
Answering Regular Path Queries Using Views

Diego Calvanese1, Giuseppe De Giacomo1, Maurizio Lenzerini1, Moshe Y. Vardi2

1 Dipartimento di Informatica e Sistemistica
Universit̀a di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy
lastname @dis.uniroma1.it

2 Department of Computer Science
Rice University, P.O. Box 1892

Houston, TX 77251-1892, U.S.A.
vardi@cs.rice.edu

Abstract

Query answering using views amounts to computing
the answer to a query having information only on the ex-
tension of a set of views. This problem is relevant in sev-
eral fields, such as information integration, data ware-
housing, query optimization, mobile computing, and
maintaining physical data independence. We address
query answering using views in a context where queries
and views are regular path queries, i.e., regular expres-
sions that denote the pairs of objects in the database
connected by a matching path. Regular path queries
are the basic query mechanism when the database is
conceived as a graph, such as in semistructured data
and data on the web. We study algorithms for answer-
ing regular path queries using views under different as-
sumptions, namely, closed and open domain, and sound,
complete, and exact information on view extensions. We
characterize data, expression, and combined complexity
of the problem, showing that the proposed algorithms
are essentially optimal. Our results are the first to ex-
hibit decidability in cases where the language for ex-
pressing the query and the views allows for recursion.

1 Introduction

Query answering using views amounts to computing
the answer to a query having information only on the
extension of a set of views. This problem is relevant
in several fields, such as information integration [29],
data warehousing [31], query optimization [11], mobile
computing [5], and maintaining physical data indepen-
dence [28].

Data integration is the setting that has put the
strongest emphasis on query answering using views: a
typical integration process results in a set of precom-
puted views, and the query evaluation mechanism can
only rely on such views in order to derive correct an-

swers to queries. Two approaches to data integration
have been investigated, called virtual and materialized.
In the virtual approach, the precomputed views represent
the data sources that are integrated, whereas in the mate-
rialized approach (generally adopted in data warehous-
ing), the precomputed views represent the result of the
integration activity carried out over the sources. In both
cases, the problem of answering queries using views is
crucial.

When integrating data from many autonomous
sources, each with differing modeling features and as-
sumptions, e.g., data sources on the web, it is conve-
nient to resort to modeling mechanisms that are flexible
and adaptable. This has raised interest in the manage-
ment of semistructured data, which are data that do not
fit into rigid, predefined schemas, and are best described
by graph-based data models [7, 1, 17].

Methods for extracting information from semistruc-
tured data necessarily incorporate special querying
mechanisms that are not common in traditional database
systems. One such basic mechanism is the one that re-
trieves all pairs of nodes in the graph connected by a
path conforming to a regular expression (regular path
queries) [9, 3]. Observe that regular expressions provide
a (limited) form of recursion, which is used in regular
path queries to navigate the graph database.

In this paper we address the problem of query an-
swering using views when both the query and the views
are regular path queries. Our goal is to devise algo-
rithms and characterize the computational complexity
of the problem under different assumptions. This rep-
resents a fundamental step towards solving the prob-
lem of query answering using views for full-fledged
query languages over semistructured data and data on
the web [9, 3, 15, 13].

The assumptions that we consider are on the informa-
tion available on the domain, and on the information on
the view extensions [2, 19].

The closed domain assumptionstates that the
database contains exactly the objects stored in the views.

In other words, although we do not know the exact form
of the database, we know the set of objects stored in it.
On the contrary, under theopen domain assumptionthe
database may contain other objects besides those stored
in the views.

A view is exact if its extension is exactly the set of
objects in the database that satisfy its definition. A view
is soundif its extension is a subset of the objects that sat-
isfy its definition. In other words, when a view is sound
we know a subset of the pairs of objects that satisfy the
view, but we cannot exclude that other pairs of objects
satisfy the view as well. The case of complete view is
the dual one: a view iscomplete, if its extension is a su-
perset of the pairs of objects in the database that satisfy
its definition. Observe that an exact view is one that is
both sound and complete. When answering a query us-
ing views, sound views are used to infer pairs of objects
that are in the answer set of the query, while complete
views are used to infer pairs of objects that are not in the
answer set of the query.

As pointed out in [19], in data integration, a sound
view corresponds to a data source that is known to pro-
duce only (not necessarily all) the answers to the query
associated to the view. On the other hand, a complete
view models a source that is known to produce all an-
swers to the associated query, and maybe more. Finally,
an exact view models a source that is known to produce
exactly the answers to the associated query.

The framework we consider in the paper allows the
specification of which assumption to adopt for the do-
main of the database, and of which one to adopt for
each of the available views. Within this framework, we
present the following results:

� We provide algorithms for query answering using
views thus showing that all cases are decidable. We
study the data, expression, and combined complexity
of the algorithms.

� We characterize the lower bounds of the problem,
and we show that such lower bounds match the up-
per bounds provided by the algorithms. In particular,
we show that answering regular path queries using
views is coNP-complete with respect to data com-
plexity in all cases. With respect to expression (and
hence combined) complexity, the problem is coNP-
complete under the closed domain assumption, and
PSPACE-complete under the open domain assump-
tion.

Our investigation is similar in spirit to the one pre-
sented in [2], where the decidability and the data com-
plexity of the problem is studied when the views and
the queries are expressed in terms of various languages
(conjunctive queries, datalog, first-order queries, etc.).

dau

y

1989

dau

y

date

son dau

m

date

son son

y
mdate

d

y m

25

1965

1998Feb

y

Jun

dau son

1945
m

date

dau

2000

y m

son

Mary

John

Ken Tim Lea

Ann Bea Uli Jim Tom
date date date date date date

Bill

y

1967

y

Jan1988 1993Mar

m

Dec

Aug

m

Figure 1. A database

The results in [2] show that answering recursive (data-
log) queries using recursive views is undecidable in gen-
eral. The results presented in this paper are the first to
exhibit decidability in a case where the language for ex-
pressing the query and the views allows for recursion.

The paper is organized as follows. Section 2 sets the
framework in which we study the problem of query an-
swering using views. Section 3 provides an overview of
the results, and a comparison with related work. Sec-
tion 4 investigates the problem in the case of the closed
domain assumption. Section 5 deals with answering
queries using sound views under the open domain as-
sumption. Section 6 presents the results for the case of
open domain assumption and arbitrary views. Section 7
investigates the connection between answering queries
using views and query rewriting using views. Finally,
Section 8 concludes the paper.

2 Framework

We consider a setting in which databases are ex-
pressed in terms of edge-labeled graphs, and queries
ask for pairs of nodes connected by a specified path.
This setting is typical in semistructured data, where
all data models share the characteristic that data are
organized in a labeled graph, where the nodes repre-
sent objects, and the edges represent links between ob-
jects [25, 8, 7, 1, 17].

2.1 Regular path queries

Formally, we consider adatabaseas an edge la-
beled graphDB = (D; E), whereD is a set of nodes
(called thedomain) that represent the objects ofDB ,
andE = fre j e 2 �g is a set of binary relations corre-
sponding to the edges of the graph labeled by elements
from an alphabet�. Such edges represent links between
objects labeled by attribute names. We denote an edge
from nodex to nodey labeled byr, i.e.,(x; y) 2 r, with
x

r
! y.

Example 1 We show in Figure 1 an example of a
database with information on a set of people, their sons
and daughters, and their date of birth.

As query mechanism we considerregular path
queries(simplyqueriesin the following), which are the
basic constituents of full-fledged query languages over
semistructured data [9, 1, 16, 23, 13]. Such queries
denote all the paths corresponding to words of a spec-
ified regular language over the alphabet�, and hence
are expressed by means of regular expressions or finite
automata [10].

Definition 2 The answer set to a queryQ over
a database DB is ans(Q;DB) = f(x; y) j

there is a pathx
r1! � � �

rn! y in DB s.t.r1 � � � rn 2
L(Q)g, whereL(Q) is the regular language defined by
Q.

Example 3 Refer to the database in Figure 1, and con-
sider the query(son + dau)��dau �date �m, asking for
the pairs(x; y) such thaty is the month of birth of a
female descendent ofx. It is easy to see that the an-
swer set to the query contains e.g.,(John ; Jun) and
(John ;Dec).

2.2 Query answering using views

We now introduce formally the problem of query an-
swering using views. As pointed out in [2, 19, 21], this
problem comes in different forms, depending on vari-
ous assumptions about how accurate is the knowledge
on both the objects of the database, and the pairs satis-
fying the views.

Consider a database that is accessible only through a
set of viewsV1; : : : ; Vk, and suppose we want to answer
a regular path query only on the basis of our knowledge
on the views. Specifically, associated to each viewVi

we have:

� its definition def (Vi) in terms of a regular path
query;

� information about its extension in terms of a set
ext(Vi) of pairs of objects, and a specificationas(Vi)
of which assumptionto adopt for the viewVi in in-
terpretingext(Vi) with respect to the answer set of
def (Vi).

We consider the following three assumptions on
views [2, 19]:

� Sound View Assumption(SVA). We say that a view
Vi is sound(satisfiesSVA) with respect to a database
DB , if ext(Vi) � ans(def (Vi);DB). This means,

that from the fact that a pair(a; b) is in ext(Vi)
we can conclude that(a; b) is in ans(def (Vi);DB).
However, if (a; b) is not in ext(Vi) we cannot con-
clude that(a; b) is not inans(def (Vi);DB).

� Complete View Assumption(CVA). We say that a
view Vi is complete, (satisfiesCVA) with respect
to a databaseDB , if ext(Vi) � ans(def (Vi);DB).
This means, that from the fact that a pair(a; b)
is in ext(Vi) we cannot conclude that(a; b) is in
ans(def (Vi);DB). On the other hand, if(a; b) is
not in ext(Vi) we can conclude that(a; b) is not in
ans(def (Vi);DB).

� Exact View Assumption(EVA). We say that a view
Vi is exact(satisfiesEVA) with respect to a database
DB , if ext(Vi) = ans(def (Vi);DB). This means,
that we know that the extension of the view is exactly
the set of pairs of objects that satisfy the view.

We say that a databaseDB is consistent with a view
Vi if Vi satisfies the assumptionas(Vi) with respect to
DB .

Example 4 A possible set of views for the database of
Figure 1 isfV1; V2; V3g where:

def (V1) = (son + dau)��dau �date �m
def (V2) = dau
def (V3) = son + dau

Suppose that the extensionext(V1) is f(John ; Jun)g,
the extension ext(V2) is f(John ;Mary),
(Mary ;Ann), (Tim ;Bea), (Tim ;Uli), (John ; Lea),
(John ;Tim)g, and the extensionext(V3) is the set of
nodes connected byson or dau . ThenV1 is sound,V2
is complete, andV3 is exact. Hence, ifas(V1) = SVA,
as(V2) = CVA, as(V3) = EVA, then the database of
Figure 1 is consistent withV1, V2, andV3.

With respect to the information available on the ob-
jects in the database, we further distinguish between:

� Closed Domain Assumption(CDA). The exact set
of objects in the database coincides with the set
of objects that appear in the view extensions.
We say that a database(D; E) is consistent with
ext(V1); : : : ; ext(Vk) under CDAif the set of objects
appearing inext(V1) [� � � [ext(Vk) is equal toD.

� Open Domain Assumption(ODA). Only a subset of
the objects in the database appears in the view ex-
tensions. We say that a database(D; E) is consis-
tent withext(V1); : : : ; ext(Vk) under ODAif the set
of objects appearing inext(V1) [� � � [ext(Vk) is a
subset ofD.

We are now ready to define the problem of answering
queries using views.

Definition 5 Let � be CDA or ODA. The problem of
answering queries using views under the domain as-
sumption� is the following: Given

� def (Vi), ext(Vi), andas(Vi), for 1 � i � k

� a queryQ

� a pair of objectsc; d 2 D

decide whether(c; d) 2 ans(Q), i.e., decide whether
(c; d) 2 ans(Q;DB), for everyDB that is consistent
with ext(V1); : : : ; ext(Vk) under� and that is consistent
with V1; : : : ; Vk.

The complexity of the problem can be measured in
three different ways [30]:

� Data complexity: as a function of the size of
ext(V1) [� � � [ext(Vk).

� Expression complexity: as a function of the size ofQ
and of the expressionsdef (V1); : : : ; def (Vk).

� Combined complexity: as a function of the size of
both ext(V1) [� � � [ext(Vk) and the expressions
Q; def (V1); : : : ; def (Vk).

2.3 Relationships between the different as-
sumptions

SVA andEVA are inherently different assumptions.
To see this, it is sufficient to note that if we adoptEVA
for some of the views, then there is the possibility that
there exists no database at all which is consistent with
the views. This cannot happen in the case where all
views are sound.

Example 6 Consider viewsV1 andV2 such that

def (V1) = R ext(V1) = f(a; c)g as(V1) = SVA
def (V2) = R

� ext(V2) = f(a; b)g as(V2) = EVA

Obviously, from the extension ofV1 we can conclude
that(a; c) should also appear inV2. SinceV2 is assumed
to be exact, no database exists which is consistent with
the views.

On the other hand, complete views can be reformu-
lated in terms of exact views. Indeed, by exploiting
union in our query language, given an instance of the
problem of query answering using views, we can al-
ways transform it to a new instance with only sound and
exact views, and such that the solutions of the two in-
stances are the same. Suppose we want to check whether

(c; d) 2 ans(Q) under the domain assumption�, given
the viewsV1; : : : ; Vk, and suppose thatas(Vi) = CVA.
Introduce in� a new relation symbolRnew that does
not appear inQ; V1; : : : ; Vk, and replaceVi by V 0

i
with

def (V 0
i
) = def (Vi) + Rnew , ext(V 0

i
) = ext(Vi), and

as(V 0
i
) = EVA. It is easy to see that the new instance

of the problem has the same solution as the original
one. For this reason, in what follows, we concentrate
on sound and exact views only. Note that we cannot ap-
ply similar arguments in order to reduce sound views to
exact views, because our query language lacks intersec-
tion1.

With respect to the relationship betweenCDA and
ODA we observe thatCDA imposes more restrictions
thanODA on the databases that are coherent with the in-
formation on the views. Namely, underCDA, a database
that is coherent with the information on the views, must
contain only the objects that are in the view extensions.
Instead, underODA, a database that is coherent with
the information on the views, may contain objects that
are not in the view extensions. Hence in verifying that
a given pair of objects is in the answer set of a query,
underCDA, we must take into account only databases
containing exactly the objects in the views, while, under
ODA, we must take into account also databases which
contain additional objects. The following example illus-
trates such a difference.

Example 7 Supposedef (V) = R1�R2, ext(V) =
f(a; b)g, and we want to check whether(a; b) 2
ans(R1 + R2). UnderCDA a andb are the only ob-
jects to consider, and the answer is yes. However, if we
adoptODA, and allow for an additional objectc, we get

the databaseDB with a
R1! c and c

R2! b, for which
(a; b) 62 ans(R1 + R2;DB). Hence underODA the
answer is no.

Notwithstanding the difference between the two as-
sumptions,CDA can be reformulated in terms ofODA.
It suffices to add an additional viewV with def (V) =
��, ext(V) = D � D, andas(V) = CVA. In this
way, even underODA, no additional objects than those
already present inD can be used to construct databases
which are coherent with the information on the views,
thus realizingCDA. However, as shown in the follow-
ing sections, the complexity of query answering using
views underCDA is in general lower than underODA.
This justifies to consider the two cases separately.

1Here we are referring to intersection of relations, and not to inter-
section of regular languages.

2.4 Possible answers

The problem of query answering using views can be
interpreted as checking whether(c; d) is a certain an-
swerto Q [2]. On the other hand, we may be interested
in checking whether(c; d) is apossible answertoQ, i.e.,
checking whether(c; d) 2 ans(Q;DB), for someDB

that is coherent with the information on the views.
From the point of view of logic, finding certain an-

swers is a logical implication problem: check whether it
logically follows from the information on the views that
(c; d) is in the answer set ofQ. Similarly, finding pos-
sible answers is a consistency problem: check whether
it is consistent with the information on the views that
(c; d) is in the answer set ofQ. The following argument
illustrates the relationship between the two problems in
our framework.

Suppose we want to check whether(c; d) is a possi-
ble answer to the queryQ under the domain assumption
�, given the viewsV1; : : : ; Vk. We add toV1; : : : ; Vk
another viewVQ such thatdef (VQ) = Q, ext(VQ) =
f(c; d)g andas(VQ) = SVA, and we ask whether(c; d)
is a certain answer to the queryRnew, whereRnew does
not appear inVQ; V1; : : : ; Vk. The answer is yes if and
only if there is no database which is consistent with
ext(VQ); ext(V1); : : : ; ext(Vk) under�, and is consis-
tent withVQ and everyVi. Therefore, if the answer is
yes, then(c; d) is not a possible answer toQ, while if
the answer is no, then a database that is coherent with
the information on the views exists, and hence(c; d) is
a possible answer toQ. This shows that the problem
of finding possible answers can be reduced to the one
of finding certain answers (provided that we interpret at
least one of the views underSVA).

We also remark that checking whether it logically fol-
lows from the information on the views that(c; d) is
not in the answer set ofQ, can be verified by checking
whether(c; d) is not a possible answer ofQ. Similarly,
checking whether it is consistent with the information
on the views that(c; d) is not in the answer set ofQ, can
be verified by checking whether(c; d) is not a certain
answer ofQ.

In the following, without loss of generality, we con-
sider only the problem of checking whether a pair of
objects is a certain answer of a query.

3 Summary of Results and Related Work

The summary of our results on the complexity of an-
swering regular path queries using views is reported in
Table 1. Entries with “all sound” (resp., “all exact”) in
the column named “Assumption on views” refer to the
case where all views are assumed to be sound (resp., ex-
act), whereas “arbitrary” means that for each viewV ,

Ass. on Ass. on Complexity
domain views data expression combined

all sound coNP coNP coNP
closed all exact coNP coNP coNP

arbitrary coNP coNP coNP
all sound coNP PSPACE PSPACE

open all exact coNP PSPACE PSPACE
arbitrary coNP PSPACE PSPACE

Table 1. Summary of complexity results (all
bounds are tight)

as(V) can be eitherSVA, CVA, or EVA. Each entry
of the table referring to a complexity classC means that
the corresponding problem is complete with respect to
C.

Our results show that none of the cases can be solved
in polynomial time (unlessP = NP). This can be ex-
plained by observing that, as noted in [6, 2], query an-
swering using views is strictly related to query answer-
ing over incomplete databases. Indeed, when we answer
the query on the basis of the views, we know only the
extensions of the views, and this provides us with only
partial information on the database. Moreover, since our
query language admits various forms of incomplete in-
formation (due to union and transitive closure), there are
in general several possible databases that are coherent
with the information on the views. The need of consid-
ering all such possibilities is a source of complexity for
query answering.

Obviously, underCDA, we know at least the set of
objects stored in the database, and therefore, our knowl-
edge is more accurate than in the case ofODA. One im-
portant feature ofCDA is that it is not necessary to con-
jecture the existence of unknown objects in the database.
This provides the intuition of why underCDA the prob-
lem is “only” coNP-complete in all cases, for data, ex-
pression, and combined complexity.

On the other hand, underODA, we cannot exclude
the possibility that the database contains more objects
than those known to be in the views. For combined com-
plexity, this means that we are forced to reason about the
definition of the query and the views. Indeed, the prob-
lem cannot be less complex than comparing two regu-
lar path queries, and this explains the PSPACE lower
bound. Interestingly, our algorithms show that the prob-
lem does not exceed the PSPACE complexity. Moreover,
the data complexity remains in coNP, and therefore, al-
though we are using a query language that is power-
ful enough to express a (limited) form of recursion, the
problem is no more complex than in the case of disjunc-
tions of conjunctive queries [2].

Query answering using views has been extensively

investigated in the last years [2, 19, 14, 22, 4]. As we
said in the introduction, none of these works provides
decidability results for the case where both the query
and the views contain recursion.

The work in [2] shares the same goal of this paper.
The authors present an analysis of the data complexity of
the problem, for the case where the views and the queries
are expressed in terms of various languages (conjunctive
queries, datalog, first-order queries, etc.). Note, how-
ever, that they do not consider the case of regular path
queries. The results presented in [2] show that, for the
query languages considered in that paper,EVA compli-
cates the problem. For example, the data complexity
of query answering for the case of conjunctive queries
is PTIME underSVA and coNP-complete underEVA.
This can be explained by noticing thatEVA introduces
a form of negation, and therefore it may force to reason
by cases on the objects stored in the views. On the con-
trary, in the case of regular path queries,EVA does not
increase the complexity of the problem relative toSVA.
In some sense, the expressive power of the query lan-
guage forces to reason by cases already underSVA, and
EVA does not introduce new complexity.

The problem of query answering using views has also
been dealt with techniques based on rewriting queries
using views [29]: Given a queryQ and viewsV1; : : : ; Vk
with associated definitionsdef (V1); : : : ; def (Vk), gen-
erate a new queryQ0 over the alphabetV1; : : : ; Vk such
that for every databaseDB , first computing the ex-
tensionans(def (Vi);DB) of eachVi, and then eval-
uating Q

0 on the basis of such extensions, provides
the answer toQ over DB . Several papers investigate
this problem for the case of conjunctive queries (with
or without arithmetic comparisons) [22, 26], queries
with aggregates [27, 12, 20], recursive queries [14],
queries expressed in Description Logics [6], and queries
over semistructured data, both without regular expres-
sions [24], and with regular expressions [10]. Although
methods for query rewriting can be adapted to the prob-
lem of query answering using views [22], the two prob-
lems are different. Query rewriting has as inputs only the
view definitions and the query and uses the view defini-
tions to re-express the query in terms of the views. Then,
to compute the answer to the original query, the rewrit-
ten query is evaluated on the extensions of the views. On
the other hand, query answering takes as inputs the view
definitions, the view extensions, the view assumptions,
and the query, and computes directly the answer to the
query.

Note that computing a rewriting is in general
costly [22, 10]. However, since such a computation does
not depend on the extension of the views, the data com-
plexity of evaluating the rewriting over the view exten-
sions is not influenced by its cost. Section 7 elaborates

more on the relationship between the two problems in
our framework.

4 Closed Domain

We study query answering using views underCDA.
We remind the reader that in this case we have complete
knowledge on the set of objects stored in the database.
This property makes the present case the simplest one in
our setting.

Theorem 8 Answering queries using views underCDA
is in coNP wrt combined complexity.

Proof. Let D be a finite domain, Q

be a query, and V1; : : : ; Vk be views with
definitions def (V1); : : : ; def (Vk), assump-
tions as(V1); : : : ; as(Vk), and extensions
ext(V1); : : : ; ext(Vk) such thatD equals the set of
objects in ext(V1) [� � � [ext(Vk). To check that
a pair (c; d) is not in ans(Q), we guess a database
DB = (D; E) over D (i.e., we guess the labeled
edges ofDB), check thatDB is consistent withVi,
for 1 � i � k, and then check that(c; d) is not
in ans(Q;DB). The claim follows from the fact
that all checks can be done in polynomial time in
the size ofext(V1) [� � � [ext(Vk) and the size of
Q; def (V1); : : : ; def (Vk) by computing the answer set
of Q andV1; : : : ; Vk exploiting the inductive structure
of the associated regular expressions. 2

We now give a matching lower bound for the problem
both wrt expression complexity and wrt data complexity.

Theorem 9 Answering queries using views underCDA
is coNP-hard wrt expression complexity.

The proof of the theorem above is from validity of
3DNF propositional formulae uses exact views only.
However, the reduction carries through also in the case
where all views are assumed to be sound. Hence the
coNP lower bound holds also for the special case where
all views are sound and the case where all views are ex-
act.

Theorem 10 Answering queries using views under
CDA is coNP-hard wrt data complexity.

The proof of the theorem above is from graph 3-
colorability [18] and makes use of a single view un-
der the assumption that it is exact. This shows that the
lower bound holds for the special case where all views
are exact. However the same argument holds if the same
view is assumed to be sound. Hence we obtain also a
coNP lower bound for the special case where all views
are sound.

Summarizing the results above we can state the fol-
lowing theorem.

Theorem 11 Answering queries using views under
CDA is coNP-complete wrt data complexity, expression
complexity and combined complexity.

5 Open Domain and Sound Views

Here we study query answering underODA in the
case where all views are sound. This special case al-
lows for interesting observations concerning the exten-
sion of the proposed methods to more general forms of
view definitions.

We start by establishing an upper bound for the com-
bined complexity of the problem.

Theorem 12 Answering queries using sound views un-
derODA is in PSPACE wrt combined complexity.

Proof. Let Q be a query,V1; : : : ; Vk be sound views
with definitions def (V1); : : : ; def (Vk) and extensions
ext(V1); : : : ; ext(Vk), andDV be the set of objects ap-
pearing inext(V1) [� � � [ext(Vk).

Let A = (�; S; S0; �; F) be a nondeterministic au-
tomaton forQ and consider a mappingh : DV ! 2S.
We say thath is consistent withA if the following holds:
for every viewVi and every pair(a; b) 2 ext(Vi) there is
a wordw 2 L(def (Vi)) such that�(h(a); w) � h(b)2.
Note that the existence of a wordw 2 L(def (Vi))
such that�(h(a); w) � h(b) can be verified in PSPACE
since it amounts to verify whether it is not the case that
L(def (Vi)) is included in the language accepted by the
automatonA = (�; S; h(a); �; S n h(b)).

We show that(c; d) 62 ans(Q) if and only if there is a
mappingh that is consistent withA such thatS0 � h(c)
andh(d) \ F = ;.

For the “if” direction, given a mappingh satisfy-
ing the condition above we construct fromh a database
DB as follows: for every viewVi and every pair
(a; b) 2 ext(Vi) we (i) choose a wordw = r1 � � � rn 2
L(def (Vi)) such that�(h(a); w) � h(b) and (ii) in-
troduce inDB a patha

r1! x1 � � �xn�1
rn! b, where

x1; : : : ; xn�1 are new objects.DB is consistent with
the views by construction and it can be verified that
(c; d) 62 ans(Q;DB).

For the “only-if” direction, given a databaseDB

that is consistent with the views and such that(c; d) 62
ans(Q;DB) we build a mappingh0 : D ! 2S by
putting each state inS0 in h

0(c) and repeating the fol-
lowing until h0 does not change any more: if there is
an edgex

r
! y in DB ands 2 h

0(x), then add�(s; r)

2We have used the extension of� to a mapping from2S � �
� to

2
S .

to h
0(y). Projectingh0 onDV we obtain a mappingh

which is consistent withA and such thatS0 � h(c) and
h(d) \ F = ;.

Finally, since the size of mappings fromDV to S is
jDV j � jSj, the existence of one satisfying the required
conditions can be checked in PSPACE. 2

The algorithm used in the proof above is based on
constructing a mapping between objects and states of the
automaton for the query, which takes into account how
the paths in the database that are used to satisfy the views
induce transitions on the automaton. The conditions on
the mapping are necessary and sufficient for the exis-
tence of a counterexample database for(c; d) 2 ans(Q).

It is interesting to observe that the algorithm exploits
the regularity of the queryQ but not the regularity of the
view definitions. All that we need is the ability of tak-
ing the product ofdef (Vi) with a finite automaton and
then testing for emptiness. Notably, this allows for ex-
tending the above algorithm for answering regular path
queries using context free views with the same complex-
ity bound.

We now establish a matching lower bound for the ex-
pression complexity of the problem.

Theorem 13 Answering queries using sound views un-
derODA is PSPACE-hard wrt expression complexity.

Proof. By reduction from regular expression universal-
ity, known to be PSPACE-complete [18]. We reduce uni-
versality of a regular expressionsE to answering query
Q = E using a sound viewV with def (V) = �� and
ext(V) = f(c; d)g. It is easy to verify thatL(��) �
L(E) if and only if (c; d) 2 ans(Q). 2

We now analyze data complexity in the present set-
ting. It turns out that the algorithm in the proof of The-
orem 12, which is optimal wrt combined complexity, is
also optimal wrt data complexity.

Theorem 14 Answering queries using sound views un-
derODA is in coNP wrt data complexity.

Theorem 15 Answering queries using sound views un-
derODA is coNP-hard wrt data complexity.

6 Open Domain and Arbitrary Views

We now study query answering underODA in the
most general setting where each view may be either
sound or exact3.

Theorem 16 Answering queries using (arbitrary) views
underODA is in PSPACE wrt combined complexity.

3As discussed in Section 2 complete views are reducible to exact
views.

Proof. Let Q be a query,V1; : : : ; Vk be views
with assumptions as(V1); : : : ; as(Vk), defi-
nitions def (V1); : : : ; def (Vk) and extensions
ext(V1); : : : ; ext(Vk), and DV be the set of objects
appearing inext(V1) [� � � [ext(Vk).

Let A0 = (�; S0; s0; �0; f0) be a nondeterministic
automaton forQ (we assume a single starting state and
a single accepting state). LetAi = (�; Si; si; �i; fi)
be a nondeterministic automaton fordef (Vi). Let T =S
0�i�k

Si, let T 0 = T [f0g, where0 62 T , and let
S
0
i
= Si [f0g, for 0 � i � k.
Consider a wordw 2 ��. Such a word induces a

binary relationHw � T
0�T 0 as follows. The pair(s; s0)

is inHw if and only if

� s; s
0 2 Si ands0 2 �i(s; w);

� s = 0, s0 2 Si and s
0 2 �i(si; w

0) for some
nonempty proper suffixw0 of w;

� s
0 = 0, s 2 Si and fi 2 �i(s; w

0) for some
nonempty proper prefixw0 of w;

� s = 0, s0 = 0 and fi 2 �i(si; w
0) for some

nonempty proper suffixw0 of a nonempty proper pre-
fix of w.

Intuitively,Hw keeps information about possible runs of
each automatonAi overw, its prefixes and its suffixes.
Given a binary relationH � T

0 � T
0 one can test in

PSPACE whether there exists a wordw such thatH =
Hw.

Consider a mappingh : DV �DV ! 2T
0
�T

0

, i.e.,h
assigns to every pair(a; b) 2 DV �DV a binary relation
overT 0. We say thath is consistent withA0; A1; : : : ; Ak

if the following holds for each(a; b) 2 DV � DV : if
h(a; b) is not empty, then there exists a wordwa;b such
thath(a; b) = Hwa;b

.
An accepting path forAi wrt h from a to b is a se-

quencea0; : : : ; am of elements inDV , wherea0 = a

andam = b, such that there is a sequencet0; : : : ; tm
of states inS0

i
, where (i) t0 = si or t0 = 0, (ii)

tm = fm or tm = 0, (iii) t1; : : : ; tm�1 are inSi, and
(iv) (ti; ti+1) 2 h(ai; ai+1), for 0 � i < m. If such an
accepting path exists we say that:

� Ai accepts the pair(a; b) if t0 = si andtm = fi,

� Ai accepts the pair(0; b) if t0 = 0 andtm = fi,

� Ai accepts the pair(a; 0) if t0 = si andtm = 0,

� Ai accepts the pair(0; 0) if t0 = 0 andtm = 0.

We show that(c; d) 62 ans(Q) if and only if there
exists a mappingh such that:

1. h is consistent withA0; A1; : : : ; Ak;

2. A0 does not accept the pair(c; d);

3. for eachVi, 1 � i � k,

� if as(Vi) = SVA thenAi accepts a pair(a; b) if
(a; b) 2 ext(Vi);

� if as(Vi) = EVA then (i)Ai accepts a pair(a; b)
if and only if (a; b) 2 ext(Vi) and (ii)Ai does not
accept any pair of the form(0; b), (a; 0), or (0; 0).

For the “if” direction, given a mappingh satisfy-
ing the conditions above we can obtain fromh a min-
imal mappingh0, still satisfying all conditions, by set-
ting h

0(a; b) = ; for as many pairs(a; b) as possible.
From h

0 we construct a databaseDB as follows: for
each(a; b) 2 DV � Dv such thath0(a; b) 6= ; we (i)
choose a wordw = r1 � � � rn such thath0(a; b) = Hw

and (ii) introduce inDB a patha
r1! x1 � � �xn�1

rn! b,
wherex1; : : : ; xn�1 are new objects. It can be verified
that DB is consistent with the view and that(c; d) 62
ans(Q;DB).

For the “only-if” direction, given a databaseDB

that is consistent with the views and such that(c; d) 62
ans(Q;DB) then there exists a databaseDB 0 that
is consistent with the views and such that(c; d) 62
ans(Q;DB) of the following form: DB 0 is composed
of a set of pathsa

r1! x1 � � �xn�1
rn! b, wherea; b 2 DV

andx1; : : : ; xn�1 are objects not inDV and not occur-
ring on any other path. We defineh as follows: for each
pair of objectsa; b 2 DV ,

h(a; b) =

�
Hr1���rn ; if a

r1! x1 � � �xn�1
rn! b in DB 0.

;; otherwise

It can be verified thath satisfies the conditions above.
Finally, since the size of mappings fromDV �DV to

T 0 � T
0 is jDV j

2 � T 02, the existence of one satisfying
the required conditions can be checked in PSPACE.2

The algorithm used in the proof above is based on
the same idea of the one used in the proof of Theo-
rem 12 for sound views, namely to construct a map-
ping between objects and automata states which takes
into account how the paths in the database that are used
to satisfy the views induce transitions on the automata
representing queries. However, while in the case of
sound views it was sufficient to track the transitions for
the automaton of the query, in the case of exact views
one has also to track the transitions for the automata of
the views. This is necessary since one has to guaran-
tee that, if a database can be constructed from the map-
ping, then it actually represents a correct counterexam-
ple to(c; d) 2 ans(Q), and therefore is consistent with
all views. This means that, if a pair(x; y) of objects
is not explicitly asserted to be part of the extension of
one of the viewsVi, then(x; y) is not in the answer set
to def (Vi) over the database. The conditions involving

pairs of objects(a; b) that appear in the extensions of
the views take into account the known objects, while the
conditions involving0 take into account the objects that
are not in the extensions of the views but need to be in-
troduced in the database to actually satisfy them.

Obviously, the PSPACE lower bound of answering
queries using sound views provides also a lower bound
for arbitrary views. Next we show that the same lower
bound holds also for the case where all views are exact.

Theorem 17 Answering queries using exact views un-
derODA is PSPACE-hard wrt expression complexity.

We now turn to analyzing data complexity in the
present setting.

Theorem 18 Answering queries using (arbitrary) views
underODA is in coNP wrt data complexity.

Proof. The algorithm in the proof of Theorem 16 pro-
vides a coNP upper bound, if the size of the query and
of the view definitions is considered to be constant.2

Theorem 19 Answering queries using exact views un-
derODA is coNP-hard wrt data complexity.

7 Relationship with Query Rewriting

As already mentioned in Section 3, query rewriting
techniques have been used to solve the query answering
problem [22]. Note however, that in the general case
one cannot exploit query rewriting using views for query
answering. In particular, when the rewriting is not exact
(i.e., it is not equivalent to the query), it may miss some
tuples that are in the answer to a query, as shown by the
following example.

Example 20 Given the queryQ = R3�(R4 + R5) +
R1�R4 +R2�R5 and the viewsV1, V2, V3 such that

def (V1) = R1 def (V2) = R2 +R3

def (V3) = R4 +R5

the best rewriting ofQ that we can obtain using
fV1; V2; V3g is empty (and hence not exact). However,
if as(V1) = as(V2) = as(V3) = EVA and

ext(V1) = f(c; b)g ext(V2) = f(c; b)g
ext(V3) = f(b; d)g

it holds that(c; d) 2 ans(Q).

Even if there exists an exact rewriting, it may still
miss some tuples of the answer to a query in the case
where the views are sound (but not exact).

Example 21 Given the queryQ = R1�R2 and the
viewsV1, V2, V3 such that

def (V1) = R1 def (V2) = R2

def (V3) = R1�R2

an exact rewriting ofQwrt fV1; V2; V3g isV3. However,
if as(V1) = as(V2) = as(V3) = SVA, and

ext(V1) = f(c; a)g ext(V2) = f(a; d)g
ext(V3) = f(c; b)g

then(c; d) 2 ans(Q), but evaluating the rewritingV3 on
the extensions of the views we do not get this answer.

If the rewriting is exact and the views are exact, we
can indeed use such rewriting to solve the query an-
swering problem. Exploiting the results in [10], where
rewriting of regular path queries is studied and an algo-
rithm to compute the maximal rewriting and check its
exactness is devised, we get the following theorem.

Theorem 22 LetV1; : : : ; Vk be exact views, andQ be a
query. If there exists an exact rewriting ofQ using the
viewsV1; : : : ; Vk, then answeringQ usingV1; : : : ; Vk
under bothCDA andODA is NLOGSPACE wrt data
complexity and EXPSPACE wrt expression complexity.

Proof. In particular, letR be an exact rewriting of a
queryQ in terms of the viewsV1; : : : ; Vk. Then we
can representR as a finite automaton over the alpha-
betV1; : : : ; Vk, and we have that(c; d) 2 ans(Q) if and
only if there is a sequencec0; : : : ; cm of objects and a
sequences0; : : : ; sm of automaton states such that

1. c0 = c andcm = d;

2. s0 is an initial state andsm is an accepting state;

3. for 0 � i � m, there is a transition labeled byVji
from si to si+1 and the pair(ci; ci+1) 2 ext(Vji).

This can be checked nondeterministically in space log-
arithmic in the size of the view extensions and the size
of the rewriting. Since the size of the rewriting is worst
case double exponential in the size of the query [10], the
above condition can be verified nondeterministically in
space logarithmic in the size of the view extensions and
exponential in the size of the query (by constructing the
rewriting on the fly [10]). 2

Thus, rewriting enables to decrease the data complex-
ity at the expense of expression complexity.

8 Conclusions

We have studied the problem of answering queries
using views for the case where both the query and the

views are expressed as regular path queries. We have
considered different assumptions both on the extensions
of the views, and on the domain of the database. For
each case, we have presented an algorithm and studied
its computational complexity. We have proven the lower
bound with respect to data, expression, and combined
complexity, and we have shown that it matches the com-
plexity of the provided algorithm.

Our results show that the problem is inherently in-
tractable mainly due to the expressive power of the query
language. On the other hand, with respect to data com-
plexity, the problem is no more complex than in cases
where the query language does not contain recursion,
such as non-recursive datalog.

In the future, we aim at extending the analysis to
other typical features present in full-fledged query lan-
guages over semistructured data. In particular, we aim
at adding inverse relations in regular path queries, and
allowing for conjunctions of regular path queries.

References

[1] S. Abiteboul. Querying semi-structured data. InProc. of
ICDT’97, pages 1–18, 1997.

[2] S. Abiteboul and O. Duschka. Complexity of answering
queries using materialized views. InProc. of PODS’98,
pages 254–265, 1998.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L.
Wiener. The Lorel query language for semistructured
data.Int. J. on Digital Libraries, 1(1):68–88, 1997.

[4] F. N. Afrati, M. Gergatsoulis, and T. Kavalieros. An-
swering queries using materialized views with disjunc-
tion. In Proc. of ICDT’99, volume 1540 ofLNCS, pages
435–452. Springer-Verlag, 1999.

[5] D. Barbará and T. Imieliński. Sleepers and workaholics:
Caching strategies in mobile environments. InProc. of
ACM SIGMOD, pages 1–12, 1994.

[6] C. Beeri, A. Y. Levy, and M.-C. Rousset. Rewriting
queries using views in description logics. InProc. of
PODS’97, pages 99–108, 1997.

[7] P. Buneman. Semistructured data. InProc. of PODS’97,
pages 117–121, 1997.

[8] P. Buneman, S. Davidson, M. Fernandez, and D. Su-
ciu. Adding structure to unstructured data. InProc. of
ICDT’97, pages 336–350, 1997.

[9] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu.
A query language and optimization technique for un-
structured data. InProc. of ACM SIGMOD, pages 505–
516, 1996.

[10] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y.
Vardi. Rewriting of regular expressions and regular path
queries. InProc. of PODS’99, pages 194–204, 1999.

[11] S. Chaudhuri, S. Krishnamurthy, S. Potarnianos, and
K. Shim. Optimizing queries with materialized views.
In Proc. of ICDE’95, Taipei (Taiwan), 1995.

[12] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting aggre-
gate queries using views. InProc. of PODS’99, 1999.

[13] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and
D. Suciu. XML-QL: A query language for XML. Sub-
mission to the World Wide Web Consortium, Aug. 1998.
Available at http://www.w3.org/TR/NOTE-
xml-ql .

[14] O. M. Duschka and M. R. Genesereth. Answering recur-
sive queries using views. InProc. of PODS’97, pages
109–116, 1997.

[15] M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy, and
D. Suciu. Catching the boat with strudel: Experiences
with a web-site management system. InProc. of ACM
SIGMOD, pages 414–425, 1998.

[16] M. F. Fernandez and D. Suciu. Optimizing regular path
expressions using graph schemas. InProc. of ICDE’98,
pages 14–23, 1998.

[17] D. Florescu, A. Levy, and A. Mendelzon. Database tech-
niques for the World-Wide Web: A survey.SIGMOD
Record, 27(3):59–74, 1998.

[18] M. R. Garey and D. S. Johnson. Computers and
Intractability—A guide to NP-completeness. W. H. Free-
man and Company, San Francisco (CA, USA), 1979.

[19] G. Grahne and A. O. Mendelzon. Tableau techniques for
querying information sources through global schemas.
In Proc. of ICDT’99, volume 1540 ofLNCS, pages 332–
347. Springer-Verlag, 1999.

[20] S. Grumbach, M. Rafanelli, and L. Tininini. Querying
aggregate data. InProc. of PODS’99, 1999.

[21] A. Y. Levy. Obtaining complete answers from incom-
plete databases. InProc. of VLDB’96, pages 402–412,
1996.

[22] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Sri-
vastava. Answering queries using views. InProc. of
PODS’95, pages 95–104, 1995.

[23] T. Milo and D. Suciu. Index structures for path expres-
sions. InProc. of ICDT’99, volume 1540 ofLNCS, pages
277–295. Springer-Verlag, 1999.

[24] Y. Papakonstantinou and V. Vassalos. Query rewriting
using semistructured views. InProc. of ACM SIGMOD,
1999.

[25] D. Quass, A. Rajaraman, I. Sagiv, J. Ullman, and
J. Widom. Querying semistructured heterogeneous in-
formation. In Proc. of DOOD’95, pages 319–344.
Springer-Verlag, 1995.

[26] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering
queries using templates with binding patterns. InProc.
of PODS’95, 1995.

[27] D. Srivastava, S. Dar, H. V. Jagadish, and A. Levy. An-
swering queries with aggregation using views. InProc.
of VLDB’96, pages 318–329, 1996.

[28] O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis. The
GMAP: A versatile tool for phyisical data independence.
VLDB Journal, 5(2):101–118, 1996.

[29] J. D. Ullman. Information integration using logical
views. In Proc. of ICDT’97, volume 1186 ofLNCS,
pages 19–40. Springer-Verlag, 1997.

[30] M. Y. Vardi. The complexity of relational query lan-
guages. InProc. of STOC’82, pages 137–146, 1982.

[31] J. Widom. Special issue on materialized views and
data warehousing.IEEE Bulletin on Data Engineering,
18(2), 1995.

