
Answering Planning Queries with the Crowd

(Technical report)

Haim Kaplan Ilia Lotosh Tova Milo Slava Novgorodov

School of Computer Science

Tel-Aviv University

{haimk,ilialoto,milo,slavanov}@post.tau.ac.il

March 1, 2013



Abstract

Recent research has shown that crowd sourcing can be used effectively to solve
problems that are difficult for computers, e.g., optical character recognition and
identification of the structural configuration of natural proteins [34]. In this
paper we propose to use the power of the crowd to address yet another diffi-
cult problem that frequently occurs in a daily life - answering planning queries
whose output is a sequence of objects/actions, when the goal, i.e, the notion
of “best output”, is hard to formalize. For example, planning the sequence of
places/attractions to visit in the course of a vacation, where the goal is to enjoy
the resulting vacation the most, or planning the sequence of courses to take in
an academic schedule planning, where the goal is to obtain solid knowledge of
a given subject domain. Such goals may be easily understandable by humans,
but hard or even impossible to formalize for a computer.

We present a novel algorithm for efficiently harnessing the crowd to assist
in answering such planning queries. The algorithm builds the desired plans
incrementally, choosing at each step the ‘best’ questions so that the overall
number of questions that need to be asked is minimized. We prove the algorithm
to be optimal within its class and demonstrate experimentally its effectiveness
and efficiency.
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Chapter 1

Introduction

A planning query is a query whose output is a sequence of objects or actions that
gets one from some initial state to some ideal goal state. Automated planning
is a branch of artificial intelligence that tries to solve this problem using a
computer [14]. However, there is a large class of planning queries that we meet
in our daily life that is difficult for a computer to solve, not only because of
the involved computational complexity, but because the goal state (as well as
the consequence of individual actions) is hard or even impossible to formalize.
In contrast, in many of these problems, the goal (and the effect of actions) is
intuitively understandable by humans, making the planning humanly possible.

As a simple example, consider a vacation trip planning. A person may have
some tentative start and end dates for her vacation, a preference of what she
likes to do and a geographic area where she wants to travel. Based on this
data she now needs to compile a potential set of places and attractions to visit
and, from this set build a vacation schedule (essentially an ordered subset of the
original set). A typical goal here may be to enjoy the vacation the most and/or
to expand horizons. Such a goal is naturally subjective and hard to formalize
(relevant factors may include total travel distances, attractions along the way,
price and many more). However, people sharing similar taste/interests are likely
to have the same notion of objective function and their experience and opinion
can assist in the planning.

In general we are targeting here problems where one has a large set of items
from which she needs to choose a subset and then order this subset in a sequence
that will give the best value. The ”value” definition is domain-specific, hard to
formalize but easy to comprehend by humans. The vacation planning example
above is one such instance. Another example is academic schedule planning,
where the goal for instance is to obtain solid knowledge of a given subject area.

Answering such planning queries requires expertise in the domain of the
problem, which is often gained by experience, solving instances of the same (or
similar) problems. Since many people deal with similar planning problems, it
is reasonable to assume that the crowd may provide useful insight here. In-
deed, several attempts were made in this direction. For example, for academic
schedule planning, the CourseRank system [5] allows students to rate courses
and provides a convenient tool to compile recommended courses into schedule.
Another example is the Cross-Service Travel Engine for Trip Planning [11] that
allows harvesting POIs (points of interest) from various traveling recommen-
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dation sites and provides a tool to compile a trip schedule from these POIs.
Theses systems however focus on identifying the set of relevant items (courses,
POIs), but the non-trivial task of ordering them in an ideal way, to form an
actual plan, is left to the user.

Assisting the user in this fairly challenging task is the goal of the present
work. We refer below to an ordered list of items as a plan and present Crowd-
Planr, a system that employs the crowd to build “good” plans (w.r.t some ab-
stract quality criteria) for specific tasks. It takes as input a set of relevant
items (that can be retrieved from the existing systems mentioned above) and
intelligently asks users from the crowd series of simple questions (about possible
1-step continuations of given partial plans), using the answers to identify the
plans preferred by the crowd.

Intuitively, the set of all possible plans (ordered lists) that can be built from
a given set of items can be modeled as a tree, where each node is an item, its
ancestors are the items preceding it in the plan and its children are the items
that may follow it. A root-to-leaf path in this tree represents a plan. One may
rate (and correspondingly rank) plans by the probability of a person to consider
a given plan as the best (w.r.t to the given abstract criteria). As the size of this
tree may be extremely large (exponential in the size of the items set), it is clearly
impractical to ask the crowd about each possible plan. Instead, we employ in
CrowdPlanr a novel efficient algorithm that traverses this tree incrementally.
It carefully restricts attention to the more promising plans - ones with highest
maximum potential score (to be formally defined in the sequel) and optimally
chooses at each step the ‘best’ questions (about possibly continuation), so that
the overall number of questions that the crowd needs to be asked is minimized.

Note that the problem we are solving here can be viewed as a particular type
of sorting. Using the crowd for implementing a sort-by operator is a problem
that received much attention in recent crowdsourcing research [39, 7]. A key
difference is that all these previous works assume the order between two elements
to be independent of preceding elements, and thus the developed algorithms are
based on the assumption that users can be asked to compared pairs of individual
elements (e.g be asked if A < B). This is not the case here: the order in which
plan items are selected depend not only on their individual value/properties but
also on what precedes them in the plan (e.g. city A may be more attractive
than B, but if in a trip a user first visits C, then A (being rather similar to
it) may be skipped altogether and B should be visited instead. Consequently a
new algorithm that efficiently provides users with the context relevant for their
choice had to be developed here.

A first prototype of CrowdPlanr will be demonstrated in [26]. The demon-
stration gives only a high level overview of the the system capabilities and user
interface. The present paper provides a comprehensive description of the formal
model and algorithmic solutions underlying CrowdPlanr.

1.1 Technical contributions

• We introduce a simple generic model for modeling plans and interpreting
crowd’s answers to questions about them. Based on this model, we de-
velop a formal definition of the planning problem and the identification of
(approximated) best answer.
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• We present an effective algorithm for identifying the (approximately) best
answer using the crowd. As the search space may be extremely large, and
consequently the number of questions that may be posed to user exces-
sively high, the algorithm builds the desired plan incrementally, choosing
at each step the ‘best’ questions so that the overall number of questions
that need to be asked is minimized.

• We study formally the efficiency of our algorithm. Following common
practice [12], we employ the notion of instance-optimality, that reflects
how well a given algorithm performs compared to all other possible algo-
rithms in its class and show our algorithm to be instance-optimal for a
large common class of planning queries and data instances. Moreover, we
show that the optimality ratio that our algorithm achieves (to be formally
defined in the sequel) is far by at most a factor of two from the lowest
possible optimality ratio.

• Finally, we discuss the implementation of the CrowdPlanr and demon-
strate, by means of an extensive experimental evaluation, on both syn-
thetic and real life data, that our algorithm consistently outperforms al-
ternative baseline algorithms.

1.2 Work organization

In Chapter 2 we describe our data model and formally define the planning
problem. In Chapter 3 we present the algorithm we developed to solve this
problem. In Chapter 4 we discuss the algorithm performance, define the notion
of instance-optimality and prove our algorithm to be instance-optimal for a
large class of inputs. In Chapter 5 we discuss two extensions to our algorithm
- finding top-k answers and working with multiple users in parallel. In Chapter
6 we present experimental results on both synthetic and real-world datasets. In
Chapter 7 we survey the related work. We conclude and consider future work
in Chapter 8.
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Chapter 2

Preliminaries

We start with an intuitive description of our model, then proceed to the formal
definitions.

We assume that we are given an initial finite set S of potential items to build
a plan from. This set already reflects the preferences the user has defined when
she requested a plan. There are multiple domain-specific tools that can be used
for identifying this initial set S of items, e.g. TripAdvisor [38] for vacation trip
planning, and we assume that one such tool has been employed. We will use
this set to suggest to the user possible answers when we ask a question. Some
of these items may become irrelevant as we progress, which will be reflected by
the users not selecting them as answers.

CrowdPlanr allows users to build plans at different levels of granularity, zoom-
ing in and out between levels. For instance, in a trip to Europe, one can start by
planning the countries to visit, then the cities in each country and the attrac-
tions within/between cities. Different granularity levels are often independent
and we thus focus below, for simplicity, on a single level and explain things
in this simplified context. The model extends naturally to the nested case,
by allowing users, when dependencies do exist, to view the full detailed plan
constructed so far, when considering its continuation.

As a simple running example we will use below the planning of a vacation
in Italy (at the city granularity), starting from Rome. The set of items S in
this case includes commonly visited Italian cities, e.g., {Milan, Venice, Verona,
Florence, Pisa, Trento, Bologna, Naples, ...}. Note that, in general, not every
user can answer every question. Indeed users that have never visited/read/heard
vacation stories about Italy cannot help much in planning a vacation there. The
targeting of questions to relevant users is by itself a challenging problem that
may be addressed by a variety of methods (e.g. using semantic knowledge
about users [2], employing collaborative-filtering based techniques [2, 3], etc.).
In principle, any such black-box algorithm can be plugged into our system and
we will assume below that the set of relevant crowd users has been identified.

Model

Given a set S of items, a plan is an ordered subset of S. We will assume, and use,
two special items in S - † to mark the beginning of the plan and ‡ to mark an end
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of the plan. A complete plan is an ordered sequence of items (†, a1, . . . , ak, ‡),
with no repetitions, starting with a beginning marker and ending with an end
marker. We also consider partial plans - prefixes that can be expanded by
adding new items; these do not have an end marker. The set of all possible
plans may be represented by a tree, called a decision tree, where the root is
labeled by the start marker, internal nodes are labeled by items from S, leaves
are labeled by the end marker, and each internal node vi represents a partial plan
pi = (†, a1, . . . , ai), corresponding to the labels of nodes on the path from the
root to vi. The reason for using a tree (over a graph) is to allow for capturing the
dependency between each item choice and the (partial) plan preceding it.(See
below).

More generally, one may also want to consider plans where some items are
unordered. For instance, when planning an academic schedule, the set of courses
taken in a given semester may be unordered. This may be naturally incorporated
into our model by having tree nodes that correspond to sets of items rather than
individual ones. For a sake of clarity of the presentation we ignore it here.

The decision tree is built iteratively by asking users questions on its nodes.
The question on a node vk is of the form ”Given a sequence (†, . . . , ak) what
should be the next item?”, where (†, . . . , ak) are the labels on the nodes on a
path from the root to vk. To answer the user selects an item from S. Thus,
with each question a user is presented with a context of an existing sequence.
Answers to these questions define a probability distribution on the children of
every node. We use these distributions to define a score for every node - a score
of a node is its probability to follow its parent in node’s partial plan

Formally we define the decision tree as follows:

Definition 2.1 (Decision Tree). A Decision tree T is a labeled tree T (V,E) with
node labels from S. The root of the tree is labeled by †, leaves may be labeled by
‡, and all other node labels are from S \ {†, ‡}. For every node v ∈ V the set of
its children is denoted as:

Children(v) = {u|u ∈ V, (v, u) ∈ E}

In addition, two functions are defined on the nodes of tree:

• dT : V → N is a display counter. dT (v) counts number of questions asked
on v.

• cT : V → N is a choice counter. cT (v) counts how many times v was cho-
sen as an answer. For every node v it must hold that

∑

u∈Children(v)

cT (u) =

dT (v).

For each node v in the tree the combination of its display counter and the
choice counters of its children define a conditional probability distribution of
users choosing a particular child to follow v in a sequence. Thus we can easily
define a probability of a sequence to be an optimal one by combining the con-
ditional probabilities of the nodes composing it. Formally it can be defined as
follows:

Definition 2.2 (Node score). We define node score in a tree T recursively:

• For the root (node labeled with †): scoreT (v) = 1
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Rome(=root) 

Florence Naples Milan 

Bologna Naples Milan Venice Florence Trento 

Ferrara Padua 

1/1 1/1 

1/1 1/1 

Figure 2.1: An example of a tree representing a set of plans

• For a node u with a parent v, scoreT (u) =
cT (u)
dT (v)scoreT (v)

Example: To continue with our running example, a portion of the tree de-
scribing (partial) Italy vacation plans is depicted in Figure 2.1. The display and
choice counts are depicted as labels on the edges incoming the nodes (for exam-
ple let v, u, w be the nodes labeled with “Florence”, “Bologna” and “Naples”
respectively, then d(v) = 10, c(u) = 9 and c(w) = 1). In this figure, 10 questions
were asked on most of the nodes, and 1 question on some. Black dots represent
leafs marked with ‡. The scores of the leaves corresponding to some of the
sequences are:

• (Rome, Florence, Bologna, Ferrara, ‡) - 4
10 ·

9
10 ·

1
1 ·

1
1 = 0.36

• (Rome, Naples, Milan) - 4
10 ·

5
10 = 0.2

• (Rome, Milan, Trento) - 2
10 ·

7
10 = 0.14

The previous definitions do not place an upper bound on the number of
users that need to be asked in order to compute the probability distribution for
a given node. In principle we could ask all available users for each node, but
this exhaustive approach can be prohibitively expensive in practice. Instead,
we expect applications to place a limit on the number of obtained answers. For
this purpose, we define a threshold N that denotes the desired number of users
to be probed for a node. (This may be determined, e.g., based on the desired
sampling error bounds [17].) Thus, in principle, by asking N questions on all of
the (incrementally added) nodes (until no more new nodes are added) we can
obtain a complete tree.

Definition 2.3 (Complete tree). A complete tree T is a decision tree in which
all leaves are labeled by ‡ and for each internal node the display counter equals
N .

From the user perspective there is a semantic difference between a complete
and partial sequence - a complete sequence cannot not be extended further (i.e.
the users building it determined that this plan ends here). It makes sense to
rank only complete sequences. This difference is naturally reflected in our model
where ‡ markers are used to distinguish complete sequences:

Definition 2.4. A sequence p = (u1, . . . , uk) is a complete sequence if and only
if u1 is marked with † and uk is marked with ‡. All other sequences are partial.
A set of all complete sequences in a tree T will be denoted as P(T ), and the set
of all partial sequences as P(T ).
The set of complete sequences in T containing node v will be denoted as Pv(T ).
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For example, in Figure 2.1 the sequence (Rome, F lorence,

Bologna, Ferrara) is a complete sequence, while sequence (Rome,Naples,Milan)
is a partial one.

Now we can formally define a set of top-k sequences as:

Definition 2.5 (Top-k sequences). A set A of complete sequences is a top-k
set if |A| = k and for every complete path p′ in P(T ) \A:

∀p ∈ A : scoreT (p) ≥ scoreT (p
′)

We call the top-1 sequence an optimal sequence.

By nature, the scores computed by sampling a crowd of users are imprecise,
in the sense that they only capture general trends: Sequences having similar
scores are likely to have a similar “value” for the user. Consequently when two
sequences have almost the same score it practically does not matter which one
is returned as answer. Namely, it suffices to return a sequence whose score is
approximately the best. Two types of approximations are common in the litera-
ture: relative approximation (i.e. approximation up to a constant multiplicative
factor) and absolute approximation (i.e. approximation up to an added con-
stant). Since we consider here probabilities and when plan scores get very low
they become by nature not very interesting, we chose to use additive approxi-
mation. Formally we define:

Definition 2.6 (Approximated top-k). A set A of complete sequences is an
approximated top-k set if |A| = k and for every complete path p′ in P(T ) \A:

∀p ∈ A : scoreT (p) ≥ scoreT (p
′)− ε

The above definitions define a set of optimal (up to a constant) sequences in
terms of the complete tree. Note however that, since the size of this tree may
be extremely large (exponential in the size of the items set S), it is clearly im-
practical to build it fully and ask the crowd about each of its nodes. Instead, we
employ an efficient algorithm that intelligently traverses the tree and processes
only the minimal necessary parts. The algorithm discovers only a partial, small
as possible, decision tree T , that contains sufficient information to guarantee
that the set of k highest ranked (up to ε) sequences A in it remains the same
in every possible complete tree that can be built by extending T . We call such
T a proof of correctness for A. We will show in the sequel that the size of the
proof of correctness found by our algorithm is O( 1

ε
· |S|). Formally, we define a

proof of correctness as follows.

Definition 2.7 (Possible completion). A complete tree T ′ is a possible comple-
tion of a decision tree T if the following conditions hold:

1. T is a subtree of T

2. ∀v ∈ VT : dT ′(v) > dT (v)

3. ∀v ∈ VT : cT ′(v) > cT (v)

We denote a set of possible completions of T as Compl(T ).
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Definition 2.8 (Top-K Proof of Correctness). A decision tree T is a proof of
a set A being a top-k set if for all T ∈ Compl(T ):

∀p ∈ A : ∀p′ ∈ P(T ) \A : scoreT (p) ≥ scoreT (p
′)− ε

Example: In the tree presented in figure 2.1 the sequence p=(Rome, Flo-
rence, Bologna, Ferrara) is the highest ranked sequence, however if we take
ε = 0.01 then this tree is not a proof of correctness for the set {p} - indeed,
there is a possible continuation of this tree - T ′, where additional 9 questions
are asked (recall that N = 10) on Bologna node, and for all these questions we
get ”Trento” as an answer. Then, in T ′, the sequence p will have a score of
4
10 ·

9
10 ·

1
10 = 0.036, while a sequence p’ = (Rome, Florence, Bologna, Trento)

will have a score of 4
10 ·

9
10 ·

9
10 = 0.324.
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Chapter 3

Planning using crowd

We are now ready to present our algorithm (Algorithm 2) for finding the optimal,
up to ε plan. More generally, one may want want to find the top-k such plans.
For simplicity we focus here on the top-1 plan and explain in Section 5.1 how
the same approach may be extended for the top-k case. For brevity we will omit
below the words “up to a constant” and whenever refer to an optimal plan we
mean optimal up to a constant.

Our algorithm for finding an optimal plan will hold a decision tree (initially
containing only the root) and will expand it by asking questions on its nodes.
To achieve its goal the algorithm has to solve the two following sub-problems:

• Checking stop condition - i.e. checking whether the current tree is a proof
of correctness for the current optimal plan

• Deciding which next questions to ask in order to reach stop condition as
fast as possible

The algorithm is inspired by the well-known A∗ algorithm [20] and the key chal-
lenge was to find the appropriate solution for these two points, that guarantee
optimality.

3.1 Stop condition

To solve the first sub-problem we define a notion of uncertainty for a sequence.
Uncertainty is the maximum possible difference between a given sequence score
and the highest sequence score in all possible completions of the current state
of the tree. Formally it is defined as follows.

Definition 3.1 (Uncertainty). In a tree T , an uncertainty for a complete se-
quence p is given by:

U(T, p) = max
T ′∈Compl(T )

[

max
p′∈P(T ′)

scoreT ′(p′)− scoreT ′(p)

]

Following definitions 3.1 and 2.8 we can use the uncertainty notion to check
whether a decision tree is a proof of correctness for a sequence in it:
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Lemma 3.2. A tree T is a proof of correctness for a complete sequence p iff
U(T, p) ≤ ε.

A näıve approach to calculating the value of uncertainty of a given decision
tree would be to enumerate its possible completions. However, this approach
is ineffective since every incomplete node of a tree can be extended with an
arbitrary sub-tree. Instead, we use an efficient algorithm (Algorithm 1) that
traverses the current decision tree only once in order to calculate the uncertainty.

Algorithm 1 Calculating U(T, p)

Assuming p = (u1, . . . , um)

1: Deltas← ∅
2: for all {v|v ∈ V, v 6= m, d(v) < N} do

Assuming v is a part of a path
p′ = (u1, . . . , uk, v1, . . . , vn = v) and
(u1, . . . , uk) is a common prefix of p and p′

3: maxCommon←
k
∏

i=2

cT (ui)+N−dT (ui−1)
N

4: maxPPrime← N−dT (v)
N

n
∏

i=1

cT (vi)+N−dT (ui−1)
N

5: minP ←
m
∏

i=1

cT (wi)
N

6: δ ← maxCommon · (maxPPrime−minP )
7: Deltas← Deltas ∪ {δ}
8: end for

9: return max
δ∈Deltas

δ

This algorithm exploits the fact that the maximum difference in scores is
achieved when one of the sequences gets its lowest possible score, while some
other sequence gets its highest possible score. The algorithm goes iteratively
over all nodes in T that we can ask more questions on and for every node v builds
a sequence p′ that ends one step after v (i.e. a shortest complete sequence that
contains v). The algorithm then calculates maximum possible score difference
between p′ and p (line 3-6). The maximal common prefix of the two sequences
is designated as u1, . . . , uk. To achieve the maximum possible difference the
algorithm assigns: highest possible score to the common part of p and p′ (line
3), highest possible score to the reminder of p′ (line 4) and lowest possible score
to the reminder of p (line 5). At the end, the algorithm returns the maximum
of the calculated differences.

Example: While calculating the uncertainty of a path ending by a node labeled
“Padua” in a tree presented in Figure 2.1, the algorithm will build a sequence
p′ for a node “Bologna”: p′ = (Rome, F lorence,Bologna). The common prefix
contains only the root, thus maxCommon = score(root) = 1, maxPPrime =
9
10 ·

4
10 ·

9
10 = 324

1000 and minP = 4
10 ·

5
10 ·

1
10 = 20

1000 , and finally δ = 304
1000 . The same

calculation will be performed for all other nodes of the tree and the maximum δ

will be returned.
Theorem 3.3 formally proves the algorithm correctness.

Theorem 3.3. Given a decision tree T and a complete sequence p in it Algo-
rithm 1 calculates U(T, p).
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Proof. The maximum possible score of a complete sequence p in any T ′ ∈
Compl(T ) is upper bounded by T ’s current state - indeed there are only two
options for p:

1. p ∈ P(T ), then p = (u1, . . . , uk) will get a maximum score if for all re-
maining questions for every ui, uu+1 will be chosen as an answer. In this
case,

max
T ′∈Compl(T )

scoreT ′(p) =
k
∏

i=2

cT (ui) +N − dT (ui−1)

N

2. p is a continuation of some partial sequence p′ ∈ P(T ) (i.e. p′ is a prefix
of p), then the maximum score of p in T ′ ∈ Compl(T ) is exactly the
maximum score of p′ in T ′ (the maximum is achieved if all users select p
as the only continuation of p′), and thus it can be calculated as in previous
case.

On the other hand, the minimal possible score for a sequence p = (u1, . . . , uk)
is achieved if for all the remaining questions on node ui all the answers will be
something other than ui+1. And its minimal score would be:

min
T ′∈Compl(T )

scoreT ′(p) =

k
∏

i=2

cT (ui)

N

Finally, if we have two sequences p1 = (u1, . . . , uk, v1, . . . , vm) and p2 = (u1, . . . , uk, w1, . . . , wm)
(u1, . . . , uk is the common prefix of the two sequences) then the difference in
their scores in a possible continuation T ′ is given by:

scoreT ′(p1)− scoreT ′(p2) =
(

k
∏

i=2

cT ′(ui)

N

)

·

(

n
∏

i=1

cT ′(vi)

N
−

m
∏

i=1

cT ′(wi)

N

)

And thus, it is maximized when one of the sequences gets all of the remain-
ing votes (including the common prefix part of the sequence) and the second
sequence (except for the common prefix) gets no more votes.

3.2 What questions to ask

The second sub-problem any algorithm for finding an optimal sequence has to
solve is deciding what questions to ask next. For simplicity we will present an
algorithm that asks one question at a time, in Section 5.2 we will show how it
can be extended to allow asking multiple questions in parallel. We employ a
greedy approach to solve this problem - we ask questions on a sequence with
the highest ”potential”, i.e. a sequence with a highest potential score. This
approach is effective (as we will show in section 6) and can can further be
extended for identifying a bulk of ‘best questions’, e.g. when multiple questions
may be posed to users in parallel. For clarity we explain next in details how
to choose a single next question, then briefly consider the selection of multiple
questions.

Formally, the notion of sequence potential is defined as follows:
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Definition 3.4 (Potential score). Given a tree T and a sequence p (partial or
complete) in it:

MT (p) = max
T ′∈Compl(T )

scoreT ′(p)

In general, there may be several sequences that have the highest potential.
Since we do not have any additional information that allows us to prefer one
over the other, we will consider all of them in a round-robin.

Algorithm 2 Finding the optimal sequence

1: T ← origin

2: i← 0
3: while P(T ) = ∅ OR min

p∈P(T )
U(p, T ) ≥ ε do

4: allLeafs← Leafs(T )
5: bestLeaf ← argmaxp∈allLeafs M(p)
6: Candidates← {bestLeaf}
7: TopNodes← {tN(bestLeaf)}
8: maxScore←M(bestLeaf)
9: if maxScore > ε then

10: for all p ∈ allLeafs do

11: if M(p) = maxScore then

12: if tN(p) 6∈ TopNodes then

13: Candidates← Candidates ∪ {p}
14: TopNodes← TopNodes ∪ {tN(p)}
15: end if

16: end if

17: end for

18: p← Candidates[i mod |Candidates|]
19: Ask a question on tN(p)
20: i← (i+ 1) mod |Candidates|
21: else

22: p← Candidates[0]
23: Ask a question on lowest node of p
24: end if

25: end while

26: return argminp∈P(T ) U(p, T )

If there is more than one minimum(maximum) item, argmin(argmax) shall re-
turn one at random

Each iteration of this algorithm finds a node in the current decision tree
T and asks a question on it. The algorithm stops (condition on line 3) when
the uncertainty of some node p in the tree drops below ε. When this happens,
following Lemma 3.2 T is the proof of correctness for p.
On line 4 we find a sequence (partial or complete) with the maximum potential
score. Following the proof of Theorem 3.3, max potential score can be calculated
using a simple formula in linear time (in the length of the sequence).

Given a sequence we have also to choose a node in it to ask a question, this
is done on line 5. We prefer to ask questions on higher nodes as they affect more
paths in the tree. Formally we define:
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Definition 3.5 (Top-node). For a path p = (v1, . . . , vk) a top node - tN(p) is
a node vi, s.t. i is the minimum item in the set {i|1 ≤ i ≤ k, d(vi) < N} (i.e.
a topmost node that was not yet exhausted).

The loop in lines 8-15 selects all the sequences that have the maximum
potential score. We ask questions on all of them in the round-robin manner.
Finally, on line 7 we check for a special condition - if all of the sequences in the
tree can not have score greater than ε, then it does not matter which sequence
we return - all of them are optimal by definition, thus we just need to discover
one complete sequence and return it. The easiest way to do it is by asking
questions on the lowest possible node - take any sequence and ask a question
on its last node, if the answer terminates the sequence return it, otherwise ask
a question on a newly discovered node.

Example: given a decision tree presented in Figure 2.1 our algorithm will
ask a question on a node labeled “Bologna” since it’s the highest non-exhausted
node of a sequence with the highest potential (the potential of a sequence
(Rome, F lorence,Bologna, Ferrara) is 4

10 ·
9
10 ·

10
10 = 36

100).
It is clear that the algorithm eventually halts - the number of questions we

can ask is bounded by the size of T (times N ) which is finite. It is also clear
that when it does, there is a sequence p in T for which U(T, p) < ε and this
is the sequence that is returned (lines 3 and 24). Thus, following Lemma 3.2
the algorithm returns an optimal sequence. In Section 4 we perform a detailed
analysis of the algorithm’s efficiency.
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Chapter 4

Efficiency and optimality

In this chapter we will discuss the efficiency and the optimality of the algorithm
presented above and will also provide a lower-bound for the possible optimality
ratio. To discuss optimality we need to define a cost measure and a set of inputs,
based on which we will compare different algorithms.

We use the number of visited nodes in a tree (i.e. number of nodes we asked
questions about) as our cost measure. This number is in direct correlation to the
actual number of questions asked - indeed we assumed that in order to learn a
probability distribution of a continuation from a node one has to askN questions
on this node. Furthermore, using number of nodes as a cost measure, rather
than the actual number of asked questions, makes reasoning about optimality
much simpler.

The class of inputs we consider is the set of all possible complete trees
composed from items in S where the difference between the shortest and the
longest sequence is at most k, for some predefined constant k. For a given k we
denote the corresponding class of inputs as Ik. As we saw in our experiments,
typical real-world inputs fall into Ik for fairly small value of k (comparable plans
of the same granularity usually contain similar number of items).

We use an instance-optimality notion as it appears in [12]:

Definition 4.1 (c-Optimality). For a class of inputs I and a class of algorithms
A, algorithm A ∈ A is c-optimal if for every input I ∈ I and for every algorithm
B ∈ A:

cost(A, I) ≤ c · cost(B, I) + c′

We refer to c as the optimality ratio. c′ is also a constant.

We will prove next the following two results. The first proves the instance
optimality of our algorithm and the second shows its optimality ratio is far by
at most a factor of two from the lower bound.

Theorem 4.2. Algorithm 2 (A) is 1
ε
− optimal on trees from Ik.

Theorem 4.3. Let B be a deterministic algorithm for finding an optimal (up
to ε) sequence which is c− optimal on trees from Ik. Then c ≥ 2

ε
.

To prove Theorem 4.2 we will first analyze the performance of Algorithm 2
and show that it asks questions about at most 1

ε
− 1 different sequences (later,
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in Section 6, we show that in real-life cases our algorithm considers even less
sequences). To do this we will introduce a concept of “Candidates pool”, a set
of nodes that our algorithm considers to ask questions about. We will show
that during the run of the algorithm, only a limited number of nodes can enter
the pool, thus limiting the total number of different paths considered by our
algorithm.

Theorem 4.4. Algorithm 2 asks questions about at most 1
ε
− 1 different se-

quences during its run.

Proof. Let’s call Algorithm 2 A. Only sequences with potential maximum score
greater than ε are considered by A, A asks questions only on the top-nodes of
the sequences in Candidates. Let Pi be the set (pool) of all top-nodes that are
part of a path with potential maximum greater than ε after question i. It is
clear that the node for question i+1 is chosen only from Pi. If a node v was in
Pi but is not in Pi+1 we say that node v has left the pool. Node v can leave the
pool only in one of the following cases:

1. v is no longer a top-node, i.e. all possible questions on it were asked, but
it still is a part of a path with potential max score greater than ε. In this
case one or more children of v will be in Pi+1.

2. v is no longer a part of path with potential max score greater than ε, it
means that no descendants of v will be in Pj for ∀j > i.

It is clear that once a node has left the pool, it can not return. Let Out be the
set of all nodes that left the pool for the reason 2, formally Out = {v|∃1 ≤ i ≤
m : v ∈ Pi ∧ v 6∈ Pi+1 ∧ (∀u ∈ Children(V ) : u 6∈ Pi+1)}.
After question m every path that was ever considered by A has a node that is
a part of it in either Pm or Out.
M(p) ≤ scoreT (tN(p)): For every possible completion T ′ of T , p ∈ PtN(p)(T

′),
thus following Lemma 4.6 scoreT ′(p) ≤ scoreT ′(tN(p)), by the definition of
top-node, its score is final (since the display count of its parent equals N ), thus
scoreT ′(tN(p) = scoreT (tN(p)), hence following the definition of potentially
maximum score we get that M(p) ≤ scoreT (tN(p)).
This means that for every v ∈ Pm, score(v) > ε and also for every u ∈ Out,
score(u) > ε (since every node in Out was once in the pool and its score was
already final then).
No two nodes in Pm are a part of a same path (by the definition of top−node).
The same is true for nodes in Out (indeed if v has moved to Out, its children
can not even enter the pool so they can not be moved to Out either). There
are also no v ∈ Pm and u ∈ Out such that u, v are parts of the same path
(for the same reason). Thus all the nodes in Pm ∪ Out are parts of a different
sequences. Hence (by Lemma 4.7)

∑

v∈Pm∪Out

score(v) ≤ 1. And since for every

v ∈ Pm ∪ Out, score(v) > ε we have that
∑

v∈Pm∪Out

score(v) > |Pm ∪Out| · ε.

From these two facts we get that |Pm ∪Out| < 1
ε
.

Thus algorithm A considers at most 1
ε
−1 different sequences during its run.

Corollary 4.5. The size of the proof of correctness tree found by Algorithm 2
is O( 1

ε
· |S|).
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Proof. The proof follows from the fact that the tree contains at most 1
ε
different

paths, and each path contains at most |S| nodes.

To complete the proof of Theorem 4.4 we prove the following two lemmas.

Lemma 4.6. For every node v ∈ V ,
∑

p∈Pv(T )

score(p) = score(v). In particular

∑

p∈P(T )

score(p) = 1.

Proof. By induction on the tree structure. For leaves the claim is true since
Pv(T ) contains exactly one path - from the root to v, and thus

∑

p∈Pv(T )

score(p) =

score(v) by definition.
Let v be an internal node and assume the claim is true for its children. Let
{u1, u2, ..., un} be the set of v’s children. For every ui there is a single path
from the root to ui - {w1, w2, ...wk} (where wk is ui and wk−1 is v). Thus:

score(ui) =

k
∏

j=2

c(wj)

d(wj−1)
=

c(wk)

d(wk−1)

k−1
∏

j=2

c(wj)

d(wj−1)

=
c(ui)

d(v)
score(v)

Since a path containing ui can not contain uj we can split Pv(T ) into
n
⋃

i=1

Pui
(T ),

and thus:

∑

p∈Pv(T )

score(p) =

n
∑

i=1

∑

p∈Pui
(T )

score(p) =

=

n
∑

i=1

score(ui) = score(v)

n
∑

i=1

c(ui)

d(v)

Choice counters of the children sum up to a display counter of the parent, thus
n
∑

i=1

c(ui)
d(v) = 1, and hence

∑

p∈Pv(T )

score(p) = score(v).

Lemma 4.7. Let A be a set of nodes of a tree T , s.t. no two nodes in A are a
part of a same sequence. Then

∑

v∈A

scoreT (v) ≤ 1.

Proof. Let’s build a tree T ′ from T by terminating a path at each v ∈ A, the
rest of the tree remains as is. Now, for each v ∈ A there is a path pv in T ′ (since
all of the nodes in A are parts of different paths, there is no conflict). Also,
scoreT ′(pv) = scoreT (v) (since we left the rest of the tree as is, all the nodes from
the root to v in T and T ′ have the same counter values). {pv|v ∈ A} ⊆ P(T ′),
thus by Lemma 4.6

∑

v∈A

scoreT (v) =
∑

p∈{p|v∈A}

scoreT ′(p) ≤
∑

p∈P(T ′)

scoreT ′(p) =

1.

Now we can prove the optimality ratio of Algorithm 2.
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Figure 4.1: (a) Scattered-tree of depth 2 (N = 3). (b) Chain-tree of length 2
(N = 3).

of Theorem 4.2. Let T ∈ I be some ground truth tree and let p be the shortest
optimal (up to ε) path in it, with length l. A will consider at most 1

ε
different

paths during its run, one of them will be p. Each one of these paths is at most
l + k nodes long (following the assumption that paths length varies by at most
k nodes), thus in total the algorithm will visit at most l+k

ε
nodes. On the other

hand any other algorithm B will have to visit at least l nodes to discover and
return p (or any other optimal path, since p is the shortest optimal path). Thus:

cost(A, T ) ≤
l + k

ε

cost(B, T ) ≥ l

Combining this we get:

cost(A, T ) ≤
1

ε
· cost(B, T ) +

k

ε

k

ε
is a constant independent of the input, thus following the definition, Algorithm

2 is 1
ε
− optimal.

And finally we prove that there is no deterministic algorithm that has opti-
mality ratio better than 2

ε
. To do so, we will show that for every deterministic

algorithm we can construct an input that will require from it to consider 2
ε

different paths, while an optimal algorithm will have to consider only one path.

of Theorem 4.3. For the sake of the proof we will first define 2 special types of
subtrees:

• A Chain-tree of length k is a subtree consisting of k nodes u1, . . . , uk,
where ui is the only child of ui−1 for every 1 < i ≤ k. In this subtree
score(uk) = score(u1).

• A Scattered-tree of depth k is a subtree rooted in u of depth k where every
node has exactly N children. Every leaf in this subtree has a score of
score(u)

Nk .

Figure 4.1 illustrates these types of subtrees.
Let’s analyze the performance of B when running on a set of inputs {Tx|x ≥

1}. A tree Tx will be constructed as follows:

• Let k be the largest integer such that
(

1
2

)k
> ε
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• Starting from the root, which is considered to be on level 0, every node
on level 0 ≤ i ≤ k will have 2 children, every child will have choice count
of ⌊N2 ⌋ (If N is odd, additional child will be added to every node with
choice count of 1 and a scattered- tree underneath it).

• After this, on the level k we will have c leaves, each one of them with a

score of s =
(

1
2

)k
.

• By the way of selection of k we ensured that s > ε and 1
2s ≤ ε. Since all

the leaves have the same score and their score sum up to 1 (Lemma 4.6)
we have that c ≥ 1

2ε and since c is an integer, c ≥ ⌈ 1
2ε⌉. Let’s denote these

leaves as u1 . . . uc.

• Under each one of the ui’s we will put a chain-tree of length M , where M

is an arbitrarily large number, we will denote the end of each chain-tree
as vi

• Under each one of the vi’s except for vx we will put a scattered- tree of
depth T , such that every leaf will have a score less than s − ε, under vx
we will put a chain-tree of length T .

• Every leaf we have now will be labeled with ‡, making the tree complete

This tree has exactly one correct answer (under vx). Now, suppose B does not
consider a path under ui during its run, for some i. Then, Ti is indistinguishable
from Tx up until the discovery of ui and the correct answer is under ui, thus
when running against Ti, B will not discover a correct answer, contradicting the
assumption that B is a correct algorithm. So B considers at least c different
paths during its run. On the other hand, algorithm Bx that discovers all of the
ui’s and then proceeds asking questions only about ux can return after asking
N questions on every node of the ux chain-tree (since under each ui all paths
have a score of at most s, discovering one path with score s is enough to return
a correct answer), thus considering only 1 path during its run. Length of every
path in Tx tree equals k +M + T . B asks questions on at least k + 1

2ε ·M + T

nodes, while Bx asks questions on k+M +T nodes. Since M can be arbitrarily
large the optimality ratio between B and Bx is at least 1

2ε .
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Chapter 5

Natural extensions

There are two natural extensions that come to mind when solving a problem of
finding a best result using crowd: finding top-k answers instead of just the top-1,
and asking questions in bulk (since there might be several users ready to answer
questions and we don’t want them to waste their time). In this chapter we will
discuss both these extensions - their effect on the model that we presented and
the results that we achieved.

5.1 Finding top-k answers

First, we will discuss the extension of the problem to finding top-k answers.
Recall Definitions 2.6 and 2.8 which define a top-k (up to an error) set of se-
quences and the proof of correctness for this set. Given these definitions we can
define a generalized optimization problem as: Find an approximated top-k set
by asking as less questions as possible. We assume in the sequel that k < 1

ε
,

since otherwise the problem becomes trivial - every set of sequences of size k

will be a top-k set.
Next, we will describe and present our algorithm for solving the top-k find-

ing problem. This algorithm employs the same techniques as the algorithm
presented in Section 3.2: asking questions about sequences with the highest po-
tential, and asking questions on the highest possible nodes. To find the top-k
set we will execute Algorithm 2 iteratively while saving the discovered tree. In
the first iteration it will find the top-1 sequence (as proven in Section 3.2), in
the second iteration it will find the second best sequence and so on - after k
iterations we will have the top-k set (it will proven formally in the sequel).

For us to be able to perform several iterations of Algorithm 2 on the same
tree (and not get the same result every time) we have to make it ignore the
results of the previous iterations (this is relevant for both the stop condition
and the selection of the next question). To do this we will place these results
into a special set. This set, designated PrevResults, will hold the sequences
returned by the previous iterations of Algorithm 2.
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5.1.1 Generalized stop condition

The notion of uncertainty (Definition 3.1) has to be generalized to allow ignor-
ing a given set of sequences (previous results in our case). Here is the formal
generalized definition:

Definition 5.1 (Generalized Uncertainty). Given a set of complete sequences
PrevResults, an uncertainty of a complete sequence p in a tree T is given by:

U(T, p, PrevResults) = max
T ′∈Compl(T )

[

max
p′∈P(T ′)\PrevResults

scoreT ′(p′)− scoreT ′(p)

]

The algorithm for calculating the generalized uncertainty is almost identical
to Algorithm 1, the only thing that is different is the set of nodes we test.
Algorithm 3 is the modified algorithm, with the modifications highlighted:

Algorithm 3 Calculating U(T, p, PrevResults)

1: Deltas← ∅
2: for all {p′|p′ ∈ P(T ) \ PrevResults, p′ 6= p} do

Assuming p′ = (u1, . . . , uk, v1, . . . , vm) and
p = (u1, . . . , uk, w1, . . . , wm)

3: maxCommon←
k
∏

i=2

cT (ui)+N−dT (ui−1)
N

4: maxPPrime←
n
∏

i=1

cT (vi)+N−dT (ui−1)
N

5: minP ←
m
∏

i=1

cT (wi)
N

6: δ ← maxCommon · (maxPPrime−minP )
7: Deltas← Deltas ∪ {δ}
8: end for

9: return max
δ∈Deltas

δ

Since only the search domain was changed and not the algorithm operation,
the proof of Theorem 3.3 works for this algorithm also.

Following definitions 5.1 and 2.8 we can use the modified notion of uncer-
tainty to check whether a decision tree is a proof of correctness for a set of
sequences in it:

Lemma 5.2. A decision tree T is a proof of a set A being a top-k set iff for
every p ∈ A:

U(T, p,A \ {p}) ≤ ε

5.1.2 Deciding what question to ask

As we said before, we will employ the same two techniques to decide what
question to ask next as we used in Algorithm 2: asking questions on the most
promising sequence, and asking questions as high as possible in the tree. How-
ever the search domain for the most promising sequence has to modified to
exclude sequences from PrevResults. In Algorithm 2 we go over all the leaves
of the discovered tree (since we always ask questions on the highest possible
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node, leaves describe all possible single-step continuations of T ). In the gen-
eralized algorithm we would like to exclude leaves from PrevResults from the
search. However, this is not enough. Indeed, if a leaf from PrevResults is a
single child on node v in T and node v is not exhausted yet (more questions
can be asked on it), then there is another possible single-step continuation of T
described by v, and thus we should include it in our search space. We call such
nodes quasi-leafs.

Definition 5.3. Given a tree T and a set of leafs A in it, an internal node v

in T is a quasi-leaf if dT (v) < N and all of v’s children are in A.

5.1.3 Algorithm for finding top-k sequences

The algorithm for finding a set of top-k sequences will execute a generalized
version of Algorithm 2 for k iterations. Each new iteration will use the results
of the previous ones. Algorithm 4 is the generalized version of Algorithm 2 and
it is presented below, the differences from the original algorithm are highlighted.

Algorithm 4 FindTopKBase: Finding the optimal sequence, while ignoring
previous results

Input: T, PrevResults

Output: TopSequence, T

1: i← 0
2: while P(T ) = ∅ OR min

p∈P(T )\PrevResults
U(p, T, PrevResults) ≥ ε do

3: allLeafs← Leafs(T ) ∪QuasiLeafs(T, PrevResults)

4: bestLeaf ← argmaxp∈allLeafs M(p)
5: Candidates← {bestLeaf}
6: TopNodes← {tN(bestLeaf)}
7: maxScore←M(bestLeaf)
8: if maxScore > ε then

9: for all p ∈ allLeafs do

10: if M(p) = maxScore then

11: if tN(p) 6∈ TopNodes then

12: Candidates← Candidates ∪ {p}
13: TopNodes← TopNodes ∪ {tN(p)}
14: end if

15: end if

16: end for

17: p← Candidates[i mod |Candidates|]
18: Ask a question on tN(p)
19: i← (i+ 1) mod |Candidates|
20: else

21: p← Candidates[0]
22: Ask a question on lowest node of p
23: end if

24: end while

25: return argminp∈P(T )\PrevResults U(p, T, PrevResults), T

If there is more than one maximum item, argmax shall return one at random

22



Finally, the algorithm for finding a set of top-k sequences is presented below:

Algorithm 5 Finding a set of top-k sequences

1: T ← Origin

2: PrevResults← ∅
3: for 0 ≤ i < k do

4: p, T ← FindTopKBase(T, PrevResults)
5: PrevResults← PrevResults ∪ {p}
6: end for

7: return PrevResults

5.1.4 Efficiency and optimality

In this subsection we will show that the results we proved in chapter 4 regarding
the efficiency and the optimality of our algorithm for finding a top-1 sequence
are also true for the top-k extension. To do so, we will show that Algorithm 5
considers at most 1

ε
different sequences (just like our original algorithm), while

any other algorithm for finding a set of top-k sequences will have to consider at
least k different sequences.

Theorem 5.4. Algorithm 5 considers at most 1
ε
different sequences during it’s

run.

Proof. Algorithm 5 executes a variant of Algorithm 2. This variant has the
same complexity (indeed, the only change is the reduction of search space for
the next question). In addition all the executions of the algorithm share the
discovered tree, and thus they share a pool of candidates (recall from the proof
of theorem 4.4, a pool of candidates is a set of sequences that can be considered
by the algorithm). As we shown in the proof of theorem 4.4, the size of this
pool is limited by 1

ε
, and thus at most 1

ε
different sequences will be considered

during the executions of Algorithm 4 on the same tree.

Since any other algorithm has to consider at least k different sequences in
order to return a set of top-k answer, one may expect that the optimality ratio
of Algorithm 5 is at most k

ε
. Unfortunately, this is not true, since the k different

sequences that some algorithm has to consider may have many nodes in common,
hence finding the top-k answers does not necessarily incur factor k penalty in
performance. Thus, proven upper bound for the optimality ratio of Algorithm
5 is 1

ε
(the same bound we have provenfor the original algorithm).

In Chapter 6 we will show that in practice looking for top-k sequence instead
of top-1 does not incur a severe penalty in required questions count, moreover
the performance of our algorithm (relative to baseline algorithms) improves as
k grows.

5.2 Asking questions in bulk

Up until now we discussed how to select a next question to ask under the
assumption that the questions are asked one at a time. However, in a real-
life applications there usually will be multiple users working with the system
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simultaneously. This requires issuing multiple questions in parallel. In this
section we will discuss an extensions to the algorithm we have developed that
will allow to do so. First, we present the problem of asking questions in parallel
in detail, then we will present several heuristic approaches to its solution. Formal
reasoning about asking questions in parallel will require modeling the interaction
of the users with the system (how many users are online at each moment) and is
out of scope of this work. We will, however, show empirically that our heuristics
work very well in practice.

In general, the problem of asking questions in parallel can be formulated as
follows: Given a system state S and a budget of B questions, assign as much
questions as possible (out of the budget). The goal is to reach a final system state
while minimizing the total number of asked questions. In our model, the system
state is the decision tree discovered so far and the final state of the system is
a proof of correctness. Note that assigning exactly B questions is not always
possible (for example, in our model when the decision tree consists only of the
root, we can assign at most N questions).

In our model, questions may be assigned to nodes in a current discovered
decision tree that are not exhausted yet. Such nodes can be ranked by some
criteria, and then there are two general approaches to assigning the questions:

1. Assign as much questions as possible on the highest ranked node, then
move to the second highest rank and so on. This is called the “deep”
approach.

2. Distribute questions evenly on all available nodes. This is called the
“broad” approach.

We implemented both of these approaches and compared their performance
empirically. The evaluation results will be discussed in Chapter 6.

The implementation was done by modifying Algorithm 4. Instead of finding
one most promising node, the modified algorithm will return a list of all nodes
that we can ask questions on, sorted by potential. Questions are assign to some
of these nodes basing on the approach (either “deep” or “broad”). The list of
nodes is built using the following method:

1. Order all leafs and quasi-leafs by max potential score in descending order.

2. Replace every leaf in the resulting list with its top-node (while removing
duplicates).

3. Throw out all nodes with a max potential score less than ε

5.2.1 Optimality

Even though when asking questions in bulk we will inevitably have to ask more
unneeded questions, we will show in this subsection that we will still consider
at most 1

ε
different sequences, and thus optimality results from Chapter 4 hold.

Theorem 5.5. Both approaches to asking questions in bulk lead to considering
at most 1

ε
different sequences.

24



Proof. We only consider nodes that have a maximum potential score of at least
ε (step 3), thus only nodes that are members of the pool are considered (recall
from the proof of theorem 4.4, the “pool” is the set of all nodes with a max
potential score of at least ε). And as was shown in the proof of theorem 4.4
at most 1

ε
different paths can have nodes in the pool during the run of the

algorithm.
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Chapter 6

Experimental Evaluation

In this chapter we will present the results of the experimental evaluation of our
algorithm. During the evaluation we explored its behavior on different data sets
(both synthetic and real) with different parameters. We also explored the effect
of the algorithms parameters (such as allowed error, batch size and the required
number of answers per node). We compared our algorithm to several baseline
algorithms.

6.1 Evaluation setup

To conduct the experiments we have implemented CrowdPlanr in C# and PHP
while using MySQL as the database engine. Its architecture is presented in
Figure 6.1. For the evaluation purposes the User Interface was replaced with
a simulator (called the Oracle in the sequel) that returned answers to queries
either from a synthetically generated dataset or a dataset recorded from the
interaction with real users. Other parts of the system are: Plan Builder which
executes the algorithm for finding the optimal sequence, Crowd Manager which
formulates the questions for users (by preparing a set of possible answers) and
Database which holds all the information gathered by the system.
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Figure 6.1: CrowdPlanr architecture

Algorithms In our experiments we compared the number of visited nodes
(and the number of questions asked) by our algorithm (as defined in Chapter
3, from now on it will called CrowdPlanr) to the number of nodes visited by the
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baseline algorithms running on the same input (since the problem presented in
this work has not been studied before, we can’t compare our algorithm to other
solutions). The baseline algorithms that were considered are:

• Random - a näıve algorithm that randomly chooses which question to ask
next, from all possible questions (nodes of the tree that are not exhausted
yet). This algorithm showed extremely poor performance (asked signif-
icantly more questions than all other algorithm), and thus we will not
include this algorithm in our comparisons

• Greedy - an algorithm that employs a trivial greedy approach: ask a ques-
tion on a sequence that currently has the maximal score, try to extend it
as much as possible (i.e. ask a question on a lowest node possible of the
selected sequence).

• CrowdPlanr
− - compared to the greedy, our algorithm is different in two

ways, first we choose a sequence with the highest potential score (not the
highest current score) and second we ask questions on a highest node pos-
sible (not always trying to extend the selected sequence). CrowdPlanr− is
an algorithm that is half-way between the Greedy and the CrowdPlanr al-
gorithms: it selects a sequence with the highest current score (like the
Greedy) and asks questions on a highest node possible of that sequence
(like the CrowdPlanr).

The halting condition for all the algorithms is the same: they can return
a set of sequences only if the tree they had discovered so far forms a proof of
correctness (recall Definition 2.8 for that set. The algorithms use uncertainty
calculation we presented in Chapter 3 to check this condition.

Synthetic Data For evaluating the effect of various properties of the input
on the number of questions asked by the algorithms we generated a synthetic
datasets simulating an input with desired properties. These datasets were rep-
resented by complete trees accessible by the Oracle. In each experiment we
changed only one property of the input while all the others had a default value.
We considered the following properties of the input:

• Tree depth is ranged from 5 to 10, with default value of 7. Trees that have
more than 10 levels are less important for two main reasons: first, human
factor reason, in the real world scenarios it is hard for the user from the
crowd to hold in her mind more than 10 items as a context and give a good
recommendation for continuation of the sequence (usually when one wants
to plan a longer sequence, she will do the planning on different granularity
levels). Second, since we use probabilities and the final score of the answer
is a multiplication of the probabilities of the nodes, for sequences longer
than 10 nodes the scores get very small in our setup and hence all the
sequences will be optimal up to ε (Definition 2.6).

• Number of possible descendants of each node is a parameter that is respon-
sible for the width of the tree. We range values for this parameter from 2
to N

2 , with a default value of 5. We saw in our experiments that this pa-
rameter does not affect the number of questions asked by the algorithms,
and thus we will not discuss these experiments in detail.
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• Depth difference (k) is the difference in levels between the highest and
the lowest leaf in the tree. This property shows the balance of the tree.
The default value is 0, which means that all the sequences have the same
length. We also ranged k values up to TreeDepth

3 . Our experiments showed
that this parameter also does not affect the number of questions asked by
the algorithms, thus we will not discuss these experiments in detail.

• Skewness is a percent of votes that go in favor a specific child of each node
in tree (for example if the Skewness is 60% then for every node that will
be a child that gets 60% of the votes). The default value for skewness is
60%, we also checked skewness of 50% and 70%.

Real Data To ensure that our algorithm performs well in real life we evalu-
ated the number of questions asked by it (and its baseline competitors) on two
datasets coming from different real-world applications:

1. A Large dataset containing a record of 20,000 vacation trips in Europe.
The trips included 10 different cities and were approximately of the same
length (in terms of visited cities). This dataset was obtained from a trav-
eling agency, we omit its name for privacy reasons.

2. A Medium size dataset containing answers to a question ”In which order to
watch Star Wars films?”. It was obtained by comparing the popularity of
the proposed orders on various web sites. This question is asked frequently
on the internet and has 100,000,000 results in web search engines. It has
6! (=720) possble answers (some of them, of course, completely wrong).
An important property of this dataset is that there are only small number
of “good” orders, while others have very little support.

All the datasets were initially contained the ranking of the sequences and were
translated into a complete tree that was used by the Oracle to answer queries.
We believe this is a good approximation of a real-life interaction with the users,
because we assume that the users know the rating of a complete sequence and
thus their rating of the partial sequence (i.e. the answer to our questions) will
be consistent with it.

Algorithm parameters In addition to the properties of the input we eval-
uated how the parameters of the algorithm affect the number of nodes visited
by it (and the number of questions asked by it). We evaluated the effect of the
following parameters:

• Allowed error (ε) The default value of an allowed error in our experimens
was 0.01, in addition we ranged it from 0.002 to 0.1.

• The number of sequences in the answer (k) By default we were looking for
the single best sequence. In addition we ranged k from 1 to 10.

• Number of questions per node (N ) is chosen based on a statistical data,
reliability of the crowd and budget constraints. We use a default value of
10, but also run experiments with N = 50 and N = 100.
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• The number of questions asked in parallel (batch size) By default we let
the algorithms ask one question at a time. In addition we ranged the
batch size from 1 to 50.

All the parameters (both of the input and of the algorithms) used in our
experiments are summarized in Table 6.1.

Parameter Default value Tested values
Tree depth 7 5 - 10
Questions per node (N ) 10 10, 50, 100
Data skewness 60% 50%, 60%, 70%
Maximum children per node 5 5
Depth difference 0 0
Allowed error (ε) 0.01 0.002 - 0.1
k of Top-k 1 1-10
Batch size 1 5-50

Table 6.1: Summary of the parameters

6.2 Evaluation results

In every experiment for each of the algorithms we measured the number of nodes
visited (node is considered visited if there was at least one question asked about
it) and the total number of questions asked. For each experiment we executed
the algorithms on 3 datasets with the same properties and averaged the results.

The experiments were modeled in the following way: generated datasets
were read by the Oracle and all the questions asked by the algorithms were
redirected to the Oracle which answered them basing on an input data set in a
deterministic way (i.e. several run using the same oracle would yield the same
results). The Oracle also collected statistics about asked questions from which
we derived the results of the experiments.

6.2.1 Effects of the data parameters

In this set of experiments we evaluated the effect of the parameters of the input
data on the number of questions asked by each of the algorithms. For this
we used synthetic data sets. We also verified achieved results on a real-world
datasets.

Varying the depth of the tree In this experiment we evaluated the effect
of a tree depth. All other parameters remained default (see Table 6.1). The
results are summarized in Figure 6.2.

Note that the Y axis has a logarithmic scale and it represents the number of
questions that were asked. The X axis represents the depth of the tree. From
Figure 6.2 we can see that the Greedy algorithm performs significantly worse
than both the CrowdPlanr and the CrowdPlanr

− algorithms. Also, we can see
that the difference between the CrowdPlanr and the CrowdPlanr

− grows with
the depth of the tree.

29



80

160

320

640

1280

2560

5120

10240

5 6 7 8 9 10 11

#
 o

f 
q

u
e

st
io

n
s 

Tree depth 

CrowdPlanr

CrowdPlanr-

Greedy

Figure 6.2: Varying the tree depth

Varying the data skewness In this experiment we examined the effect of
data skewness on the number of questions asked by the algorithms. We tested
skewness levels of 50%, 60% and 70%. All other parameters had default values
(see Table 6.1). The results of the experiment are presented in Figure 6.3.

As can be seen in this graph, the more data is skewed the easier it is for the
algorithm to find a correct answer. The most prominent effect skewness has on
the Greedy algorithm.

Varying the number of questions per node In this experiment we eval-
uated the impact of different values for N (10, 25, 50, 100) on the number of
nodes visited by the algorithms (the total number of questions is less interesting
since it is expected to be linearly dependent on N ). All other parameters had a
default value (see Table 6.1). Theoretically we have proven that our algorithm
is instance-optimal and its optimality ratio does not depend on N , that means
that CrowdPlanr algorithm is expected to visit the same number of nodes for
any value of N . In practice it means that CrowdPlanr can be used for different
approaches with different audience, crowd size and system needs. Figure 6.4
shows that the reality meets the expectation.

As we can see number of visited nodes is almost constant for various values
of N . Note that Y axis has a logarithmic scale. This empirically proves that
the number of nodes visited by the CrowdPlanr is independent of the value of
N .

Real world data In this experiment we analyzed the number of nodes visited
by each one of the algorithms when executed on a real-world data sets. The
parameters of the algorithms were set to default values (see Table 6.1). The
experiment was performed on two real-world data sets: trip planning and star
wars watching order. The results are shown in Figure 6.5.

Here the Y axis represents the number of visited nodes. As we can see, the
CrowdPlanr algorithm is slightly better than the CrowdPlanr

− algorithm and
both are significtanly better than the Greedy algorithm. We conclude from this
experiment that the behavior of all the algorithms seems to be the same as on
synthetic data.
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Figure 6.3: The effect of the data skewness

6.2.2 Effects of the algorithm parameters

In this set of experiments we examined the effect of different parameters of
the algorithm (like the required number of ansers or the allowed error) on the
number of questions asked by the algorithm and the number of nodes visited by
the algorithm. We performed these experiments both on the real and synthetic
data and the results were the same. The results presented below were achieved
from the synthetic data.

Varying allowed error In this experiment we evaluated the effect of the
allowed error value on the number of questions asked by the algorithms. For
this we left all the parameters with default values (see Table 6.1) and ranged ε

from 0.01 to 0.1. The results are summarized in Figure 6.6.
Here again, the Y axis has a logarithmic scale and represents the number of

questions asked by the algorithm. The X axis represents the value of ε. We can
see that the effect of the allowed error is much larger on the Greedy algorithm
than on the other two. One possible explanation to this is that the Greedy
strategy causes the algorithm to “jump” all over tree without really reducing
the uncertainty. Increasing the allowed error sets the uncertainty bar lower,
thus saving the algorithm work. Another interesting property of this graph is
that the number of questions asked by the CrowdPlanr

− algorithm decreases
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Figure 6.5: Real-world datasets

relatively slow with the increase of ε. A possible explanation for this can be
that the selection criteria of the sequence to work on is wrong, which causes the
algorithm to ask questions on a wrong sequence, and since it asks questions on
a highest possible node, the mistake is not revealed fast enough.

Finding top-k answers It is expected that as we increase the k (the number
of desired answers) the more questions we will have to ask (and more nodes we
will have to visit) in order to find the top-k set. However, when we are looking
for the second best sequence we can use the information we discovered while we
were looking for the top-1 sequence, thus the growth in the required questions
count is expected to be sub-linear. For the next experiment we fixed the allowed
error to be ε = 0.002, ranged k from 1 to 10 and all other parameters were set
to default values (see Table 6.1). The results are shown in Figure 6.7.

The results match the expectation. In addition, the graph in Figure 6.7
displays several interesting properties. First, the advantage of our algorithm
over the baseline algorithms1 grows with k. Second, the number of additional
questions we have to ask decreases with k. This can be explained by the fact

1Recall that CrowdPlanr− uses only one heuristic from CrowdPlanr: asking questions on
the highest available node, while Greedy always tries to go with the sequence that currently
has the highest score
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Figure 6.7: Number of questions as a function of K

that the number of sequences with a score higher than ε is relatively small, and
thus with k big enough it doesn’t matter what sequence we add to the set.

This behavior is further explored in Figure 6.8. This figure contains several
graphs, each graph describes the number of nodes that CrowdPlanr algorithm
had to visit in order to find a top-k set for a ceratin value of k as a function of
ε (all other parameters are, again, set to default values). All the graphs in this
figure are declining and converge to a certain point as the value of ε increases.
This demonstrates once again that when the number of sequences with a score
greater than ε is less than the desired k, then it becomes an easy task to find
the top-k set - just find all the sequences with scores above ε and fill the rest of
the set with any other sequences.

Asking questions in parallel As explained in Section 5.2 there are two
general approaches to asking questions in parallel given a current state of a
decision tree:

• Sort nodes by their “potential” (the definition of “potential” depends on
the algorithm) and then divide the questions evenly between the suitable
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Figure 6.8: Number of questions as a function of ε

nodes (nodes that have a maximum potential score of at least ε). We call
this approach a broad approach

• Ask as many questions as possible on a node with the highest “potential”,
then move to the second best and so on. We call this approach a deep
approach

We implemented both these approaches for our CrowdPlanralgorithm and
for every one of our baseline algorithms (CrowdPlanr− and Greedy) as well. We
then compared their performance while limiting the batch size (the number of
questions asked simultaneously). For this experiment the allowed error was fixed
to be ε = 0.03 and the batch size was ranged from 5 to 50, all other parameters
were set to default values (see Table 6.1). The results of the experiment are
presented in Figure 6.9.

As can be seen in this figure, the behavior of CrowdPlanr and CrowdPlanr
−

is very similar - the total number of questions raises with the batch size, until
the batch size becomes greater than the questions limit, then the total number
of questions remains almost constant. CrowdPlanr algorithm is almost twice
more efficient than the CrowdPlanr

− algorithm, while Greedy algorithm shows
somewhat erratic behavior. The behavior of “deep” and “broad” approaches
seems to be almost identical, however there is a difference. To see it, we put
each algorithm on a different graph (Figure 6.10).

The behavior of the “broad” approach is more stable, but in general requires
more questions, while “deep” approach can save questions in some settings. This
may suggest that our method for ranking the “potential” of the node is correct,
and thus when we concentrate on the nodes with the highest potential we ask
less questions in total. This claim is indirectly supported by the behavior of the
Greedy algorithm, whose ranking method is clearly wrong (see Figure 6.11).

For the Greedy algorithm the “deep” behavior is worse than the “broad” one
(especially for small batch sizes), this suggests incorrect nodes ranking method.
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Figure 6.9: Asking questions in parallel
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Figure 6.10: Comparing “Broad” and “Deep” approaches

6.2.3 Additional experiments

In our last experiment we explored the behavior of all of the algorithms - how
many questions were asked (or nodes visited) on every level of a decision tree.
This tells us how “focused” each one of the algorithms is. For this experiment,
we fixed the tree depth to be 10 and left all other paramters to have default
values (see Table 6.1). The results are presented in Figure 6.12.

In this graph the X axis represents the level in the tree (0 represents the
root, 9 represent leafs) and Y axis represents the normalized number of nodes
discovered by the algorithms (the normalization is done by dividing the result of
each algorithm by the result of the worst algorithm). This can show how many
unnecessary nodes were visited. In this example we compare CrowdPlanr

− and
CrowdPlanr, as you can see the ratio of visited node linearly decreasing with the
depth of the tree. On the first three levels the both algorithms show the same
performance and the performance of CrowdPlanrimproves as we go deeper into
the tree. This means that CrowdPlanrbetter utilizes the information recieved
from the crowd and asks less questions in the long run. When we measured
asked questions instead of visited nodes we got very similar similar results and
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Figure 6.11: Comparing “Broad” and “Deep” approaches for the Greedy algo-
rithm

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

R
e

la
ti

v
e

 #
 o

f 
n

o
d

e
s
 d

is
c
o

v
e

r
e

d
 

# of level 

CrowdPlanr

CrowdPlanr-

(a) CrowdPlanr vs. CrowdPlanr−

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6 7 8 9

R
e

la
ti

v
e

 #
 o

f 
a

sk
e

d
 q

u
e

st
io

n
s 

# of levels 

CrowdPlanr

CrowdPlanr-

Greedy

(b) CrowdPlanr, CrowdPlanr− vs. Greedy

Figure 6.12: Nodes discovered on each level

hence we omit them here. When CrowdPlanr and CrowdPlanr
− are compared

to the Greedy we can see that on the higher levels Greedy performs better than
CrowdPlanr and CrowdPlanr

−. In this case the greedy strategy to go after the
local maximum seems to be a good choice, however starting from the level 4,
Greedy’s performance gets dramatically worse.

6.3 Summary

First, we have empirically shown that our algorithm CrowdPlanr has a better
performance than the base-line algorithms in both number of asked questions
and the number of visited nodes. Next, we have demonstrated that Crowd-

Planr performs good on both synthetic and real-world data of different sizes
and types. In addition, we have shown that as we go deeper into the deci-
sion tree the benefits of CrowdPlanr and CrowdPlanr

− over a greedy approach
become more evident. We also have studied the impact of the different input
data parameters like the depth of a tree, skewness of the data and number of
questions per node. Finally, we have shown that extending our algorithm to
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finding the set of top-k answers or asking many questions in parallel does not
incur heavy penalty in the total number of asked questions. For both these
extensions our algorithm significantly outperforms basic baseline algorithms.
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Chapter 7

Related Work

Since the emergence of the Web 2.0 using the crowd as a source of information
has become common in the Internet. In the beginning the information was pro-
vided directly by the users (e.g. Wikipedia [1] and other user-generated sites).
In the recent years much research has been conducted on more sophisticated
ways to extract bit of knowndelge from the crowd. In particular a crowd com-
puting paradigm has emerged to solve problems that are computationally hard
to solve but are easy for humans [10]. The planning problem that we consider
here is such an instance, as the goal, i.e, the notion of ”best output”, is hard
to formalize. Another examples of such problems are pattern recognition and
image tagging.

There are several approaches to extracting information from the crowd. One
approach suggests using games (e.g. [9], [40], [19], [41], [27]), while another
approach suggests extracting information from the interaction of users with
a certain system (e.g. [42]). Also, there is a more direct approach - paying
the users to perform small and easy tasks the results of which can be used in
computations. Several platforms exist that connect users willing to perform
such micro-tasks with task providers, the most popular such platform is the
Amazon Turk ([30]). Finally, there are attemps [4] to use social services, like
Facebook and Twitter, that are getting more and more popular in the last years
as means to access the crowd.

Many applications has been developed that take advantage of the Amazon
Turk platform. Instead of answering all requests with computer algorithms,
some human-expert tasks are published on crowdsourcing platforms for human
workers to process. Typical tasks include image annotation ([35]), information
retrieval ([16]) and natural language processing ([23]). These are tasks that even
state-of-the-art technologies cannot accomplish with satisfactory accuracy, but
could be easily and correctly performed by humans.

Others considered the development of a unified model to allow uniform data
collection from both humans and machines [32]. In particular, research has been
directed in the Databases community to development of DB systems that allow
to specify which parts of the data should be crowdsourced (e.g. CrowDB [13],
Deco [33], Qurk [28]). These systems provide declarative language support and
ability to define what data will be retrieved from the crowd, and further allows to
employ the crowd as data-processing units. Crowdsourcing was also suggested
as method for data cleaning, integration and analytics, entity resolution, schema

38



expansion (e.g. [18], [36], [43], [25]).
There are two main concerns when working with the crowd - how to minimize

the number of questions (or tasks) one needs to ask the crowd (the are two
reasons for this concern - time required to obtain the answers and the cost of
payments to the workers) and how to validate the quality of the received results
(studies has shown that users exhibit different behaviors in micro-task markets
[22], they can provide incorrect answers or even lie dilebirately).

The minimization of the cost (measured in terms of the number of questions
that are posed to the crowd) and of the expected error are important goals
in crowd-based query processing ([3], [31]). The optimal choice of questions to
pose to the crowd has also been considered in [3] to reduce the uncertainty/error
in aggregation functions over crowd answers. Here again a key difference from
our work is the independence assumption among the aggregated data items.
The dependency exhibited in planning problems requires the development of
corresponding (different) uncertainty measures, and consequently different al-
gorithms. For a specific applications more focused approaches are developed,
for example [8] suggests a hybrid approach to entity linking problem - initial
rough processing is done by a computer and the crowd is then used dealing with
hard cases where the computer did not provide a decisive answer.

Not all workers produce results of the same quality, estimating the reliability
and using it to asses the quality of the data is an additional research direction.
In [25] validation questions (questions for which the system knows the correct
answers) are asked along with the real ones, others try to rank the qualities
of the workers [21] or accurately identify abusive content [15]. An interesting
observation was made in [29] - increasing the price of a single task does not help
getting results of a better quality.

Closest to our work are the works that consider max and top-k query pro-
cessing with the crowds, that involve ordering of the query results using the
crowd. For example, the problem of finding the maximum element has been
investigated in [18] that considers two problems: the judgment problem, that
defines how given a set of comparison results one determines an element which
is most likely to be the maximum, and the next vote problem, that determines
which future comparisons will be most effective. Another example is [39] that
provides efficient heuristics that can be tuned based on parameters like execu-
tion time, cost and quality of result. A key difference between max/top-k query
processing and ours is the inherent dependency that exists between the items in
the plan. Unlike max/top-k processing where users can be asked to compare
pairs of individual elements, planning requires a global view of the (preceding
sub-)plan, and its possible/ideal completions.

An adjacent to crowd-sourcing is a field of active learning [37], which also
studies the problem of requesting human input. The goal is to request input
from an expert in order to enrich the training data set for a specific machine-
learning task.

Crowdsourcing attracted also interest from the AI community with research
aiming at dynamic workflow executions that optimally use the crowd for ac-
complishing a given complex task (e.g. [6], [24]). This is complementary to
our work where users are used to identify and order the items (potentially the
to-be-executed workflow components) needed to best accomplish an informally
specified goal.
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Chapter 8

Conclusion

In this paper we propose to use the power of the crowd for answering planning
queries, when the goal, i.e, the notion of best plan, is hard to formalize. We in-
troduce a simple generic model for modeling plans and for interpreting crowd’s
answers to questions about them. Based on this model, we present an effective
algorithm for identifying the (approximately) best answer using the crowd. The
algorithm builds the desired plans incrementally, choosing at each step the best
questions so that the overall number of questions that need to be asked is mini-
mized. We prove the algorithm to be instance-optimal for a large common class
of planning queries and data instances, showing that the optimality ratio that
it achieves is the best possible, and demonstrate experimentally the algorithm’s
effectiveness and efficiency.

We focused here on identifying the (approximated) best plan. More gen-
erally, one may want to identify top-k best answers. Our algorithm naturally
generalizes to this context by continuing the execution after a top-1 sequence
is found. Intuitively, nodes that are part of the returned sequence should be
marked in the tree and ignored when candidates are considered. An interesting
challenge for future research is identifying heuristics that can be applied when
some prior knowledge about the expected answer distribution or tree structure
is available. How to obtain such information is also an interesting questions.
Prior knowledge on users may also be used for weighting answers non-informally
and for targeting questions to the most appropriate users.

Another possible extension to our algorithm, to be considered in the future
research, could be to allow creating plans not necessarily in a successive order
(for example when parts of the plan are known and one wants to use the crowd
to fill in the gaps).
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