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ABSTRACT

Counting the fraction of a population having an input within a spec-

ified interval i.e. a range query, is a fundamental data analysis prim-

itive. Range queries can also be used to compute other core statis-

tics such as quantiles, and to build prediction models. However,

frequently the data is subject to privacy concerns when it is drawn

from individuals, and relates for example to their financial, health,

religious or political status. In this paper, we introduce and analyze

methods to support range queries under the local variant of dif-

ferential privacy [23], an emerging standard for privacy-preserving

data analysis.

The local model requires that each user releases a noisy view of

her private data under a privacy guarantee. While many works ad-

dress the problem of range queries in the trusted aggregator setting,

this problem has not been addressed specifically under untrusted

aggregation (local DP) model even though many primitives have

been developed recently for estimating a discrete distribution. We

describe and analyze two classes of approaches for range queries,

based on hierarchical histograms and the Haar wavelet transform.

We show that both have strong theoretical accuracy guarantees on

variance. In practice, both methods are fast and require minimal

computation and communication resources. Our experiments show

that the wavelet approach is most accurate in high privacy settings,

while the hierarchical approach dominates for weaker privacy re-

quirements.
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1. INTRODUCTION
All data analysis fundamentally depends on a basic understand-

ing of how the data is distributed. Many sophisticated data analysis

and machine learning techniques are built on top of primitives that

describe where data points are located, or what is the data density

in a given region. That is, we need to provide accurate answers

to estimates of the data density at a given point or within a range.
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Consequently, we need to ensure that such queries can be answered

accurately under a variety of data access models.

This remains the case when the data is sensitive, comprised of the

personal details of many individuals. Here, we still need to answer

range queries accurately, but also meet high standards of privacy,

typically by ensuring that answers are subject to sufficient bounded

perturbations that each individual’s data is protected. In this work,

we adopt the recently popular model of Local Differential Privacy

(LDP). Under LDP, individuals retain control of their own private

data, by revealing only randomized transformations of their input.

Aggregating the reports of sufficiently many users gives accurate

answers, and allows complex analysis and models to be built, while

preserving each individual’s privacy.

LDP has risen to prominence in recent years due to its adop-

tion and widespread deployment by major technology companies,

including Google [15], Apple [10] and Microsoft [11]. These appli-

cations rely at their heart on allowing frequency estimation within

large data domains (e.g. the space of all words, or of all URLs).

Consequently, strong locally private solutions are known for this

point estimation problem. It is therefore surprising to us that no

prior work has explicitly addressed the question of range queries

under LDP. Range queries are perhaps of wider application than

point queries, from their inherent utility to describe data, through

their immediate uses to address cumulative distribution and quan-

tile queries, up to their ability to instantiate classification and re-

gression models for description and prediction.

In this paper, we tackle the question of how to define protocols

to answer range queries under strict LDP guarantees. Our main

focus throughout is on one-dimensional discrete domains, which

provides substantial technical challenges under the strict model of

LDP. These ideas naturally adapt to multiple dimensions, which

we discuss briefly as an extension. A first approach to answer range

queries is to simply pose each point query that constitutes the range.

This works tolerably well for short ranges over small domains, but

rapidly degenerates for larger inputs. Instead, we adapt ideas from

computational geometry, and show how hierarchical and wavelet

decompositions can be used to reduce the error. This approach is

suggested by prior work in the centralized privacy model, but we

find some important differences, and reach different conclusions

about the optimal way to include data and set parameters in the

local model. In particular, we see that approaches based on hi-

erarchical decomposition and wavelet transformations are both ef-

fective and offer similar accuracy for this problem; whereas, naive

approaches that directly evaluate range queries via point estimates

are inaccurate and frequently unwieldy.

1.1 Our contributions.
In more detail, our contributions are as follows: We provide

background on the model of Local Differential Privacy (LDP) and
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related efforts for range queries in Section 2. Then in Section 3, we

summarize the approaches to answering point queries under LDP,

which are a building block for our approaches. Our core concep-

tual contribution (Section 4) comes from proposing and analyzing

several different approaches to answering one-dimensional range

queries.

• We first formalize the problem and show that the simple approach

of summing a sequence of point queries entails error (measured

as variance) that grows linearly with the length of the range (Sec-

tion 4.2).

• In Section 4.3, we consider hierarchical approaches, generalizing

the idea of a binary tree. We show that the variance grows only

logarithmically with the length of the range. Post-processing of

the noisy observations can remove inconsistencies, and reduces the

constants in the variance, allowing an optimal branching factor for

the tree to be determined.

• The last approach is based on the Discrete Haar wavelet transform

(DHT, described in Section 4.6). Here the variance is bounded in

terms of the logarithm of the domain size, and no post-processing is

needed. The variance bound is similar but not directly comparable

to that in the hierarchical approach.

Once we have a general method to answer range queries, we can

apply it to the special case of prefix queries, and to find order statis-

tics (medians and quantiles). We perform an empirical comparison

of our methods in Section 5. Our conclusion is that both the hier-

archical and DHT approach are effective for domains of moderate

size and upwards. The accuracy is very good when there is a large

population of users contributing their (noisy) data. Further, the re-

lated costs (computational resources required by each user and the

data aggregator, and the amount of information sent by each user)

are very low for these methods, making them practical to deploy

at scale. We show that the wavelet approach is most accurate in

high privacy settings, while the hierarchical approach dominates

for weaker privacy requirements. We conclude by considering ex-

tensions of our scenario, such as multidimensional data (Section 6).

1.2 Five principles for LDP
Having emerged relatively recently, the LDP model has quickly

attracted a lot of interest. Techniques that improve the accuracy

and performance of LDP protocols have appeared spread across

multiple papers. We abstract five key principles, and apply them to

the particular problem of range queries as a case study. Although

each individual idea may seem relatively simple, collectively they

provide a complete solution, and their combination yields novel re-

sults. In summary, these principles, which are generally applicable

to other problems as well, are as follows:

(A) Transform the input: Rather than work with the raw input,

have users apply (linear) transformation to the input (e.g. wavelet

transform) to align it better with the intended application.

(B) Densify the representation: Since each user’s input is typi-

cally sparse, a further transformation such as Hadamard or hashing

can densify it and reduce the communication cost.

(C) Compose transformations: Provided that they are linear, mul-

tiple transformations can be composed in sequence to obtain the

best properties of each.

(D) Use sampling: When multiple pieces of information are needed,

the best results are obtained by sampling which to gather from each

user, rather than trying to measure them all.

(E) Apply post-processing: Significant gains in accuracy are pos-

sible by post-processing the global estimates, to take advantage of

consistency and overlap.

2. RELATED WORK
Range queries. Exact range queries can be answered by simply

scanning the data and counting the number of tuples that fall within

the range; faster answers are possible by pre-processing, such as

sorting the data (for one-dimensional ranges). Multi-dimensional

range queries are addressed by geometric data structures such as

k-d trees or quadtrees [30]. As the dimension increases, these

methods suffer from the “curse of dimensionality”, and it is usu-

ally faster to simply scan the data.

Various approaches exist to approximately answer range queries.

A random sample of the data allows the answer on the sample to

be extrapolated; to give an answer with an additive ǫ guarantee re-

quires a sample of size O( 1
ǫ2
) [7]. Other data structures, based on

histograms or streaming data sketches can answer one-dimensional

range queries with the same accuracy guarantee and with a space

cost of O(1/ǫ) [7]. However, these methods do not naturally trans-

late to the private setting, since they retain information about a sub-

set of the input tuples exactly, which tends to conflict with formal

statistical privacy guarantees.

Local Differential Privacy (LDP). The model of local differen-

tial privacy has risen in popularity in recent years in theory and in

practice as a special case of differential privacy. It has long been

observed that local data perturbation methods, epitomized by Ran-

domized Response [34] also meet the definition of Differential Pri-

vacy (DP) [14]. However, in the last few years, the model of local

data perturbation has risen in prominence: initially from a theoreti-

cal interest [12], but subsequently from a practical perspective [15].

A substantial amount of effort has been put into the question of

collecting simple popularity statistics, by adapting randomized re-

sponse to handle a larger domain of possibilities [10, 11, 3, 33].

The current state of the art solutions involve a combination of ideas

from data transformation, sketching and hash projections to reduce

the communication cost for each user, and computational effort for

the data aggregator to put the information together [3, 33].

Building on this, there has been substantial effort to solve a vari-

ety of problems in the local model, including: language modeling

and text prediction [5]; higher order and marginal statistics [36, 16,

8]; social network and graph modeling [17, 29]; and various ma-

chine learning, recommendation and model building tasks [32, 12,

24, 37, 31] However, among this collection of work, we are not

aware of any work that directly or indirectly addresses the question

of allowing range queries to be answered in the strict local model,

where no interaction is allowed between users and aggregator.

Private Range queries. In the centralized DP model, there has

been extensive consideration of range queries. Part of our contri-

bution is to show how some of these ideas can be translated to the

local model, and to provide customized analysis for the resulting

algorithms. Much early work on DP histograms considered range

queries as a natural target [13, 18]. However, simply summing up

histogram entries leads to large errors for long range queries.

Xiao et al. [35] considered adding noise in the Haar wavelet do-

main, while Hay et al. [20] formalized the approach of keeping a

hierarchical representation of data. Both approaches promise error

that scales only logarithmically with the length of the range. These

results were refined by Qardaji et al. [27], who compared the two

approaches and optimized parameter settings. The conclusion there

was that a hierarchical approach with moderate fan-out (of 16) was

preferable, more than halving the (squared) error from the Haar ap-

proach. A parallel line of work considered two-dimensional range

queries, introducing the notion of private spatial decompositions

based on k-d trees and quadtrees [9]. Subsequent work argued that

shallow hierarchical structures were often preferable, with only a

few levels of refinement [28].
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3. MODEL AND PRELIMINARIES

3.1 Local Differential Privacy
Initial work on differential privacy assumed the presence of a

trusted aggregator, who curates all the private information of indi-

viduals, and releases information through a perturbation algorithm.

In practice, individuals may be reluctant to share private informa-

tion with a data aggregator. The local variant of differential privacy

instead captures the case when each user i only has their local view

of the dataset S (typically, they only know their own data point zi)
and she independently releases information about her input through

an instance of a DP algorithm. This model has received widespread

industrial adoption, including by Google [15, 16], Apple [10], Mi-

crosoft [11] and Snap [26] for tasks like heavy hitter identification

(e.g., most used emojis), training word prediction models, anomaly

detection, and measuring app usage.

In the simplest setting, we assume each participant i ∈ [N ] has

an input zi drawn from some global discrete or continuous distribu-

tion θ over a domain Z . We do not assume that users share any trust

relationship with each other, and so do not communicate amongst

themselves. Implicitly, there is also an (untrusted) aggregator inter-

ested in estimating some statistics over the private dataset {zi}Ni=1.

Formal definition of Local Differential Privacy (LDP) [23]. A

randomized function F is ǫ-locally differentially private if for all

possible pairs of zi, z
′
i ∼ Z and for every possible output tuple O

in the range of F :

Pr[F (zi) = O] ≤ eǫ Pr[F (z′i) = O].

This is a local instantiation of differential privacy [14], where the

perturbation mechanism F is applied to each data point indepen-

dently. In contrast to the centralized model, perturbation under

LDP happens at the user’s end.

3.2 Point Queries and Frequency Oracles
A basic question in the LDP model is to answer point queries on

the distribution: to estimate the frequency of any given element z
from the domain Z . Answering such queries form the underpin-

ning for a variety of applications such as population surveys, ma-

chine learning, spatial analysis and, as we shall see, our objective

of quantiles and range queries.

In the point query problem, each user i holds a private item zi
drawn from a public set Z = {0, .., D − 1} = [D] using an un-

known common discrete distribution θ. That is, θz is the probabil-

ity that a randomly sampled input element is equal to z ∈ Z . The

goal is to provide a protocol in the LDP model (i.e. steps that each

user and the aggregator should follow) so the aggregator can esti-

mate θ as θ̂ as accurately as possible. Solutions for this problem

are referred to as providing a frequency oracle.

Several variant constructions of frequency oracles have been de-

scribed in recent years. In each case, the users perturb their input

locally via tools such as linear transformation and random sam-

pling (invoking principles (B) and (D) from Section 1.2), and send

the result to the aggregator. These noisy reports are aggregated and

an appropriate bias correction is applied to them to reconstruct the

frequency for each item in Z . The error in estimation is generally

quantified by the mean squared error [33]. We know that the mean

squared error can be decomposed into (squared) bias and variance.

Often estimators for these mechanisms are unbiased and have the

same variance VF for all items in the input domain. Hence, the vari-

ance can be used interchangably with squared error, after scaling.

The mechanisms vary based on their computation and communica-

tion costs, and the accuracy (variance) obtained. In most cases, the

variance is proportional to 1
N(eǫ−1)2

.

Optimized Unary Encoding (OUE) [33]. A classical approach to

releasing a single bit of data with a privacy guarantee is Random-

ized Response (RR), due to Wagner [34]. Here, we either report

the true value of the input or its complement with appropriately

chosen probabilities. To generalize to inputs from larger domains,

we represent vi as the sparse binary vector evi (where ej [j] = 1
and 0 elsewhere), and randomly flip each bit of evi to obtain the

(non-sparse) binary vector oi. Naively, this corresponds to apply-

ing one-bit randomized response [34] to each bit independently.

Wang et al. [33] proposed a variant of this scheme that reduces the

variance for larger D.

Perturbation: Each user i flips each bit at each location j ∈ [D] of

ei using the following distribution.

Pr[oi[j] = 1] =

{
1
2
, if ei[j] = 1
1

1+eǫ
, if ei[j] = 0

Finally user i sends the perturbed input oi to the aggregator.

Aggregation: θ̂[z] =
(∑N

i=1 oi[z]

N
+ 1

eǫ+1

)/(
1
2
− 1

eǫ+1

)

Variance: VF = 4eǫ

N(eǫ−1)2

As mentioned in [33, Section 5], OUE does not scale well to

very large D due to large communication complexity (i.e., D bits

from each user), and the consequent computation cost for the user

(O(D) time to flip the bits). Subsequent mechanisms have smaller

communication cost than OUE.

Optimal Local Hashing (OLH) [33]. The OLH method aims to

reduce the impact of dimensionality on accuracy by employing uni-

versal hash functions1. More specifically, each user samples a hash

function H : [D] → [g] (g ≪ D) u.a.r from a universal family H

and perturbs the hashed input (principle (B) from Section 1.2).

Perturbation: User i samples a Hi ∈ H u.a.r (principle (D)) and

computes hi = Hi(vi). User i then perturbs hi ∈ [g] using a

version of RR generalized for categorical inputs [22]. Specifically,

each user reports Hi and, with probability p = eǫ

eǫ+g−1
gives the

true hi, else she reports a value sampled u.a.r from [g].

Aggregation: The aggregator collects the perturbed hash values

from all users. For each hash value hi, the aggregator computes

a frequency vector for all items in the original domain, based on

which items would produce the hash value hi under Hi. All N
such histograms are added together to give T ∈ R

D and an unbi-

ased estimator for each frequency for all elements in the original

domain is given by the correction θ̂[j] = (T [j]− N
g
)
/
(p− 1

g
).

Variance: Setting g = eǫ + 1 minimizes the variance to be VF =
4p(1−p)

N(2p−1)2
= 4eǫ

N(eǫ−1)2
. OLH has the same variance as OUE and

it more economical on communication. However, a major down-

side is that it is compute intensive in terms of the decoding time

at the aggregator’s side, which is prohibitive for very large dimen-

sions (say, for D above tens of thousands), since the time cost is

proportional to O(ND).

Hadamard Randomized Response (HRR) [8, 24]. The Discrete

Fourier (Hadamard) transform is described by an orthogonal, sym-

metric matrix φ of dimension D × D (where D is a power of 2).

Each entry in φ is

φ[i][j] = 1√
D
(−1)〈i,j〉,

where 〈i, j〉 is the number of 1’s that i and j agree on in their

binary representation. The (full) Hadamard transformation (HT) of

1A family of hash functions H = {H : [D] → [g]} is said to be
universal if ∀zi, zj ∈ [D], zi 6= zj : PrH∈H[H(zi) = H(zj)] ≤
1
g

i.e. collision probability behaves uniformly.
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a user’s input vi is the vith column of φ i.e. φ×ei. For convenience,

the user can scale φ up by
√
D to give values either −1 or 1.

Perturbation: User i samples an index j ∈ [D] u.a.r (principles (B)

and (D)) and perturbs φ[vi][j] ∈ {−1, 1} with binary randomized

response, keeping the value with probability p, and flipping it with

probability 1 − p. Finally user i releases the perturbed coefficient

oj and j.

Aggregation: Consider each report from each user. With probabil-

ity p, the report is the true value of the coefficient; with probability

1−p, we receive its negation. Hence, we should divide the reported

value by 2p − 1 to obtain an unbiased random variable whose ex-

pectation is the correct value. The aggregator can then compute the

observed sum of each perturbed coefficient j as Oj . An unbiased

estimation of the jth Hadamard coefficient ĉj (with the 1√
D

factor

restored) is given by ĉj =
Oj√

D(2p−1)
. Therefore, the aggregator

can compute an unbiased estimator for each coefficient, and then

apply the inverse transform to produce θ̂.

Variance: The variance of each user report is given by the squared

error of our unbiased estimator. With probability p, the squared

error is (1− 1
2p−1

)2/D, else the squared error is (1 + 1
2p−1

)2/D.

Then, we can expand the variance for each report as

p(2p−2)2+(1−p)4p2

D(2p−1)2
= 4p(1−p)2+4p2(1−p)

D(2p−1)2
= 4p(1−p)

D(2p−1)2

There are N total reports, each of which samples one of D co-

efficients at random. Observing that the estimate of any frequency

in the original domain is a linear combination of Hadamard coeffi-

cients with unit Euclidean norm, we can find an expression for the

value of VF as VF = 4p(1−p)
N
D

D(2p−1)2
= 4p(1−p)

N(2p−1)2
. Using p = eǫ

1+eǫ

(to ensure LDP), we find VF = 4eǫ

N(eǫ−1)2
.

This method achieves a good compromise between accuracy and

communication since each user transmits only ⌈log2D⌉ + 1 bits

to describe the index j and the perturbed coefficient, respectively.

Also, the aggregator can reconstruct the frequencies in the original

domain by computing the estimated coefficients and then inverting

HT with O(N +D logD) operations, versus O(ND) for OLH.

Thus, we have three representative mechanisms to implement a

frequency oracle. Each one provides ǫ-LDP, by considering the

probability of seeing the same output from the user if her input

were to change. There are other frequency oracles mechanisms

developed offering similar or weaker variance bounds (e.g. [16,

11]) and resouce trade-offs but we do not include them for brevity.

4. RANGE QUERIES

4.1 Problem Definition
We next formally define the range queries that we would like to

support. As in Section 3.2, we assumeN non-colluding individuals

each with a private item zi ∈ [D]. For any a < b, a ∈ [D], b ∈
[D], a range query R[a,b] ≥ 0 is to compute

R[a,b] =
1
N

∑N
i=1 Ia≤zi≤b

where Ip is a binary variable that takes the value 1 if the predicate

p is true and 0 otherwise.

DEFINITION 1. (Range Query Release Problem) Given a set of

N users, the goal is to collect information guaranteeing ǫ-LDP to

allow approximation of any closed interval of length r ∈ [1, D].

Let R̂ be an estimation of interval R of length r computed using a

mechanism F . Then the quality of F is measured by the squared

error (R̂−R)2.

4.2 Flat Solutions
One can observe that for an interval [a, b], R[a,b] =

∑b
i=a fi,

where fi is the (fractional) frequency of the item i ∈ [D]. There-

fore a first approach is to simply sum up estimated frequencies for

every item in the range, where estimates are provided by an ǫ-LDP

frequency oracle: R̂[a,b] =
∑b

i=a θ̂i. We denote this approach

(instantiated by a choice of frequency oracle F ) as flat algorithms.

FACT 1. For any range query R of length r answered using a

flat method with frequency oracle F , Var[R̂−R] = rVF

Note that the variance grows linearly with the interval size which

can be as large as DVF .

LEMMA 1. The average worst case squared error over evalua-

tion of
(
D
2

)
queries E is 1

3
(D + 2)VF .

PROOF. There areD−r+1 queries of length r. Hence the aver-

age error is E =
∑D

r=1 r(D − r + 1)VF

/(
D
2

)
= 1

3
(D+2)VF

4.3 Hierarchical Solutions
We can view the problem of answering range queries in terms

of representing the frequency distribution via some collection of

histograms, and producing the estimate by combining information

from bins in the histograms. The “flat” approach instantiates this,

and keeps one bin for each individual element. This is necessary in

order to answer range queries of length 1 (i.e. point queries). How-

ever, as observed above, if we have access only to point queries,

then the error grows in proportion to the length of the range. It

is therefore natural to keep additional bins over subranges of the

data. A classical approach is to impose a hierarchy on the domain

items in such a way that the frequency of each item contributes to

multiple bins of varying granularity. With such structure in place,

we can answer a given query by adding counts from a relatively

small number of bins. There are many hierarchical methods possi-

ble to compute histograms. Several of these have been tried in the

context of centralized DP [20, 9, 28, 27]. To the best of our knowl-

edge, the methods that work best in centralized DP tend to rely

on a complete view on the distribution, or would require multiple

interactions between users and aggregator when translated to the

local model. This motivates us to choose more simple yet effective

strategies for histogram construction in the LDP setting. We start

with the standard notion of B-adic intervals and a useful property

of B-adic decompositions.

FACT 2. For j ∈ [logB D] and B ∈ N
+, an interval is B-adic

if it is of the form kBj ...(k+1)Bj − 1 i.e. its length is a power of

B and starts with an integer multiple of its length.

FACT 3. Any sub-range [a, b] of length r from [D] can be de-

composed into ≤ (B − 1)(2⌈logB r⌉ − 1) disjoint B-adic ranges.

For example, for D = 32, B = 2, the interval [2, 22] can be

decomposed into sub-intervals [2, 3] ∪ [4, 7] ∪ [8, 15] ∪ [16, 19] ∪
[20, 21] ∪ [22, 22].

The B-adic decomposition can be understood as organizing the

domain under a complete B-ary tree where each node corresponds

to a bin of a unique B-adic range. The root holds the entire range

and the leaves hold the counts for unit sized intervals. A range

query can be answered by a walk over the tree similar to the stan-

dard pre-order traversal and therefore a range query can be an-

swered with at most (B − 1)(2⌈logB r⌉ − 1) nodes, which is at

most (B − 1)(logB D − 1) in the worst case.
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(a) Dyadic domain decomposition with internal node weights.

(b) Local views for two users i and j (zi = 1 and zj = 5) with corre-
sponding root to leaf paths marked.

Figure 1: An example for dyadic decomposition (B = 2)

4.4 Hierarchical Histograms (HH)
Now we describe our framework for computing hierarchical his-

tograms. All algorithms follow a similar structure but differ on the

perturbation primitive F they use:

Input transformation: user i locally arranges the input zi ∈ [D]
in the form of a full B-ary tree of height h. Then zi defines a

unique path from a leaf to the root with a weight of 1 attached

to each node on the path, and zero elsewhere. Figure 1 shows an

example. Figure 1(a) shows the dyadic (B = 2) decomposition of

the input vector [0.1, 0.15, 0.23, 0.12, 0.2, 0.05, 0.07, 0.08], where

the weights on internal nodes are the sum of the weights in their

subtree. Figure 1(b) illustrates two user’s local views (zi = 1 and

zj = 5). In each local histogram, the nodes in the path from leaf to

the root are shaded in red and have a weight of 1 on each node.

Perturbation: i samples a level l ∈ [h] with probability pl (prin-

ciple (D) from Section 1.2). There are 2l nodes at this level, with

exactly one node of weight one and the rest zero. Hence, we can

apply one of the mechanisms from Section 3. User i perturbs this

vector using some frequency oracle F and sends the perturbed in-

formation to the aggregator along with the level id l.

Aggregation: The aggregator builds an empty tree with the same

dimensions and adds the (unbiased) contribution from each user to

the corresponding nodes, to estimate the fraction of the input at

each node. Range queries are answered by aggregating the nodes

from the B-adic decomposition of the range.

Key difference from the centralized case: Hierarchical histograms

have been proposed and evaluated in the centralized case. However,

the key difference here comes from how we generate information

about each level. In the centralized case, the norm is to split the

“error budget” ǫ into h pieces, and report the count of users in each

node; in contrast, we have each user sample a single level, and

the aggregator estimates the fraction of users in each node. The

reason for sampling instead of splitting emerges from the analysis

in Theorem 1: splitting would lead to an error proportional to h2,

whereas sampling gives an error which is at most proportional to

h (this is at the heart of principle (D), Section 1.2). Because sam-

pling introduces some variation into the number of users reporting

at each level, we work in terms of fractions rather than counts; this

is important for the subsequent post-processing step.

In summary, the approach of hierarchical decomposition extends

to LDP by observing the fact that it is a linear transformation of the

original input domain (principle (A)), and can be combined with

other transformations (principle (C)). This means that adding in-

formation from the hierarchical decomposition of each individual’s

input yields the decomposition of the entire population. Next we

evaluate the error in estimation using the hierarchical methods.

Error behavior for Hierarchical Histograms. We begin by show-

ing that the overall variance can be expressed in terms of the vari-

ance of the frequency oracle used, VF . In what follows, we denote

hierarchical histograms aggregated with fanout B as HHB .

THEOREM 1. When answering a range query of length r using

a primitive F , the worst case variance Vr under the HHB frame-

work is Vr ≤ VF

∑α
l=1 2(B − 1) 1

pl
where α = (⌈logB r⌉).

PROOF. Recall that all the methods we consider have the same

(asymptotic) variance bound VF = O
(

eǫ

N(eǫ−1)2

)
, with N denot-

ing the number of users contributing to the mechanism. Impor-

tantly, this does not depend on the domain size D, and so we can

write VF ≤ ψF (ǫ)/N , where ψF (ǫ) is a constant for method F
that depends on ǫ. This means that once we fix the method F , the

variance Vl for any node at level l will be the same, and is deter-

mined by Nl, the number of users reporting on level l. The range

query R[a,b] of length r is decomposed into at 2(B − 1) nodes at

each level, for α = ⌈logB r⌉ levels (from leaves upwards). So we

can bound the total variance Vr in our estimate by

α∑

l=1

2(B − 1)Vl =

α∑

l=1

2(B − 1)VF /pl = 2(B − 1)VF

α∑

l=1

1

pl

using the fact that (in expectation) Nl = plN .

In the worst case, α = h, and we can minimize this bound by a

uniform level sampling procedure:

LEMMA 2. The quantity
∑h

l=1
1
pl

subject to 0 ≤ pl ≤ 1 and
∑h

l=1 pl = 1 is minimized by setting pl =
1
h

.

PROOF. We use the Lagrange multiplier technique, and define a

new function L, introducing a new variable λ.

L(p1, .., ph, λ) = (
∑h

l=1
1
pl
) + λ(

∑h
l=1 pl − 1)

Performing partial differentiation and setting to zero, we obtain

λ = 1
p21

= 1
p22

= ... = 1
p2
h

and
∑h

l=1
1
pl

= 1. Hence, pl =

1/
√
λ = 1/h.

Then, setting pl =
1
h

in Theorem 1 gives

Vr ≤ 2(B − 1)VFh⌈logB r⌉. (1)

Hierarchical versus flat methods. The benefit of the HH approach

over the baseline flat method depends on the factor 2(B − 1)hα
versus the quantity r. Note that (ignoring rounding) h = logB D
and α = logB r, so we obtain an improvement over flat methods

when r > 2B log2B D, for example. When D is very small, this

may not be achieved: for D = 64 and B = 2, this condition yields

r > 128 > D. But for larger D, e.g. D = 216 and B = 2, we

obtain r > 1024, which equates to ∼ 1.5% of the range.

THEOREM 2. The worst case average (squared) error incurred

while answering all
(
D
2

)
range queries using HHB , EB , is (approx-

imately) 2(B − 1)VF logB D logB

(
3D2

1+2D

)
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PROOF. We obtain the bound by summing over all range lengths

r. For a given length r, there areD−r+1 possible ranges. Hence,

EB ≤
∑D

r=1 Vr(D − r + 1)

D(D − 1)/2

=
(2(B − 1)VF logB D)

∑D
r=1 logB r(D − r + 1)

D(D − 1)/2

=
2(B − 1)VF logB D

[
(D + 1) logB(

∏D
r=1 r)−

∑D
r=1 logB r

r
]

D(D − 1)/2

We find bounds on each of the two components separately.

1. Using Stirling’s approximation we have

logB D! ≤ logB(D
(D+ 1

2
)e1−D) < (D + 1) logB D.

2. Writing P =
∑D

r=1 r = D(D + 1)/2 and Q =
∑D

r=1 r
2 =

D(D + 1)(2D + 1)/6, we make use of Jensen’s inequality to get

D∑

r=1

r logB r = P

D∑

r=1

r

P
logB r ≤ P logB(

D∑

r=1

r
r

P
)

= P logB(Q/P ) = D(D + 1)/2 logB

(
1 + 2D/3

)

Plugging these upper bounds in to the main expression,

EB <
2(B−1)VF logB D

[
(D+1)2 logB D−D(D+1)

2
logB

(
1+2D

3

)]

D(D−1)/2

= 2(B − 1)VF logB D
[
2(D+1)2 logB D

D(D−1)
− D+1

D−1
logB

(
1+2D

3

)]

≈ 2(B − 1)VF logB D logB

( 3D2

1 + 2D

)
as D → ∞.

Key difference from the centralized case: Similar looking bounds

are known in centralized case, for example due to Qardaji et al. [27],

but with some key differences. There, the bound (simplified) is

proportional to (B − 1)h3VF rather than the (B − 1)h2VF we see

here. The difference arises because [27] scales the parameter ǫ
by a factor of h, which introduces the factor of h · h2 = h3 into

the variance; in contrast, sampling each level with probability 1/h
scales the variance only by h2. Note however that in the centralized

case VF scales proportionate to 1/N2 rather than 1/N in the local

case: a necessary cost to provide local privacy guarantees.

Optimal branching factor for HHB . In general, increasing the

fan-out has two consequences under our algorithmic framework.

Large B reduces the tree height, which increases accuracy of esti-

mation per node since larger population is allocated to each level.

But this also means that we can require more nodes at each level

to evaluate a query which tends to increase the total error incurred

during evaluation. We would like to find a branching factor that

balances these two effects. We use the expression for the variance

in (1) to find the optimal branching factor for a given D. We first

compute the gradient of the function 2(B − 1) logB(r) logB(D).
Differentiating w.r.t. B we get

∇ = D
dB

[
2(B−1) ln(D) ln(r)

ln2 B

]
= 2 lnD ln r D

dB

[
B−1
ln2 B

]

= 2 ln(D) ln(r)

(ln2 B)2

(
ln2B D

dB
[B − 1]− (B − 1) D

dB
[ln2B]

)

= 2 lnD ln r
(
ln2B − 2

B
(B − 1) lnB

)
/ ln4B

= 2 lnD ln r(B lnB − 2B + 2)/B ln3B

We now seek a B such that the derivative ∇ = 0. The numerical

solution is (approximately) B = 4.922. Hence we minimize the

variance by choosingB to be 4 or 5. This is again in contrast to the

centralized case, where the optimal branching factor is determined

to be approximately 16 [27].

4.5 Postprocessing for consistency
There is some redundancy in the information materialized by the

HH approach: we obtain estimates for the weight of each internal

node, as well as its child nodes, which should sum to the parent

weight. We invoke Principle (E) (Section 1.2), and observe that the

accuracy of the HH framework can be further improved by finding

the least squares solution for the weight of each node taking into

account all the information we have about it, i.e. for each node v,

we approximate the (fractional) frequency f(v) with f̂(v) such that

||f(v)−f̂(v)||2 is minimized subject to the consistency constraints.

We can invoke the Gauss-Markov theorem since the variance of all

our estimates are equal, and hence the least squares solution is the

best linear unbiased estimator.

LEMMA 3. The least-squares estimated counts reduce the as-

sociated variance by a factor of at least B
B+1

in a hierarchy of

fan-out B.

PROOF. We begin by considering the linear algebraic formula-

tion. Let H denote the n × D matrix that encodes the hierarchy,

where n is the number of nodes in the tree structure. For instance,

if we consider a single level tree withB leaves, thenH =

[
1D

ID

]
,

where 1D is the D-length vector of all 1s, and ID is the D × D
identity matrix. Let x denote the vector of reconstructed (noisy)

frequencies of nodes. Then the optimal least-squares estimate of

the true counts can be written as ĉ = (HTH)−1HT
x. Denote a

range query R[a,b] as the length D vector that is 1 for indices be-

tween a and b, and 0 otherwise. Then the answer to our range query

is RT
[a,b]ĉ. The variance associated with query R[a,b] is given by

Var[RT
[a,b]ĉ] = Var[RT

[a,b](H
TH)−1HT

x]

= RT
[a,b](H

TH)−1HTCov(x)H((HTH)−1)TR[a,b]

= RT
[a,b](H

TH)−1HTVF IDH((HTH)−1)T )R[a,b]

= VFR
T
[a,b](H

TH)−1(HTH)((HTH)−1)T )R[a,b]

= VFR
T
[a,b](H

TH)−1R[a,b]

First, consider the simple case when H is a single level tree with

B leaves. Then we have HTH = 1B×B + IB , where 1B×B de-

notes theB×B matrix of all ones. We can verify that (HTH)−1 =
((B+1)IB −1B×B)/(B+1). From this we can quickly read off

the variance of any range query. For a point query, the associated

variance is simplyB/(B+1)VF , while for a query of length r, the

variance equates to (rB− r(r− 1))/(B+1)VF . Observe that the

variance for the whole range r = B is just B/(B+1)VF , and that

the maximum variance is for a range of just under half the length,

r = (B + 1)/2, which gives a bound of

VF (B + 1)(B + 1)/(4(B + 1)) = (B + 1)VF /4.

The same approach can be used for hierarchies with more than

one level. However, while there is considerable structure to be stud-

ied here, there is no simple closed form, and forming (HTH)−1

can be inconvenient for largeD. Instead, for each level, we can ap-

ply the argument above between the noisy counts for any node and

its B children. This shows that if we applied this estimation proce-

dure to just these counts, we would obtain a bound ofB/(B+1)VF

to any node (parent or child), and at most (B+1)VF /4 for any sum

of node counts. Therefore, if we find the optimal least squares esti-

mates, their (minimal) variance can be at most this much.

Consequently, after this constrained inference, the error vari-

ance at each node is at most
BVF
B+1

. It is possible to give a tighter
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bound for nodes higher up in the hierarchy: the variance reduces

by Bi
∑i

j=0 Bj for level i (counting up from level 1, the leaves). This

approaches (B−1)/B, from above; however, we adopt the simpler

B/(B + 1) bound for clarity.

This modified variance affects the worst case error, and hence

our calculation of an optimal branching factor. From the above

proof, we can obtain a new bound on the worst case error of (B +
1)VF /2 for every level touched by the query (that is, (B+1)VF /4
for the left and right fringe of the query). This equates to (B +
1)VF logB(r) logB(D)/2 total variance. Differentiating w.r.t. B,

we find

∇ = d
dB

[
(B + 1) logB(r) logB(D)VF /2

]

= ln(r) ln(D)(B lnB − 2B − 2)/B ln3B

Consequently, the value that minimizes ∇ is B ≈ 9.18 — larger

than without consistency. This implies a constant factor reduction

in the variance in range queries from post-processing. Specifically,

if we pick B = 8 (a power of 2), then this bound on variance is

9VF log2(r) log2(D)/(2 log22 8) =
1

2
VF log2(r) log2(D), (2)

compared to 7
4
VF log2(r) log2(D) for HH4 without consistency.

We confirm this reduction in error experimentally in Section 5.

We can make use of the structure of the hierarchy to provide a

simple linear-time procedure to compute optimal estimates. This

approach was introduced in the centralized case by Hay et al. [20].

Their efficient two-stage process can be translated to the local model.

Stage 1: Weighted Averaging: Traversing the tree bottom up, we

use the weighted average of a node’s original reconstructed fre-

quency f(.) and the sum of its children’s (adjusted) weights to up-

date the node’s reconstructed weight. For a non-leaf node v, its

adjusted weight is a weighted combination as follows:

f̄(v) = Bi−Bi−1

Bi−1
f(v) + Bi−1−1

Bi−1

∑
u∈child(v) f̄(u)

Stage 2: Mean Consistency: This step makes sure that for each

node, its weight is equal to the sum of its children’s values. This is

done by dividing the difference between parent’s weight and chil-

dren’s total weight equally among children. For a non-root node v,

f̂(v) = f̄(v) + 1
B

[
f̂(p(v))−

∑
u∈child(v) f̄(u)

]

where f̄(p(v)) is the weight of v’s parent after weighted averaging.

The values of f̂ achieve the minimum L2 solution.

Finally, we note that the cost of this post-processing is relatively

low for the aggregator: each of the two steps can be computed in a

linear pass over the tree structure. A useful property of finding the

least squares solution is that it enforces the consistency property:

the final estimate for each node is equal to the sum of its children.

Thus, it does not matter how we try to answer a range query (just

adding up leaves, or subtracting some counts from others) — we

will obtain the same result.

Key difference from the centralized case. Our post-processing is

influenced by a sequence of papers in the centralized case. How-

ever, we do observe some important points of departure. First, be-

cause users sample levels, we work with the distribution of fre-

quencies across each level, rather than counts, as the counts are not

guaranteed to sum up exactly. Secondly, our analysis method al-

lows us to give an upper bound on the variance at every level in

the tree – prior work gave a mixture of upper and lower bounds on

variances. This, in conjunction with our bound on covariances al-

lows us to give a tighter bound on the variance for a range query,

and to find a bound on the optimal branching factor after taking into

account the post-processing, which has not been done previously.

4.6 Discrete Haar Transform (DHT)
The Discrete Haar Transform (DHT) provides an alternative ap-

proach to summarizing data for the purpose of answering range

queries. DHT is a popular data synopsis tool that relies on a hierar-

chical (binary tree-based) decomposition of the data. DHT can be

understood as performing recursive pairwise averaging and differ-

encing of our data at different granularities, as opposed to the HH

approach which gathers sums of values. The method imposes a full

binary tree structure over the domain, where h(v) is the height of

node v, counting up from the leaves (level 0). The Haar coefficient

cv for a node v is computed as cv = Cl−Cr

2h(v)/2 , where Cl, Cr are

the sum of counts of all leaves in the left and right subtree of v. In

the local case when zi represents a leaf of the tree, there is exactly

one non-zero Haar coefficient at each level l with value ± 1

2l/2
. The

DHT can also be represented as a matrix HD of dimension D×D
(where D is a power of 2) with each row j encoding the Haar coef-

ficients for item j ∈ [D]. We can decode the count at any leaf node

v by taking the inner product of the vector of Haar coefficients with

the row of HD corresponding to v. Observe that we only need h
coefficients to answer a point query.

Answering a range query. A similar fact holds for range queries.

We can answer any range query by first summing all rows of HD

that correspond to leaf nodes within the range, then taking the inner

product of this with the coefficient vector. We can observe that for

an internal node in the binary tree, if it is fully contained (or fully

excluded) by the range, then it contributes zero to the sum. Hence,

we only need coefficients corresponding to nodes that are cut by

the range query: there are at most 2h of these. The main benefit

of DHT comes from the fact that all coefficients are independent,

and there is no redundant information. Therefore we obtain a cer-

tain amount of consistency by design: any set of Haar coefficients

uniquely determines an input vector, and there is no need to apply

the post-processing step described in Section 4.5.

Our algorithmic framework. For convenience, we rescale each

coefficient reported by a user at a non-root node to be from {−1, 0, 1},

and apply the scaling factor later in the procedure. Similar to the

HH approach, each user samples a level l (principle (D)) with prob-

ability pl and perturbs the coefficients from that level using a suit-

able perturbation primitive. Each user then reports her noisy co-

efficients along with the level. The aggregator, after accepting all

reports, prepares a similar tree and applies the correction to make

an unbiased estimation of each Haar coefficient. The aggregator

can evaluate range queries using the (unbiased but still noisy) coef-

ficients.

Perturbing Haar coefficients. As with hierarchical histogram meth-

ods, where each level is a sparse (one hot) vector, there are several

choices for how to release information about the sampled level in

the Haar tree. The only difference is that previously the non-zero

entry in the level was always a 1 value; for Haar, it can be a −1 or a

1. There are various straightforward ways to adapt the methods that

we have already (see, for example, [4, 24, 11]). We choose to adapt

the Hadamard Randomized Response (HRR) method, described in

Section 3.2 (principles (A), (B) and (C)). First, this is convenient: it

immediately works for negative valued weights without any mod-

ification. But it also minimizes the communication effort for the

users: they summarize their whole level with a single bit (plus the

description of the level and Hadmard coefficient chosen). We have

confirmed this choice empirically in calibration experiments (omit-

ted for brevity): HRR is consistent with other choices in terms of

accuracy, and so is preferred for its convenience and compactness.
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Recall that the (scaled) Hadamard transform of a sparse binary

vector ei is equivalent to selecting the ith row/column from the

Hadamard matrix. When we transform −ei, the Hadamard coeffi-

cients remain binary, with their signs negated. Hence we use HRR

for perturbing levelwise Haar coefficients. At the root level, where

there is a single coefficient, this is equivalent to 1 bit RR. The 0th

wavelet coefficient c0 can be hardcoded to N
D

since it does not re-

quire perturbation. We refer to this algorithm as HaarHRR.

Error behavior for HaarHRR. As mentioned before, we answer

an arbitrary query of length r by taking a weighted combination of

at most 2h coefficients. A coefficient u at level l(u) contributes to

the answer if and only if exactly one of the leftmost and rightmost

leaves of the subtree of node u intersects with the range. The 0th

coefficient c0 is assigned the weight r. Let OL
u (OR

u ) be the size of

the overlap sets for left (right) subtree for u with the range. Using

reconstructed coefficients, we evaluate a query to produce answer

R̂ as:

R̂ = rc0 +
∑

u

(OL
u −OR

u

2l(u)

)
ĉu

where, ĉu is an unbiased estimation of a coefficient cu at level l(u).

In the worst case, the absolute weight |OL
u − OR

u | = 2l(u)−1. We

can analyze the corresponding varance, Vr , by observing that there

at most two coefficients used in each level:

Vr ≤ 2
h∑

l=1

(2l−1

2l

)2

VF =

h∑

l=1

1

2
VF =

1

2

h∑

l=1

VF

pl

Here, VF is the variance associated with the HRR frequency

oracle. As in the hierarchical case, the optimal choice is to set

pl = 1/h (i.e. we sample a level uniformly), where h = log2(D).
Then we obtain

Vr = 1
2
log22(D)VF (3)

It is instructive to compare this expression with the bounds ob-

tained for the hierarchical methods. Recall that, after post-processing

for consistency, we found that the variance for answering range

queries with HH8, based on optimizing the branching factor, is

log2(r) log2(D)VF /2 (from (2)). That is, for long range queries

where r is close to D, (3) will be close to (2). Consequently, we

expect both methods to be competitive, and will use empirical com-

parison to investigate their behavior in practice.

Finally, observe that since this bound does not depend on the

range size itself, the average error across all possible range queries

is also bounded by (3).

Key difference from the centralized case. The technique of per-

turbing Haar coefficients to answer differentially private range queries

was proposed and studied in the centralized case under the name

“privelets” [35]. Subsequent work argued that more involved cen-

tralized algorithms could obtain better accuracy. We will see in the

experimental section that HaarHRR is among our best performing

methods. Hence, our contribution in this work is to reintroduce the

DHT as a useful tool in local privacy.

4.7 Prefix and Quantile Queries
Prefix queries form an important class of range queries, where

the start of the range is fixed to be the first point in the domain. The

methods we have developed allow prefix queries to be answered as

a special case. Note that for hierarchical and DHT-based methods,

we expect the error to be lower than for arbitrary range queries.

Considering the error in hierarchical methods (Theorem 1), we re-

quire at most B − 1 nodes at each level to construct a prefix query,

instead of 2(B − 1), which reduces the variance by almost half.

For DHT similarly, we only split nodes on the right end of a pre-

fix query, so we also reduce the variance bound by a factor of 2.

Note that a reduction in variance by 0.5 will translate into a factor

of
√
2 = 0.707 in the absolute error. Although the variance bound

changes by a constant factor, we obtain the same optimal choice for

the branching factor in B.

Prefix queries are sufficient to answer quantile queries. The φ-

quantile is th index j in the domain such that at most a φ-fraction

of the input data lies below j, and at most a (1 − φ) fraction lies

above it. If we can pose arbitrary prefix queries, then we can bi-

nary search for a prefix j such that the prefix query on j meets

the φ-quantile condition. Errors arise when the noise in answering

prefix queries causes us to select a j that is either too large or too

small. The quantiles then describe the input data distribution in a

general purpose, non-parametric fashion. Our expectation is that

our proposed methods should allow more accurate reconstructions

of quantiles than flat methods, since we expect they will observe

lower error. We formalize the problem:

DEFINITION 2. (Quantile Query Release Problem) Given a set

of N users, the goal is to collect information guaranteeing ǫ-LDP

to approximate any quantile q ∈ [0, 1]. Let Q̂ be the item returned

as the answer to the quantile query q using a mechanism F , which

is in truth the q′ quantile, and let Q be the true q quantile. We

evaluate the quality of F by both the value error, measured by the

squared error (Q̂−Q)2; and the quantile error |q − q̂|.

5. EXPERIMENTAL EVALUATION
Our goal in this section is to validate our solutions and theoretical

claims with experiments. We first test on synthetic data and then

use real world datasets with our best performing methods.

Synthetic Dataset. We are interested in comparing the flat, hierar-

chical and wavelet methods for range queries of varying lengths on

large domains, capturing meaningful real-world settings. We have

evaluated the methods over a variety of real and synthetic data.

Our observation is that measures such as speed and accuracy do

not depend too heavily on the data distribution. Hence, we present

here results on synthetic data sampled from Cauchy distributions.

This allows us to easily vary parameters such as the population size

N and the domain size D, as well as varying the distribution to

be more or less skewed. We vary the domain size D from small

(D = 28) to large (D = 222) as powers of two.

Real Datasets. We use three popular timeseries datasets and a

location dataset summarized in Figure 2. In the timeseries datasets,

we divide the total timespan into slots of a fixed length and bucke-

tize the records at a suitably fine grain for queries, while ensuring

that the histogram have heavy intervals with large amounts of mass

concentrated. For location data, a standard hierarchical way of en-

coding GPS co-ordinates into a fixed length signature is to geohash

them [2]. The hash length determines the coarseness of a bucket.

Points sharing a common prefix are in a close proximity and in-

cluded in a rectangle of that prefix. The shorter a geohash is, the

larger its rectangle.

Algorithm default parameters and settings. We set a default

value of eǫ = 3 (ǫ = 1.1), in line with prior work on LDP. This

means, for example, that binary randomized response will report a

true answer 3
4

of the time, and lie 1
4

of the time — enough to offer

plausible deniability to users, while allowing algorithms to achieve

good accuracy. Since the domain size D is chosen to be a power

of 2, we can choose a range of branching factors B for hierarchical

histograms so that logB(D) remains an integer. The default popu-

lation size N is set to be N = 226 which captures the scenario of
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Dataset Type Bucketing attribute Time span Bucket size N D

stackoverflow [25] time series posting/editing answers 2774 days 12 min. ≈ 221 218

movielens [19] time series user rating
random sample of users

from 1995 to 2018
32 min. ≈ 221 218

NYC yellow taxi dataset [1] time series pickup time 9/2017 to 12/2017 30 min. ≈ 224 217

Gowalla [6] location details check-in co-ordinates 02/2009 to 09/2010
geohash of length 5

(±2.4km error)
≈ 221 216

Figure 2: Summary of datasets used.

an industrial deployment, similar to [15, 26, 10]. Each bar plot is

the mean of 5 repetitions of an experiment and error bars capture

the observed standard deviation. The simulations are implemented

in C++ and tested on a standard Linux machine. To the best of our

knowledge, ours is among the first non-industrial work to provide

simulations with domain sizes as large as 222. Our final implemen-

tation will shortly be made available as open source.

Sampling range queries for evaluation. When the domain size

is small or moderate (D = 28 and 216), it is feasible to evaluate

all
(
D
2

)
range queries and their exact average. However, this is not

scalable for larger domains, and so we average over a subset of the

range queries. To ensure good coverage of different ranges, we pick

a set of evenly-spaced starting points, and then evaluate all ranges

that begin at each of these points. For D = 217, 218, 220, 221 and

222 we pick start points every 28, 210, 214, 216 and 217 steps, re-

spectively, yielding a total of 33.3M and 67.1M unique queries.

Histogram estimation primitives. The HH framework in general

is agnostic to the choice of the histogram estimation primitive F .

We show results with OUE, HRR and OLH as the primitives for

histogram reconstruction, since they are considered to be state of

art [33], and all provide the same theoretical bound VF on variance.

Though any of these three methods can serve as a flat method, we

choose OUE as a flat method since it can be simulated efficiently

and reliably provides the lowest error in practice by a small mar-

gin. We refer to the hierarchical methods using HH framework as

TreeOUE, TreeOLH and TreeHRR. Their counterparts where the

aggregator applies postprocessing to enforce consistency are iden-

tified with the CI suffix, e.g. TreeHRRCI.

We quickly observed in our preliminary experiments that direct

implementation of OUE can be very slow for large D: the method

perturbs and reports D bits for each user. For accuracy evaluation

purposes, we can replace the slow method with a statistically equiv-

alent simulation. That is, we can simulate the aggregated noisy

count data that the aggregator would receive from the population.

We know that noisy count of any item is aggregated from two distri-

butions (1) “true” ones that are reported as ones (with prob. 1
2

) (2)

zeros that are flipped to be ones (with prob. 1
1+eǫ

). Therefore, using

the (private) knowledge of the true count θ[j] of item j ∈ [D], the

noisy count θ∗[j] can be expressed as a sum of two binomial ran-

dom variables, θ∗[j] = Bino(θ[j], 0.5) + Bino
(
N − θ[j], 1

1+eǫ

)
.

Our simulation can perform this sampling for all items, then pro-

vides the sampled count to the aggregator, which then performs the

usual bias correction procedure.

The OLH method suffers from a more substantial drawback:

the method is very slow for the aggregator to decode, due to the

need to iterate through all possible inputs for each user report (time

O(ND)). We know of no short cuts here, and so we only consider

OLH for our initial experiments with small domain size D.

5.1 Impact of varying B and r

Experiment description. In this experiment, we aim to study how

much a privately reconstructed answer for a range query deviates

from the ground truth. Each query answer is normalized to fall

in the range 0 to 1, so we expect good results to be much smaller

than 1. To compare with our theoretical analysis of variance, we

measure the accuracy in the form of mean squared error between

true and reconstructed range query answers.

Plot description. Figure 3 illustrates the effect of branching factor

B on accuracy for domains of size 28 (small), 216 (medium), and

222 (large). Within each plot with a fixed D and query length r,

we vary the branching factor on the X axis. We plot the flat OUE

method as if it were a hierarchical method with B = D, since it

effectively has this fan out from the root. We treat HaarHRR as if

it has B = 2, since is based on a binary tree decomposition. The

Y axis in each plot shows the mean squared error incurred while

answering all queries of length r. As the plots go left to right, the

range length increases from 1 to a constant fraction of the whole

domain size D. The top row of plots have D = 28, and the last

row of plots have D = 222.

Observations. Our first observation is that the CI step reliably pro-

vides a significant improvement in accuracy in almost all cases for

HH, and never increases the error. Our theory suggests that the CI

step improves the worst case accuracy by a constant factor, and this

is borne out in practice. This improvement is more pronounced at

larger intervals and higher branching factors. In many cases, es-

pecially in the right three columns, TreeOUECI and TreeHRRCI

are two to four times more accurate then their inconsistent counter

parts. Consequently, we put our main focus on methods with con-

sistency applied in what follows.

Next, we quickly see evidence that the flat approach (represented

by OUE) is not effective for answering range queries. Unsurpris-

ingly, for point queries (r = 1), flat methods are competitive. This

is because all methods need to track information on individual item

frequencies, in order to answer short range queries. The flat ap-

proach keeps only this information, and so maximizes the accuracy

here. Meanwhile, HH methods only use leaf level information to

answer point queries, and so we see better accuracy the shallower

the tree is, i.e. the biggerB is. However, as soon as the range goes

beyond a small fraction of the domain size (ranges in the few tens

in length), other approaches are preferable. The second column of

plots shows results for relatively short ranges where the flat method

is not the most accurate. Note that our methods as proposed are ag-

nostic as to the workload of range queries, and optimize across all

range queries. If a workload were known, we could easily optimize

for this by adjusting the sampling probabilities pl of the HH meth-

ods, for example to give more accuracy on short queries if needed.

For larger domain sizes and queries, our methods outperform the

flat method by a high margin. For example, the best hierarchical

methods for very long queries and large domains are at least 16

times more accurate than the flat method. Recall our discussion of
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Figure 3: Impact of post-processing and branching factor B. In each plot, B increases along X axis, and the Y axis gives the MSE

for all range queries of length r. The second column corresponds to the range size where HaarHRR outperforms the flat method.

OLH above that emphasised that its computation cost scales poorly

with domain size D. We show results for TreeOLH and TreeOL-

HCI for the small domain size 28, but drop them for larger domain

sizes, due to this poor scaling. We can observe that although the

method acheives competitive accuracy, it is equalled or beaten by

other more performant methods, so we are secure in omitting it.

As we consider the two tree methods, TreeOUE and TreeHRR,

we observe that they have similar patterns of behavior. In terms

of the branching factor B, it is difficult to pick a single particular

B to minimize the variance, due to the small relative differences.

The error seems to decrease from B = 2, and increase for larger

B values above 24 (i.e. 16). Across these experiments, we observe

that choosing B = 4, 8 or 16 consistently provides the best results

for medium to large sized ranges. This agrees with our theory,

which led us to favorB = 8 orB = 4, with or without consistency

applied respectively. This range of choices means that we are not

penalized severely for failing to choose an optimal value of B.

The main takeaway from Figure 3 is the strong performance

for the HaarHRR method. It is not competitive for point queries

(r = 1), but for all ranges except the shortest it achieves the single

best or equal best accuracy. For some of the long range queries cov-

ering the almost the entire domain, it is slightly outperformed by

consistent HHB methods. However, this is sufficiently small that

it is hard to observe visually on the plots. Across a broad range of

query lengths (roughly, 0.1% to 10% of the domain size), HaarHRR

is preferred. It is most clearly the preferred method for smaller do-

main sizes, such as in the case of D = 28. We observed a similar

behavior for domains as small as 25.

5.2 Impact of privacy parameter ǫ

Experiment description. We now vary ǫ between 0.1 (higher pri-

vacy) to 1.4 (lower privacy) and find the mean squared error over

range queries. Similar ranges of ǫ parameters are used in prior

works such as [36]. After the initial exploration documented in

the previous section, our goal now is to focus in on the most ac-

curate and scalable hierarchical methods. Therefore, we omit all

flat methods and consider only those values of B that provided sat-

isfactory accuracy. We choose TreeOUECI as our mechanism to

instantiate HH (henceforth denoted by HHc
B , where the c denotes

that consistency is applied) method due to its accuracy. We do note

that a deployment may prefer TreeHRRCI over TreeOUECI since

it requires vastly reduced communication for each user at the cost

of only a slight increase in error.

Plot description. Figure 4 compares the mean squared error for

HHc
2, HHc

4 HHc
16 and HaarHRR for various ǫ values. We multiply

all results by a factor of 1000 for convenience, so the typical values

are around 10−3 corresponding to very low absolute error. In each

row, we mark in bold the lowest observed variance, noting that in

many cases, the “runner-up” is very close behind.

Observations. The first observation, consistent with Figure 3, is

that for lower ǫ’s, HaarHRR is more accurate than the best of HHc
B

methods. This improvement is most pronounced for D = 28 i.e.

at most 10% (at ǫ = 0.2) and marginal (0.01 to 1%) for larger

domains. For larger ǫ regimes, HHc
B outperforms HaarHRR, but

only by a small margin of at most 11%. For large domains, HHc
B

remains the best method. In general, except for D = 222, there is
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ǫ HHc
2 HHc

4 HHc
16 HaarHRR

0.2 4.269 4.037 4.176 3.684

0.4 2.024 2.193 2.590 1.831

0.6 1.388 1.341 1.535 1.278

0.8 1.002 0.950 1.130 0.987

1.0 0.844 0.744 0.844 0.811

1.1 0.722 0.667 0.820 0.748

1.2 0.684 0.658 0.642 0.732

1.4 0.571 0.542 0.592 0.601

(a) D = 28

ǫ HHc
2 HHc

4 HHc
16 HaarHRR

0.2 6.745 7.129 8.692 6.666

0.4 3.616 3.424 4.648 3.526

0.6 2.333 2.360 2.793 2.342

0.8 1.644 1.728 2.075 1.711

1.0 1.356 1.377 1.642 1.484

1.1 1.303 1.270 1.597 1.345

1.2 1.090 1.140 1.433 1.201

1.4 0.922 0.995 1.158 1.130

(b) D = 216

ǫ HHc
2 HHc

4 HHc
16 HaarHRR

0.2 10.043 10.493 11.511 9.285

0.4 5.378 4.751 5.617 5.261

0.6 3.605 3.603 4.483 3.693

0.8 3.047 3.042 3.352 3.316

1.0 2.522 2.690 3.131 2.915

1.1 2.556 2.540 2.729 2.722

1.2 2.619 2.488 2.757 2.640

1.4 2.339 2.304 2.652 2.505

(c) D = 220

ǫ HHc
2 HHc

4 HaarHRR

0.2 8.629 8.889 8.422

0.4 4.546 4.951 4.470

0.6 3.181 3.420 3.085

0.8 2.657 2.692 2.462

1.0 2.247 2.358 2.254

1.1 1.979 2.252 2.139

1.2 2.120 2.066 1.946

1.4 1.650 1.885 1.990

(d) D = 222

Figure 4: Impact of varying ǫ on mean squared error for arbitrary queries. These numbers are scaled up by 1000 for presentation.

ǫ HHc
2 HHc

4 HHc
16 HaarHRR

0.2 4.306 2.968 4.282 2.857

0.4 1.859 1.439 1.828 1.377

0.6 1.366 0.957 1.758 1.031

0.8 0.937 0.778 0.896 0.758

1.0 0.802 0.561 0.637 0.613

1.1 0.684 0.533 0.666 0.626

1.2 0.658 0.437 0.670 0.568

1.4 0.573 0.420 0.478 0.494

(a) D = 28

ǫ HHc
2 HHc

4 HHc
16 HaarHRR

0.2 7.701 6.172 7.014 5.870

0.4 3.266 3.101 3.744 2.880

0.6 2.402 2.176 2.426 2.018

0.8 1.663 1.503 1.834 1.511

1.0 1.338 1.220 1.426 1.244

1.1 1.202 1.051 1.259 1.120

1.2 1.080 0.978 1.147 1.054

1.4 0.973 0.848 0.981 0.973

(b) D = 216

ǫ HHc
2 HHc

4 HHc
16 HaarHRR

0.2 8.874 8.255 10.462 7.237

0.4 4.734 4.395 5.754 4.271

0.6 3.788 3.485 4.055 3.377

0.8 3.287 3.094 3.268 3.108

1.0 3.022 2.848 2.826 2.920

1.1 3.053 2.756 2.727 2.727

1.2 3.145 2.627 2.914 2.754

1.4 2.975 2.659 2.543 2.696

(c) D = 220

ǫ HHc
2 HHc

4 HaarHRR

0.2 8.620 8.638 8.099

0.4 4.181 4.330 4.233

0.6 2.932 3.077 3.063

0.8 2.215 2.590 2.528

1.0 1.958 2.246 2.326

1.1 1.777 2.319 2.181

1.2 1.929 2.174 2.205

1.4 1.613 1.868 2.156

(d) D = 222

Figure 5: Impact of varying ǫ on mean squared for prefix queries. These numbers are scaled up by 1000 for presentation. We

underline the scores that are smaller than corresponding scores in Figure 4.

D 28 29 210 211

Wavelet 221.62 306.31 410.29 536.32

(optimal) HHc
16 79.23 164.48 185.94 213.87

HHc
2 220.06 305.54 409.48 535.63

Wavelet
HHc

16
2.7971 1.8622 2.20 2.5077

HHc
2

HHc
16

2.777 1.8576 2.202 2.5044

Figure 6: Table 3 from [27] comparing the exact average vari-

ance incurred in answering all range queries for ǫ = 1 in the

centralized case.

no one value of B that achieves the best results at all parameters

but overall B = 4 yields slightly more accurate results for HHc
B

for most cases. Note that this B value is closer to the optimal value

of 9 (derived in Section 4.5) than other values. When D = 222,

HHc
2 dominates HHc

4 but only by a margin of at most 10%.

Comparison with DHT and HH based approaches in the cen-

tralized case. We briefly contrast with the conclusion in the cen-

tralized case. We reproduce some of the results of Qardaji et al. [27]

in Figure 6, comparing variance for the (centralized) wavelet based

approach to (centralized) hierarchical histogram approaches with

B = 2, 16 with consistency applied. These numbers are scaled

and not normalized, so can’t be directly compared to our results

(although, we know that the error should be much lower in the cen-

tralized case). However, we can meaningfully compare the ratio of

variances, which we show in the last two rows of the table.

For ǫ = 1, D = 28, the error for the Haar method is approxi-

mately 2.8 times more than the hierarchical approach. Meanwhile,

the corresponding readings for HaarHRR and HHc
4 (the most accu-

rate method in the ǫ = 1 row) in Figure 4 are 0.787 and 0.763 —

a deviation of only ≈3%. Another important distinction from the

centralized case is that we are not penalized a lot for choosing a

sub-optimal branching factor. Whereas, we see in the 4th row that

choosing B = 2 increases the error of consistent HH method by at

least 1.8576 times from the preferred method HHc
16.

(a) movielens (b) stackoverflow

(c) NYC yellow cabs data (d) Gowalla check-ins

Figure 7: Mean relative error on log scale

A further observation is that (apart for D = 222) across 24 ob-

servations, HaarHRR is never outperformed by all values of HHc
B

i.e. in no instance is it the least accurate method. It trails the best

HHc
B method by at most 10%. On the other hand, in the centralized

case (Figure 6), the variance for the wavelet based approach is at

least 1.86 times higher than HHc
B .

5.3 Prefix Queries

Experiment description. As described in Section 4.7, prefix queries

deserve special attention. Our set up is the same as for range

queries. We evaluate every prefix query, as there are fewer of them.

Plot description. Figure 5 is the analogue of Figure 4 for prefix

queries, computed with the same settings. We underline the scores
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(a) movielens (b) stackoverflow

Figure 8: Top row: value error; bottom row: quantile error

that are smaller than corresponding scores in Figure 4.

Observations. The first observation is that the error in Figure 5

is often smaller (up to 30%) than in Figure 4 at many instances,

particularly for small and medium sized domains. The reduction

is not as sharp as the analysis might suggest, since that only gives

upper bounds on the variance. Reductions in error are not as no-

ticeable for larger values of D, although this could be impacted by

our range query sampling strategy. In terms of which method is

preferred, HHc
2 for D = 222 and HHc

4 tend to dominate for larger

ǫ, while HaarHRR is preferred for smaller ǫ.

5.4 Heavy Intervals

Experiment description. We test the sensitivity of our best hierar-

chical methods to the heaviness of intervals, i.e. we check whether

“heavy hitter” range queries can be answered more accurately than

relatively lighter weight queries. In this experiment, we measure

error by computing the relative error (|R− R̂|/R) instead of MSE.

Plot description. In each subplot of Figure 7, we show the mean

relative error for those queries with mass at least x% on log scale.

The X axis varies the threshold x from 10 to 90. We include the

flat method also for comparison.

Observations. Once again we confirm that the flat method is out-

performed by the hierarchical methods even on a different metric

by a large margin. For example, in the movielens dataset, the hier-

archical methods answer all reasonably heavy queries (x ≥ 10%)

with ≤ 2% error. The main finding from this figure is that in all

datasets, the relative error tends to decrease as x increases. This

is to be expected, since the absolute error per query is relatively

constant, and so the relative error decreases as the true weight in-

creases.

5.5 Quantile Queries

Experiment description. Finally, we compare the performance of

the best hierarchical approaches in evaluation of the deciles (i.e. the

φ-quantiles for φ in 0.1 to 0.9) for two real datasets.

Plot description. The top row in Figure 8 plots the actual dif-

ference between true and reconstructed quantile values (value er-

ror). The corresponding bottom plots measure the absolute differ-

ence between the quantile value of the returned value and the target

quantile (quantile error).

Observations. The first observation is that the both the algorithms

have low absolute value error (the top row). For the domain of

218 ≈ 262K, even the largest error of ≈15K made by HHc
4 is still

very small, and less than 6%. The value error tends to be the highest

where the data is least dense: towards both the extremes for the

movielens dataset and only towards the left end for stackoverflow

dataset. Importantly, the corresponding quantile error is mostly flat.

This means that instead of finding the median (say), our methods

return a value that corresponds to the 0.5002 and 0.5003 quantile,

which are very close in the distributional sense. This reassures us

that any spikes in the value error are mostly a function of sparse

data, rather than problems with the methods.

5.6 Experimental Summary
We summarize the results and recommendations from our study:

• The flat methods are never competitive, except for very short

ranges and small domains.

• The wavelet approach is preferred for small values of ǫ (roughly

ǫ < 0.8), while the (consistent) HH approach is preferred for larger

ǫ’s and for larger queries.

• This threshold is slightly reduced for larger domains. However,

the “regret” for choosing a “wrong” method is low: the difference

between the best method and its competitor from HH and wavelet

is typically no more than 10%.

• Overall, the wavelet approach (HaarHRR) is always a good com-

promise method. It provides accuracy comparable to consistent HH

in all settings, and requires a constant factor less space (D wavelet

coefficients against 2D − 1 for HH2).

• Across four real datasets with varying distributions, the best meth-

ods are comparable, achieving small relative errors in practice.

6. CONCLUDING REMARKS
We have seen that we can accurately answer range queries un-

der the model of local differential privacy. Two methods whose

counterparts have quite differing behavior in the centralized setting

are very similar under the local setting, in line with our theoretical

analysis. Last, we sketch two possible extensions for future work:

Multidimensional range queries. Both the hierarchical and wavelet

approaches can be extended to multiple dimensions. Consider ap-

plying the hierarchical decomposition to two-dimensional data, drawn

from the domain [D]2. Now any (rectangular) range can be decom-

posed into 4(B − 1)2 log2B D B-adic rectangles (where each side

is drawn from a B-adic decomposition), and so we can bound the

variance in terms of (B− 1)4 log4B D. More generally, we achieve

variance depending on ((B − 1) logD)2d for d-dimensional data.

Similar bounds apply for generalizations of wavelets. These give

reasonable bounds for small values of d (say, 2 or 3). For higher

dimensions, we anticipate that coarser gridding approaches would

be preferred, in line with [28].

Advanced data analysis. Many tasks in data modeling and pre-

diction can abstractly be understood as building a description of

observed data density. For example, many (binary) classification

problems reduce to predicting what class is most prevalent in the

neighborhood of a given query point. Similarly, computing the area

under ROC curve (AUC) [21] in imbalanced binary classification

can be reduced to combining density information from the CDFs

for the positive and negative class. Applying our methods to these

and related questions gives a set of natural extensions.
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