(1)

Suns(2)

players(3)

player(4)

name(5) nationality(7) position(9)

Nash(6) Canada(8) guard(10)

player(11)

nationality(14) position(16)

Marion(13) USA(15) forward(17)

name(12)

Fig. 1. Sample XML Tree

Furthermore, if there are several sets of views that can answer
a query, which set should be used? Finally, how should we
use such a set of views to answer the query?

To the best of our knowledge, this is the first work on
answering XML keyword searches using materialized views.
We find that it is possible to answer queries using views for
a widely adopted XML keyword search semantics:Smallest
Lowest Common Ancestor(SLCA) [6]. While SLCA will be
formally defined in Section II, we illustrate it by an example.
Consider a query{Nash, position} and the XML document
in Figure 1 where each XML node is associated with a
unique identifer. Though there can be many XML data nodes
matching keywordposition, only the one with ID 9 should be
considered as closely related to the match ofNashsince they
refer to the same player. This can be detected using the SLCA
semantics.

For SLCA semantics, we analyze whether a view is relevant
for answering a given query. We then prove that the problem of
finding the smallest set of materialized views that can answer
a query is NP-hard. A polynomial time algorithm is developed
to find such a set with ln|Q| approximation, where|Q| is the
number of keywords in the query. Finally we show how to
answer queries using the selected set of views. Experimen-
tal evaluation shows significant performance improvements
of answering queries using views. The techniques that we
propose for exploiting materialized SLCAs of XML keyword
searches can be incorporated into existing XML keyword
search engines that adopt SLCA semantics for defining query
results1, including XSeek [4], XKSearch [6], [2] and [5].

1Some systems perform additional node filtering after SLCA computation
is done.

II. BACKGROUND

We model XML data as a directed tree, such as the one
shown in Figure 1. Each internal node represents an element
or attribute, and each leaf node represents a data value.

A query is specified as a set of keywords. We use the
following notations for keyword search queries.

Definition 2.1: Let Q1 and Q2 be keyword queries. We say
Q2 is a subquery ofQ1, or Q1 is a superquery ofQ2, denoted
asQ2 ⊆ Q1, if every keyword inQ2 is in Q1. The size of a
queryQ, denoted as|Q|, is the number of keywords inQ.

We define the query result of XML keyword search accord-
ing to SLCA [6].

Definition 2.2: The query result, or materialized viewof a
keyword searchQ on XML dataD, is the set of SLCA nodes
SLCA(D, Q), which consists of all the nodess defined as
follows:

1) s contains matches to all the keywords inQ in its
subtree.

2) There does not exist a descendant ofs that contains
matches to all the keywords inQ in its subtree.

Query and view are used interchangeably in the paper.

Recall query{Nash, position} on the XML tree in Figure 1.
Though nodeplayers contains matches to both keywords in
the query in its subtree, it is not considered as an SLCA node
since its childplayer (4) already contains matches to both
keywords. Whileplayer(4) is an SLCA node. This reflects that
the keyword matches connected through theplayer(4) node
have a closer relationship (and therefore should be returned in
the query result) compared with the ones connected through
the playersnode.

For the convenience of notation, we also refer SLCA with
respect to sets of XML nodes instead of keywords.

Definition 2.3: Let N1, N2, . . . , Nn ben sets of nodes in XML
dataD. SLCA(D, N1, N2, . . . , Nn) consists of all such nodes
s:

1) s contains at least one node in eachNi (1 ≤ i ≤ n) in
its subtree.

2) There is no descendant ofs that contains at least one
node in eachNi (1 ≤ i ≤ n) in its subtree.

As we can see, suppose queryQ contains keywords
k1, . . . , kn, and letMi be the set of matches toki (1 ≤ i ≤ n),
thenSLCA(D, Q) = SLCA(D,M1,M2, . . . , Mn).

III. E XPLOITING MATERIALIZED V IEWS TO ANSWER

QUERIES

In this section, we discuss how to leverage materialized
views for query evaluation. Obviously if a materialized view
is exactly the same as the query, it directly gives the query
result. In the following, we focus the discussion on evaluating
queries that are different from existing views.

v

k2 k1 kn …

u

r

k

Fig. 2. An Example for Proposition 3.3

A. Identifying Relevant Views

First, we need to find out the inherent relationship among
queries in order to identify relevant views for a given query.
The following propositions show that the result of a queryQ
can be computed only from the results of its subqueries.

Proposition 3.1: For two queriesQ1 andQ2, SLCA(D, Q1

∪ Q2) = SLCA(D, SLCA(D, Q1), SLCA(D, Q2)) for any
dataD.
Proof Sketch: According to Definition 2.2, for eachs ∈
SLCA(D, Q1 ∪ Q2), s contains all the keywords in both
Q1 and Q2, therefore it must contain at least one node
in SLCA(D, Q1) and one node inSLCA(D, Q2) in its
subtree. Furthermore, none ofs’s descendants can contain a
node inSLCA(D, Q1) and a node inSLCA(D, Q2) in its
subtree. According to Definition 2.3, all suchs nodes compose
SLCA(D, SLCA(D, Q1), SLCA(D, Q2)).

Corollary 3.2: For query Q = Q1 ∪ Q2 ∪ . . . ∪ Qk,
we have SLCA(D, Q) = SLCA(D, SLCA(D, Q1), . . . ,
SLCA(D, Qk)) for anyD.

Proposition 3.3:For two queriesQ1 andQ2, if Q1 * Q2, then
SLCA(D, Q1) can not provide useful information to compute
SLCA(D, Q2), for all dataD.
Proof Sketch: Let query Q1, k ∈ Q1, and Q2 =
{k1, k2, . . . , kn}, thus Q1 * Q2. Suppose the proposition
does not hold, that is,SLCA(D, Q2) can be obtained from
SLCA(D, Q1) for any D. We show a counter example.
Consider the XML data fragmentD in Figure 2, where a solid
line denotes a parent-child edge and a dotted line denotes
an ancestor-descendant path, andSLCA(D, Q1) = {u}.
As we can see,v ∈ SLCA(D, Q2), v /∈ SLCA(D, Q1).
SLCA(D, Q1) does not provide information about the loca-
tion of nodev, which essentially could be anywhere inD, and
therefore is not helpful for computingSLCA(D, Q2).

In summary, to compute the results of a queryQ, a
materialized view that is a subquery ofQ is relevant. If
there is a keywordk ∈ Q, such that none of the subqueries
of Q containingk is materialized, then we need to access
the original dataD and find the matches tok to compute
SLCA(D, Q).

Example 3.4: Consider evaluatingQ = {A,B, C,D, E}
given a set of materialized viewsV: Q1 = {A,B}, Q2 =
{A,B, C}, Q3 = {D}, Q4 = {B, D}, Q5 = {E, F}. Q1,
. . . , Q4 are subqueries ofQ and therefore are relevant toQ.
Since keywordE is not in any view that is a subquery ofQ,
we need to access the matches toE in the source data.

B. Evaluating Queries

Although any subquery of a queryQ is relevant for com-
puting the result ofQ, we should find the smallest set of
materialized views that can maximally cover the keywords
in Q in order to reduce the size of intermediate results and
achieve efficiency. The following proposition shows that this
problem is NP-hard.

Theorem 3.5: Consider a set of materialized viewsV and a
query Q, the problem of selecting the smallest setV ′, such
that V ′ ⊆ V, and

⋃
(V | V ∈ V ′) =

⋃
(V | V ∈ V) ∩ Q, is

NP-hard.

The proof is omitted due to space limitation2. The main
idea is to prove that its corresponding decision problem is
NP-hard by reduction from the set cover problem.

We propose a polynomial time greedy algorithm to select
relevant materialized views for a given queryQ from a set
of materialized viewsV. Initially, all keywords inQ are not
covered. For each viewV ∈ V, V ⊆ Q, we record the
number of uncovered keywords inQ that can be covered
by V as V.cover, which is initialized to be|V |. At each
step, the algorithm chooses a materialized subquery ofQ that
contains the largest number of uncovered keywords inQ, that
is, V ∈ V, V ⊆ Q, andV.cover is the maximal. Then for each
previously uncovered keywordk that is now covered byV , we
find each view that containsk and decrease its cover by one,
that is,∀V ′ ∈ V, such thatk ∈ V ′, we haveV ′.cover−−. The
procedure continues till all the keywords inQ are covered, or
none of the views inV can provide additional cover. Then we
compute the results ofQ based on Corollary 3.2.

During each step for view selection, we may find a query
and its subqueries, all of which are relevant views and have
the samecover value. We show that choosing superqueries
can reduce the size of intermediate results.

Proposition 3.6: ConsiderQ and its subqueryQ′, Q′ ⊆ Q.
We have|SLCA(D, Q)| ≤ |SLCA(D, Q′)| for any dataD.

This algorithm has time complexityO(|V||Q|2) and approx-
imation ratio ln|Q|.
Example 3.7: Continuing Example 3.4, Initially, the relevant
views of Q are found to beQ1, Q2, Q3 and Q4. Since
Q2 covers 3 keywords which is the largest among all of
them, we first chooseQ2. Now the remaining keywords are
D and E; Q1 covers neither, each ofQ3 and Q4 covers
one keyword: D. Although Q3 and Q4 cover the same
number of keywords, sinceQ3 is a subquery ofQ4, we
chooseQ4 for smaller intermediate results. Now,E is the
only uncovered keyword, and no view covers it, so we stop.
To computeSLCA(D, Q), we first haveSLCA(D, Q) =
SLCA(D, SLCA(D, Q2), SLCA(D, Q4)). Then we access
the data for the matches to keywordE, and updateSLCA(D,
Q) = SLCA(D, SLCA(D, Q), matches toE).

2All the proofs and detailed algorithms can be found in [3].

�

�

��

��

��

��

��

��

	
� 	
� 	
� 	
� 	
�

� �
�
�
�

�
� �
�

��
��������� �����������
�

�

���

���

���

���

�

	
� 	
� 	
� 	
� 	
�

� �
�
�
�

�
� �
�

����������� �����������

���� ���� ���� ����

(a) Auction (160MB) (b) DBLP (66MB)

Fig. 3. Processing Time of Exploiting Views to Evaluate New Queries

IV. EXPERIMENTS

To evaluate our approach, we compare the processing time
of answering queries using materialized views and possibly a
small portion of the data with that of answering queries from
scratch. Some experiment results are shown in Figure 3. Two
data sets, Auction generated by XMark, and a part of DBLP,
are tested. Each data set has five materialized views generated.
We test five keyword queries for a data set.

We can see that in general leveraging materialized views
achieves significant benefits in processing time, compared with
computing query results from scratch. ForQA4, QD4 and
QD5, the two approaches have roughly the same processing
time, as there is no materialized view that is a subquery
of QA4, QD4 and QD5, and we have to compute them
from scratch. The extra processing time in our approach for
identifying a small subset of relevant materialized views is
very small.

V. CONCLUSIONS
This paper addresses an open problem of answering XML

keyword search using materialized views. We adopt the query
result definition using the concept of SLCA proposed in the
literature [6]. We identify the relevant materialized views for
a given query, and develop an algorithm to find a small set of
relevant views that can answer a query. Finally, we present how
to answer the query using such a set of views. Experimental
evaluation shows significant performance improvements of
our approach over computing query results from scratch. Our
techniques can be incorporated into any XML keyword search
system that uses SLCA semantics ([4], [6], [5], [2]).

ACKNOWLEDGMENT

This research was supported in part by the NSF grant IIS-
0740129.

REFERENCES

[1] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked
Keyword Search over XML Documents. InSIGMOD, 2003.

[2] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava. Keyword
Proximity Search in XML Trees.TKDE, 18(4), 2006.

[3] Z. Liu and Y. Chen. Exploiting and Maintaining Materialized Views
for XML Keyword Search. Technical Report TR-07-010, Arizona State
University, 2007.

[4] Z. Liu and Y. Chen. Identifying Meaningful Return Information for XML
Keyword Search. InSIGMOD, 2007.

[5] C. Sun, C.-Y. Chan, and A. Goenka. Multiway SLCA-based Keyword
Search in XML Data. InWWW, 2007.

[6] Y. Xu and Y. Papakonstantinou. Efficient Keyword Search for Smallest
LCAs in XML Databases. InSIGMOD, 2005.

